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Abstract

We consider backward stochastic differential equations (BSDEs) with nonlinear generators typically
of quadratic growth in the control variable. A measure solution of such a BSDE will be understood as a
probability measure under which the generator is seen as vanishing, so that the classical solution can be
reconstructed by a combination of the operations of conditioning and using martingale representations.
For the case where the terminal condition is bounded and the generator fulfills the usual continuity and
boundedness conditions, we show that measure solutions with equivalent measures just reinterpret classical
ones. For the case of terminal conditions that have only exponentially bounded moments, we discuss a
series of examples which show that in the case of non-uniqueness, classical solutions that fail to be measure
solutions can coexist with different measure solutions.
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0. Introduction

The generally accepted natural framework for the most efficient formulation of pricing
and hedging contingent claims on complete financial markets, for instance in the classical
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Merton–Scholes problem, is given by martingale theory, more precisely by the elegant notion of
martingale measures. Martingale measures represent a view of the world in which price dynamics
do not have inherent trends. From the perspective of this world, pricing a claim amounts to taking
expectations, while hedging boils down to pure conditioning and using martingale representation.

At first glance, hedging a claim is, however, a problem calling upon stochastic control: it
consists in choosing strategies to steer the portfolio into a terminal random endowment that the
portfolio holder has to ensure. Solving stochastic backward equations (BSDEs) is a technique
tailor-made for this purpose. This powerful tool has been introduced to stochastic control the-
ory by Bismut [1]. Its mathematical treatment in terms of stochastic analysis was initiated by
Pardoux and Peng [2], and its particular significance for the field of utility maximization in fi-
nancial stochastics clarified in El Karoui, Peng and Quenez [3] (see El Karoui and Barrieu [15]
in the context of risk measures). To fix ideas, we restrict our attention to a Wiener space proba-
bilistic environment. In this framework, a BSDE with terminal variable ξ at time horizon T and
generator f is solved by a pair of processes (Y, Z) on the interval [0, T ] satisfying

Yt = ξ −

∫ T

t
ZsdWs +

∫ T

t
f (s, Ys, Zs)ds, t ∈ [0, T ]. (1)

In the case of vanishing generator, the solution just requires an application of the martingale rep-
resentation theorem in the Wiener filtration, and Z will be given as the stochastic integrand in the
representation, to which we will refer as the control process in the sequel. The classical approach
of existence and uniqueness for BSDEs involves a priori inequalities as a basic ingredient, by
which unique solutions are constructed via fixed point arguments, just as in the case of forward
stochastic differential equations.

In this paper we are looking for a notion in the context of BSDEs that plays the role of the
martingale measure in the context of hedging claims. Our main interest is directed to BSDEs
of the type (1) with generators that are non-Lipschitzian, and depend on the control variable
z quadratically, typically f (s, y, z) = z2 b(s, z), s ∈ [0, T ], z ∈ R, with a bounded function
b. These generators were given a thorough treatment in Kobylanski [4], Briand and Hu [5],
and Lepeltier and San Martin [6]. While [4,6] consider existence and uniqueness questions for
bounded terminal variables ξ , [5] goes to the limit of possible terminal variables by considering
ξ for which exp(γ |ξ |) has finite expectation for some γ > 2‖b‖∞. All these papers employ
different methods of approach following the classical pattern of arguments mentioned above.
In contrast to this, our work will investigate an alternative notion of solution of BSDEs, the
generators of which fulfill similar conditions. Using the analogy with martingale measures in
hedging which effectively eliminate drifts in price dynamics (see for example [17]), we shall
look for probability measures under which the generator of a given BSDE is seen as vanishing.
Given such a measure Q which we call the measure solution of the BSDE and supposing that
Q ∼ P, the processes Y and Z are the results of projection and representation respectively,
i.e. Y = EQ(ξ |F·) = Y0 +

∫
·

0 ZsdW̃s, where W̃ is a Wiener process under Q. The first main
finding of the paper roughly states that provided the terminal variable ξ is bounded, all classical
solutions can be interpreted as measure solutions. More precisely, we show that if the generator
satisfies the usual continuity and quadratic boundedness conditions, classical solutions (Y, Z)
exist if and only if measure solutions with Q ∼ P exist. So existence theorems obtained in the
papers quoted are recovered in a more elegant and concise way in terms of measure solutions.
We do not touch uniqueness questions in general. Of course, determining a measure Q under
which the generator vanishes amounts to doing a Girsanov change of probability that eliminates
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it. We therefore have to look at the BSDEs in the form

Yt = ξ −

∫ T

t
Zs

[
dWs −

f (s, Ys, Zs)

Zs
ds

]
, t ∈ [0, T ], (2)

define g(s, y, z) = f (s,y,z)
z , and study the measure

Q = exp
(

M −
1
2
〈M〉

)
· P

for the martingale M =
∫
·

0 g(s, Ys, Zs)dWs . One of the fundamental problems that took some
effort to solve consists in showing that Q is a probability measure. Here one has to dig essentially
deeper than Novikov’s or Kazamaki’s criteria allow. We successfully employed a criterion which
is based on the explosion properties of the quadratic variation 〈M〉, which we learnt from a
conversation with M. Yor, and which has been latent in the literature for a while; see Liptser,
Shiryaev [7], or the more recent paper by Wong, Heyde [8]. This criterion allows a simple
treatment of the problem of existence of measure solutions in the case of bounded terminal
variable, and a still elegant and efficient one in the borderline case of exponentially integrable
terminal variable considered by Briand and Hu [5]. If ξ is only exponentially bounded, things
turn essentially more complex immediately. Specializing to a very simple generator, we find a
wealth of different situations looking confusing at first sight. Just to quote three basic scenarios
exhibited in a series of examples of different types: in the first type we obtain one solution which
is a measure solution at the same time; in the second one we find two different solutions both
of which are measure solutions; in the third one we encounter two solutions one of which is a
measure solution, while the other one is not. We even combine these basic examples to develop
a scenario in which there exists a continuum of measure solutions, and another one in which a
continuum of non-measure solutions is given.

Here is an outline of the presentation of our material. Throughout we consider BSDEs
possessing generators with quadratic nonlinearity in z. In a first section we discuss the case
of bounded terminal variable ξ , and show that if the generator satisfies continuity and quadratic
boundedness conditions, classical solutions (Y, Z) exist if and only if measure solutions with
Q ∼ P exist. Things become essentially more complex in the second section, where we
pass to exponentially integrable terminal variables. Taking the simple generator f (s, z) =
αz2, s ∈ [0, t], z ∈ R, with some α ∈ R, a wealth of different scenarios arises in which in
the case of non-uniqueness in particular solutions can be measure solutions, while different
ones fail to have this property. In the final section we construct measure solutions from first
principles without using strong solutions in our algorithm, for generators which are Lipschitz
continuous with time dependent and random constants. By iterating the successive applications
of martingale representation and Girsanov change of measure with respect to drifts obtained from
the martingale representation density of the previous step we obtain a sequence of probability
measures which can be seen to be tight in the weak topology, and thus have accumulation points
which yield measure solutions.

1. Measure solutions: Definition and first examples

In this section we first recall some basic definitions concerning BSDEs. We then introduce
and exemplify the notion of a measure solution by looking at a special class of BSDEs.
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Throughout let T be a non-negative real, (Ω ,F ,P) a probability space, and (Wt )0≤t≤T a
one-dimensional Brownian motion, whose natural filtration, augmented by N , is denoted by
(Ft )0≤t≤T , where

N = {A ⊂ Ω , ∃G ∈ F , A ⊂ G and P(G) = 0} .

Let ξ be an FT -measurable random variable, and let f : Ω×[0, T ]×R→ R be a measurable
function such that for all z ∈ R the mapping f (·, ·, z) is predictable. A classical solution of the
BSDE with terminal condition ξ and generator f is defined to be a pair of predictable processes
(Y, Z) such that almost surely we have

∫ T
0 Z2

s ds < ∞,
∫ T

0 | f (s, Ys, Zs)|ds < ∞, and for all
t ∈ [0, T ],

Yt = ξ −

∫ T

t
ZsdWs +

∫ T

t
f (s, Zs)ds. (3)

The solution processes (Y, Z) are often shown to satisfy some integrability properties and to
belong to the following function spaces. For p ≥ 1 let H p denote the set of all R-valued
predictable processes ζ such that E

∫ 1
0 |ζt |

pdt < ∞, and by S∞ we denote the set of all
essentially bounded R-valued predictable processes.

