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ARTIST: ADAPTIVE RESONANCE THEORY TO INTERNALIZETHE STRUCTURE OF TONALITY(a neural net listening to music)Publication No.Fr�ed�eric Georges Paul Piat, Ph.D.The University of Texas at Dallas, 1999Supervising Professor: W. Jay DowlingAfter su�cient exposure to music, we naturally develop a sense of which notesequences are musical and pleasant, even without being taught anything about music.This is the result of a process of acculturation that consists of extracting the temporaland tonal regularities found in the styles of music we hear.ARTIST, an arti�cial neural network based on Grossberg's (1982) Adaptive Reso-nance Theory, is proposed to model the acculturation process. The model self-organizesits 2-layer architecture of neuron-like units through unsupervised learning: no a priorimusical knowledge is provided to ARTIST, and learning is achieved through simpleexposure to stimuli. The model's performance is assessed by how well it accounts forhuman data on several tasks, mostly involving pleasantness ratings of musical sequences.ARTIST's responses on Krumhansl and Shepard's (1979) probe-tone technique arevirtually identical to humans', showing that ARTIST successfully extracted the rules ofvi



tonality from its environment. Thus, it distinguishes between tonal vs atonal musicalsequences and can predict their exact degree of tonality or pleasantness. Moreover, asexposure to music increases, the model's responses to a variation of the probe-tone taskfollow the same changes as those of children as they grow up.ARTIST can further discriminate between several kinds of musical stimuli withintonal music: its preferences for some musical modes over others resembles humans'. Thisresemblance seems limited by the di�erences between humans' and ARTIST's musicalenvironment.The recognition of familiar melodies is also one of ARTIST's abilities. It is impossi-ble to identify even a very familiar melody when its notes are interleaved with distractornotes. However, a priori knowledge regarding the possible identity of the melody enablesits identi�cation, by humans as well as by ARTIST.ARTIST shares one more feature with humans, namely the robustness regardingperturbations of the input: even large random temporal 
uctuations in the cycles ofpresentation of the inputs do not provoke important degradation of ARTIST's perfor-mance.All of these characteristics contribute to the plausibility of ARTIST as a model ofmusical learning by humans. Expanding the model by adding more layers of neuronsmay enable it to develop even more human-like capabilities, such as the recognition ofmelodies after transposition. vii
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CHAPTER 1INTRODUCTION1.1 Why music to explore cognition?Music provides one of the best domains for the study of basic processes underlyingperception and cognition: it is simple enough to be characterized along a few basic phys-ical dimensions, and yet it is a very complex phenomenon. The complexity of musicextends well beyond the complexity of its syntax, which music theory aims to spec-ify. Music theory de�nes rules concerning the relationships between musical elements(e.g. notes, groups of notes, keys, counterpoint and so on...), describing a syntacticalcomplexity comparable to that of natural languages. This would be a su�cient reasonto study the mental processes involved with music with the aim of understanding thehuman mind. But there is something deeper than this super�cial complexity. It relatesto the diversity of behaviors and experiences music evokes.Just like other forms of art, music can induce feelings such as tension, relaxation,melancholy, joy, or even euphoria, even though words are hardly adequate to representemotions. However, music seems to go further than most forms of art in the behaviorsand the strength of the passions it elicits. The selling of millions of copies of a work ina year, the gathering of hundreds of thousands of people in one place or the report ofout-of-the-body, religious or cosmic experiences (Gabrielsson and Lindstrom, 1994) all1



2testify to the exceptional power of music. For some cultures, music is even a means toreach the state of trance.The counterpart of this exceptional power of music that is almost never mentionedis the power to annoy people. If you gather a random sample of �ve persons or more ina room, you can be sure at least one of them will ask you to change the music within 30minutes whether what is playing is lullabies, rap, new-age, arabic folk, free jazz, indianfolk, trash or serial music (unless all of them are polite beyond reason). However, none ofthem will be made so uncomfortable by the Picasso on the wall. It is not that everybodyloves Picasso, but it seems that people cope more easily with a picture or a poem theydo not like than with music they do not like. Of course, part of it is because our ears areomni-directional receptors, and that ignoring sounds is more di�cult than ignoring animage in the peripheral vision; but informal observations tend to con�rm that music hasmore `stressing power' than other arts. In this light, the reactions to music look morelike a re
ex than like a cognitive phenomenon. But what is `noise pollution' to some ismusic to others. We can observe many instances of this, and some musical styles nevercross barriers between cultures or between generations. What is adored by a particularculture or generation can remain totally incomprehensible to others. The gap does noteven need to be as large as a whole generation; sometimes, being confronted with themusical tastes of a brother eight years younger is enough to make you feel two decadesolder.



31.2 Musical tastes and acculturationWhat seems to emerge from these few informal examples is that people mostly likewhat they know. Radio programme certainly know this, and concluded |apparently,with success| that the more a song is `hammered' in the listeners' minds, the morelikely they will buy the record! In contrast, people are quite insensitive to musicalstyles foreign to their experience. Some music seems incomprehensible until we learnto appreciate it. This, however, is not at all unique to music but applies to otherdomains as diverse as wine tasting or face recognition. Just as the novice wine tastermay mistake a Pinot for a Cabernet and the person raised in the Western world maymistake a Japanese face for a Korean one, the Western ear will perceive many Indiansongs as being identical. The best illustration of this comes from the declaration ofRavi Shankar (probably the world's greatest sitar player) at Woodstock, following theimpressive applause of the public after his �rst ramblings on the instrument: \I thinkyou'll love the songs we are going to play, especially since you liked so much the tuningof the instruments!" Another consequence of people liking what they know is that theearly works of geniuses are usually controversial, in scienti�c as well as artistic domains.Often, geniuses are not recognized as such until their time is over, or at least until thepublic and their peers got used to their works. For instance, it took time for the worksof Van Gogh, Galileo, Beaudelaire, or Stravinsky to be accepted without controversy.Thus, the issue of what kind of music people love vs the kind they hate is completelytied to the exposure they had to music. Simple exposure to music results in what Franc�es(1958) has called the `musical acculturation', building `perceptual habits':



4\We are prepared to enjoy and assimilate perfection [of masterpieces] bythese daily acquisitions, these automatic reactions born of constant unre
ectiveexposure to a mass of secondary works [...] We can conceptualize [a type ofmusical perception] only as a process of development, and never as simplyfalling under a `stimulus-response' schema. We must distinguish between thee�ects of acculturation |unre
ective, involuntary, and resulting from almostpassive familiarity with works| and the e�ects of education, where perceptualdevelopment is supported by the acquisition of concepts and symbols thatprovide for the de�nition of forms, their elements and articulations."(p.1|3)As Franc�es points out, even when no explicit teaching takes place, the simple `pas-sive' exposure to stimuli is enough to drive a gradual acculturation resulting in a wealthof implicit knowledge, without any conscious e�ort towards learning. Moreover, onecannot fully appreciate a piece or even a style of music unless the cognitive struc-tures (also called mental schemata) necessary to interpret and understand it are present(Krumhansl, 1983): we need to be `prepared to enjoy and assimilate the perfection ofmasterpieces'.The process of acculturation and its result constitute the basic issues of the presentresearch. More speci�cally, how do we acquire these cognitive structures? How do theyprepare us to hear music, how do they come into play to mediate our perception ofmusic?



5Experimental evidenceMost of the time, those cognitive structures have to be acquired through experi-ence and exposure to the music, that is unless the music in question is simple enoughto be interpreted by basic, hard-wired, universal structures. Experimentally, the rela-tionship between familiarity and pleasantness was explored by Smith and Melara (1990)and North and Hargreaves (1995). The former study found that novices rated chordprogressions as sounding best if they were the most familiar and prototypical. Evena slight deviation from prototypical progressions would make the pleasantness ratingdrop signi�cantly. In North and Hargreaves's study, subjects were asked to rate 60musical excerpts on complexity, familiarity, and pleasantness. As expected, there was apositive linear relationship between familiarity and pleasantness. Further, the relation-ship between pleasantness and complexity took the shape of an inverted `U', indicatingthe existence of a range of complexity that is optimally pleasant. If we consider inturn each extremum on the complexity scale, this implies two things. First, that musicsubjectively too complex to be graspable by the mental schemata of the subjects is notpleasant. Second, that pleasure derives from the extensive use of those mental schemata:music so simple as to necessitate only a small part of the schemata to be interpreted isnot pleasant, but rather boring.Even with regard to musical experiences evoking physical emotional reactions thatgo beyond the usual pleasantness of everyday listening, Sloboda (1991) emphasizesthe importance of learning: \The physical responses described are part of the innateautonomic response system of all human beings. They do not have to be learned.



6However, it is clear that the ability to experience these responses in connection withspeci�c music structures is learned." (p.119)Smith, Kemler Nelson, Grohskopf and Appleton (1994) strongly argue that onecannot seriously study how novice listeners perceive music without referring to thespeci�c tunes familiar to them. They review the evidence showing that for a long time,novice listeners have disappointed experimenters by failing at musical tasks that areconsidered as being the most basic for music perception (e.g., tasks relying on octaveequivalence). It is indeed amazing that most of us cannot recognize easily all musicalintervals even after having been exposed thousands upon thousands of times to all ofthem. Smith et al. proved experimenters' intuitions to be right, namely that novicelisteners can recognize intervals between notes quite easily, as long as they are giveninstructions that will enable them to label correctly their answers. When given twonotes and told to imagine it is the beginning of a very familiar tune, novice listenerscould consistently pick the right tune out of three choices. In some cases, performancerivaled that of experts. This study suggests that in many instances, the best (and maybeonly) way for novice listeners to make their musical knowledge explicit is by referringto the tunes that are very familiar to them.Internalizing invariantsThe acculturation process is commonly referred as taking place through the extrac-tion and internalization of environmental invariants (Shepard 1984, J.Gibson 1966). Inother words, the process of acculturation depends on our ability to detect consistanciesin the world and to tune our perceptual or cognitive system to them. We extract in-



7variants from the stimuli present in the environment; that is, we learn from exemplars.We have a memory for exemplars. We can recognize a classical rendition of a tune anddeclare, for instance, `This is the national anthem'. Moreover, we show generalization tosome extent: we can process a new stimulus never heard before, as long as its structureis similar enough to that of the exemplars learned, that is if it conforms to some inter-nalized invariants. When Jimi Hendrix starts playing, again we can declare that it is thenational anthem, even though we may never have heard it played in this key before, andcertainly not on distorted electric guitar, with such glissandos and embellishment notes.We can recognize this as an interpretation (i.e., instantiation) of the tune because ofthe underlying structure common to both stimuli, because they share some invariants.Even though Gibson's idea (1966, 1979) seems like a good start for trying to understandacculturation, it leaves many questions unanswered, especially regarding how are theinvariants actually extracted and used to mediate perception.It is quite di�cult to talk about the di�erent invariants of diverse musical stylesabstractly, without referring to any particular style. It will be useful from now on tofocus on a particular style, to get a clearer idea of the issues and arguments. We shouldjust be cautious that our reasoning stays general enough to still hold when appliedto other musical styles. For practical and theoretical reasons, Western tonal music ischosen as the style of focus. First of all, living in a Western world, it is easier for usto have access to Western music stimuli. Second, the overwhelming majority of thetheories and research applied to music have focused on this style, and these might beuseful to assess and understand better the issues of the present research. Third, this



8style is complex enough to represent a challenge for any theory or model, but in thesame time perfectly lends itself for the study of invariant extraction because it is theobject of many constraints. These constraints result in the existence of a variety ofregularities embedded in the music, which represent as many sources of invariants tointernalize. The most prominent characteristic of this style is probably tonality, and itis impossible to explicitly understand Western music without knowing what tonality is.Therefore, this concept is introduced in the next section, before we can get a closer lookat the issue of mental schemata.1.3 Tonality...1.3.1 ...Can be a vague conceptTonality is a complex concept and does not lend itself easily to de�nition, as notesCross (1985, Chapter 1): \Tonality, in particular, is an ambiguous concept; part of itsambiguity derives from the tendency of theorists to use the term to denote di�erentaspects of di�erent bodies of music. [...] Several proposals for formalising the conceptof tonality have been made (see West et al., Chapter 2 of this volume). However, thesetend either to su�er from an openendedness which limits their ability to generate stronghypotheses about the cognition of musical structure or to be based upon axiomaticpremises which themselves should be the objects of empirical study." (p.7|8)So tonality is not such a simple, binary notion that we could classify all musicalpieces as being either tonal or not according to some precise criterion and without con-troversy. There is a continuity from tonal to atonal, and even within a piece some tonalpassages can alternate with atonal ones. Perhaps that beyond formalizations, tonality



9should be primarily referred to as being a feeling, that could be the emotional/cognitivecounterpart of the more physical, sensory-oriented concept of consonance. As a subjec-tive quality, tonality is for each individual dependent on the e�ects of acculturation, andis greatly a�ected by the environment. This goes along with Franc�es' (1988) account ofthe historical evolution of the sense of tonality, when he states that following some com-posers' ingeniosity, some well-known patterns of notes were enriched with the additionof new notes, and that \these foreign elements were one after the other naturalized andintegrated into the stock of sonorities admitted as musical. This did not prevent tonalfeeling from being modi�ed little by little by these successive contributions." (p.109)1.3.2 ...Is choosing a note as center of gravityMore directly related to the stimulus itself, tonality refers to the existence, thechoice of a particular tone as the reference, a center around which the other tonesgravitate. Randel (1978) refers to tonality as being \a system of organizing pitch inwhich a single pitch (the tonic) is made central". Thus the idea of hierarchy is alreadypresent in the concept of tonality: the central tone, or tonic, occupies a privilegedposition relative to the others, and ful�lls the role of referrant. Choosing a center aroundwhich to compose a piece means that the tonic will usually be played more often, forlonger durations and at more `strategic' times than the other notes. Therefore, it willbe felt as a better completion of the preceding context, being more stable, more restful,and not needing further resolution to another note. Note that the causality stated hereis not obvious. Rather, it is empirically veri�ed through listening, and suggests thatmusical regularities and expectations form the core of music cognition: if a piece embeds



10some regularities up to a certain point in time, there is a natural and universal tendencyto believe these regularities will be present in the music to come. If the expected note,the tonic, is not played but rather substituted with one of its (pitch) neighbors, a feelingof tension is created. The urge to hear the tonic will be even greater and so will be thefeeling of relaxation and completeness when the tonic is actually sounded. Thus thetonic `attracts' neighbor pitches and tonality can be viewed as a kind of gravity. Thisis why the word stability is also used when referring to tonality.The problem with the above de�nitions is that none is suited to establish a criterionapplicable to a model in order to determine if the model has abstracted the regularitiesembedded in tonality. Krumhansl's research, reviewed in Chapter 4, provides a charac-terization of the strength with which tonality is present in a human cognitive system,of how �rmly are the tonal mental schemata established.1.3.3 ...Implies relationships between tonic and other pitchesIn summary, the prime meaning of tonality refers to whether a piece is stronglytonal, with a clearly preferred tonic, or not. The choice of a tonic has consequenceson the use of the other pitches too, because some pitches are incompatible with thetonic, whereas some others are very compatible. It follows that tonality in this sensealso refers to the existence of a set of particular relationships between pitches. Thosetwo things, the choice of a tonic and the particular relationships between pitches, seemto be completely confounded in Western music. Thus, what was said in the previousparagraph regarding the properties of the tonic (more stable, played more often and for



11longer durations) also applies to a certain extent to some pitches other than the tonic(to the most acoustically similar to the tonic).Let us illustrate this with an example: if the pitch C is chosen as the center fora piece, it will most likely be the one played most often, and the one beginning andterminating the piece. Knowing this, one can be quite con�dent that the pitch occurringmost next will be G (the �fth of C: C-D-E-F-G = �ve pitches); if the piece does notstart with C, G would be the most likely second choice. G is the pitch class perceptuallymost similar to C, probably because of the harmonious acoustic relationship betweenthe two pitch classes: the acoustic frequency of a note belonging to the G pitch class willbe very close to 1.5 times that of a note belonging to C. Countless theories contend thatit is the simplicity of this 3/2 ratio between frequencies that makes the relationshipharmonious (see Helmoltz 1885/1954 for instance). Indeed, that this relationship ispresent in the raw acoustic signal must have consequences on even the earliest stage ofsound processing, that is the pattern of excitation of the hair cells in the ear.Relationships are quanti�ed!We have just seen that the tonic is the most stable note, and that it conveys someof this stability to closely related notes. The question is, how much exactly is conveyed,and to which notes? If the relative stabilities of the tonic vs all the other notes wereknown, the concept of tonality would be much clearer. To have the set of particularrelationships between pitches (mentioned above) quanti�ed would at least provide uswith an operational de�nition of tonality.