If ξ is square integrable and f satisfies a Lipschitz condition, then it is known that there exists
a unique pair (Y, Z) ∈ H2

⊗ H2 solving (3). Recall that the solution process Yt has a nice
representation as a conditional expectation with respect to a new probability measure if f is a
linear function of the form

f (s, z) = bs z, (4)

where b is a predictable and bounded process. More precisely, if Dt = exp(
∫ t

0 bsdWs −
1
2

∫ t
0 b2

s ds), and Q is the probability measure with density Q = DT · P, then

Yt = EQ[ξ |Ft ]. (5)

In the following we will discuss whether Y still can be written as a conditional expectation of
ξ if f does not have a representation as in (4) with b bounded, but satisfies only a quadratic
growth condition in z. We aim at finding sufficient conditions guaranteeing that the process Yt
of a classical solution of a quadratic BSDE has a representation as a conditional expectation of ξ
with respect to a new probability measure. For this purpose we consider the class of generators
f : Ω × [0, T ] × R→ R, satisfying, for some constant c ∈ R+,

Assumption (H1):

(i) f (s, z) = f (·, s, z) is adapted for any z ∈ R,
(ii) g(s, z) = f (s,z)

z , z ∈ R, is continuous in z, for all s ∈ [0, T ],

(iii) | f (s, z)| ≤ c(1+ z2) for any s ∈ [0, T ], z ∈ R,
(iv) there exists ε > 0 and a predictable process (ψs)s≥0 such that

∫ .
0 ψsdWs is a BMO-

martingale and for every |z| ≤ ε, |g(s, z)| ≤ ψs .

Let ξ be an FT -measurable random variable. We introduce for BSDEs with generators
satisfying (H1) our concept of measure solutions.

Definition 1.1. A triplet (Y, Z ,Q) is called measure solution of the BSDE (3) if Q is a
probability measure on (Ω ,F), (Y, Z) a pair of (Ft )-predictable stochastic processes such that
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0 Z2

s ds <∞, Q-a.s., and the following conditions are satisfied:

W̃ = W −
∫
·

0
g(s, Zs)ds is a Q-Brownian motion,

ξ ∈ L1(Ω ,F ,Q),

Yt = EQ(ξ |Ft ) = ξ −

∫ T

t
ZsdW̃s, t ∈ [0, T ].

It is known from the literature that if the terminal condition ξ is bounded and the generator
f satisfies Assumption (H1), then the BSDE (3) has a classical solution (Y, Z) (see for example
Kobylanski [4]). We show that in this case there exists a probability measure Q, equivalent to P,
such that (Y, Z ,Q) is a measure solution.

Theorem 1.1. Assume that ξ is bounded, and that f satisfies Assumption (H1). Then for
every classical solution (Y, Z) there exists a probability measure Q, equivalent to P, such that
(Y, Z ,Q) is a measure solution of (3).

Proof. Let (Y, Z) be a classical solution of (3). From Kobylanski [4], Y ∈ L∞(Ω × [0, T ]).
Moreover the martingale Z .W is a BMO (P)-martingale (see for example Barrieu et al. [9]).

We shall prove that under this condition also a measure solution exists. For this purpose, we
define

M =
∫
·

0
g(s, Zs)dWs . (6)

It is clear that all we have to establish is that the measure

Q = VT · P,

with

V = exp
(

M −
1
2
〈M〉

)
leads to a probability measure equivalent to P. Note that due to Assumption (H1)

|g(s, z)| ≤ C(ψs + |z|), s ∈ [0, T ], z ∈ Rd ,

for some C > 0.
Therefore M is also a BMO (P)-martingale, and from Kazamaki [10] Q is a probability

equivalent to P.
Under Q, by definition,

WQ = W −
∫
·

0
g(s, Zs) ds

is a Brownian motion, and our BSDE may be written as

Yt = ξ −

∫ T

t
ZsdWQs = EQ(ξ |Ft )

for t ∈ [0, T ]. This shows that (Y, Z ,Q) is a measure solution. �
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It is straightforward to see that every measure solution gives rise to a classical solution.
Consequently, under the assumptions of Theorem 1.1, measure solutions exist if and if only
classical solutions exist. More precisely, we obtain the following.

Corollary 1.1. Assume that ξ is bounded, and that f satisfies Assumption (H1). Then (Y, Z) is
a classical solution if and only if there exists a probability measure Q, equivalent to P, such that
(Y, Z ,Q) is a measure solution of (3).

We remark that the previous results can be extended to the case where W is a d-dimensional
Brownian motion. Let f : Ω ×[0, T ]×Rd

→ R be a generator for which there exists a constant
c ∈ R+ such that

| f (s, z)| ≤ c(1+ |z|2), s ∈ [0, T ], z ∈ Rd , (7)

and assume that g : Ω × [0, T ] × Rd
→ Rd is a function that is continuous in z and satisfies

〈z, g(s, z)〉 = f (s, z), for all z ∈ Rd and s ∈ [0, T ]. (8)

If ξ is bounded and FT -measurable, then one can show with arguments similar to those used
in the preceding proof that, starting from a classical solution (Y, Z), there exists a probability
measure Q such that W −

∫
·

0 g(s, Zs) ds is a Q-Brownian motion, and Yt = EQ(ξ |Ft ).
Notice that the relation (8) may be satisfied by more than one continuous g, and consequently

there may exist more than one measure solution in the multidimensional case. For example,
let d = 2, f (s, z) = z1z2, and observe that | f (z)| ≤ 1

2 |z|
2. For any a ∈ (0,∞) let

ga(z) = (az1,
1
a z2). Then, we have 〈z, ga(s, z)〉 = f (s, z), and thus there exists more than

one measure solution for a BSDE with generator f and a bounded terminal condition ξ .
In the following sections we shall discuss quadratic BSDEs with terminal conditions that are

not bounded. As is known from the literature (see for example Briand and Hu [5,11]), this case
is by far more complex. For example, here, even if the generators are smooth, solutions are no
longer unique. We shall exhibit examples below which complement the result shown in Briand
and Hu [11], according to which uniqueness is guaranteed for the case where the generator of the
BSDE possesses additional convexity properties, and the terminal variable possesses exponential
moments of all orders. This fact underlines that also variations in the generator affect questions
of existence and uniqueness of solutions a lot. For this reason, and also to keep better oriented
on a windy track with many bifurcations, in the next section we shall choose a simpler generator,
and assume that our generator is given by

f (s, z) = αz2.

2. Measure and non-measure solutions of quadratic BSDEs with unbounded terminal
condition

In this section we will study in more detail the BSDEs with generator of the form

f (z) = αz2.

We shall further assume without loss of generality that α > 0. This can always be obtained in
our BSDE by changing the signs of ξ , and the solution pair (Y, Z).

Nonetheless, it turns out that positive and negative terminal variables need a separate
treatment. We will first show (see Section 2.1) the existence of measure solutions for terminal
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conditions ξ bounded from below. Note that with a linear shift of Y we may assume that ξ ≥ 0.
We shall further work under exponential integrability assumptions in the spirit of Briand and
Hu [5]. According to this paper, exponential integrability of the terminal variable of the form

E(exp(γ |ξ |)) <∞ (9)

for some γ > 2α is sufficient for the existence of a solution. Let us first exhibit an example to
show that one cannot go essentially beyond this condition without losing solvability.

Example. Let T = 1, and let α = 1
2 . Let us first consider

ξ =
W 2

1

2
.

It is immediately clear from the fact that W1 possesses the standard normal density that
E exp(2α|ξ |) = ∞, and hence of course also for γ > 2α (9) is not satisfied. To find a solution
(Y, Z) of (3) on any interval [t, 1] with t > 0 define

Zs =
Ws

s
, s > 0,

and set for completeness Z0 = 0. Let t > 0 and use the product formula for Itô integrals to
deduce∫ 1

t
ZsdWs =

1
2

W 2
s

s

∣∣∣∣1
t
+

1
2

∫ 1

t

W 2
s

s2 ds

= ξ −
1
2

W 2
t

t
+

1
2

∫ 1

t
Z2

s ds. (10)

This means that, if we set for convenience again Y0 = 0, the pair of processes (Ys, Zs) =

( 1
2

W 2
s

s ,
Ws
s ), s ∈ [0, 1], solves the BSDE (3) on [t, 1] for any t > 0. Of course, the definition of

Y0 is totally inconsistent with the BSDE. Worse than that, Z is not square integrable on [0, 1],
as is well known from the path behavior of Brownian motion. Hence (Y, Z) is not a solution
of (3). To put it more strictly, there is no classical solution of (3) on [0, 1], since, due to local
Lipschitz conditions, any such solution would have to coincide with (Y, Z) on any interval [t, 1]
with t > 0.

According to Jeulin and Yor [12], transformations of this type are related to a phenomenon
that they call appauvrissement de filtrations. In fact, when 1

2 is replaced with a parameter λ, they
show that the natural filtration of the transformed process gets poorer than that of the Wiener
process, iff λ > 1

2 . Hence in the case that we are interested in the Wiener filtration is preserved.

Let us now reduce the factor of W 2
1 in the definition of ξ a bit, to show that solutions exist in

this setting. For k ∈ N, let

ξk =
W 2

1

2(1+ 1/k)
,

and consider the BSDE (3) with the generator f chosen above, and terminal condition ξk . In this
setting, we clearly have

E exp(γ ξk) <∞ for 2α ≤ γ < 2α(1+ 1/k).
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This shows that the condition of Briand and Hu [5] is satisfied. It is not hard to construct the
solutions of the corresponding BSDEs explicitly, in the same way as above. In fact, for k ∈ N we
may define fk(t) = 1

k + t, t ∈ [0, 1], and set

Z k
t =

Wt

fk(t)
, t ∈ [0, 1].

We may then repeat the product formula for the Itô integrals argument used above to obtain for
t ≥ 0 ∫ 1

t
Z k

s dWs =
1
2

W 2
s

fk(s)

∣∣∣∣1
t
+

1
2

∫ 1

t

W 2
s f ′k(s)

fk(s)2
ds

=
1
2

W 2
1

fk(1)
−

1
2

W 2
t

fk(t)
+

1
2

∫ 1

t
(Z k

s )
2ds. (11)

Hence we set

Y k
t =

1
2

W 2
t

fk(t)
, t ∈ [0, 1],

to identify the pair of processes (Y k, Z k) as a solution of the BSDE

Y k
t = ξk −

∫ 1

t
Z k

s dWs +
1
2

∫ 1

t
(Z k

s )
2ds, t ∈ [0, 1]. (12)

We do not know at this moment whether (3) possesses more solutions. �

2.1. Exponentially integrable lower bounded terminal variable

For under the exponential integrability assumption E(exp(2αξ)) < ∞, we will now derive
measure solutions from given classical solutions. Leaving the difficult question of uniqueness
aside for a moment, we remark that with our simple generator, we obtain an explicit solution
given by the formula

Yt =
1

2α
ln Mt −

1
2α

ln M0, Z t =
1

2α
Ht

Mt
, (13)

where

Mt = E(exp(2αξ)|Ft ) = M0 +

∫ t

0
HsdWs, t ∈ [0, T ].

In the sequel, we shall work with this explicit solution. In the following lemma, we prove
integrability properties for the square norm of Z which will be crucial for stating the martingale
property of M and other related processes later.

Lemma 2.1. For any p ≥ 1 we have

E

([∫ T

0
Z2

s ds

]p)
<∞.

In particular,
∫
·

0 ZsdWs is a uniformly integrable martingale.
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Proof. Let t ∈ [0, T ]. By Itô’s formula, applied to N

1
2α
[ln Mt − ln M0] =

1
2α

[∫ t

0

Hs

Ms
dWs −

1
2

∫ t

0

(
Hs

Ms

)2

ds

]
=

∫ t

0
ZsdWs − α

∫ t

0
Z2

s ds.

Hence

α

∫ t

0
Z2

s ds = −
1

2α
[ln Mt − ln M0] +

∫ t

0
ZsdWs . (14)

By concavity of the ln and Jensen’s inequality

ln Mt = ln E(exp(2αξ)|Ft ) ≥ E(2αξ |Ft ).

Using this in (14), we obtain

α

∫ t

0
Z2

s ds ≤ −E(ξ |Ft )+
1

2α
ln M0 +

∫ t

0
ZsdWs .

Taking p-norms in this inequality and using the inequality of Burkholder, Davis and Gundy for
the stochastic integral, we obtain with universal constants c1, c2, c3

E
([∫ t

0
Z2

s ds

]p)
≤ c1

[
E
(
|E(ξ |Ft )|

p)
+ | ln M0|

p
+ E

([∫ t

0
Z2

s ds

] p
2
)]

≤ c2

[
E(|ξ |p)+ | ln M0|

p
+ E

([∫ t

0
Z2

s ds

] p
2
)]

.

By a standard argument this entails

E
([∫ t

0
Z2

s ds

]p)
≤ c3[E(|ξ |p)+ | ln M0|

p
+ 1],

and finishes the proof. �

We shall now prove that (Y, Z) gives rise to a measure solution.

Theorem 2.1. Assume that (Y, Z) are defined as in (13). Then there exists a probability measure
Q, equivalent to P, such that (Y, Z ,Q) is a measure solution of (3).

Proof. Let

S =
∫
·

0
Zs dWs .

Due to Lemma 2.1, we know that S is a uniformly integrable martingale. We may write

αS −
1
2
α2
〈S〉 = α

[∫
·

0
ZsdWs − α

∫
·

0
Z2

s ds

]
+

∫
·

0

(
α2 Z2

s −
1
2
α2 Z2

s

)
ds

= α(Y − Y0)+
1
2
α2
∫
·

0
Z2

s ds. (15)

Now define stopping times τn = T ∧ inf{t ≥ 0 : 〈S〉t ≥ n}. For any n ∈ N we have

E exp
(
αSτn −

1
2
α2
〈S〉τn

)
= 1,
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and consequently Fatou’s lemma implies

E exp
(
α[ξ − Y0] +

1
2
α2
∫ T

0
Z2

s ds

)
≤ lim inf

n→∞
E exp

(
αSτn −

1
2
α2
〈S〉τn

)
= 1. (16)

Using this and the positivity of the terminal variable ξ , we can now obtain the exponential
integrability property

E exp
[

1
2
α(ξ − Y0)+

1
2
α2
∫ T

0
Z2

s ds

]
<∞. (17)

We shall now use (15) together with (16) to prove the exponential integrability of 1
2αST . In fact,

we have

1
2
αST =

1
2
α(ξ − Y0)+

1
2
α2
∫ T

0
Z2

s ds.

Hence we obtain

E exp
(

1
2
αST

)
<∞, (18)

and together with the uniform integrability of the martingale S, proved in Lemma 2.1, this enables
us to apply the criterion of Kazamaki (see Revuz and Yor [13], p. 332). Hence we have proved
the existence of a measure solution to our BSDE (3). �

As a by-product of our main result, we obtain the exponential integrability of the quadratic
variation of S.

Corollary 2.1. Under the conditions of Theorem 2.1 we have

E exp
(

1
2
α2
∫ T

0
Z2

s ds

)
<∞.

Proof. This follows immediately from (17) and the lower boundedness of ξ . �

2.2. A quadratic BSDE with two solutions

Let us now come back to the question of uniqueness of solutions, and their measure solution
property. Briand and Hu [5] prove the existence of solutions (Y, Z) in the usual sense, given
that (9) is satisfied. In a setting with more general generators, the nonlinear z-part being
bounded by αz2, they provide pathwise upper and lower bounds for Y , given by the known
explicit solution for this generator ( 1

2α log E(exp(2αξ)|Ft )t∈[0,T ]) used above, and its negative
counterpart (− 1

2α log E(exp(−2αξ)|Ft )t∈[0,T ]). In a more recent paper, Briand and Hu [11] also
provide a uniqueness result for the same setting, which is satisfied under the stronger integrability
hypothesis

E(exp(γ |ξ |)) <∞ (19)

for all γ > 0 and a convexity assumption concerning the generator. Let us start our discussion of
uniqueness and the measure solution property by giving some examples.

For b > 0, let τb = inf{t ≥ 0 : Wt ≤ bt − 1}. We first consider a BSDE with random time
horizon τb. Let the generator be further specified by α = 1

2 . Let ξ = 2a(b − a)τb − 2a, where
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a > 0. It will become clear along the way why this choice of terminal variable is made. In the
first place, it is motivated by the striking simplicity of the solutions that we shall construct. We
shall in fact give two explicit solutions of the BSDE

Yt∧τb = ξ −

∫ τb

t
ZsdWs +

∫ τb

t

1
2

Z2
s ds. (20)

Appropriate choices of a and b allow for terminal variables that are bounded below as well as
bounded above. The fact that the time horizon is random is not crucial. Indeed, by using a time
change, any solution of Eq. (20) can be transformed into a solution of a BSDE with the same
generator and with time horizon 1. To this end consider the time change ρ(t) = t

1+t , t ∈ [0,∞],

and observe that the inverse of ρ is given by ρ−1(t) = t
1−t , t ∈ [0, 1]. Let h(t) = 1

1−t for all
t ∈ [0, 1]. Then the process defined by

W̃t =

∫ t

0
h−1(s)d(Wρ−1(s)), t ∈ [0, 1], (21)

is a Brownian motion on [0, 1]. Note that Wt =
∫ ρ(t)

0 h(s)dW̃s (and this is how we have to define
W , if W̃ is given). Moreover, the stopping time

τ̂b = inf
{

t ≥ 0 :
∫ t

0
h(s)dW̃s ≤

t

1− t
− 1

}
is equal to ρ(τb). We can now define a time changed analogue of Eq. (20) with time horizon 1.