12This being known, we could compare it to the set of pitch relationships presentin a musical piece or in a mental schemata, and derive the extent to which the pieceor schemata in question is tonal. This would tell us the degree of conformance to the`ideal' tonality.In fact this is just what Krumhansl and Shepard (1979) did. Using a methodcalled the probe-tone technique, explained in details in Chapter 4, they measured thestabilities of all the di�erent pitches relative to the tonic. They provided the world ofmusic research with this standard against which pieces and schemata can be evaluated,because it speci�es the most salient invariants of tonal music. The result was a pictureof tonality clearer than ever before, and even more importantly, a way to compute adegree of tonality.A �nal noteTonality also has a second meaning nested in the �rst: provided that a piece ofmusic is tonal (organized around a central pitch), the tonality of the piece can refer tothe key in which the piece is written, that is to which pitch is its center. For instance,C is the tonality of a piece if it is written in the key of C (if the pitch C was chosen asthe center of the piece). The reader unfamiliar with further musical concepts is referredto the Appendix for an overview of the de�nitions relevant to the present work.1.4 About mental schemataJones and Yee (1993) emphasize how little we know about mental schemata: \Manyother [than time hierarchies] aspects of musical structure (e.g., tonality, pitch contour,melodic and rhythmic structure, etc.) undoubtly determine both scheme acquisition and



13application (e.g. Lerdahl and Jackendo� 1983; Sloboda 1985; Dowling and Harwood1986; Krumhansl 1990). However, this area of research is relatively new, and these as-pects remain to be explored. As such, it o�ers opportunities to study the way attendingand attentional schemes change as listeners become more familiar with various musicalevents" (p.98).However, the research of Dowling, of Jones and of Krumhansl started to shed somelight on the intricacies of how music is mentally processed. What is known primarilyrelates to the way the output (response) of memory processes is a�ected by di�erentcharacteristics of the musical input.For instance, it is now clearly established that melodies' contours, pitch intervals,key relationships and tonal strengths (i.e., degree of tonality) all a�ect their recognitionand discrimination (Bartlett and Dowling, 1980, 1988; Dowling and Fujitani, 1971;Dowling and Bartlett, 1981). Moreover, those features act in di�erent ways on memoryperformance depending on the delay after presentation (Dowling, 1991; Dowling, Kwakand Andrews, 1995). They were also shown to interact so much with the melody'srhythm that Jones (1993) tested the hypothesis that what serve as anchor points inremembering a melody are the places where melodic and rhythmic accents coincidence.She concluded that melodic and rhythmic structure are psychologically inseparable.We also know that we can aim our attention to particular pitch-time windows torecognize a familiar melody even if it is interleaved with distractor notes (Dowling 1973,1990; Dowling, Lung and Herbold, 1987; Andrews and Dowling, 1991). This may relateto the greater di�culty in detecting mistunings for unfamiliar scales (e.g., pelog scales



14from javanese music) relative to familiar ones (Lynch, Eilers, Oleer and Urbano, 1990).Sloboda and Edworthy (1981) showed that it is easier to attend to several simultaneousmelodic lines if they are in harmony with each other.Some studies have illustrated Rosch's (1975) idea of cognitive reference points withmusical phenomena. For instance, tonal melodies are good reference points, in that theyare easier to remember than atonal ones. Furthermore, those two types of melodies aremore easily confused with one another if the atonal melody is presented �rst rather thansecond (Krumhansl, 1979; Bartlett and Dowling, 1988). This asymmetry suggests thatatonal stimuli are encoded in memory by reference to existing, tonal mental schemata.Apparently, when accessed later, the memory trace for atonal stimuli is quite di�erentfrom what was really played. This might be true for tonal stimuli too, but to a smallerextent. Hence, the memory trace for atonal melodies is said to be unstable.All these results point out the pervasiveness and automaticity of the action ofmental schemata: most of the tasks used in these experiments could be carried oute�ciently if the required decision was made on a purely sensory basis, preventing contexte�ects. Apparently, as soon as more than one note is played, the stimulus is interpretedas music and correponding processes and schemata are engaged, taking into accountthe context for processing. That infants outperform adults in some discriminationtasks perfectly illustrates this (Lynch et al., 1990). However, once mental schemataare acquired, they seem impossible to `turn o�'. They become fully integrated to ourperceptual system.



15So how is it that two di�erent notes or intervals are not equally remembered? Howis it that the same note is remembered di�erently depending on the preceding context?Familiarity certainly plays a role in all this, but the remarkable thing is that it applieseven to stimuli never heard before, with which we are not familiar at all. The musicalstyle is what is familiar, but how do we recognize this style as familiar? How do werecognize the invariants as being the same? And how did we derive an idea of style justfrom being exposed to many particular melodies?1.5 OverviewThose are the kind of questions explored in the present work. The quote fromJones and Yee (1993) in the previous section perfectly summarizes the context of theresearch presented here. Many `traditional' models of music perception have addressedthe questions above. They are often built on assumptions borrowing from Gestalt ormusic theory, usually depending on whether the focus of the model is on rhythm oron tonality. Most of them o�er good insights regarding analyses of particular pieces ofmusic, or can predict the key in which a piece is written, or even try to predict the �nalstate of a memory representation of the piece (Deutsch and Feroe, 1981; Lerdahl andJackendo�, 1983; Winograd, 1968; Simon and Sumner, 1968; Narmour, 1991; Jones,1981). All this relates to certain aspects of our perception of music, and accounts forsome features of memory for music. However, none of these models seems to address theissue of how mental processes actually carry out such basic tasks as recognizing a tuneor mistaking one note or chord for some others (but Bharucha 1987 does). Moreover,the issue of the process of acquisition of mental schemata seems virtually untouched. It



16is a great challenge for a theory or a model to account for a unitary system that candevelop through exposure to exemplars, memorize them and generalize from them. Itseems like anything less speci�c than a model would be quite vague or abstract, andcould hardly account for all this in a clear and convincing way.Building a model could help us understand how some of the musical perceptualphenomena mentioned above arise, after simple exposure to musical pieces has resultedin the learning of a musical style, in the extraction of the regularities of its musicalenvironment. It can help us understand how memory for exemplars and generalizationcan co-occur. Ideally, a good model of music learning should be able to become familiarwith any style of music it is exposed to. But for a start, as has been argued before,we will focus on Western tonal music to test the model and explore in depth if theregularities present in this style are internalized by the model. Only after the modelhas been shown to `understand' one style is it appropriate to test whether the modelcan learn any style.A class of models that seems very appropriate to address this issue is the class ofconnectionist models, because they adapt to their environment. Also called Arti�cialNeural Networks (ANNs), these models not only learn the speci�c stimuli they areexposed to, but can generalize their behavior (or output) to novel stimuli they havenever `seen' or `heard'. This is a highly desirable feature for our model, since we wantit to be sensitive to the familiarity of both the speci�c pieces it was exposed to and themusical style they de�ne together. Chapter 2 introduces the general principles of ANNsand the proposed model ARTIST.



17Chapter 3 illustrates the basic functioning of ARTIST with some simple simula-tions showing how familiar melodies can be recognized. Then the model's ability tofocus on pitch-time windows to recognize a familiar melody among distractor noteslike humans (Dowling, 1973) is tested. Chapter 4 surveys Krumhansl's research on thecharacterization of tonality in mental schemata. This will provide us with a referenceagainst which the model's schemata can be compared, telling us whether ARTIST wasable to internalize tonal invariants from its environment. Chapter 5 will implement asimple Markov model of music perception so that comparison with ARTIST will helpus understand the latter better. Chapter 6 provides a review of the development andacquisition of tonal schemata. Then the developmental process followed by ARTIST willbe examined and compared to humans'. Finally, Chapter 7 will use ARTIST to makepredictions about music perception, and an experiment with humans will be proposedto test these predictions.



CHAPTER 2ANNs, ADAPTIVE RESONANCE THEORY AND ARTISTAfter a brief summary of the possibilities demonstrated by ANNs, this chapter willexplain the basic principles on which they are built. It will follow with the presentationof a particular class of ANNs, the ART networks, based on Grossberg's Adaptive Reso-nance Theory. Finally, a model instantiating this theory, baptised ARTIST (AdaptiveResonance Theory for the Internalization of the Structure of Tonality), will be proposed.2.1 What ANNs can do and their applications to musicIn the last years, it seems that connectionist research has undergone an exponen-tial increase in popularity, for a plethora of reasons. Amongst them, let us mentionfor instance connectionist models' abilities to learn from examples. This means thatsuch models are sensitive to their environment, they develop according to which stimuliare presented to them. This is a great advantage over models born from more classicalapproaches of arti�cial intelligence, for which the rules governing behaviour have to beknown and made explicit. Moreover, the latter perform poorly in case of change inthe environment, because they were not programmed to respond to such a change. Incontrast, the former only need a new period of learning (through exposure to the newenvironment) until they can perform well again. Other interesting capabilities of ANNsinclude their ability to generalize their behaviour to new situations, to behave consis-tently even in the presence of noise, in case of incomplete information or of degradation18



19of the system itself, and the ability to explicit a metaphoric view of some neurophysio-logical processes found in the nervous system.Connectionist models have been used to simulate a variety of processes involvedwith music perception and cognition. Most of them focused on processes primarilyworking on the pitch dimension of music, such as the perception of pitch (Sano andJenkins, 1989), of chords (Laden and Keefe, 1989) or of tonality (Bharucha, 1991; Le-man, 1991), or the generation of expectancies (Bharucha and Todd, 1989). Some dealtwith the purely temporal dimension of music (rhythm), being applied to the segmenta-tion (Carpinteiro, 1996) or the quantization of musical time (Desain and Honing, 1989),and a few integrated both dimensions to address cognitively higher level problems suchas string instruments �ngering (Sayegh, 1989), Jazz improvisation (Toiviainen, 1995),the categorization of musical patterns (Gjerdingen 1990) or the composition of melodies(Todd, 1989; Mozer, 1991; Lewis, 1991).Probably the most popular amongst psychomusicologists is Bharucha'smodel MUS-ACT (1987), even though it did not involve any learning but was rather handcraftedaccording to the principles of music theory. Speci�cally, three levels were postulated tobuild the model, one for pitch classes, one for notes and one for keys. The relationshipsbetween those three levels were also postulated according to music theory. MUSACTwas able to predict the performance of humans in detecting changes in a sequence ofchords, as well as the perceived relatedness of two chords. The general contributionof this model is that it showed that even with a fairly simple connectionist model, itis possible to simulate human data fundamentally linked to the perception of tonality.



20The simplicity of the model is a great advantage in that it makes it relatively easy tounderstand how it works. Moreover, controlling the knowledge built into the structureof the model gives us a good insight regarding the information su�cient to perform acertain task. Laden (1995) extended this model so it could handle a greater variety ofkeys and of chords. The resulting neural network gives a good account of some humandata regarding tonality.2.2 Basic principles of ANNsA neural network is composed of units, also called neurons because of their simi-larities with brain cells, and of links connecting them to form a network. Every neuronful�lls a role, integrating information coming from other neurons and distributing theresult of this integration to other neurons (McCulloch and Pitts, 1943); unless theyare input units, in which case they transmit information from the outer world into thenetwork.The integration of information consists of summing all incoming signals or inputintensities. Most of the time, the resulting sum is rescaled through a transfer functionso the activation of the neuron will �t within a given range (usually [0; 1] or [�1; 1]).The resulting activation is propagated to other units through more or less e�cientconnections or synaptic weights. For instance, a synaptic weight equal to 1 will carry100% of the activation a, whereas a weight equal to 0.5 will transmit half of it (0:5�a).This is illustrated in Figure 2.1.
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1Figure 2.1: The formal neuron.Several learning rules are usually available when teaching a task to an ANN. Theyare algorithms by which the network automatically updates its connection strengthsto reach a stable internal structure, allowing internal representations to develop (seefor instance Rumelhart and McClelland 1986, Rumelhart, Hinton and Williams 1986).Thus, depending on the type of ANN implemented and the position of a neuron in thenetwork, the function of this neuron can be imposed a priori, as it has to be the case forinput units, or it can be acquired through learning, that will dictate what informationthe neuron will receive through its incoming connections.Therefore, the possibility of teaching an ANN to perform a certain task mostlydepends on the information it is fed in input, and on the learning rule used to modify theconnections. The following section presents a particular type of ANNs called AdaptiveResonance Theory (ART) networks, as it will serve as a basis for the model presented inthis thesis. This type of ANN is speci�ed by the choice of a particular architecture (thegeneral pattern of organization neurons and connections follow) and of a set of rulesgoverning the learning and the spreading of activation in the network.



222.3 The Adaptive Resonance Theory2.3.1 Why the ART ?The Adaptive Resonance Theory was chosen as the framework to implement thenew ANN model presented in this chapter because it integrates many features desirableto meaningfully process musical information and to achieve the kind of performancewe want it to be able to simulate. Speci�cally, it integrates unsupervised learning/self-organization, intrinsic hierarchical structure, top-down activation, account of attention,biological plausibility, and both learning of categories and of examplars. Moreover,Gjerdingen (1990) built an ART-based model that \demonstrate[s] how untrained lis-teners might be able to sort their perceptions of dozens of diverse musical featuresinto stable, meaningful schematas" (p.339), with promising results. Gri�th (1993) alsosuccesfully applied ART networks to the identi�cation of tonality in music.Concerning the supervised/unsupervised aspect of the learning involved in an ANN,one needs to be cautious not to generalize too fast. It is easy to mistakenly infer su-pervised learning from back-propagation learning. Even though this is often true, back-propagation learning can be really unsupervised like in Bharucha and Todd's (1991)recurrent network model used to learn sequences of musical input, where the targetused to compute the error signal back-propagated is in fact the next stimulus in a se-ries, and is not provided by an explicit teacher. So ANNs learning with back-propagationare not excluded a priori for this reason, but because they typically lack the attentionalcomponent and the hierarchical architecture of ART networks.



23The hierarchical structure is not only important to mirror musical pieces' structures(Lerdahl and Jackendo�, 1983), thus predisposing the neural network to extract thisstructure. It also allows the learning of arbitrarily long sequences of notes withoutrequiring an incredible amount of resources, as is the case in humans: After su�cientexposure, we can easily remember every single musical event (or musical chunk) of anhour long symphony, which means a sequence of the order of tens of thousand events.By recursively putting together `chunks' of notes, the hierarchical network can memorizesequences of an exponentially growing length as the number of levels increases linearly!This performance may be possible for a simple feed-forward neural network, but thememorization may not be so perfect because of overlap and interferences between learnedpatterns.2.3.2 Basic principles of ARTGrossberg (1982) developed with Carpenter (1989) an ANN model for patternrecognition, based on fuzzy adaptive resonance theory (ART; see also Carpenter andGrossberg 1987), and taking into account a variable they call vigilance. A single param-eter to modulate the e�ects of attention sounds at �rst very limited, but the network isnot claimed to be a model of attention, but rather a model of learning incorporating anattentional component through a parameter of vigilance, that in
uences the network'slearning behavior in a major way. ART networks are used to classify the elements of aset of inputs into categories. Hence the networks comprise 2 levels exchanging informa-tion: F1, in which the activity pattern encodes the stimuli, receives the inputs given tothe system; and F2, in which the nodes represent one category each, gives the response



24of the network to the categorization task. The learning is unsupervised, meaning thatthe network is never exposed to a right answer. Rather, it has to derive categories byitself, from the similarities between inputs. We can visualize the learning problem thenetwork has to solve as covering the input space with boxes, a box �guring a category(Figure 2.2). That is, for any input I, an F2 node will respond with a high activation.2.3.3 Learning and resonanceIn the learning phase as well as during the categorization task, the de�nite assign-ment of a stimulus S to a particular category requires two steps. First, the best �tting(most activated) candidate category Y is computed. Second, the choice of Y has tobe con�rmed, by veri�cation of the matching criterion. This depends on the vigilanceparameter and guarantees that S possesses enough features de�ning the category Y tobelong to it. Thus, the activation of an F2 node cannot be directly interpreted as theinput I belonging to this category, because the activation of this node may not be verysigni�cant. The activation of a category node has to be high enough before we canvalidate and interpret the response. This means that competitive learning has to takeplace to insure that in the end only one node is active within F2 (the categories do notoverlap). Furthermore, it means that new units can be added during learning to learnnew input patterns if it does not �t well in even the best matching category; whetherthe input �ts well or not in the category depends on the vigilance. This is sketched inFigure 2.2. Here are the steps followed by the network after presentation of a stimulusS: a) S creates a pattern of activity I across level F1.



25b) This activity propagates through the weights (where Long Term Memory tracesare stored) and in turn creates a pattern of activation across level F2.c) A `winner takes all' strategy is applied (lateral inhibition) to level F2, so thatthe most highly activated node Y is selected, representing the most probable category.Thus the activation pattern in F2 becomes composed of one `1' and the rest are `0's.This can be understood as `making an hypothesis' about S's category.d) Activation is sent back through the same weights to level F1 to create anotheractivation pattern X. Because of the way it is obtained, X would be the stimulus mostactivating the designated category, so it plays the role of prototype for the category Y .e) Then I and X are matched, to see if the stimulus S can �t into the categorydesignated by being close enough to its prototype. This can be seen as `testing thehypothesis'.If a match is found (resonance occurs), S is recognized as belonging to the category. Ifwe want to use S as a learning pattern, then the matching of I and X (their intersectionX�, that can be interpreted as the features of S the network pays attention to) is usedas the pattern of activation at level F1 to modify the weights from there to the categorynode.If S does not match the activated category, mismatch reset occurs: The category isdisabled and the search for another category starts. Once all categories have been triedand if S does not belong to any, a new node is created in F2 which weights are set upto perfectly resonate with S (the vector of weights is set equal to the activation patternvector I).



26Through all those steps the idea of vigilance appeared once, in the criterion usedto decide whether resonance occurs, determining in fact if I is considered close enoughto the prototype X to �t in its category. Expressed mathematically, a match is foundif: jI ^ wjjIj � %% is the vigilance parameter, between 0 and 1. The fuzzy AND operator ^ gives avector in which each component is the smallest between the corresponding componentsof I and w:(I ^ w)i = min(Ii; wi) (In the binary case, if I and w are binary vectors, theoperator reduces to the logical AND)Therefore, this quantity is always smaller than I and w (or equal). So the ratiohas to be smaller than 1, and this justi�es that vigilance cannot be greater than 1.The fuzzy AND operation can be understood as removing from S the features that donot match with the category (this occurs for all i verifying Ii > wi ; what is left overis the recognized part of the stimulus, what the network pays attention to: what iscommon to the stimulus and the prototype). Then, dividing by the norm of the inputjIj normalizes, so the ratio value is:1 if the patterns are identical, or if all the features of S are present in the de�ningfeatures of the category (if Ii < wi for all i)close to 1 if they are alike, sharing many featuresclose to 0 if they are very di�erent, sharing few features



270 if they are orthogonalThen it becomes clear that setting a threshold to be compared with this ratio isequivalent to giving a tolerance whithin which the pattern I is to be accepted in thecategory. So, a low vigilance leads to a broad generalization and to the abstraction ofprototypes. If the vigilance is close to 0, the criterion will be easily matched, so that astimulus will be accepted in a category even if it just holds a vague resemblance withthe elements of the category. We can indeed in this case say that the network does notpay much attention to the stimulus. If the vigilance equals 0, then any stimulus will beaccepted in the category, therefore only one category will be created, grouping all thestimuli together: one box covers the whole space, and the network does not show anydiscrimination.Conversely, if the vigilance is close to 1, a stimulus needs to be very close to theprototype in order to be accepted into the category, the network pays a lot of attentionin the sense that it shows sharp discrimination. In the extreme case, with a valueequal to 1, each stimulus creates its own category since it cannot �t in any other, andexemplar learning is thus reached (see Figure 2.2). This kind of learning is to avoidwhen the goal is generalization. The problems caused by a too high attention are wellshown in Luriia's "The mind of a mnemonist" (1968). This book shows how this personwith photographic memory had such di�culties to recognize anybody, since we lookslightly di�erent from one time to the other. All the problems associated with the lackof forgetting and the consequent lack of analytical abilities are also presented, pointingout that perfect memorisation can be undesirable.
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Figure 2.2: The learning process of L'ART pour l'art and the covering of the inputspace as a function of the vigilance criterion.Both the fundamental role of lateral inhibition and the discard of the irrelevantfeatures of a stimulus present in the model can explain why some psychological modelssee attention as a �lter (Broadbent, 1958), bringing the idea of a limitation to what canbe activated or attended.



292.3.4 Top-Down ActivationAnother remarkable aspect of ART-based models, completely related to the pointmade above, is that it accounts for a role of the top-down activation: the input I isconfronted with the prototype X of the most probable category (the most activated),or `expected prototype', thus implementing the testing of an hypothesis. This con-frontation occurs in F1, the level receiving inputs from the external world, which canbe analogous to the Layer I of the cortex. This is consistent with Cauller's (1995)view that top-down activation is essential in directing attention to critical features inorder to probe the external world (testing an hypothesis) through adjusted behaviour(eye movements or probing �nger movements), and that this processing occurs at theconvergence of bottom-up and top-down activities, namely in the Layer I of the cortex.Moreover, a consequence of the convergence of both signals is the �ltering out of irrel-evant features present in the stimuli, a kind of noise �ltering, which translates into anincreased stability, constancy of the way the external world is perceived, another likelyfunction of top-down activity. It is this same �ltering responsible for the non-optimalprocessing of unfamiliar stimuli, those inconsistent with our mental schematas (e.g., thelow memorizability of atonal musical sequences). This phenomenon even extends up tothe semantic level, as shown by studies about the memorization of causal relationshipin short stories, exhibiting that in long term memory, people tend to `normalize' or `ra-tionalize' details of stories incompatible with their belief systems because taking rootsoutside of their culture. I allude here to stories in the style of \The war of the ghosts",studied by Bartlett (1932) among others.



302.4 ARTISTThe general principle that has guided the development of this model was simplicity.Imposing as few constraints as possible on the model has the bene�t of making it verygeneral and realistic. For instance, using some knowledge of music theory to build themodel would reduce its chances to work with other musical styles, or may defeat thewhole purpose of having it learn by itself: any property emerging from learning couldbe attributed to the presence of the `built-in' knowledge.Nevertheless, imposing some knowledge into a model can be useful to test howimportant is that information in order to solve a particular problem. For instance,Gjerdingen's (1990) model L'art pour l'art (described below in Section 2.4.1) has twoinput neurons devoted to the coding of the contour of the melodies it is presented.It appears that the model makes extensive use of this information in order to classifyits inputs into di�erent categories. Therefore, we know that melodic contour is animportant feature to determine the similarity of melodies. In contrast, one goal inbuilding ARTIST is to see what can really emerge from simple, passive exposure tomusic, and which invariants can be extracted from the stimuli alone. Therefore noknowledge is a priori imposed on the model. With this approach, we cannot knowwhich speci�c information is used by the system to solve a problem; but on the otherhand we can �nd out whether the input data fed to the model is su�cient to solve aproblem or not, i.e. if it contains all the information necessary to �nd a solution.Another advantage of simplicity is that it will be easier for us to understand themodel. Not that this would be a pre-requisite for a model to be good. After all, we are



31far from understanding the brain very well, and making a model as powerful, even ifas ununderstandable as the brain, would be a feat. But understanding the model cangive us insights regarding why it works or not, so we can develop it further or �x it. Itcan help us exploit it to its full potential, for instance to make predictions. And mostimportant of all, it can help us know why our mental schemata develop a certain wayand how they are put at use.To illustrate how the principle of simplicity applies to the present model, it wouldbe good to brie
y present a very similar but much more complex model, Gjerdingen's(1990) L'art pour l'art, also based on ART theory. Contrasting some aspects of bothmodels should help the reader appreciate the merits of simplicity. Therefore, the nextsection is dedicated to an overview of L'art pour l'art, with special emphasis on featuresthat will di�er from ARTIST's.2.4.1 L'art pour l'artEssentially, L'art pour l'art is a series of ART networks organized sequentially.There are only two such networks for now, but some more can in principle be added.Each network being composed of two levels (F1 being the lower levels and F2 the upperlevels), this brings the total to four levels overall in the model. The principle underlyingthe choice for such an architecture is that a long sequence of events has to be segmentedinto chunks to be memorized, and that the length of those chunks is constrained by thecapacity of our short-term memory (STM). A multilevel hierarchy of layers of neuronsthen permits the concatenation of the chunks. A sketch of the architecture of L'art



32pour l'art is presented in Figure 2.3 to show how it can learn sequences of symbols byhierarchical chunking.The two F1 levels implement a STM, where a node represents one item. If a node isactivated, this means the corresponding item is present in short-term memory. In agree-ment with psychological data (Miller, 1956), these memory capacities are limited to thesimultaneous activations of about six elements. The few activated nodes thus representthe sequence of the few last items activated in memory. Therefore, to make sure F1levels do not end up to be so unrealistic as to contain dozens of items simultaneouslyactive in memory, some gain control was implemented through the use of non-speci�clateral inhibition within F1.More speci�cally, the F1 layer of the bottom network is the model's input, wherethe notes of the piece presented are coded on a total of 35 nodes. Pieces made of upto three di�erent voices (melody, bass and inner voice) can be presented. Thirty-threenodes are needed to code them, each voice's input being coded on eleven nodes. Nineof them are used to code the note, in a distributed way: seven nodes for the diatonicnotes (C,D,E,F,G,A,B) plus two nodes specifying the alterations (# or b) can designateany of the twelve pitches (C,C# or Db, D , D# or Eb, E , F , F# or Gb , G , G# orAb , A , A# or Bb, and B) when taken together. The two last nodes are used to codethe contour de�ned by the present note relative to the previous one, up or down. Twomore nodes are added to F1 to signal the presence of particular musical relationshipsbetween voices (harmonic tritone and contrapuntal dissonance). Those relationships ofcontour, tritone and dissonance could be derived by the model from the rest of the input,



33but having those features already extracted makes its task easier. As was mentionedin the previous section, the other merit of imposing this knowledge into the model isthat it is like formulating an hypothesis regarding the importance of this information.Observing that the model grows strong connections from those nodes indicates that thisinformation has a strong in
uence on the model's behavior and therefore lends somesupport to the hypothesis that the information is important.
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Figure 2.3: The learning of a sequence of symbols by L'art pour l'art.Within F2 levels also, lateral inhibition is of prime importance. F2 neurons rep-resent categories, activated by the co-occurrence of activated features at the F1 levels.They can be considered as a memory `chunk', or as a concept. The bottom network's



34F2 is made of neurons representing basic musical concept that can be de�ned from notesequences up to 6 notes (the limit of the F1 memory transmitting activation to it). Thetop network's F2 is made of neurons representing more elaborate musical concepts, de-�ned from sequences up to 6 basic concepts (the limit of the upper F1 memory keepingtrace of the few last basic concepts activated).To classify a stimulus in only one category at a time, F2 neurons are consideredon-center, o�-surround cells. That is, a `winner-takes-all' mechanism is realized at F2levels: a newly activated neuron will turn o� the activation of all the others within thatsame level. Thus this is equivalent to lateral inhibition too.The bene�ts for using lateral inhibition at all levels are many. Mostly, it preventsthe ampli�cation of noise in the system, by inhibiting nodes that are only slightlyactivated and not very relevant to the information being processed. It also makes themodel more realistic when viewed from a psychological perspective, by imposing a limiton STM capacity. Finally, it puts the model in a situation of forced choice at every level:the winner-takes-all strategy used at every F2 level insures that a bundle of features isonly classi�ed as belonging to one category. This makes the output of the model clearerand more interpretable. Whether this is psychologically relevant probably depends onwhat task the model is assigned, on what kind of output is expected from it. Lateralinhibition is further discussed in Section 2.4.3.1.2.4.2 Coding schemeTo build a model that is based on the Adaptive Resonance Theory and capableof internalizing the structure of tonality, a choice has to be made �rst regarding the



35interface between the system and its environment. In other words, some informationfrom the outer world has to be made available to the system. Let us note right nowthat this step is of crucial important, for several reasons. First, obviously, any system'slearning potential is bounded by the amount and content of information it is providedwith. Second, for a given architecture, the learning potential may be further restrictedby the particular way in which the information is coded. The solvability of the `XOR'problem illustrates this perfectly: coding a problem with redundant bits of information|a priori useless| enables a single neuron to learn to calculate the logical operationXOR. Third, in the particular case of auto-organizing networks such as ART, it is thewhole architecture of the system that depends mostly on the coding of the information,and on its interaction with the learning parameters. This section explains the codingscheme used to code the information from the environment in a form that is suitablefor presentation to the model.2.4.2.1 Pitch dimensionIdeally, stimuli could be fed to the system through a microphone directly pickingup the airborne acoustic information. However, extracting the notes underlying musicfrom such a signal constitutes a whole area of research of its own. Outside of thisarea of research, almost all the models applied to the perception of music, especiallythe theoretical ones, assume a pitch-class based representation of music. That is, theytake the phenomenon of octave equivalence for granted and work on sets or alphabetsof 12 elements, or have 12 input units. Such a simpli�cation is convenient because itsomewhat forces the model to focus on the tonal aspect of music: the relationships



36between these 12 elements. However, in our case this would go against the principle ofsimplicity and would undermine the generality, and meaningfulness of learning and therealistic aspect of the model.Moreover, assuming octave simpli�cation has several drawbacks. First, octaveequivalence is not always the absolute, universal principle we tend to believe it is, eventhough it is a well established phenomenon, and very compelling for whom hears it.According to Smith, Kemler Nelson, Grohskopf and Appleton (1994), this phenomenonis not robust at all in novice listeners, and generations of them have annoyed researchersby failing to exhibit octave equivalence. Even more important, coding every note ac-cording to its pitch class would imply that the contour of the melody is lost becauseof the circularity of pitches' organization. For example, if all we know is that a Gfollows a C, whether the interval was up by 7 semitones or down by 5 semitones isunknown. Thus a pitch class coding of musical input is not a realistic coding of hu-mans' auditory input (even though it is probably relevant if we consider the result ofthe �rst few processing stages occurring in the brain). The fundamental importance ofcontour in music is established by many of Dowling's studies (1978, 1991; Dowling andBartlett, 1981; Dowling and Fujitani 1971; Dowling, Kwak, and Andrews, 1995), andcompellingly con�rmed by our musical perceptions: We usually do not hear the musicin terms of di�erent arrangements of just 12 notes, but rather in terms of notes goingup or down in small or big leaps. Shower singers rarely hit the right notes, but usuallyget the melodic contour right. Moreover, the fact that this is often enough to make the



37melody recognizable points out the primary salience of contour. Dowling and Hollombe(1977) examines in details the relationship between contour and octave equivalence.It follows that in order to make the input realistic and enable it to include contourinformation, accompaniment, chords, di�erent chord inversions, and maybe even dif-ferent timbres, we need a one-to-one correspondence between input node (neuron) andnote played. The corpus of musical pieces (described in Section 2.4.4) makes use of 6octaves. Thus 72 (= 6�12) neurons were required to code the musical input in terms ofrelative activations of notes. To have a properly called unsupervised learning, no otherunit should be necessary. Unlike in L'art pour l'art, no preprocessing of the inputs wasimplemented other than computing the exact activation level of a unit. This is detailedin the next section.2.4.2.2 Time dimensionWhen a note is played, the activation of the corresponding input node is set to one.Thereafter, the activation of this node passively decays, thus simulating the e�ects ofdiverse short-term memory processes such as echoic memory or the phonological loop(Baddeley, 1990). The activation of an input unit is strictly a function of the timeelapsed since its corresponding note was sounded. The activation is assumed to decayexponentially with time t: a(t) = a(t � 1)log2(t=T + 2)where T is half the half-life of the note. In other words, the activation is divided by 2every time t = 2T .