Lemma 2.2. Let (Yt , Z t ) be a solution of the BSDE (20), and let ξ̂ = 2a(b− a) τ̂b
1−τ̂b
− 2a. Then

(yt , zt ) = (Yρ−1(t), h(t)Zρ−1(t)) is a solution of the BSDE

yt = ξ̂ −

∫ 1

t
zsdW̃s +

∫ 1

t

1
2

z2
s ds. (22)

Proof. Since stochastic integration and continuous time changes can be interchanged (see
Proposition 1.5, Chapter V in [13]), we have

yt = Yρ−1(t) =

∫ ρ−1(t)

0
ZsdWs −

1
2

∫ ρ−1(t)

0
Z2

s ds

=

∫ t

0
Zρ−1(s)dWρ−1(s) −

1
2

∫ t

0
Z2
ρ−1(s)dρ

−1(s)

=

∫ t

0
Zρ−1(s)h(s)dW̃s −

1
2

∫ t

0
Z2
ρ−1(s)h

2(s)ds,

and hence the result. �

Let us first assess exponential integrability properties of ξ . For this, let γ > 0 be arbitrary.
Then we have

Eeγ |ξ | = Eeγ |2a(b−a)τb−2a|
≤ e2aγEeγ 2a|b−a|τb .

Define the auxiliary stopping time

σb = inf{t ≥ 0 : Wt ≤ t − b}.
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It is well known and proved by the scaling properties of Brownian motion that the laws of τb and
σb
b2 are identical (see Revuz and Yor [13]). Moreover, the Laplace transform of σb is equally well
known. According to Revuz and Yor [13] we therefore have for λ > 0

E(exp(−λτb)) = E

(
exp

(
−
λ

b2 σb

))
= exp

(
−b

[√
1+

2λ

b2 − 1

])
. (23)

Moreover, it is seen by analytic continuation arguments that this formula is even valid for
λ ≥ − b2

2 . Now choose λ = −2a|b − a|γ . Then the inequality

−2a|b − a|γ ≥ −
1
2

b2

amounts to

γ ≤
b2

4a|b − a|
. (24)

This in turn means that we have exponential integrability of orders bounded by b2

4a|b−a| ; in
particular we may reach arbitrarily high orders by choosing a and b sufficiently close. But no
combination of a and b allows exponential integrability of all orders. In the light of Briand and
Hu [11] this means that the entire field of pairs of positive a and b promises multiple solutions,
and this is precisely what we will exhibit.

2.2.1. The first solution
It is clear from the definition that the pair (Yt , Z t ), defined by Yt = 2aWt∧τb − 2a2(τb ∧ t)

and Z = 2a1[0,τb], is a solution of (20). To answer the question of whether this defines a measure
solution, we have to investigate

E exp
[∫ τb

0

1
2

ZsdWs −
1
8

∫ τb

0
Z2

s ds

]
= E exp

[
aWτb −

a2

2
τb

]
= E

(
exp

(
a
(

b −
a

2

)
τb − a

))
.

Due to (23) we have

E
(

exp
(

a
(

b −
a

2

)
τb − a

))
= exp

(
−b

[√
1−

2

b2 a
(

b −
a

2

)
− 1

]
− a

)
= exp

(
−b

[∣∣∣1− a

b

∣∣∣− 1
]
− a

)
,

and the latter equals 1 in the case b ≥ a and exp(2(b − a)) < 1 in the case a > b. This simply
means that our first solution is a measure solution of (22) provided b ≥ a, and it fails to be one
in the case a > b. We will show that this first solution does not necessarily correspond to the
particular solution discussed at the beginning of the section.

2.2.2. The second solution
We show now that the BSDE (20) with the same terminal variable as above possesses a second

solution. By Lemma 2.2 there exists a second solution of (22) as well. Once this is shown, for any
possible degree γ of exponential integrability we will have exhibited a negative random variable
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satisfying E(exp(γ |ξ |)) < ∞ for which (20) possesses at least two solutions. This in turn will
underline that the Briand and Hu [11] uniqueness result, valid under (19), cannot be improved by
much. Note that the solution that we will exhibit is again of the explicit form (13) encountered
earlier. Let Mt = E[eξ |Ft ] for all t ≥ 0. Due to the martingale representation property there

exists a process H such that Mt = M0+
∫ t

0 HsdWs . We know that (ln Mτb∧t ,
Hτb∧t

Mτb∧t
) is a solution

of (20). We will show below that

ln Mτb∧t = 2b − 4a + 2(b − a)Wτb∧t − 2(b − a)2(τb ∧ t), if 2a > b, (25)

ln Mτb = 2aWτb∧t − 2a2τb ∧ t, if 2a ≤ b. (26)

This implies that the solution (ln Mτb∧t ,
Hτb∧t

Mτb∧t
) is different from the solution (2aWτb∧t−2a2(τb∧

t), 2a) obtained above in the case 2a > b. Hence by Lemma 2.2 we obtain a second solution of
(22) in this case.

First note that

Mt = e−2aE[e2a(b−a)τb |Ft ]

= e−2a
(

e2a(b−a)τb 1{τb≤t} + e2a(b−a)tE[e2a(b−a)[τb−t]
|Ft ]1{τb>t}

)
. (27)

Let σb(x, t) = inf{s ≥ 0 : Ws+t − Wt ≤ b(s + t)− 1− x} and observe that on the set {τb > t}
we have τb− t = σb(Wt , t). Therefore, by using again our knowledge on the Laplace transforms
of σ(x, t) (see [13]), we get

E[e2a(b−a)[τb−t]
|Ft ]1{τb>t} = E[e2a(b−a)σb(x,t)]|x=Wt 1{τb>t}

= e
−b(1+Wt−bt)[

√
1− 4a(1−a)

b2 −1]
1{τb>t}

= e−b(1+Wt−bt)[|1− 2a
b |−1]1{τb>t}.

Consequently,

Mt = e−2a
(

e2a(b−a)τb 1{τb≤t} + e2a(b−a)t e−b(Wt+1−bt)[|1− 2a
b |−1]1{τb>t}

)
= e2a((1−a)(τb∧t)−1)1{τb≤t} + e−2(b−a)(Wt+1−bt)1{τb>t}.

Hence in the case 2a > b

ln Mτb∧t = 2a((b − a)(τb ∧ t)− 1)− 2(a − b)(Wτb∧t + 1− (τb ∧ t))

= −4a + 2b + [−2b + 4a − 2a2
](τb ∧ t)− 2(a − b)Wτb∧t

= 2b − 4a + 2(b − a)Wτb∧t − 2[b − a]2(τb ∧ t).

This confirms the first Eq. (25). Let finally 2a ≤ b. Then we have

Mt = e−2a
(

e2a(b−a)τb 1{τb≤t} + e2a(b−a)t e2a(Wt+1−bt)1{τb>t}

)
= e2a((b−a)(τb∧t))+2a(Wτb∧t+1−bτb∧t)

= e2aWτb∧t−2a2τb∧t .

Hence in this case

ln Mτb∧t = 2aWτb∧t − 2a2τb ∧ t.
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Note that in the case 2a ≤ b we recover the solution already obtained as the first solution.
Let us finally show that this second solution is in fact a measure solution for any possible

combination of parameters.

Lemma 2.3. (ln Mτb∧t ,
Hτb∧t

Mτb∧t
) can be extended to a measure solution of (20), and hence

provides a measure solution of (22).

Proof. For the first solution in the case a ≤ b, which is identical to the one considered in the
case 2a ≤ b, we have already established the measure solution property. Let us therefore consider
the case 2a > b. Note that for all t , Mt∧τb = e2b−4a

+
∫ t∧τb

0 HsdWs . Itô’s formula applied to

e2(b−a)Wτb∧t−2[b−a]2(τb∧t) yields

Hs∧τb = 2(b − a)e2(b−a)Wτb∧t−2[b−a]2(τb∧t).

As a consequence, we have

Zs∧τb =
Hs∧τb

Ms∧τb

= 2(b − a)1[0,τb](s),

and therefore

E
(1

2

∫
ZdW

)
τb
= e(b−a)Wτb−

1
2 (b−a)2τb

= e(b−a)(bτb−1)− 1
2 (b−a)2τb

= e(a−b)e
1
2 (b−a)(b+a)τb .

Again the explicit representation of the Laplace transform in (23) gives

EE
(1

2

∫
ZdW

)
τb
= e(a−b)Ee−

1
2 (b−a)(b+a)τb = e(a−b)e

−b(

√
1−(1− a2

b2 )−1)
= 1.

This implies the claimed result that our second solution (ln Mτb∧t ,
Hτb∧t

Mb∧t
) is a measure solution

of (20). �

Remark. 1. We can summarize the findings of our investigations of the examples by stating that
there are three basic scenarios: (a) for b ≥ 2a we obtained one solution which is a measure
solution at the same time; (b) in the range 2a > b ≥ a we found two different solutions both of
which are measure solutions; (c) if a > b we finally encountered two solutions one of which is a
measure solution, while the other one is not.

2. Note that our examples exhibiting solutions of (20) that are not measure solutions are all
for negative terminal variables ξ . Positive terminal variables arise in scenarios (a) or (b), and
therefore only produce multiple measure solutions.

2.2.3. A continuum of solutions
Let us now combine the first and second solutions to obtain a continuum of solutions of our

BSDE (20). To do this, we have to consider a still somewhat more general class of stopping
times. For c ∈ R, let

ρc = inf{t ≥ 0 : Wt ≤ t − c}.
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We investigate the terminal variables

ξ = 2a(a − 1)ρc + d

with further constants a 6= 0, d ∈ R. Note first that the integrability properties of ξ are the
same as those obtained before for b = 1. According to the preceding paragraphs, our BSDE (20)
possesses the following two solutions:

Z1
= 2a1[0,ρc], Y 1

= d1 + 2aWρc∧· − 2a2ρc ∧ ·, (28)

Z2
= 2(1− a)1[0,ρc], Y 2

= d2 + 2(1− a)Wρc∧· − 2(1− a)2ρc ∧ ·, (29)

with d1 = −2ac and d2 = −2(a − 1)c respectively. Let us now take c = 1 and combine the two
solutions to obtain a continuum of new ones. To do this, we start with the equation

ρ1 = ρc + ρ1−c ◦ θρc ,

where θt is the shift on Wiener space defined by

θt (ω) = Wt+·(ω)−Wt (ω),

and c ∈]0, 1[. It describes the first time for reaching the line with slope 1 that cuts the vertical at
level −1, by decomposition with the intermediate time for reaching the line with slope 1 cutting
the vertical at −c. We mix the two solutions on the two resulting stochastic intervals; more
precisely we put for c ∈]0, 1[, l ∈ R,

Z c
= 2a1[0,ρc] + 2(1− a)1[ρc,ρ1],

Y c
= l + 2aWρc∧· − 2a2ρc ∧ · + 2(1− a)[Wρ1∧· −Wρc∧·]

− 2(1− a)2[ρ1 ∧ · − ρc ∧ ·].

(30)

Since we have

Y c
ρ1
= l + 2aWρc − 2a2ρc + 2(1− a)[Wρ1 −Wρc ] − 2(1− a)2[ρ1 − ρc]

= l + 2a(1− a)ρ1 − 2ac − 2(1− a)(1− c),

we have to set

l − 2ac − 2(1− a)(1− c) = d

in order to obtain a solution of (20) with c = 1.According to the treatment of the first and second
solutions, the constructed mixture is a measure solution if and only if both components of the
mixture are. This is the case for 2a(1−a) > 0, whereas for 2a(1−a) < 0 we obtain a continuum
of solutions that are not measure solutions.

Remark. 1. This time, we may summarize our results by saying that there are two scenarios:
(a) for 2a(1− a) > 0 there is a continuum of measure solutions of (20), while for 2a(1− a) < 0
a continuum of non-measure solutions is obtained.

2. Note that the initial conditions of our solutions continuum vary in a convex way between
−2a and −2(1− a) as c varies in ]0, 1[, spanning the whole interval.

We shall now point out that the measure solution property of the second solution in the case
a > b exhibited in the example above is not a coincidence. In fact, it will turn out that also for
negative exponentially integrable ξ , solutions given by (13) provide measure solutions. To prove
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this, we will reverse the sign of ξ by looking at our BSDE from the perspective of an equivalent
measure.

2.3. Exponentially integrable upper bounded terminal variable

Sticking with the positivity of α in the generator

f (s, z) = αz2, s ∈ [0, T ], z ∈ R

we shall now consider terminal variables ξ that fulfill the exponential integrability condition (9),
but are bounded above by a constant. Again, by a constant shift of the solution component Y ,
we can assume that the upper bound is 0, i.e. ξ ≤ 0. So fix a non-positive terminal variable
ξ satisfying (9) for some γ > 2α, and denote by (Y, Z) the pair of processes given by the
explicit representation of (13) solving our BSDE according to Briand and Hu [5]. With respect
to the following probability measure, ξ will effectively change its sign, so we can hook up to the
previous discussion. Recall S =

∫
·

0 ZsdWs .

Lemma 2.4. Let V = exp(2αS−2α2
〈S〉). Then V is a martingale of class (D), and consequently

R = VT · P

is a probability measure equivalent to P. Moreover,

W R
= W − 2α

∫
·

0
Zsds

is a Brownian motion under R.

Proof. By (3), we may write

2α[Y − Y0] = 2αS − 2α2
〈S〉,

and hence also

2α[ξ − Y0] = 2αST − 2α2
〈S〉T .

According to Briand and Hu [5], Theorem 2, there exists δ > 2α such that

E( sup
t∈[0,T ]

exp(δ|Yt |)) <∞, (31)

and therefore β > 1 with the property

E( sup
t∈[0,T ]

V β
t ) <∞. (32)

This clearly implies that V is a martingale of class (D), and consequently R is a probability
measure. Finally, Girsanov’s theorem implies that W R is a Brownian motion under R. �

Now consider our BSDE under the perspective of the measure R with respect to the Brownian
motion W R . We may write

Y = ξ −
∫ T

·

ZsdWs + α

∫ T

·

Z2
s ds = ξ −

∫ T

·

ZsdW R
s − α

∫ T

·

Z2
s ds. (33)
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But this just means that by switching signs in (Y, Z), we may return, under the new measure R, to
our old BSDE with ξ replaced with −ξ . So our measure change puts us back into the framework
of the previous subsection, and we may resume our arguments there by setting

SR
= −

∫
·

0
ZsdW R

s .

We need an analogue of Lemma 2.1 to guarantee that R is a uniformly integrable martingale.

Lemma 2.5. For any p ≥ 1 we have

ER

([∫ T

0
Z2

s ds

]p)
<∞.

In particular, SR is a uniformly integrable martingale under R.

Proof. By definition of R, we have for any p > 1

ER

([∫ T

0
Z2

s ds

]p)
= E

(
exp(2α[ξ − Y0])

[∫ T

0
Z2

s ds

]p)
.

Now since ξ ≤ 0, the density exp(2α[ξ −Y0]) is bounded above. Therefore the asserted moment
finiteness follows from Lemma 2.1. �

We are in a position to prove the main result of this subsection.

Theorem 2.2. Assume that f satisfies f (s, z) = αz2, z ∈ R, s ∈ [0, T ], and that ξ is bounded
above and satisfies (9). Then there is a measure solution of (3) with a measure Q that is
equivalent to P.

Proof. We may assume ξ ≤ 0. Let us first show that, in analogy to the proof of Theorem 2.1,

V R
= exp

(
αSR
−

1
2
α2
〈SR
〉

)
is a uniformly integrable martingale under R, using Kazamaki’s criterion. For this purpose, let

τ R
n = inf{t ≥ 0 : 〈SR

〉t ≥ n} ∧ T, n ∈ N.

Then, due to 〈S〉 = 〈SR
〉, we deduce for all n ∈ N that τn = τ

R
n . Since τ R

n → T as n → ∞,
even with τ R

n = T for all but finitely many n, Fatou’s lemma allows us to deduce

ER(VT ) ≤ lim inf
n→∞

ER(V R
τ R

n
) ≤ 1. (34)

Moreover, by the form of the BSDE translated to W R under R,

αSR
−

1
2
α2
〈SR
〉 = α

[
−

∫
·

0
ZsdW R

s −
1
2
α

∫
·

0
Z2

s ds

]
= α

[
−

∫
·

0
ZsdW R

s − α

∫
·

0
Z2

s ds

]
+

1
2
α2
∫
·

0
Z2

s ds

= α[−Y + Y0] +
1
2
α2
∫
·

0
Z2

s ds.
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Using the negativity of ξ and the identity just derived, we get the integrability property

ER exp
[

1
2
α(−ξ + Y0)+

1
2
α2
∫ T

0
Z2

s ds

]
<∞. (35)

Using this and the positivity of the terminal variable ξ , we can now obtain the exponential
integrability property

E exp
[

1
2
α(ξ − Y0)+

1
2
α2
∫ T

0
Z2

s ds

]
<∞. (36)

Again, we may now use (35) together with (34) to prove the exponential integrability of 1
2αSR

T .
In fact, from the BSDE viewed with W R under R we have

1
2
αSR

T =
1
2
α(−ξ + Y0)+

1
2
α2
∫ T

0
Z2

s ds.