38To make the simulations computationally tractable, the time dimension had to bediscretized. This means that the activation state of the input and of the whole networkwas refreshed at regular time intervals. This was determined by the parameter T andthus could be varied in di�erent simulation studies. This is explored in more detailsin Chapter 5. For now and almost all of the simulations to follow, the time intervalwas chosen to match the duration of one measure. This choice was natural consideringboth musical and psychological theories. Musically, the measure is a division of thetime dimension that usually contains a few notes, and this is in agreement with howthe cycles of rhythmic attention modulate our perception of music (Jones, 1986; Jones,Boltz and Kidd, 1982).In summary, at the end of every measure, the activation of the input layer isupdated. First, the residual activation resulting from the decay of the activation ofprevious measures is computed. Second, the activations for the notes played withinthe last measure are computed depending on how long before the end of the measureeach note was played. The velocity, strength with which the note was played, is alsotaken into account, in that the original activation of the corresponding input node isproportional to the velocity.2.4.3 AssumptionsAfter a coding scheme has been determined, the architecture of the network and therules governing the learning (modi�cation of synaptic weights) and spread of activationin the network have to be chosen. To start simple, ARTIST is �rst limited to the basicstructure of ART networks, with only two layers or �elds of neurons, F1 and F2 (as



39opposed to the two networks/four layers of L'art pour l'art). Some more can be addedlater if the complexity of the tasks we submit ARTIST to require it.The rules used for ARTIST are essentially the same as those for ART2 networks,that were summarized in Section 2.3.3. However, a few simpli�cations were made(mostly two important ones), at least for a start. If the model's behavior appearsto be ine�cient or unreliable, unstable, it is always possible to add some constraints tomatch all those applying to ART2 networks.2.4.3.1 Lateral inhibitionInput layer F1First, lateral inhibition was not used in the input layer F1. The passive decay isexpected to limit the number of items activated in STM. However, if a musical piece isplayed at a very fast tempo, the note events may appear in STM at a much faster pacethan they vanish due to activation decay. As a result, the STM could be overloaded withmany more items activated than can be handled. This is not necessarily unrealistic. Thelimits on STM capacity concern the number of items that can be processed e�ciently. Itis always possible to have a number of items exceeding this limit activated in memory,only some of them will be lost at a further processing stage or will in
uence theiroutcomes in an insigni�cant way.This is probably what happens when one tries to follow the music of Charlie Parkerat the climax of a solo, or even on the �rst bars of "Leap frog" (1950). He commonlyplays several consecutive measures entirely made of 16th or 32nd notes, which meansthat he plays 16 or 32 notes within the duration of one measure. In a normal attending



40mode, trying to catch and process every note, one gets completely overwhelmed by thenumber of events. The sequence of notes is perceived as a continuous stream which isvery di�cult to parse into elementary events. Unless you are one of the best musiciansin the world, many of these events must be somewhat lost to optimal processing, sinceit is almost impossible to sing back the phrase just played or to count the number ofnotes it contains, even if it �ts within the temporal span of the phonological loop. Thisprobably explains why the public was not very receptive to his music at �rst. However,one gets a better impression of what is played and of the whole Gestalt by switchingto a more rhythmic mode of attending (Jones, 1982). Then, the listener can focus hisattention on the most salient notes and hears the other notes as interpolations fromthese anchor points, �lling out the background. Practically, this means that if you haveinternalized the `swing' (property of where the accentuated notes are), it will be mucheasier to follow Charlie Parker's solos, even if you do not catch every single note played.To make a crude parallel, one can hardly get an appreciation of impressionist paintingsby looking at it through a magnifying glass. Rather, a certain distance from the paintingis needed in order to have an overall impression.In summary, not imposing any limit on STM is not necessarily unrealistic. The realissue here is to �nd a value for T (time window governing the decay rate) that will beconsistent with the limits of human memory processing. For a start, the T value is setat half the duration of a measure, which means that the activation of items in memoryis halved every measure.



41Abstract layer F2Lateral inhibition is not always used in F2. As mentioned before, it forces the choiceof the model to activate only one category. Thus, whether inhibition is appropriatedepends on the task at hand. During learning and top-down activation propagation,it is preferable to have only the F2 winner active, to provide some stability and avoidthe building up of noise in the system. However, for some tasks, we may want to knowabout the relative activations of all the categories, so the output of the network willbe recorded before a winner is ever chosen. This could mean also that the process ofinhibition itself plays an important role in our perception of music. For instance, whichcategory came with the second highest activation and got inhibited by the winner maybe of crucial importance. This information is available before lateral inhibition takesplace, but is lost thereafter. Considering the importance of the inhibition process itselfis in line with Meyer's theory of emotion (1956) stating that a�ect will arise each time apositive response is inhibited. This principle forms the basis for the claim that emotionstriggered by music are mostly a consequence of preparing, and then ful�lling or denyingthe listeners' expectations.In fact that will be the case most of the time that ARTIST's raw output is recordedbefore a winner emerges. My intuition was that allowing the same stimulus to activatemany di�erent categories at di�erent degrees would preserve the complexity and richnessinherent to music, which could be responsible for many musical phenomena. Musicwould certainly be much less interesting to listen and to study if any piece had oneand only one way of being mentally interpreted (or `heard'). Relaxing the constraint of



42inhibition will result in a much more complex pattern of activation in the abstract levelF2, possibly making it uniterpretable. However, looking at the incredible complexity ofreal patterns of activation in the brain, we can believe that we will be closer to realitywithout the tidiness a�orded by inhibition at the abstract level, which guarantees theresponse of only one category. This is taking Gjerdingen's argument one step further,given that he does use lateral inhibition but justi�es the use of self-organizing networksbecause of their untidiness in contrast to the tidiness of music theory or even of otherclasses of ANNs: \the structures of even so fastidious a composer as Mozart appearas dense tangles of contrapuntal lines, thorough-bass patterns, harmonic and melodicschemata, metrical frameworks, rhythmic gestures, and a host of more ine�able features.[...] These networks are capable of independently arriving at untidy but neverthelessquite interesting categorizations of musical events." (p.340).2.4.3.2 Winning and learningThe second important simpli�cation concerns the learning rule. Even though nowinner is chosen when the output activation is recorded, it is probably not desirableto have many categories simultaneously learning the same input pattern. That wouldprobably result in unstable learning and in the proliferation of categories beyond severalthousands. Therefore ARTIST's learning followed the ART speci�cations in that onlyone category is updated for a given input.The ART algorithm (detailed in Section 2.3.3) goes through a search process todetermine which category is the winner and should consequently undergo learning bymodi�cation of the synaptic weights. The search process is such that the F2 nodes



43(categories) should be checked for matching with the input in the order of decreasingabsolute activation, until one satisfying (matching) category is found. Which meansthat in some cases, it is not the best �tting category that is chosen as the winner, butonly a `good enough' category with high absolute activation. I thought that learningcould be more stable if the winner was always the best �tting category. This also hasthe advantage of reducing absolute activation and matching degree to a single idea,corresponding to the concept of matching activation, thus making the functioning ofthe network easier to understand. From now on, matching activation jI^wjjIj will simplybe referred to as activation. Moreover, the sequential aspect of the search process provedto be a hindrance during the �rst simulations. Dealing with less than thirty abstractcategories, L'art pour l'art never ran into this problem, but ARTIST was getting slowerand slower to �nd a winner as the number of categories reached several hundreds. Sothe implementation of the serial search for a winner was abandoned and replaced by thedecision rule that the best matching category is the winner. The rest of the learning ruleremained unchanged, that is, synaptic weights were modi�ed if there was resonance, anda new node was created if there was not. Note that even though the idea of a serial searchmay seem unrealistic, a system as complex as the brain could probably implement quiteeasily something equivalent, like a parallel search based on both absolute activation andmatching degree.2.4.3.3 Other optionsCarpenter, Grossberg and Rosen (1991) made a few suggestions to accelerate andstabilize learning in ART networks. Two of them were implemented in ARTIST.



44Fast-commit slow-recode option: When a category commits itself by being activated forthe �rst time, the learning rate is set equal to � = 1. This allows a kind of `one-shotlearning'. That is, the weights of the new category are set to match exactly the inputthat triggered its activation. Only upon subsequent winnings of this category we use� < 1 to update the synaptic weights, thus only allowing the category to get closer tomatching the input patern, but not allowing a perfect learning.Input normalization option:In a complex environment, ART networks can encounter a problem of proliferationof categories due to `synaptic erosion'. This happens when a succession of di�erentinputs activate the same category for learning at di�erent points in time. As a con-sequence of using the logical AND in the learning rule, the synaptic weights can onlydecrease from 1 and never increase. That is, the only way a category adapts to a newinput pattern is by removing the features of the category which are irrelevant to the newinput. Thus, it happens that an unfortunate coincidence of di�erent input patterns ac-tivating the same category erode the synaptic weights down to 0 or close. This categorythen falls into oblivion and the input patterns it once recognized are now categorizedby younger, newly committed categories. Plasticity is desirable up to some point, butthe perpetual unstability of such a classi�cation dynamics is not. Especially for thecomputational aspect of the simulations, having thousands of categories with only asmall proportion of them useful is a hindrance.Carpenter et al. (1991) propose several solutions to this problem. For instance,this can be solved by normalizing all input vectors. Thus the activation in F1 was



45normalized each time a new input pattern was presented and each time the top-downactivation was propagated from F2 to F1. Normalizing inputs may in turn create anotherproblem, because it suppresses the relative di�erences between amplitudes of di�erentpatterns. It is possible to keep the amplitude information while normalizing inputs, bydoubling the number of input units and using half of them to code the complement ofthe input. This solution was not implemented because it must be computationally verydemanding to use 144 input units instead of 72 (the number of synapses roughly goesfrom 50,000 to over 100,000). Rather, the synaptic weights incoming each category werealso normalized, transforming the phenomenon of erosion into a mere reshaping of thecategories.2.4.4 ARTIST meets its environmentStimuliA musical corpus is needed to train ARTIST. It de�nes ARTIST's musical universe.Musical Instruments Digital Interface (MIDI) �les were downloaded from a web-site("The classical midi connection, http://www.dtx.net/ raborn/"). In spite of the lackof originality of this choice, Bach's 24 preludes of the Well-Tempered clavier were tried�rst to train the model because they can be considered as a standard de facto for thistype of application. The reason for that is probably that the prototypicality, the innerregularities of each piece and the complementarity of the di�erent pieces are the bestguarantee of the homogeneity of the training set (there is one prelude and one fuguein each and every major and minor key). A Pascal program transformed the MIDI�les into an ARTIST input �le by extracting only the note events. One note event is



46comprised of a note and its duration and velocity, so as to make it directly usable byARTIST. That is, all messages relating to timbre changes or other controller changesfor instance, irrelevant for the model, were ignored. The same process was applied tothe MIDI �les used as stimuli for the experiments of Chapter 7. One little modi�cationwas brought to these stimuli. The notes they contained were all of equal velocity,which does not strictly conform to the way this music is supposed to be played. Theperformers are usually supposed to accentuate the �rst note of every measure (and thenote immediately following the middle point of the measure) to convey a sense of meter(the regularity of the rhythm) to the listener. To conform to this, the velocity of the�rst note of every time slice was increased by a �xed amount.The short stimuli containing only a few notes, such as the short test melodies (e.g.,`Twinkle twinkle..', Chapter 3) or the musical scales used as contexts (Chapters 4 and5) were programmed with MATLAB and directly used by ARTIST, itself programmedwith MATLAB.ProcedureThe model was trained with Bach's 24 preludes from the Well-Tempered clavier,so there was one piece in every major and minor key (C major, C minor, C# major,etc..). Each piece was presented to the model 12 times (in 12 di�erent transpositions),so that the tonic covered all the chromas of the middle octave. The 24 � 12 = 288presentations were given to the model in a random order. To be fed into the network,a piece was decomposed into time slices of equal length, one half measure in this case.The presentation of one slice consisted of the following four steps:



471) combining in F1 the residual input activation left over from before, new inputsand top-down activation propagated from the categories' winner in F2. This takes intoaccount the activation decay over time. The result is normalized.2) propagating (computing) the activation to the abstract level F23) recording F2 pattern of activation if we are interested in the output at this point4) choosing the abstract winner5) updating winner's synaptic weights if in the learning modeThe 288 presentations resulted in the learning of 41; 004 time slices containing atotal of 218; 340 notes, creating 709 categories with the vigilance value set at 0:55 . Itis the network in this �nal state that will be used for most simulations, unless notedotherwise. After learning with a more stringent matching criterion of 0:7, the modelreached a similar architecture with the creation of 787 categories.Before any learning occurred, no abstract node is committed, so no category hasbeen de�ned. Upon beginning of learning, the architecture of the network undergoes bigchanges. On the average, more than 16 categories are created for each piece presentedover the 9 �rst presentations (146=9 = 16:2). Indeed, all these inputs are new to ARTISTand they are occurring for the �rst time. After many pieces have been learned by thenetwork, learning is quite stable. That is, new pieces are readily interpretable with themental schemata already created. Figure 2.4 shows that after about 100 pieces havebeen learned, less than two categories on the average needed to be added to the existingones in order to understand a whole new piece (precisely, 349 categories were createdafter piece #100, for an average of 349=188 = 1:86 new categories per piece).
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Figure 2.4: New categories created as a function of piece presented.At this point, ARTIST is quite familiar with his musical environment and it can betested on some musical tasks like an adult. The following chapter presents a �rst simpletest of ARTIST, to see how its memory for very familiar tunes operate, to observe therole of top-down activation, and mostly to acquaint the reader with the basic functioningof the model.



CHAPTER 3SIMULATION 1: RECOGNITION OF INTERLEAVED MELODIESDowling (1973) showed that when distractor notes are interleaved with the notesof a very familiar melody, the only way to recognize the melody and name it is to knowbefore hand that it comes from a very limited set of possibilities. This is true as longas the distractors blend with the original notes, but not if two auditory streams arespontaneously formed, whether on the basis of frequency range, timbre, loudness orany other physical cue (Bregman, 1990) or even cognitive cue such as tonality. In otherwords, in the absence of salient perceptual or cognitive cues to segregate distractor notesfrom melody notes, the subjects need to explicitly test hypotheses regarding the identityof the melody. They need to know that it will be `Old McDonald' or `Twinkle twinkle'to be able to direct precisely their auditory attention and pick out the actual notes ofthe melody. As the number of alternative increases, the likelihood of recognizing thetune decreases. If subjects know that the melody is very familiar but are not providedwith the explicit possibilities, they are very unlikely to recognize it.This lead to the conclusion that expectancies play a crucial role for directing au-ditory attention: When the listener is familiar with a melody, he knows which noteto expect, and when. `Which note' refers to the pitch dimension, and `when' refers tothe time dimension. Therefore, an expectancy can be de�ned as the focus of auditoryattention on a particular pitch-time window (Dowling 1987, 1990). Since ARTIST has49



50a built-in top-down mechanism, it should be able to pass the interleaved melody task,and recognize a very familiar melody even when distractors are intermingled.ProcedureThe prerequisite to be tested with this task is to be very familiar with a melody. Toimpose this on the model, it was su�cient to run the model (already trained with Bach'spreludes) in the learning mode with the learning parameters close to their maxima(vigilance and learning rate equal to :9 and 1, respectively) and present the soon-to-be-very-familiar melody. This ensured a fast and perfect exemplar learning, becausethe high vigilance forced the creation of a new node especially devoted to the memoryencoding of `Twinkle, Twinkle'. Had the vigilance parameter been lower, an alreadyexisting node may have resonated with the presentation of `Twinkle, Twinkle', andthe prototype for this category would probably have been substantially di�erent from`Twinkle, Twinkle' because of previous in
uences. As a consequence, the melody maynot have been perfectly learned.Learning the tune resulted in the creation of 2 new categories, named `710' and`711' because they were created after the 709 others. The nodes created at the abstractlevel of the network then act as a label for this particular tune. Two kinds of responseswere recorded from the network: The activations of the two label nodes and the ranksof those activations compared to the activations of all the other astract nodes in F2.Both activations were summed, and so were the two ranks. If we assume a decision rulebased on the activation levels of the nodes, the higher the summed activations, the morelikely ARTIST is to respond that `Twinkle' was recognized. Activation and rank vary



51in opposite direction, because the most activated node has the lowest rank, which is 1.So if we assume a decision rule based on the ranks of the nodes, the lower the summedranks, the more likely ARTIST is to respond that `Twinkle' was recognized.The recognition involved three conditions plus a control condition to know whetherthe model can use its top-down knowledge the way we do. Condition one measuresthe model's likelihood to recognize the hidden melody by simply presenting the melodyinterleaved with distractors.Condition two corresponds to the case where the human subject has some a prioriknowledge of the melody that may be presented. The same stimulus as condition oneis presented, but the label node is also given a high activation (equal to 1) to allow atop-down 
ow of activation to propagate and converge with the top-down activation.The activation of the label node is then reset to zero so that what is recorded is notdue to the hypothesis tested but to a real match between the hidden melody and thehypothesized one.A control condition needs to be added to rule out the possibility that the testingof a hypothesis is not always followed by a con�rmation but only when there is a realmatch. We do not want the model to validate the `Twinkle..' hypothesis when thePrelude #1 is being played. Therefore the response of the model is recorded afterpresentation of the Prelude #1 interleaved with the same distractor notes, and withthe `Twinkle nodes' activated during presentation. The Prelude #1 was chosen for thiscontrol condition because it is in the same key as `Twinkle' and contains three out ofthe four pitch classes found in `Twinkle'.