Hence we obtain

ER exp
(

1
2
αSR

T

)
<∞. (37)

Now appeal to the uniform integrability of the martingale SR under R, proved in Lemma 2.5, to
see that the criterion of Kazamaki (see Revuz and Yor [13], p. 332) may be applied. Hence VR is
a uniformly integrable martingale under R.

We have to show that this implies uniform integrability of

V = exp
(
αS −

1
2
α2
〈S〉

)
under P. To see this, note that

exp
(
αS −

1
2
α2
〈S〉

)
= exp(2αS − 2α2

〈S〉) · exp
(
−αS +

3
2
α2
〈S〉

)
= exp(2αS − 2α2

〈S〉) · exp
(
αSR
−

1
2
α2
〈SR
〉

)
.

Hence for n ∈ N

E(Vτn 1{τn<T }) = ER(V R
τ R

n
1{τ R

n <T }), (38)

and the latter expression tends to 0 as n → ∞ by the first part of the proof. Hence the uniform
integrability of V under P follows from the explosion criterion

Qn(τn < T )→ 0 (n→∞). (39)

In fact let

Qn
= VT · P|Fτn

be the measure change defined locally on Fτn . We know that Qn is a probability measure
equivalent to P, and the Radon–Nikodym density of Qn with respect to P on Fτn is given by

Vτn = exp
(
αSτn −

1
2
〈αS〉τn

)
.
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Namely, (39) implies

lim
n

E(VT 1{τn=T }) = lim
n
[E(Vτn )− E(Vτn 1{τn<T })] = 1− lim

n
Qn(τn < T ) = 1. (40)

On the other hand, dominated converges yields E(VT ) = limn E(VT 1{τn=T }), and hence that V
induces a probability measure. We remark that the criterion (39) can be found in [7], and appears
also as Lemma 1.5 in [10].

This completes the proof. �

Remark. The results of the preceding two subsections clearly call for similar ones for our BSDE
with exponentially integrable terminal variable that are not bounded. Due to the nonlinearity of
the generator of the BSDE, it seems impossible to derive such properties by combining the results
of Theorems 2.1 and 2.2.

3. The existence of measure solutions in the Lipschitz case

We shall now construct measure solutions from first principles. In particular, we shall
not assume any knowledge about strong solutions. We shall give a complete self-contained
construction for measure solutions with Lipschitz continuous generator for which the Lipschitz
constant may be time dependent. Our construction provides the measure solution through an
algorithm which just iterates the procedures of projecting the terminal variable by a given
measure. The conditions on the generator are less restrictive than in El Karoui and Huang [16].
The martingale representation theorem with respect to the measure Qn in step n will produce a
control process Zn which is then plugged into the generator of the BSDE. The resulting drift is
taken off by applying Girsanov’s theorem which produces a new measure Qn+1 with which we
continue along the lines just sketched in step n + 1. The sequence (Qn)n∈N thus produced has to
be shown to possess at least an accumulation point in the weak topology. This is seen by a simple
argument using the Lipschitz and boundedness properties. The extension to a continuous or
quadratic generator and bounded terminal condition is straightforward from this perspective, and
uses monotone approximations following the scheme in [6]. But this result is already contained
in the results of [4] and Theorem 1.1. Hence we do not write the details here. The extension of
our intrinsic construction of measure solutions to unbounded terminal conditions is left for future
research.

In order to obtain a self-contained theory that is not using any knowledge on classical
solutions, we first construct measure solutions in a setting for which they have been studied
mostly: for generators that increase at most linearly and possess Lipschitz properties with time
dependent and random Lipschitz constants. More formally, in this section we consider the
following class of generators. Let

f : Ω × [0, T ] × R→ R

satisfy the Assumption (H2): for some γ ≥ 1 and some non-negative process φ:

1. ξ ∈ Lγ (Ω);
2. f (s, z) = f (·, s, z) is adapted for any z ∈ R;

3. E
(∫ T

0 | f (s, 0)|γ ds
)
<∞;

4. the set {s ∈ [0, T ], f (s, .) is not continuous} is of Lebesgue measure zero;
5. | f (s, z)− f (s, z′)| ≤ φs |z − z′| for all s ∈ [0, T ], (z, z′) ∈ R2.
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We shall assume in the following that f (s, 0) = 0 for all s ∈ [0, T ]. This can be done without
loss of generality, since we may replace ξ with the γ -integrable random variable

ξ̃ = ξ +

∫ T

0
f (s, 0)ds.

Now we define the function g : Ω × [0, T ] × R → R by the requirement that for all
s ∈ [0, T ], z ∈ R:

g(s, z) =
f (s, z)

z
, if z 6= 0,

= 0, if z = 0.

Therefore we have defined the function g with values in R and g is bounded by the process φ.
The process φ verifies either

∃κ > 1, E
[

exp
(
κ

2

∫ T

0
φ2

r dr

)]
< +∞ (41)

or

the martingale
(

L t =

∫ t

0
φr dWr

)
t∈[0,T ]

is BMO. (42)

We denote by ‖L‖ the BMO2-norm of L . From Theorem 2.2 in [10], (42) implies (41), with
1/κ = 2‖L‖2. Remark that (41) is a stronger Novikov condition. From these assumptions
(see [10], Theorem 2.3), we know that for 0 ≤ t ≤ T ,

E(φW )t = exp
(∫ t

0
φr dWr −

1
2

∫ t

0
φ2

r dr

)
is a uniformly integrable martingale.

We define the process Φ by

∀t ∈ [0, T ], Φt =

∫ t

0
φ2

s ds,

and Assumption (H3) holds: there exist two constants α > Ψ and δ > Ψ such that

E(eαΦT |ξ |δ) < +∞. (43)

The constant Ψ > 1 is given for (41) by

Ψ(κ) = Ψ(41)(κ) = 1+ 4

√
κ

(
√
κ − 1)2

=

(
1+

2
√
κ + 1
κ

)
κ

(
√
κ − 1)2

,

and for (42) by

Ψ(‖L‖) = Ψ(42)(‖L‖) =

(
1+
‖L‖

2

)
θ−1 (‖L‖)

θ−1 (‖L‖)− 1
.

The function θ :]1,+∞[→ R∗+ is the continuous decreasing function given by

∀q ∈]1,+∞[, θ(q) =
{

1+
1

q2 ln
2q − 1

2(q − 1)

} 1
2

− 1.
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We can check that Ψ(42) :]0,+∞[→]1,+∞[ is an increasing function such that Ψ(0) = 1 and
Ψ(∞) = ∞.

Remark 3.1. If f is a Lipschitz function:

| f (t, z)− f (t, z′)| ≤ K |z − z′|,

then φ is the constant K . Then (41) is satisfied for all κ > 1, and (43) holds if γ > 1.

The solution algorithm for our BSDE (3)

Yt = ξ +

∫ T

t
f (s, Zs)ds −

∫ T

t
ZsdWs

is based on a recursively defined change of measure. Let Q0
= P, and W 0

= W , the coordinate
process which is a Wiener process under Q0. Set

Y 1
= E(ξ |F·) = E(ξ)+

∫
·

0
Z1

s dW 0
s ,

and

Q1
= exp

(∫ T

0
g(s, Z1

s )dWs −
1
2

∫ T

0
g(s, Z1

s )
2ds

)
· P = R1

T · P.

Then

W 1
= W −

∫
·

0
g(s, Z1

s )ds

is a Wiener process under Q1. Indeed under (41), the Novikov condition is satisfied, and under
(42), the martingale

M1
t =

∫ t

0
g(s, Z1

s )dWs

is BMO. Now since (Q1,Q0) is a Girsanov pair, it is well known that the predictable
representation property is inherited from the Brownian motion W 0 to the Brownian motion W 1.
See for example Revuz and Yor [13], p. 335. Hence there exists a pair (Y 2, Z2) of processes such
that for all t ∈ [0, T ]

Y 2
t = EQ

1
(ξ |Ft ) = EQ

1
(ξ)+

∫ t

0
Z2

s dW 1
s .