52The last condition had the model faced with 4 hypotheses to test, in order to sim-ulate the task where human subjects are given a list of 4 possible tunes containing theone to be recognized among the distractors. To realize 4 di�erent hypothesis testingsimultaneously, 4 di�erent nodes were activated and simultaneously propagated theirtop-down activation. One of these 4 nodes was 710 or 711 (for �rst and second mea-sure, respectively), whereas the three others were randomly drawn. To emulate theperformance of human subjects, the model would have to show poorer recognition inthis condition than in the case where only one hypothesis is being tested.ResultsThe activations of the label nodes following the presentation of the original melodywere both :86. Those were the highest and second highest activations in F2. So the totalsfor the activations and the ranks were 1:72(= :86�2) and 3(= 1+2, the lowest possiblescore), respectively. The summed activations and summed ranks for all the conditionsare shown in Figure 3.1. They are the highest and lowest across all conditions, indicatingthat the original version is the most likely to be recognized.With no hypothesis testing (no forcing of top-down activation), the presentationof the interleaved version elicits less activation than does the original version, and theranks of those activations total 25 instead of 3.
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Figure 3.1: Summed activations (top) and activation ranks (bottom) of the 2 labelnodes for `Twinkle twinkle', as a function of stimulus played and hypothesis tested.



54Therefore the probability for ARTIST to respond that `Twinkle' was recognized ismuch lower than in the previous case, just as human subjects who were not given anyhint were unable to recognize the hidden melody.However, propagating top-down activation from 710 and 711 while the tune is beingpresented results in a higher sum of activations and lower sum of ranks than for theprevious condition. This indicates a higher probability to recognize the tune than in theprevious condition, similarly to the situation where humans are informed of the possibleidentity of the tune. Nevertheless, this probability is not as high as in the `no distractor'condition.When the �rst notes of the Prelude #1 are presented to the model, interleavedwith the same distractors as above, and top-down activation from the `Twinkle' nodesis forced, there is no consistent false alarm recognition of `Twinkle', if we consider thatthe sum of activations is the lowest and that the sum of ranks is highest across allconditions.For multi-hypothesis testing, the three random nodes 164, 430 and 674 are alsoused in the top-down process. The results are comparable to those obtained withoutany use of top-down knowledge, exactly like for human subjects.ConclusionThese simulations revealed that ARTIST can memorize some particular tunes (veryshort for now), and that this knowledge can be used to recognize a very familiar melodyamong distractors. As with human subjects, the recognition performance drops as thenumber of possibilities concerning the hidden melodies increases, to approximately the



55same level as when no hint regarding the identity of the tune is provided. Those resultsare the same whether we assume a decision rule based on the absolute activations of thelabel categories or based on how many other categories have a greater activation thanthey do.Figure 3.2 shows the input activations for the �rst measure of `Twinkle, Twinkle...',without and with distractors, respectively. Without the distractors and after the tunehas been learned, the inputs before and after top-down propagation are identical becausethe abstract node is a perfect replica of the input (tune is perfectly familiar). Middlepanel of Figure 3.2 contains all the notes of the top panel, plus new ones (the distractors).The 
ow of top-down activation is what enables ARTIST to pick the relevant notesout of the apparently meaningless string of notes in order to recognize the hiddenmelody.The activation from the top projects to the input nodes corresponding to the notes inthe melody, and reinforces their activations compared to the distractors' activations. Itdoes not explicitly inhibit distractors' activations, even though the latter is reduced afterthe input is renormalized. Figure 3.2 (bottom) shows that irrelevant notes are �lteredout after top-down activation has spread, and they have little residual activation.
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Figure 3.2: Input activations for the �rst measure of `Twinkle, twinkle' (notes: C-C-G-G) without distractors before or after top-down (top; this is identical to a plot of thecategory (i.e., synaptic weights of the label node) because there was perfect exemplar



57learning), with distractors before top-down activation (middle) and with distractorsafter they have been �ltered out by top-down activation (bottom).The node from which top-down activation comes has to be synchronized with thehidden melody, since it would be useless to reinforce the right notes' activations at thewrong time: the forced winners were 710 for the �rst measure, and 711 for the second.In summary, the description of this process as being the focus of attention on pitch-time windows (Dowling, Lung and Herrbold, 1987) is perfectly appropriate to describeARTIST's functioning.



CHAPTER 4SIMULATION 2: INTERNALIZATION OF THE INVARIANTSOF TONALITY4.1 The tone pro�les4.1.1 Krumhansl's contributionsThe di�culties in clearly de�ning what tonality is were highlighted in the intro-duction. Fortunately, Krumhansl and Shepard (1979) provided us with the probe-tonetechnique, an empirical and reliable way of measuring tonality. The results born fromthis technique are now considered the cornerstone of music research on tonality, be-cause they describe the most salient invariants of tonal music. The technique lead toa description of what listeners know about pitch relationships, in the context of tradi-tional Western music. In other words, it characterizes the relationships between musicalelements in a psychologically relevant fashion.The outstanding contribution of Krumhansl is twofold. First, it lies in her buildinga direct bridge between the disciplines of music theory and psychology: starting fromthe simplest measure of perceived consonance (the straightforward rating by subjectsof how good or bad a musical sequence sounds), she was able to rediscover and accountfor the main musical relationships known from music theory. Moreover, these resultsappear to be very robust, being very similar across all the combinations of tones andchords used as musical contexts. Second, she made musicological descriptions take the58



59step from discrete to continuous, from qualitative to quantitative: it has always beenknown that the tonic is more stable than the �fth, but as we will see below, this stabilityrelationship is now quanti�ed. That is, each note is given a corresponding numericalvalue to re
ect its stability in a given context, ranging from 1 to 7 on a continuous scale.This measure of stability will enable us to test the model's predictions in a more preciseway than the qualitative descriptions of music theory would.According to Krumhansl (1990), \this system [of pitch relationships] arises fromstylistic regularities identi�able in the music" (p.9). The fact that the (mental repre-sentation of) pitch relationships uncovered by the probe-tone technique �t quite wellwith those found in the stimuli is a strong argument for this explanation. Therefore,Krumhansl's results being the best account to date of the invariants of tonality andtheir associated schemata, they constitute the best test one could give to a subject (ora model) to check if he has internalized the regularities of Western tonal music. Beforetrying the probe-tone technique on ARTIST, an overview of Krumhansl's related workis provided.4.1.2 The probe-tone techniqueTo characterize how the `Mind's ear' hears a note in a musical context, and howthose are related, Krumhansl and Shepard (1979) and Krumhansl and Kessler (1982)established the probe tone technique. It consists of playing a short musical sequence tothe subject, a strongly prototypical one in order to establish a strongly tonal context(either major or minor), followed by a probe tone. The subject is then asked to ratethe probe tone on the basis of how well it completed the preceding context; in this



60case, the range of the rating was 1|7, from `very bad' to `very good'. Using all ofthe 12 possible pitches of Western music as probe tones enables the construction of atone pro�le, the graph showing the `goodness' ratings as a function of the note used as aprobe. To prevent the results from depending on the possible idiosyncrasies of the key ofC major, all the contexts were used several times, transposed to other keys. Data fromthe di�erent keys were highly correlated and therefore were averaged for subsequentanalyses.To establish the tonality, di�erent kinds of contexts were used to make sure thatthe �ndings were not due to the particular stimulus used to establish the tonality butrather to the induced tonality itself. Some contexts were used in only one of the twostudies whereas some others were common to both.Speci�cally, the contexts used in either experiments were: complete or incompleteascending scales (e.g., C-D-E-F-G-A-B(-C) for C major), incomplete descending scales(e.g., C-B-A-G-F-E-D), chords (e.g., C-E-G played simultaneously) and cadences (i.e.,sequences of three chords ending on the chord establishing the tonality, e.g. F major-Gmajor-C major for the tonality of C major). All these were played in both major andminor modes and resulted in two tone pro�les, one for each mode.4.1.3 The major and minor key pro�lesFigure 4.1 shows the two tone pro�les following musical contexts respectively de�n-ing the keys of C Major and C minor. The tone pro�les for the other major and minorkeys are identical and can be inferred from the C pro�les by transposition (shiftingalong the X-axis). The results of the probe-tone technique lead to the reconstitution



61of the hierarchy predicted by music theory, namely that the most stable tones are indecreasing order the tonic (C), the �fth (G) and the major third (E), followed by theother diatonic notes (D,F,A,B), and then the chromatic notes (F#,C#,G#,D#,A#).These groups of notes de�ne the four levels of what is known as the tonal hierarchy.Figure 4.1 shows the name of all the notes next to their data points so that the levelsof the tonal hierarchy could be visualized more easily, by reading the notes from thehighest to the lowest point. The pro�les thus found are very robust. That is, there areonly minimal variations between pro�les obtained with di�erent types of contexts.By establishing a context in C minor instead of C major, a similar tone pro�le isobtained. The main di�erence between the two pro�les relates to the major third's vsminor third's stabilities, since the major third is only present in the major mode and theminor third only in the minor mode. A surprise comes from the minor key pro�le in thatthe minor third surpasses the �fth in stability, becoming the second most stable toneafter the tonic! Intuitively, it could be so because the minor third being the trademarkof the minor mode, it is used to emphasize this mode as opposed to the more commonmajor mode, and thus may have become more closely associated with the minor modethan the �fth, which does not disambiguate between major and minor modes.The other main di�erence between pro�les concerns the stabilities of the augmented�fth and of the sixth (respectively G# and A). These can also be explained by theirinclusion or not in the major vs minor scales. However, this does not mean that thedi�erences are attributable to a kind of sensory priming: they were observed even when
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63the contexts were simple chords which do not include those notes. They have to beattributed to semantic priming. That is, even simple chords established a tonality,which in turn prepared all the scale notes for preferential processing.A less fundamental result, nevertheless noteworthy, comes from another study at-tempting to characterize tonal stabilities, this time relating to the stability of a pair ofnotes (Krumhansl, 1979). The same methodology as before was used, with the exceptionthat two probe tones instead of one were sounded after the context, and the subjectswere asked to rate how well the second tone follows the �rst, given that particular con-text. This technique will also be used in the developmental study of the emergence oftonal schemata, reviewed in details in Chapter 6. The results obtained with two probesobviously correlated highly with the tone pro�les for a single probe. The interesting�nding is the perceptual asymmetry of the two probe tones, showing that the second(and �nal) tone has a stronger in
uence than the �rst one on the ratings. Such anasymmetry was expected, since it is well known that the temporal order of the notes ina melody is very important. However, even if these �ndings make intuitive sense becauseit is the last tone that will convey the sense of suspension or of resolution following themusical extract, they all can be attributed to the fact that subjects were explicitly askedto focus their judgment on the second tone; had the subjects been asked to rate howwell the �rst tone precedes the second (as opposed to how well the second tone followsthe �rst), or how the last interval �ts in the context, the results might have been slightlydi�erent. In any case, this might be a phenomenon related to the asymmetry found forthe order of presentation of tonal vs atonal stimuli, discussed in the introduction.



644.1.4 Distances between keysSince the tone pro�le of a key seems to characterize all (or most) of its aspects ofconsonance, a measure of the psychological distance separating two keys can be derivedfrom their respective tone pro�les by correlation: the better the two pro�les correlate,the closer the two keys should be perceived psychologically. Krumhansl (1990) computedthe correlations between the tone pro�les from Krumhansl and Kessler (1982) for allpossible pairs of keys, including major and minor keys. This is shown in Figure 4.2.Not surprisingly, and in agreement with music theory, it was found that this way ofmeasuring distances is almost monotonously related to the interkey distance measuredaround the circle of �fths: only a few data points break the monotony of the relationship,none of them coming from the correlations between two major keys.Thus, those local maxima are found in major/minor or minor/minor keys correla-tions, and their similarities to the reference chord is more than can be accounted for bythe circle of �fths. As Krumhansl (1990, p.39) notes, this is explained by the priviledgedstatus of the parallel and relative major-minor relationships (e.g., C major's parallel mi-nor is C minor, and its relative minor is A minor). The parallel and relative keys arepriviledge in the sense that their chords both share two notes out of three with thechord of the key of reference (C major: C-E-G; C minor: C-Eb-G; A minor: A-C-E). Infact, the points breaking the monotony of the relationship was predictable consideringthe advantage of the minor third over the �fth in the minor key tone pro�les, mentionedearlier (e.g., the C is very important in A minor, making it very close to C major).
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Figure 4.2: Major-major (top), minor-minor (middle) and major-minor (bottom)interkey distances, derived from the correlations between C major/C minor pro�le andall major/minor keys tone pro�les (Krumhansl and Kessler, 1982).



66Krumhansl and Kessler (1982) showed that a multidimensional scaling (MDS) anal-ysis performed on all the correlations lead to a 4-dimensional solution that, when pro-jected on 2-dimensional spaces, reconstitute perfectly the circle of �fths (dimensions 1and 2) and other circles based on relative and parallel major-minor relationships (di-mensions 3 and 4).Using the same method, Krumhansl (1990) estimated interkey distances in a secondway. It di�ers from the one just mentioned in the stimuli used for the collection of data.First, the musical sequences used to establish major and minor contexts were a littledi�erent, but the ratings have been shown earlier as being very consistent across di�erentsequences establishing the same key. The signi�cant di�erence between stimuli was theuse of `probe chords' instead of probe tones: the 12 probe tones following the contextwere replaced by the 24 chords built on the 12 tones as tonics, thus including all 12major and 12 minor chords (48 chords built on the 12 tones, thus including all 12 major,minor, diminished and augmented chords).This provided a direct measure of both major and minor harmonic (as opposedto tonal) hierarchies for each context mode (C major and C minor). The harmonichierarchies pertaining to the other keys could easily be inferred after assuming trans-positional invariance. As explained just before, the correlations between the harmonichierarchies were computed for all possible pairs of keys, to derive a measure of interkeydistances. A plot of these distances shows great similarity with the plot of interkeydistances obtained earlier, even though more 
attened, not as contrasted. Also, the



674-dimensional MDS solutions look almost identical to the MDS solution derived fromtonal hierarchies, con�rming the validity of the harmonic hierarchies.4.1.5 ConclusionMany studies have since replicated or extended Krumhansl's �ndings, sometimeswith substantially di�erent paradigms (e.g., measures of errors or of reaction time),con�rming the cognitive reality of the tonal hierarchy (Jarvinen, 1995; Cuddy, 1993;Repp, 1996; Sloboda, 1985; Janata and Reisberg, 1988).The probe tone technique is a tool to explore the cognitive representation activatedat any time during a musical sequence. Tone pro�les can serve as references in that theyre
ect the cognitive states after presentation of prototypes. There is evidence for therobustness of both the technique and the pro�les, coming from replications of the resultsand from convergence with other paradigms and concepts of music theory. Therefore itseems appropriate to use those tools as a basis for the evaluation of how well a system em-ulates humans' representation of tonality. Speci�cally, the proposed model's second testwill be to reproduce the tone pro�les when subject to the probe tone technique. Indeed,given the diversity of musical issues relating directly or indirectly to the tone pro�les,there would be little hope from a model that could not come close to exhibiting them.4.2 Simulation 2: ARTIST and the probe tone techniqueAll we need to submit ARTIST to the probe-tone technique is to present di�erentcontexts followed by every pitch, and record its answer of how good the sequence sounds.The only problem is that ARTIST does not have a de�ned output. It was never taught