Assume that Qn is recursively defined, along with the Brownian motion

W n
= W −

∫
·

0
g(s, Zn

s )ds

under Qn . Then Revuz and Yor [13] may be applied to obtain two processes (Y n+1, Zn+1) such
that

Y n+1
= EQ

n
(ξ |F·) = En(ξ |F·) = En(ξ)+

∫
·

0
Zn+1

s dW n
s .
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Now set

Qn+1
= exp

[∫ T

0
g(s, Zn+1

s )dWs −

∫ T

0
g(s, Zn+1

s )2ds

]
· P = Rn+1

T · P

to complete the recursion step. Then from our assumptions on φ, and from the boundedness of
g by φ, the sequence of probability measures (Qn)n∈N is well defined and consists of measures
equivalent with P . It is not hard to show tightness for this sequence.

Proposition 3.1. Under (41) or (42), the sequence (Qn)n∈N is tight.

Proof. In this proof, En denotes the expectation under Qn . For 0 ≤ s ≤ t ≤ T , n ∈ N, we have,
recalling that W is the coordinate process on the canonical space,

En
(
|Wt −Ws |

4
)
≤ En

(
|W n

t −W n
s +

∫ t

s
g(u, Zn

u )du|4
)

≤ C

[
En
(
|W n

t −W n
s |

4
)
+ En

(∣∣∣∣∫ t

s
g(u, Zn

u )du

∣∣∣∣4
)]

≤ C |t − s|2 + C |t − s|2En
(∫ t

s
g(u, Zn

u )
2du

)2

≤ C |t − s|2 + C |t − s|2En
(∫ t

s
φ2

udu

)2

≤ C |t − s|2 + C |t − s|2E

[(∫ t

s
φ2

udu

)2

Rn
T

]

≤ C |t − s|2

1+

[
E
(∫ t

s
φ2

udu

)2p
]1/p [

E(Rn
T )

q]1/q , (44)

from the Hölder inequality with p > 1 and p−1
+ q−1

= 1.
Suppose that φ satisfies the assumption (41). From the Novikov condition applied to the

martingale

Mn
t =

∫ t

0
g(u, Zn

u )dWu,

we know that E(Mn) is a uniformly integrable martingale under P. Moreover if C ≤ κ

E

[
exp

(√
C

2
Mn

T

)]
≤ E

[
exp

(
C

2
〈Mn
〉T

)]1/2

≤ E
[
exp

(κ
2
〈L〉T

)]1/2
< +∞.

From Theorem 1.5 in [10], we deduce that if p > p∗ with
√

p∗
√

p∗ − 1
=
√
κ ⇐⇒ p∗ =

κ

(
√
κ − 1)2

,

then for q < q∗

E
[

E
(
g(., Zn)W

)q
T

]
= E(Rn

T )
q
≤ C. (45)
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Now if φ verifies the assumption (42), the martingale Mn is also BMO, and the BMO-norm of
Mn is smaller than the BMO-norm of L . Therefore from Theorem 3.1 in [10] (or more precisely
from the proof of this result), we deduce that there exists q > 1 and C s.t.

E
[

E
(
g(., Y n, Zn)W

)q
T

]
= E(Rn

T )
q
≤ C. (46)

The constant q must satisfy the following inequality: q < q∗ with

‖L‖ = θ(q∗)⇐⇒ q∗ = θ−1(‖L‖)⇐⇒ p∗ =
θ−1 (‖L‖)

θ−1 (‖L‖)− 1
.

Moreover, from the John–Nirenberg inequality (see [10], Theorem 2.2),

E

[
exp

(
1

4‖L‖2B M O2

∫ T

0
φ2

udu

)]
≤ 2 H⇒ E

(∫ t

s
φ2

udu

)2p

< +∞.

Finally from (44)

En
(
|Wt −Ws |

4
)
≤ C |t − s|2.

Hence by a well known criterion (see for example Kallenberg [14], p. 261), tightness follows.
�

In a second step, we shall now establish the boundedness in L2 of the control sequence
(Zn)n∈N obtained by the algorithm. Before this, let us give some estimates.

Lemma 3.1. If δ > Ψ and (43) holds, there exist two constants β > 0 and p > 1 such that

∀n ∈ N, En−1
(

eβΦT |ξ |p
)
< +∞. (47)

Proof. In the proof of Proposition 3.1, we already see that there exists q∗ > 1 such that for every

1 < r < q∗, and for every n, E
(

Rn−1
T

)r
≤ Cr < +∞. Thus using Hölder’s inequality

En−1
(

eβΦT |ξ |p
)
≤

[
E
(

esβΦT |ξ |sp
)]1/s

×

[
E
(

Rn−1
T

)r]1/r
≤ Cr

[
E
(

esβΦT |ξ |sp
)]1/s

.

From (43), δ > Ψ implies that δ > p∗ = (1 − 1/q∗)−1. Hence for r < q∗, δ/s > 1 and we
can find p > 1 such that sp < δ. Then choosing β sufficiently small, sβ < α and the conclusion
follows. �

From Lemma 3.1, we deduce:

Lemma 3.2. There exists a constant C such that for every n ∈ N,

En−1

[
sup

t∈[0,T ]
(eβΦt |Y n

t |
p)+

(∫ T

0
eβΦt |Zn

t |
2dt

)p/2]
≤ CEn−1

[
exp

(
βΦT max

( p

2
, 1
))
|ξ |p

]
.

Proof. Recall that for every n, Y n
t = En−1(ξ |Ft ) = ξ −

∫ T
t Zn

s dW n−1
s . Therefore

e(β/p)Φt |Y n
t | ≤ En−1(e(β/p)Φt |ξ ||Ft ) ≤ En−1(e(β/p)ΦT |ξ ||Ft ).
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Using Doob’s inequality we deduce

En−1 sup
t∈[0,T ]

(eβΦt |Y n
t |

p) ≤ C pEn−1(eβΦT |ξ |p).

Now we have∫ T

t
eβΦs/2 Zn

s dW n−1
s = eβΦT /2ξ − eβΦt/2Y n

t − (β/2)
∫ T

t
eβΦs/2Y n

s φ
2
s ds.

Using the Burkholder–Davis–Gundy inequality and the previous estimate on Y n

En−1

[(∫ T

0
eβΦt |Zn

t |
2dt

)p/2]
≤ CEn−1(eβΦT p/2

|ξ |p). �

Proposition 3.2. Under Assumption (H2), if δ > Ψ and if (43) holds, there exists β > 0 and
p > 1 such that

E

(
sup

t∈[0,T ]
eβΦt (Y n

t )
p

)
and E

(∫ T

0
eβΦs (Zn

s )
2ds

) p
2


are bounded sequences.

Proof. We give just the proof for the sequence E
[(∫ T

0 eβΦs (Zn
s )

2ds
) p

2
]

. For the other sequence,

the sketch is the same. Define for n ∈ N

Rn
= Rn

T = exp
(∫ T

0
g(s, Zn

s )dWs −
1
2

∫ T

0
g(s, Zn

s )
2ds

)
.

Then for p > 1 and ε > 0

E
(∫ T

0
eβΦs (Zn

s )
2ds

) p
2

= E

(∫ T

0
eβΦs (Zn

s )
2ds

) p
2

(Rn−1)
1

1+ε (Rn−1)−
1

1+ε


≤

E
(∫ T

0
eβΦs (Zn

s )
2ds

) p(1+ε)
2

Rn−1


1

1+ε [
E(Rn−1)−

1
ε

] ε
1+ε

=

En−1
(∫ T

0
eβΦs (Zn

s )
2ds

) p(1+ε)
2


1

1+ε [
E(Rn−1)−

1
ε

] ε
1+ε
.

With Lemmas 3.2 and 3.1we obtain

En−1
(∫ T

0
eβΦs (Zn

s )
2ds

) p(1+ε)
2

≤ CEn−1
(

eβΦT
p(1+ε)

2 |ξ |p(1+ε)
)
.

Thus for some η > 0

E
(∫ T

0
eβΦs (Zn

s )
2ds

) p
2

≤ C
[
E
(

eβΦT
p(1+ε)

2 |ξ |p(1+ε) Rn−1
)] 1

1+ε
[
E(Rn−1)−

1
ε

] ε
1+ε
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≤ C
{
Eeβ

p(1+ε)
2 (1+η)ΦT |ξ |p(1+ε)(1+η)

} 1
(1+ε)(1+η)

×

{
E(Rn−1)

1+η
η

} η
(1+ε)(1+η) {

E(Rn−1)−
1
ε

} ε
1+ε
. (48)

From the conditions (41) or (42), we can prove that there exist η > 0 and ε > 0 s.t.

sup
n∈N

{
E(Rn−1)

1+η
η

} η
(1+ε)(1+η) {

E(Rn−1)−
1
ε

} ε
1+ε

< +∞.