68to give a `sounds good' or `sounds bad' judgment in response to a musical sequence. Allit knows is to recognize and classify musical patterns through the activation of nodes,that represent abstract categories formed through passive learning.If the idea presented in the introduction that familiarity determines what is likedis valid, then measuring ARTIST's degree of familiarity with a musical sequence shouldgive us its rating of how good or bad the sequence sounds. Along the same lines, Katz(1995) proposed a theory of positive a�ect, based on the old principle of `unity in di-versity'. It is argued that `unity in diversity' is perceived when two usually mutuallyexclusive principles are simultaneously realized. This translates directly at the levelof neuronal activations: it will occurr when two mutually inhibiting neurons are si-multaneously active. This is not an impossible situation because of the delay involvedbetween one neuron becoming active and the other one being inhibited. During thisdelay both neurons can be active to some degree and their summed activations canmomentarily be boosted. This principle was applied to a fairly simple connectionistmodel and did account for the aesthetic e�ects of many musical �gures. It is also men-tioned that Matindale (1988) used this measure to explain preferences for familiarityand prototypicality.Following these reasonings, the total activation present in the network at the F2level will be taken as an index of familiarity and of aesthetic judgment.ProcedureUsing all 16 di�erent types of contexts used in Krumhansl and Shepard (1979) andKrumhansl and Kessler (1982) with ARTIST would be computationally tractable but



69quite fastidious. Moreover, most of them yield very similar results, whereas some otherslead to signi�cantly di�erent pro�les and were not included in the �nal analysis. Soonly the most simple and prototypical contexts were retained to test ARTIST: for eachmode, the corresponding chord and the ascending and descending scales were used.Moreover, chords and scales are complementary in the sense that they instantiateorthogonally the two dimensional aspects of music: verticality and horizontality, repec-tively. The vertical dimension of music refers to harmony, the pitch relationships ofnotes played simultaneously. The horizontal dimension refers to the time dimension.This is literally the way music is notated on a score. In general, music makes use ofboth dimensions: it consists of patterns of notes, some of them played simultaneously,unfolding in time. Thus a chord can be considered a purely vertical musical stimulus,because it consists of three notes played together and involves as little as possible ofthe time dimension. That is, only the duration of the notes makes use of the timedimension, but not their starting times, all identical. In contrast, a scale is primarily ahorizontal stimulus: it is a sequence of notes unfolding in time, without two notes everbeing played simultaneously.After ARTIST completed learning as described in Section 2.4.4, each of the threecontext was used 12 times (vs 4 times with human subjects in Krumhansl and Kessler1982) to allow the tonic to take any pitch class value. The 12 tone pro�les obtained foreach context were then averaged. Using di�erent pitch classes as tonics ensures that theresults (ARTIST's as well as humans' results) are not due to the choice of a particularpitch of reference. There seems to be no particular reason for ARTIST's 12 tone pro�les



70to be very di�erent from each other, since ARTIST was trained with the same piecestransposed in all 12 keys. However the categories developed di�erently on di�erent pitchlevels, due to the randomness of the order of exposure to pieces and keys. Therefore thepro�le for one given context was obtained by averaging ratings over the 12 pitch classesas tonics. Presenting one context on one given tonic involved 12 trials, one for eachprobe tone. Thus the major key pro�le was obtained after recording ARTIST's ratingon 432 trials (3 contexts � 12 tonics � 12 probes), and the minor key pro�le required432 more trials.A major improvement Krumhansl and Kessler (1982) brought after the �rst probe-tone study by Krumhansl and Shepard (1979) was the use of Shepard tones (1964). The�rst study found that as the subject's musical experience increases, he relies more onthe pitch itself of the probe tone (and its relationship to the established key) to give ajudgment, rather than just relying on the size of the interval like beginners do. In orderto isolate the e�ect of pitch class on musical judgment, and to obtain more consistentresults between experienced and inexperienced listeners, the second study used complextones that have a de�nite pitch class but no de�nite height. For instance, a Shepard Cde�nitely shares the same quality common to all Cs, but one could not tell the octave itbelongs to, if the note is C1, C2, C3, etc... These tones were used to give the illusion ofever-ascending scale (Shepard, 1964). They are simply made of frequency componentsfrom all the Cs in di�erent octaves. It would be very much like playing all the Cs of thekeyboard at the same time, C0 with C1 with C2 and so on...



71This is exactly how we can simulate the presentation of Shepard tones to ARTIST,by playing the pitch presented on all octaves simultaneously. An amplitude envelopesimilar the one used in Krumhansl and Kessler (1982) was imposed over the frequencyrange: amplitude is highest for the middle octaves and decreases for octaves close toboth ends of the frequency spectrum. Figure 4.3 shows how the notes C-D-E-F arecoded on the input layer when presented as Shepard tones.
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Figure 4.3: Input activations after presentation of 4 Shepard tones made of 6harmonics each.



72Results and discussionTo measure how well ARTIST's tone pro�le �t Krumhansl and Kessler's (1982), thePearson Product Moment Correlation Coe�cient between the two was computed, forboth major and minor modes. Both were signi�cant, respectively �:95 and �:91; p <:01 (2-tail). Surprisingly, the correlations were negative. ARTIST's pro�les are shownby the solid lines in Figure 4.4 but were inverted for easier comparison with the referencepro�les (dashed lines), hence the negative values of activations.This means that Katz' (1995) theory of aesthetic judgment based on `unity indiversity' does not strictly apply in this case. In fact, it did not even apply to Krumhansland Kessler's (1982) human subjects, who gave high ratings to stimuli generating asense of unity (when the probe tone belongs to the key established by the context)and low ratings to those generating a sense of diversity (when the probe tone does notbelong to the key). The stimuli were probably too short and too simple to a�ord anysense of unity in diversity. However Katz' measure might have given way to a positivecorrelation between pro�les if lateral inhibition had been implemented in ARTIST,because inhibition was one of the premises of Katz' reasoning.



73
C C# D D# E F F# G G# A A# B 

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

PROBE TONE

N
O

R
M

A
LI

Z
E

D
 R

A
T

IN
G

ARTIST simulation
Human data (Krumhansl & Kessler, 1982)

C C# D D# E F F# G G# A A# B 
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

PROBE TONE

N
O

R
M

A
LI

Z
E

D
 R

A
T

IN
G

ARTIST simulation
Human data (Krumhansl & Kessler, 1982)

Figure 4.4: Comparison of ARTIST's and Krumhansl and Kessler's (1982) tone pro-�les, for major keys (top, correlation = .95) and minor keys (bottom,correlation = .91).



74Thus the previous results may be better understood in terms of cognitive economy.The familiar or prototypical musical patterns are closely associated with only a fewcategories, and they have well-de�ned target nodes, the activation of which results inthe sense of unity. In contrast, very unusual patterns will only be understood as acomplex combination of categories, resulting in the activation of many abstract nodesand provoking a sense of diversity. For instance, the C major scale followed by theprobe-tone C establishes unambiguously the key of C major and activates mostly thenodes relevant to this tonality. But if the probe-tone is F#, nodes relevant to bothkeys of C major and G major will become active because all 7 notes of both keyshave been played. Thus, stimuli conforming to familiar patterns minimize the totalactivation of the categories, whereas those deviating from what is familiar increase thetotal activation.Now ARTIST's C major and C minor pro�les are established, we can deduce thepro�les of any key by transposition (shifting the graph along the X-axis). FollowingKrumhansl's method of computing the correlation between tone pro�les of di�erentkeys, we can infer the inter-key distances implied by ARTIST's schemata. The keydistances from C major and C minor are graphed at the bottom of Figures 4.5 to 4.7.They are very similar to those obtained by Krumhansl (Top of Figures 4.5 to 4.7)even though some local maxima are not as well de�ned (e.g., around Am and D#m inFigure 4.6 and around C#m in Figure 4.7). The correlation between ARTIST's andKrumhansl's inter-key distances pro�les were highly signi�cant, between .97 and .99,p < :01.
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78ConclusionThe simulations carried out in this chapter show that the tone- and key-distancespro�les can be internalized from simple exposure to music. ARTIST was able to extractthe tonal invariants from its environment, even without any bias towards octave equiv-alence or similar acoustical relationships (e.g., 3:2 frequency ratio between �fth andtonic). The schemata formed are amazingly close to humans', especially if we considerthat its musical universe contains only 24 di�erent pieces (but each piece was 'heard'12 times, in di�erent keys) and that it would take less than 12 hours for a human tolisten the 288 pieces!These results seem to be very robust. Chapter 6 explores how di�erent levels ofexposure to music a�ect ARTIST's responses on a similar task involving two probetones. For this, some random subsets of the complete corpus of 288 pieces were used totrain ARTIST. They included 24, 48 and 144 pieces, and were not balanced regarding tothe number of pieces in each key. Still, the pattern of results on the two-probe tone taskwere consistent. Regarding the vigilance parameter, it was mentioned in Chapter 2 thatincreasing it from :55 to :7 led to a similar architecture. Therefore it seems that mid-range vigilance values should not a�ect severely the present results, even though thiswas not explicitely tested. The learning rate was also manipulated in a few instancesand the learning converged in the same way each time, but again, the responses to theprobe-tone task were not compared. Section 5.3 explores the robustness of the model'sbehavior when trained with important variations in the coding of the input.



CHAPTER 5A MARKOV MODEL IN ARTIST'S SHOES5.1 Can low-level information in the environment explain the tone pro�les?The two previous chapters demonstrated how a connectionist model can internalizesome invariants present in the music. The invariants were extracted from the environ-ment and internalized through the process of learning. The result of learning wasassessed by the probe tone technique, so we can wonder what is the kind of informationpresent in the stimuli that enables ARTIST to perform similarly to humans on this task.Does ARTIST `pick-up' on the same information as humans to internalize the structureof its environment?Naturally, examining the statistical regularities of the stimuli themselves could giveus some clues to start answering this question. For instance, if the learning process issimply viewed as synaptic reinforcement resulting from exposure, it is straightforwardthat the number of occurrences of each note during learning could be the basic infor-mation mostly responsible for the probe tones responses. The note count is a greatlysimpli�ed way of representing pieces of music, mostly because it completely ignores theorder of appearance of the notes. Brown and Butler (1981) and Brown (1988) havedemonstrated the importance of order information and therefore the present approachcan only give an incomplete account of human data. Still this �rst step can shed some79



80light on the relationships between the basic regularities of the environment and theinternalized invariants.Krumhansl followed precisely this approach in investigating the kind of informationpicked up by people. However a big problem arises here as it is almost impossible tohave an extensive list of all the music an adult was exposed to since birth. Thereforea relatively large corpus is needed in order to have a sample su�ciently representativeof the musical environment adults grew up in. Krumhansl (1990) compiled data fromYoungblood's (1958) and Knopo� and Hutchinson's (1983) who computed the frequencydistributions of notes in a variety of compositions by Schubert, Mendelssohn, Schumann,Mozart, Hasse, and Strauss. Thus Krumhansl and Kessler's (1982) probe-tone pro�lescould be compared to tonal distributions pro�les containing about 20; 000 and 5; 000notes for pieces in major and minor keys, respectively. That is, the goodness ratingswere correlated with the frequencies of occurrence. The two data sets for major keysand the two data sets for minor keys closely resembled each other, and the correlationswere respectively :89 and :86 (both signi�cant at p < :05).If the tone occurrences in the pieces are weighted according to their durationsinstead of simply being counted, the match between pro�les is even stronger; the cor-relation was :97 with Hughes' (1977) summed tone duration pro�le of a Schubert piece(op.94 no.1). It is not clear whether this better match between pro�les is only dueto the idiosyncrasies of the analyzed pieces or is rather due to Hughes' more sensitiveapproach. Taking into account the durations of the notes probably improved the matchsigni�cantly, showing that the tonally important notes are temporally stressed by being



81given longer durations, a fact well-known in music theory. Also, the fact that Hughes'analysis included the notes of the accompaniment instead of just the notes of the melodymay have been of importance.In any case, the strong resemblance between the note distributions and the probetone pro�les suggest that people internalize the distribution of notes, plus maybe otherthings. Furthermore, it could also suggest that it is the internalization of the notedistribution itself that determines the shape of the tone pro�les. This is only speculationhowever, since the relationship exhibited so far between pro�les is limited to a strongcorrelation, and no causality can be inferred.Consequently, it would be interesting to check if this holds true for ARTIST's case.How well does the note distribution match ARTIST's tone pro�le? The good thing inthat case is that we know exactly everything ARTIST ever 'heard' during learning. Thismay help us in �nding out the extent to which the simple regularities of the environment(tones distribution) explain ARTIST's probe-tone pro�le.Figure 5.1 shows the note distribution in ARTIST's musical universe. It accountsfor every single note ever presented to ARTIST, and the assumption of having a corpusrepresentative of the whole musical experience does not apply here as it does in the caseof humans. The corpus IS the environment. The note frequency plot shows that all 6octaves making up the input range were not equally represented. There was a tendencyto use mostly the middle octaves, and the preludes rarely used the highest and lowestoctaves. Hence the note distribution across all octaves approaches a bell curve.
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Figure 5.1: Occurrences of notes in the 288 pieces, corresponding to 24 preludeseach presented in 12 keys.The frequency distribution of the pitch classes in ARTIST's environment can becomputed from the note distribution by collapsing accross the 6 octaves. The resultis a perfectly 
at function. Remember that ARTIST's musical experience entailed asingle exposure to 288 preludes. Each of Bach's 24 preludes was presented 12 times over12 di�erent keys. Therefore all the keys and all the pitches were equally represented.Thus the frequencies of occurrence were strictly equal for each pitch class, namely 1/12.Each of the 12 pitch classes occurred 18; 195 times during learning. Therefore the fre-quency distribution of the pitch classes cannot account for ARTIST's tone pro�les' peaksand valleys. Obviously, something else than the simple notes distribution determinesARTIST's responses to the probe-tone task.



83Given that the pitch class distribution resembles the tone pro�le for humans, thereseems to be an important di�erence between humans and ARTIST. In fact there isnot. The actual note distribution in pieces forming humans' musical experience isprobably very similar to ARTIST's, a bell shape, because many keys must be widelyrepresented in those pieces. In fact, the distribution of notes from humans' musicalenvironment, so similar to the C major pro�le, was obtained from pieces all transposedto the key of C major. No piece played in any other key was included. If only the piecesin one particular key are taken into account, say C major, the distribution of notesspans only one portion of the musical environment (one twelveth if all keys are equallyrepresented). Thus the note distribution explained the human tone pro�le only as far asthe population used to compute the distribution was already carefully pre-selected. Inother words, the tone pro�le resembles note distributions which are not representativeof human musical environment. The note distribution spans one (carefully chosen)twelveth of the environment, but not the distribution over the whole environment.Figures 5.2 and 5.3 show that for ARTIST too, the note distribution resembles theprobe-tone pro�les when only the pieces in the key of C (major and minor) are takeninto account. Figure 5.2 shows the note distribution for the 24 preludes transposed in C.Figure 5.3 collapsed this data across the 6 octaves and thus shows the pitch distributionin the 24 transposed preludes. Its correlation with Krumhansl's C major tone pro�le is:71 (p < :01).
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Figure 5.2: Distribution of notes in the 24 preludes all transposed to C major.
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Figure 5.3: Distribution of pitches in the 24 preludes all transposed to C major.In fact it is as if humans and ARTIST responded to probe tones according toparticular sub-distributions present in the environment and not according to the wholedistribution. The particular sub-distribution activated must depend on the contextpreceding the probe tone. For instance, a context played in C major elicits probe-tone responses resembling the note distribution in the pieces in C major. An F minor



85context elicits responses resembling the F minor note distribution. Another way ofunderstanding this is that it is the relationship between a tonic (implied by the context)and the other notes that has to be encoded or retrieved, and not the occurrences ofthe particular notes themselves. This is obvious from the principle of transpositionalinvariance that governs the perception of music. However encoding the relationshipsinstead of the notes themselves is not easily done, because of the circularity of theproblem: encoding the relationships assumes knowledge of the tonic, which probablyrequires the use of the mental schemata responsible for the tone pro�les. So is it possibleto explain ARTIST's tone pro�le by only taking into account some musical context andthe basic regularities of the environment?There is a class of models, called Markov models, whose working principle is tomake predictions regarding elements in a sequence depending on the preceding context;those predictions are made on the basis of the basic regularities embedded in all thesequences of a corpus. Therefore they are perfectly adapted to address the question ofwhat kind of probe tone pro�les emerge from just learning the tone occurrences in theenvironment. Building a Markov model using the same environment as ARTIST's, andtesting it on the same probe tone task should help us understand better ARTIST's wayof functioning. Speci�cally, this should distinguish the parts of the probe tone pro�lesthat can be explained by simple occurrences in the environment from those that cannot.The present chapter compares ARTIST's performance on the probe tone task with thatof Markov models. The latter models will not be designed with the goal of emulatinghumans' responses as accurately as possible. Rather, the goal is to develop them in



86the same conditions as used for ARTIST whenever possible, with the same data andassumptions, in order to better understand ARTIST.5.2 Markov models and the probe-tone taskA markov model makes predictions of which element comes next in a sequencegiven the previous item(s). Those predictions are made by assigning a probability ofoccurrence to the items that could possible occur. This can easily be applied to musicbecause music can be roughly de�ned as a sequence of notes. The predictions arebased on the statistical regularities of the model's environment; so the model needs tobe provided with a corpus of examples that constitute its environment. In our case,it is straightforward that the corpus needs to be made of the 288 preludes to matchARTIST's environment. For a given corpus, a whole family of Markov models can bebuilt. Members of the family di�er in what is called their order. There can be Markovmodels of 1st order, 2nd order, etc...Using the same Markov models notation as used by Miller and Chomsky (1963),an nth order Markov model considers all the sequences of n elements occurring in thecorpus and stores them in a contingency table. It can then be used to predict thechance of occurrence of any element following a sequence of n � 1 elements (with themore common notation, an nth order Markov model predicts the (n + 1)th element onthe basis of the preceding n). This is simply done by looking at the �nal elements of thesequences with n elements that start with the n� 1 elements speci�ed. Replacing theword `character' by the word `note' in the following passage from Miller and Chomsky(1963) gives a good explanation of the notation as it is applied to the computations of



87note sequences: \It is convenient to de�ne a zero-order approximation as one that usesthe [notes] independently and equiprobably; a �rst-order approximation uses the [notes]independently; a second-order approximation uses the [notes] with the probabilitiesappropriate in the context of the immediately preceding [note]; etc." (p. 428) Forexample, a 3rd order Markov model records all the 3-note sequences present in thecorpus. If we want to know what the likelihood is that the note E will follow thesequence C-D, the model computes what proportion of sequences starting with C-D areC-D-E. This gives us the conditional probability of E following C-D according to thestatistical regularities of the corpus. Note that the basic assumption of markov models|that the occurrence of a note depends on the immediately preceding note| is stronglysupported by the failure of Dowling's (1973) subjects to identify very familiar melodieswhen distractor notes are interleaved with the melodies' notes.Since the goal of this chapter is to understand the in
uence of the statistical prop-erties of the corpus on ARTIST's responses to the probe-tone technique, the Markovmodels need to generate a tone pro�le. This implies generating a rating value for each ofthe 12 pitches, following 3 di�erent contexts: ascending and descending scales and chordcontexts. In the case of Markov models, the probability of occurrence will be taken asthe rating value. The probability of occurrence of a particular pitch class equals theprobability of occurrence of any note having this pitch, regardless of its octave (it couldbe any of the 6 octaves covered by the corpus). For example, the probability of oc-currence of the pitch class B is the probability of the notes B1, B2, B3, B4, B5 or B6occurring.



885.2.1 0th and 1st order Markov modelsThe 0th and 1st order Markov models are the two particular cases where no contextis taken into account to predict the occurrence of an element. The 0th order Markovmodel by de�nition gives equal probability to all the notes. In our case, the probabilityof any pitch occurring is 1/12 since there are 12 pitches. The probe-tone pro�le obtainedwith this model is therefore perfectly 
at and does not explain any of the variance foundin ARTIST's responses pro�le.The 1st order Markov model assigns probabilities according to the frequencies ofoccurrence of the pitches in the corpus. As mentioned in Section 5.1, all the pitch classesappear equally often in the corpus because the 24 preludes were presented exactly oncein every key. Therefore in this case the 1st order Markov model is identical to the 0thorder model and does not make any interesting prediction: The tone pro�le obtained isperfectly 
at. This con�rms the relevance of Brown and Butler's (1981) and Brown's(1988) argument regarding the crucial importance of the order of the notes in a musicalsequence.5.2.2 2nd order Markov modelThis model takes into account a context of one 'musical event' to predict the nextpitch. A problem arises here as a de�nition of musical event is needed. To keep thingssimple, the best would be to de�ne a musical event as being one note played. However inreality the musical event immediately preceding a note can be any combination of severalnotes played simultaneously. ARTIST also implicitely uses this de�nition as its inputcan be presented with any number of notes played simultaneously in any combination.



89So the Markov model needs to take into account chords -several notes played at once-in order to make its task as similar as possible to ARTIST's.Already we reach some limits of the Markov models as they can be applied toour particular musical problem. The contingency table of the model needs one entryfor each musical event that occurs. Even restricting the music to a melody playedwith 3-note accompaniment chords (the standard musical situation in real life) wouldopen more than 26; 000; 000 possibilities of combining the notes for a single event! Ofcourse, many of these combinations never occur since the notes played in harmonyusually have particular relationships: they are typically one third, one �fth or oneoctave apart. Still, thousands of those combinations occur over the course of the 288preludes, making the model computationally untractable. As a consequence, only twosimultaneous notes will be taken into account to form one musical event. Taking intoaccount a third simultaneous note might be computationally tractable for the present2nd order Markov model but not for the 3rd order so musical events were restricted toonly two simultaneous notes.This in turn forces another assumption on the Markov model. When more thantwo notes are played simultaneously, we need to pick only two of these to de�ne thecorresponding musical event. It is straightforward to use the highest and lowest notesin this case because the upper and lower voices of a piece of music are much moreperceptually salient than the middle ones (Huron, 1989; Huron and Fantini, 1989). Theupper voice plays the melody and is the voice most naturally followed while listening.The lowest voice provides the bass for the accompaniment, typically sounding the tonic



90or the �fth. The notes played in the middle voice are often quite predictable given thelowest note, being a third, �fth, or sixth higher most of the time.MethodThe 288 preludes constituting the corpus were scanned by a MATLAB program. Alist of all the di�erent musical events as de�ned above was created in a lexicon. Therewere 1474 combinations of highest and lowest notes used in the 288 preludes. Thismeans that any musical input present at any time in the preludes can �t in one of the1474 categories. Of those categories, 69 consisted of a single note, the others beingcombinations of two notes.Every musical input of the preludes was thus categorized and the pitch class of thehighest following note was recorded in a 1474 � 12 matrix. One row of this matrixrepresents the frequency distribution of pitches following the corresponding type ofmusical event. Now that those contingencies are recorded, we need to submit the modelto the probe-tone technique in a way consistent with the way ARTIST was tested. Thebiggest di�erence is that the 2nd order Markov model can only hold a context of onenote, whereas ARTIST could work with contexts of any length, such as the 7- or 8-notecontexts used in the probe tone task. For what follows, it is important to remember thatARTIST's tone pro�le was obtained by playing the contexts with every pitch serving inturn as the tonic, and with Shepard tones. Thus for the scale contexts all the notes inall octaves were involved once as the last note of the context, the tonic.



91Scale contextIn order to make the testing of the Markov model with the probe tone techniquecomparable to the precedure used with ARTIST, every row in the contingency matrixwas considered. The 12 numbers of the row were taken as re
ecting the responses totwo sets of 12 probe-tone trials, one set for each note of the context category consideredas the tonic. For instance, if a C major chord context like C2-E2-G2-E3 (Figure 5.4,from bottom to top) is followed by a D, the middle notes (E2 and G2, in grey) arediscarded from the context, and the D counts as one instance following C2 and oneinstance following E3 (symbolized by arrows). Figure 5.4 summarizes the informationtaken into account by the contingency table.Figure 5.4: Musical information used in the Markov model. Black notes are contextand predicted notes. Grey notes are discarded from the context. White note followsthe context but is not used for prediction. Arrows link notes used for building thecontingency table.The Markov model tone pro�le is obtained by plotting the relative probabilities ofoccurrence of each sequence context + probe tone. Formally, this probability for theprobe tone probe is:Let ascendscale be the ordered set of notes fC,D,E,F,G,A,B,C'g. Let scalenote bea note element of ascendscale taking the values scalenote = D to scalenote = C 0 inascending order,



92P (C;D;E;F;G;A;B;C 0; probe) == C0Yscalenote=DP (scalenotejprecedingnote(scalenote)) � P (probejC 0)All the terms of this product except the last one are independent of probe so theMarkov model tone pro�le is determined by the values of P (probejC 0). To computethose probabilities from the counts stored in the contingency matrix, the 12 responsesof each row are permuted in a circular fashion so that the response to the tonic alwaysappears �rst. Then the sum over each column is proportional to the probability thatthe associated probe will follow C'. This procedure is the same as the one used to obtainhumans' and ARTIST's tone pro�les, when the pro�les obtained with di�erent contextkeys were transposed to C major before being averaged.Chord contextA major chord is made of the tonic, the major third and the �fth. So for the chordcontext, only the rows corresponding to Markov contexts where the high note is theoctave, the �fth or the major third of the bottom one are taken into account. Theresponses were all transposed to C major as explained above before the sum of ratingsfor one pitch was computed.



93ResultsScale contextFigure 5.5 shows the Markov tone pro�le obtained for the scale contexts. Thecorrelation with humans' tone pro�le is negative and close to 0, r(10) = �0:20; p > :10.The main reason for this seems to be that the model's preference for pitches close tothe tonic overrides judgments based on other pitch relationships: had the peak for Fbeen slightly lower, the 6 preferred pitches would have been the 6 closest to C, with 3on each side.
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94A#. There is little doubt that the reason for this is that those are two of the notesclosest to the tonic, being only two semitones away.So why is this model mostly sensitive to pitch proximity? Reconsidering the waythe pro�le was computed, it appears that all of it is based on the frequency of intervalsbetween consecutive notes. It was built without any information regarding keys, andthree reasons contributed to this. First, all 12 keys were equally represented withthe 288 preludes of the corpus. Second, given what was just said, all 1474 contextsevents were used as probe-tone trials regardless of the notes they contain. Those tworemarks by themselves are not su�cient to explain the model's focus on pitch proximity,because they also apply to the way ARTIST was exposed to music and tested. The thirdreason combining with the others to remove key information is that the context used forprediction contains only one note. This means that each note in a sequence is in turninterpreted as being the tonic. Having no memory regarding which notes came beforethe pair context/predicted notes, the Markov model's musical world must be a restless
ow of notes constantly modulating the key, because every new note de�nes a new key.This may mean that no key at all is de�ned, and further research may show similaritieswith the way humans perceive serial music.Interpreting the Markov tone pro�le in terms of frequency distribution of intervals,we can easily understandwhy D and A# are the preferred notes, even before the tonic. Itis well known that small intervals are much more frequent in music than big leaps. Thiswas shown by analyses of pieces of music (Vos and Troost, 1989), and some theoreticaljusti�cation for this can be found in Narmour's (1990,1992) in
uential Implication-



95Realization model. The basic reason for using mostly small intervals may be to facilitatethe listener's integration of music into a coherent whole, since pitch proximity is a majordeterminant of auditory streaming (Bregman, 1990). Given the structure of the majorkeys (sequence of intervals is 2,2,1,2,2,2,1) the 2 semitones intervals between adjacentnotes are more frequent than 1 semitone intervals. This explains why the two preferrednotes are exactly those two semitones away from the tonic, D and A#. The tonic didnot receive very high rating because the unison interval (0 semitone, i.e. repetition of anote) is not very frequent.Chord contextFigure 5.6 shows the Markov tone pro�le obtained for the major chord context. Itis very similar to the pro�le obtained with the scale context and the correlation withhumans' tone pro�les was also quite low, r(10) = �:30; p > :10. The resemblance of theMARKOV pro�les with the 2 di�erent contexts is probably due to the shortness of thescale context taken into account (1 event), which makes the contexts quite similar. Inany case, it tends to con�rm the conclusion drawn from previous result.ConclusionThe pro�les obtained with the 2 contexts were summed. The result is shown inFigure 5.7, but nothing new appears since the two pro�les were very similar and thecorrelation with humans' tone pro�le was still low, r(10) = �:24; p > :10.
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97The model does not seem to have extracted the notion of key. It responded accord-ing to pitch proximity because the most frequent intervals are small. The high ratingof A# might be explained by its presence in some minor modes. There exists threevariants for each minor key, whose names are quite explicit: the harmonic minor modeis generally used when a chord is played, and the ascending and descending melodicminor modes are mostly used when melodies are played with respectively ascending anddescending contours. Nevertheless those are far from being absolute rules. For instance,Bach frequently uses the harmonic minor modes in the melodic line. A# appears inthe descending minor mode, but this is unlikely to explain why it obtained the highestrating because there seems to be no reason for this to prevail over all the other modes.For example, D# belongs to all minor modes, but its rating is close to average.The most important limitations of the model concerned the way it could be tested.The model's predictions had to be based on a one-note context, so four of the contextswere reduced to the same one: the complete major and minor scales, whether they areascending or descending, all end with the note C, which is all the Markov model can takeinto account. Two notes are enough to di�erentiate between ascending and descendingscales so a 3rd order Markov model will be able to give di�erent predictions for thosetwo conditions. Three notes are needed to di�erentiate major and minor modes, so onlya 4th order Markov model, very intensive computationally and not explored here, wouldbe able to give di�erent predictions.In fact there was a simpler way to obtain the exact same pro�le. To make sure theprocedures were identical to those used with ARTIST, the preludes were played in all



9812 keys. So were the contexts used to generate the tone pro�le, and the responses tothe contexts of any key were always transposed back to C major. Those two processesare reciprocal in some way, and �nally cancel each other. It is as if the informationavailable was multiplied by 12 in a systematic way, and retrieved 12 times in the samesystematic way. A simulation with only the 24 preludes in C major was run. Thisgreatly reduced the number of possible categories, from 1474 to 686. The tone pro�lewas computed from the 686 � 12 contingency matrix by summing the occurrences of allthe rows, after they were permuted to account for the tonic. When all the numbers ofthis pro�le are multiplied by 12, it exactly equals the previous one obtained with the 288preludes. Hence the computation time required can be greatly diminishedwithout losingany accuracy in the results. This signi�cant improvement was used for the followingsimulation and it allowed to be run in a short time instead of more than a week.5.2.3 3rd order Markov modelThe same procedures as above were used for the 3rd order Markov model, the onlydi�erence being that two musical events instead of one were used as contexts. Thismeans that the preludes were decomposed as sequences of three musical inputs. Thetwo �rst inputs were each classi�ed in one of the 686 categories according to their lowestand highest notes. The third input was assigned one of the 12 pitch classes dependingon its highest note. Thus every sequence contributed to one cell in the 686 � 686 � 12contingency matrix. Not all the data in the matrix could be used as probe tone trials,contrary to the previous case. For the 2nd order model, any note could be, throughtransposition, considered the last note of the scale used as context before the probe. So



99all entries in the matrix corresponded to a probe tone trial. In the present case, 2 notesof the context scale can be used to predict the next pitch.Following the same argument as in Section 5.2.2 regarding the probabilities of oc-currence of the context + probe tone sequences, the Markov tone pro�le for the ascend-ing scale context is given by the set of conditional probabilities P (probejB;C) becausethe other terms of the product are independent of probe. Similarly, the Markov tonepro�le for the descending scale context is given by the set of conditional probabilitiesP (probejD;C).So the two notes of a context have to hold the same relationship as B and C (thetwo last notes of the scale preceding the probe tone) in order for this context to becounted in the pro�le. In the case of the ascending scale, the second note needs to beone semitone higher than the �rst, as in the pair B-C ending the C major scale. Inthe case of the descending scale, the second note should be two semitones lower as inthe pair D-C ending the C major descending scale. So only the rows of the matrixcorresponding to two context notes with the relationships just explicited were used outof the 686 � 686 rows. This amounted to 154; 065 rows (about one third), which werethen transposed so that the tonic (2nd context note) became C.In summary, two probability distributions were retrieved from the contingencymatrix. One was the probability distribution of the intervals following an interval of onesemitone upward, which simulated the probe tone responses to the ascending contextscale. The other was the probability distribution of the intervals following an intervalof 2 semitones downward, which simulated responses to the descending context scale.