First assume that (41) holds. Then

(Rn−1)−
1
ε = exp

[
−

1
ε

∫ T

0
g(s, Zn−1

s )dWs +
1
2ε

∫ T

0
g(s, Zn−1

s )2ds

]
= exp

[∫ T

0

(
−

g(s, Zn−1
s )

ε

)
dWs −

1
2

∫ T

0

(
g(s, Zn−1

s )

ε

)2

ds

]

× exp
[

1

2ε2 (1+ ε)
∫ T

0
g(s, Zn−1

s )2ds

]
. (49)

Now if

Γ n−1,ε
= −

∫ T

0

g(u, Zn−1
u )

ε
dWu,

we have for C > 1

E

[
exp

(√
C

2
Γ n−1,ε

)]
≤ E

[
exp

(
C

2
〈Γ n−1,ε

〉

)]1/2

≤ E
[

exp
(

C

2ε2 〈L〉T

)]1/2

< +∞,

when C/ε2
= κ . Thus

E

[
exp

[∫ T

0

(
−

g(s, Zn−1
s )

ε

)
dWs −

1
2

∫ T

0

(
g(s, Zn−1

s )

ε

)2

ds

]]q

< +∞

when 1/q + 1/p = 1 and
√

p
√

p − 1
= C = ε

√
κ ⇐⇒ p =

κε2(
ε
√
κ − 1

)2 .
And we have

E exp
[

p

2ε2 (1+ ε)
∫ T

0
g(s, Zn−1

s )2ds

]
≤ E exp

[
p(1+ ε)

2ε2

∫ T

0
φ2

s ds

]
< +∞,

if

p(1+ ε)

ε2 ≤ κ ⇐⇒ ε ≥
1+ 2

√
κ

κ
⇐⇒ 1+ ε =

κ + 2
√
κ + 1

κ
.

From (49) and with Hölder’s inequality we deduce that ER
−

1
ε

n−1 ≤ C . With (45) we already know

that there exists η s.t. ER
1+η
η

n−1 ≤ C . We have to take
√

1+ η =
√

p∗ =
√
κ

√
κ−1

.
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Assume that (42) holds. Then we already know (46): there exists η > 0 such that ER
1+η
η

n−1 ≤ C ,
if η satisfies

‖L‖ < θ

(
1+ η
η

)
.

We use Theorem 2.4 in [10] in order to prove that E(Rn−1)−
1
ε ≤ C . We must choose ε s.t.

‖L‖ ≤
√

2
(√

1+ ε − 1
)
.

The two constants η and ε depend on the constant κ in (41) or the BMO-norm ‖L‖ in (42).
Coming back to (48) we deduce that

E
(∫ T

0
eβΦs

(
Zn

s

)2 ds

) p
2

≤ C
{
Eeβ

p(1+ε)
2 (1+η)ΦT |ξ |p(1+ε)(1+η)

} 1
(1+ε)(1+η)

.

Remark now that (1 + ε)(1 + η) = Ψ . Thereby from assumption (43), if δ > Ψ , the desired
boundedness follows for some p > 1 such that δ ≥ pΨ and by choosing β > 0 such that
α ≥ βpΨ/2. �

Proposition 3.3. The sequence (Zn)n∈N converges in L2([0, T ] × P).

Proof. Applying Itô’s formula we have

eβΦt |Y n+1
t − Y n

t |
2
+

∫ T

t
eβΦu |Zn+1

u − Zn
u |

2du = −β
∫ T

t
φ2

ueβΦu |Y n+1
u − Y n

u |
2du

− 2
∫ T

t
eβΦu (Y n+1

u − Y n
u )(−Zn+1

u g(u, Zn
u )+ Zn

u g(u, Zn−1
u ))du

− 2
∫ T

t
eβΦu (Y n+1

u − Y n
u )(Z

n+1
u − Zn

u )dWu

= −β

∫ T

t
φ2

ueβΦu |Y n+1
u − Y n

u |
2du + 2

∫ T

t
eβΦu (Y n+1

u − Y n
u )(Z

n+1
u − Zn

u )g(u, Zn
u )du

+ 2
∫ T

t
eβΦu (Y n+1

u − Y n
u )( f (u, Zn

u )− f (u, Zn−1
u ))du

+ 2
∫ T

t
eβΦu (Y n+1

u − Y n
u )g(u, Zn−1

u )(Zn−1
u − Zn

u )du

− 2
∫ T

t
eβΦu (Y n+1

u − Y n
u )(Z

n+1
u − Zn

u )dWu .

Recall that g is bounded by the process φ. Hence with some positive constants ε and η∫ T

t
eβΦu |Zn+1

u − Zn
u |

2du ≤
∫ T

t

(
1
ε
+ 2

1
η
− β

)
φ2

ueβΦu |Y n+1
u − Y n

u |
2du

+ ε

∫ T

t
eβΦu |Zn+1

u − Zn
u |

2du + 2η
∫ T

t
eβΦu |Zn

u − Zn−1
u |

2du

− 2
∫ T

t
eβΦu (Y n+1

u − Y n
u )(Z

n+1
u − Zn

u )dWu .
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Choosing β such that

1
ε
+ 2

1
η
= β, (50)

we have

(1− ε)
∫ T

0
eβΦu |Zn+1

u − Zn
u |

2du ≤ 2η
∫ T

0
eβΦu |Zn

u − Zn−1
u |

2du

− 2
∫ T

t
eβΦu (Y n+1

u − Y n
u )(Z

n+1
u − Zn

u )dWu .

If α > 4.5Ψ , then we can choose β > 9 such that α ≥ βΨ/2 (see the end of the proof of
Proposition 3.2) and ε and η such that (50) holds with 2η/(1 − ε) < 1. Since the conclusion of
Proposition 3.2 holds, the local martingale in the previous expression is a true martingale. Hence
taking the expectation we obtain

E
∫ T

0
eβΦu |Zn+1

u − Zn
u |

2du ≤
2η

1− ε
E
∫ T

0
eβΦu |Zn

u − Zn−1
u |

2du.

Therefore the sequence (Zn)n∈N converges in L2([0, T ] × P). �

Lemma 3.3. There exists a subsequence of Zn (still denoted as Zn) which converges P⊗ λ-a.e.
to some process Z.

Lemma 3.4. The sequence Rn
T converges also P-a.s. to

RT = exp
(∫ T

0
g(s, Zs)dWs −

1
2

∫ T

0
(g(s, Zs))

2ds

)
.

Proof. We may w.l.o.g. assume that g(s, .) is continuous for all s ∈ [0, T ]. The rest follows from
Lemma 3.3. �

Equipped with these results, we are now in a position to state our existence theorem.

Theorem 3.1. Suppose Assumption (H1) holds. There exists a probability measure Q equivalent
to P and an adapted process Z such that E

∫ T
0 |Zs |

2ds <∞ such that, setting

RT = exp
(∫ T

0
g(s, Zs)dWs −

1
2

∫ T

0
g(s, Zs)

2ds

)
, WQ = W −

∫
·

0
g(s, Zs)ds,

we have

Q = RT · P,

and such that the pair (Y, Z) defined by

Y = EQ(ξ |F·) = EQ(ξ)+
∫
·

0
ZsdWQs

solves the BSDE (3).

Proof. Using Theorem 3.1, choose a probability measure Q and another subsequence of
the corresponding subsequence of (Qn)n∈N which converges weakly to Q. We denote this
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subsequence again by (Qn)n∈N and the corresponding subsequence of controls by (Zn)n∈N. We
have

Q = RT · P.

Moreover for all n ∈ N,

Y n
t = En−1(ξ)+

∫ t

0
Zn

s dW n
s = En−1(ξ)+

∫ t

0
Zn

s dWs −

∫ t

0
Zn

s g(s, Zn−1
s )ds.

The only thing that we have to prove is that the sequence Y n
0 = En(ξ) also converges. But

Y n
0 = En(ξ) = E(ξ Rn), and ξ belongs to Lγ ; Rn also belongs to some L p space with

1/p + 1/γ = 1 if and only if

γ ≥
κ

(
√
κ − 1)2

.

But it is true since γ ≥ Ψ(κ). Taking a subsequence if necessary, we deduce that Y n
0 converges

to EQ(ξ).
Hence we obtain

Yt = EQ(ξ |F·) = EQ(ξ)+
∫ t

0
ZsdWQs ,

where WQ is a Q-Brownian motion. Finally (Y, Z) solves the BSDE (3). �
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