100The �nal pro�le shown in Figure 5.8 was obtained by averaging both those pro�les andthe chord context pro�le, as it was done for ARTIST and humans. The chord contextpro�le is the same as found with the 2nd order Markov model because the chord isconsidered as only one musical event and increasing the context length does not changeanything for the prediction.
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102the presence of A# only in the descending melodic minor mode but not in any othermode. The rating for B was high in both cases, because the sequences B-C-B and D-C-Bcommonly occur.The rating for E was also higher in the ascending scale condition. Thus, two newlocal maxima (peaks) appear with the 3rd order model. This made the correlation withhuman data positive, r(10) = 0:14; vs � 0:04 for descending scale context, p > :10 forboth. Even though this correlation is not signi�cant, the model extracted some impor-tant qualitative information: the local maxima (peaks) and minima (valleys) correspondto the same probe tones for humans and the 3rd order model. This indicates that themodel has extracted the notion of key by giving relatively higher ratings to the notesbelonging to the key of C. On the other hand, the relative heights of the local maximado not match at all, which explains the almost null correlation. The di�erentiation ofnotes within the diatonic set concerned D and B, the notes closest to the tonic, insteadof the triadic notes C, E and G for humans.5.2.4 ConclusionThe application of Markov models to our particular problem of music perceptionsu�ers limitations. Only short musical contexts can be used for prediction because oftheir computational demand. For instance, major and minor scale contexts reduce tothe same information available to the models. As a consequence, they cannot generateone major and one minor key pro�le. Also, only the 3rd order model have di�erentcontexts for ascending and descending scales. Moreover, the computational demand of



103the models compelled us to make some choices regarding the information to be fed tothe model.In spite of this, with one context the model was perfectly able to isolate the noteswithin the key from those outside. This implies that the frequencies of occurrence ofintervals can lead to identi�cation of the key. The e�ect of pitch distance was alsoapparent in the 3rd order model's responses, but to a smaller extent the di�erencebetween diatonic and chromatic notes had some in
uence.This reminds us of the novice listeners' tendency to rely mostly on pitch proximityfor their judgments (Krumhansl and Shepard, 1979). Moreover, as the next chapterexplains, the distinction between notes in vs out of key is the �rst step children accom-plish in the developmental sequence of sensitization to tonality. Together, this evidencesuggests that lower order Markov models may be appropriate to simulate novices' be-haviors. As novices become more sophisticated, they may integrate information overlonger periods of time, and higher order Markov models are needed to account fortheir responses. It would be interesting to be able to implement higher order modelsand check if their sensitivity to pitch proximity keeps decreasing. The contributionof melodic contour would also be worth assessing, since it is known that children areespecially sensitive to contour (Dowling, 1986)Finally, the present results indicate that ARTIST may be exploiting the low-levelstatistical regularities of the stimuli to extract the notion of key and show preferencefor the diatonic notes. However, these regularities cannot account for ARTIST's insen-sitivity to pitch proximity. Neither can they account for ARTIST's preference of triadic



104notes over the other diatonic notes (and moreover in the same order of preference ashumans). ARTIST may be able to exploit higher-order regularities because the numberof notes presented to its input is not limited. The in
uence of its top-down system mayhave the same consequences because it acts somewhat like a working memory bu�er.Most likely, it is the interplay of these elements that may be responsible for ARTIST'sperformance. The next section brie
y explores ARTIST's behavior when its 'rhythmicattention' is perturbated and the time span between inputs varies.5.3 ARTIST's robustness to input variations (varying window sizes)The stimuli used were originally MIDI �les, in which the unit of time is the `tick'.So for the sake of convenience this was used as ARTIST's time unit too. The settingused was 120 ticks per quarter note, so there were 480 ticks per 4/4 measure in thestimuli. All the results reported so far concerning ARTIST were obtained using thesame temporal window to scan the musical input. This window was 240 ticks wide,and ARTIST's input layer was updated every 240 ticks (or half measure). That is, eachupdate consisted of computing the decay over 240 ticks for the old inputs (present beforethe presentation of the current half-measure), and of integrating the musical events thatoccurred in the last 240 ticks to provide new inputs. This choice was logical for bothmusicological and psychological reasons. In music, most of the time (and it is the casein Bach's prelude) one note is accentuated every half measure and there is evidence thatthis is a strong clue used to segment musical input (Handel, 1974; Drake and Palmer,1993).



105Now we can wonder whether ARTIST is robust enough to exhibit the same behaviorand the same kind of performance with di�erent time windows. This may not be thecase because as it has just been explained, the time window used so far is a perfectsubdivision (respectively, multiple) of basic musical temporal units, such as the measure(respectively, beat). So the particularity of the half-measure as a parsing unit of theinputs may have been crucial to ARTIST's performance. The present section addressesthis question. In Section 5.3.1, ARTIST is tested with some new constant window sizes.Section 5.3.2 explores ARTIST's robustness when the window size keeps changing asthe music is presented. Section 5.3.3 takes a look at the possible interaction betweenthe window's average size and its variability.The results presented in the following sections required ARTIST to go through thelearning of the 288 preludes more than 10 di�erent times, and through the probe-tonetask more than 30 times. So ARTIST could not be as thoroughly tested as in Chapter4: the tone pro�les were computed only for the major ascending scale context. As aconsequence, the following results cannot be directly compared with Chapter 4's resultswhich also include the descending scale and the chord contexts. This probably explainsthe slight decrease of the correlation with human data from Chapter 4 (:95 to :88, eventhough the vigilance level was increased to 0:7; this was the only other di�erence fromChapter 4's simulations).All simulations for Chapter 5 were conducted in the same conditions and they canbe compared with each other. Even the random order of presentation of the stimuli



106during learning was kept the same, so the only di�erence between di�erent simulationsof Chapter 5 concerned the time window.5.3.1 Fixed time windowsARTIST was exposed to the 288 preludes under 5 di�erent conditions of time win-dow sizes. Even though ARTIST was already tested with 240-tick windows in Chapter4, this window size was used again here because of the few changes mentioned above.Smaller windows (120 ticks wide) were tried, to put ARTIST in a situation more sim-ilar to that of the Markov models, which could only handle two-note contexts at best.This doubled the number of time slices presented to ARTIST, which then had to learnmore than 80; 000 slices. This dramatically increased the number of categories created,reaching 1; 000 before learning was even half completed, and the simulation soon becamecomputationally untractable.Three window sizes larger than the original 240 ticks window were used. Theywere 2, 4 and 8 times larger, being respectively 480, 960 and 1920 ticks wide. For eachsimulation, the correlation with humans' tone pro�les are shown in Table 5.1, alongwith the number of categories created in each case.



107Table 5.1: ARTIST's performance (correlation with human data as a function of�xed window size).FIXED WINDOW SIZE 240 (1/2 bar) 480 (1 bar) 960 (2 bars) 1920 (4 bars)Number of categories 787 423 201 99Shepard tones .88 .89 .80 .89Normal tones .80 .85 .74 .77In spite of a slight decrease in performance with normal tones and increasing windowsizes, ARTIST's performance remains consistently high. The size of the time windowdoes not have a lot of in
uence on performance, and ARTIST's behavior is quite ro-bust regarding the window parameter. For each of these simulations, the window sizewas kept constant. Furthermore, the windows include an exact number of measures.Consequently, the regularity and predictability of the rate of presentation of new input,along with the fact that this matches the musical temporal unit, may be at the originof ARTIST's high performance. So we can wonder if the performance would degradea lot if ARTIST was exposed to a musical world with completely unpredictable 
ow ofinputs, where two consecutive inputs could well be separated by 50 ticks as well as by1; 000 ticks, for instance. The next section addresses this question.5.3.2 Variable time windowsThree simulations used variable-size windows, with di�erent ranges of variation. Aminimum size of 40 ticks was imposed on all the windows to prevent empty time slices(those containing no input) from occurring too often. The window size was varied byadding a random number of ticks to the minimum size, up to 960, 1920 or 9600 ticks.



108So each new input presented to ARTIST could integrate the notes of up to a little morethan 2, 4 or 20 bars, respectively. The latter value was chosen very high to test whathappens in case of extreme inconsistency from one input to the next.As seen from Table 5.2, the performance was lowest for Shepard tones with smallerwindows and for normal tones with the largest window. However we do not knowwhether the decrease in correlation for the 2 Shepard tones conditions is reliable orwhether it is within natural 
uctuations. It is possible that variations in window sizemay be a little disturbance for the model. Still, the result for the greatest windows,which sizes varied a lot (from less than 1 bar to more than 20), was surprisingly high,around :8 on average. This suggests that it is not crucial that the frequency of updateof the inputs match musical temporal units.Table 5.2: ARTIST's performance (correlation with humandata) as a function of window 
uctuation.WINDOW SIZE 40 + 0-960 40 + 0-1920 40 + 9600(equivalent in bars) (2+ bars) (4+ bars) (20+ bars)Shepard tones .64 .69 .85Normal tones .83 .89 .77



1095.3.3 Variation ratiosIn what precedes, the average window size for a particular condition is about halfof its maximum size (if we neglect the addition of the 40 ticks). Therefore, the ratiobetween average window size and variability was roughly constant. It is possible thatthis ratio be of great in
uence on the performance of the model. It could be the sizevariation relative to the mean size that a�ects the inputs' consistency 'perceived' byARTIST. So ARTIST was trained in four time-window conditions, corresponding to thecrossing of two average sizes (800 and 1600 ticks) by two maximum width variation(500 and 1480 ticks). The ratios maximum variation/average size were di�erent in allconditions. They appear in Table 5.3 along with the models' performances, with andwithout Shepard tones.Table 5.3: Performance (correlation with human data) of 4 models taught withdi�erent maximum width variation/average size window ratios.
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110Once again, performance was quite consistent across all conditions, even more sothan with the previous simulations (Sections 5.3.1 and 5.3.2). The performance withShepard tones was slightly better than with normal tones except in one condition. Likebefore, the performance di�erences for di�erent types of tones or for di�erent windowsare not large enough or systematic to hint at any particular in
uence of the windowsize or window variation.Taken together, these results suggest that �xed window sizes optimize ARTIST'sperformance with Shepard tones: the three correlations around :88 in the �xed windowconditions were the highest of all the simulations with Shepard tones. However, theperturbations caused by varying windows, if any, seems minimal.5.4 ConclusionMarkovmodels match human data poorly if we judge by the low correlation betweenresponses on the probe tone task. The correlation was not signi�cantly di�erent from0 even for the 3rd order Markov model and virtually none of the variance in humandata was accounted for. However, they gave interesting results: the 2nd order Markovmodel bases its responses mostly on pitch proximity, and the 3rd order model showsdistinction of the notes within a key vs those outside the key. Given what is known ofthe perception of music by novice listeners (see next chapter), this suggests that Markovmodels may be good to simulate novices' behavior.In contrast, ARTIST accounts for 90% of the variance in human data, with strictlythe same information available as that to the Markov models. ARTIST's better perfor-mance can probably be explained by the fact that its functioning allows for integration



111of information over longer periods of time. It is possible that ARTIST would performequivalently to Markov models if the notes were fed three by three to its input as theyare to the 3rd order Markov model. Unfortunately, the proliferation of categories in thissituation prevented the test of this hypothesis by making the simulation untractable.Further simulations showed that changing the number of notes (through changingthe time window) fed to ARTIST's input at each step does not substantially a�ect theperformance. This does not mean that performance will remain una�ected if the timewindow gets so small as to contain only 2 or 3 notes. But the convergence of top-downactivation with input activation would probably increase the number of notes active atthe input layer, thus re-establishing a context of 5 notes or more. Therefore it seemsunlikely that putting ARTIST closer to Markov model's situation by reducing the timewindow size would reduce the :95 correlation to 0. In any case, ARTIST's exceptionalrobustness regarding the temporal aspect of the coding of the input is another featureit shares with the humans it emulates. It is possible that feeding inputs to ARTISTaccording to musical time creates optimal conditions for ARTIST to match humanresponses but in no case is this crucial to a good account of human data.If Markov models are good candidates to mimic humans' development of the per-ception of music, we do not know yet how well ARTIST performs on this point. Thefollowing chapter explores ARTIST's developmental steps to compare them to humans'.



CHAPTER 6SIMULATION 3: ACQUISITION AND DEVELOPMENTOF THE TONAL HIERARCHYARTIST can acquire a great deal of musical knowledge just by 'listening' andlearning the pattern it is exposed to. Understanding how the process of acculturationprogresses with age and exposure to music is important to know whether the learningprocess of the model is plausible. Speci�cally, it would be useful to observe stages inARTIST's musical development, and see if the sensitivities to di�erent musical featuresemerge at di�erent times. Since the tonal hierarchies are the main indicators chosento evaluate the model's cognitive resemblance to humans, the following chapter reviewsthe gradual acquisition of the tonal hierarchies by children.6.1 Tonal hierarchies and musical correlatesKrumhansl examined how the tone pro�les correlate with other measures appliedto musical material, such as tonal consonance or tonal distributions. Tonal consonancerefers to the smoothness or roughness (high or low consonance) perceived when two notesare sounded together. Following von Helmoltz's intuitions (1885/1954) it is widely ac-cepted that consonance is primarily a consequence of the acoustical properties of thesignal and the way this signal is processed by the peripheral auditory system (Green-wood, 1991; Plomp and Levelt, 1965). Even though the details of von Helmoltz's theorydo not appear to be totally accurate, consonance and dissonance are still believed to be112



113primarily consequences of innate human characteristics, the strongest argument for thisbeing the universality of the principles of consonance across virtually all cultures in theworld, short of a couple of exceptions only. As expected from humans' perceptual sys-tem tremendous 
exibility and adaptation to the environment, our capability to learnand change over time can come to in
uence our perception of consonance, through thelearning of associations for instance. Learning as a secondary source of in
uence on theperception of consonance was also recognized by Helmoltz, and a modern version of histwo components model of musical consonance (the innate and learned components arerespectively called sensory consonance and harmony) is outlined in Terhardt (1984; seealso Huron 1994 for a discussion of this issue).The relative consonances of the tonic/probe-tone pairs probably play a role inshaping the tone pro�les, because the contexts used for the probe-tone technique clearlyimply a tonal center. Thus, the context + probe-tone sequence should receive a ratingsimilar to the tonic + probe-tone sequence rating, itself probably similar to the rating ofthe tonic/probe-tone pair sounded simultaneously. To have an idea of how well the tonepro�les re
ect tonal consonance, Krumhansl (1990) compared her tone pro�les with sixdi�erent measurements of consonance, coming from theoretical as well as experimentalstudies. She found a moderately strong match with them, and concludes that the tonepro�les re
ect more than the simple acoustic properties of the notes. Which otherfactors may in
uence the shape of the tone pro�les?The previous chapter suggests that the distribution of pitch classes in the environ-ment may be important to explain the tone pro�les because it is internalized to some



114extent by listeners. As mentioned in Section 5.1, Krumhansl (1990) found a strongmatch between the tone pro�les and the distribution of pitch classes in a variety ofcompositions. That the distribution of pitch classes accounts for the tone pro�les betterthan the measures of consonance do indicate the importance of the learning mechanismresponsible for the gradual internalization of the distribution of notes in the environ-ment.6.2 The order of appearance of the levels of the hierarchyStudying if and how the tonal hierarchies emerge at an early age could give usimportant insights regarding their origins and the respective importances of innatebiases and of learning in shaping them. The perception of music has been studied ininfants and children, and all studies do not agree about the precise age at which a givenperceptual ability appears, which is understandable given potentially big di�erences inthe paradigms used, in the education infants received, and in their musical environments.In spite of these di�erences, all studies seem to point in the same direction: humans'perception of music gets re�ned by exposure to music and learning, and goes from beingsensitive to gross structural and perceptual features to being tuned to more and moresubtle features.Note that it is not necessarily desirable to have a perceptual system that wouldbe perfectly tuned to the smallest features, picking up on all the di�erences betweentwo stimuli. However, picking up only on meaningful di�erences presupposes that thesystem knows which di�erences are meaningful, and this depends on the task the systemis asked to perform. Focusing on insigni�cant di�erences can impede the generalization



115process: two similar stimuli that we would want to be processed in the same waycould end up being processed in two di�erent ways because our perceptual systemnoticed the subtle di�erences and activated di�erent mental schemata for the respectivestimuli. For instance, listeners possessing absolute pitch do not perform as well asaverage listeners in recognizing intervals or melodies under transposition (Miyazaki,1993a, 1993b). Conversely, a perceptual system better able to generalize than anotherone is not necessarily the best since this can mean it is insensitive to some di�erencesin stimuli: infants younger than a year old sometimes outperform adults in detectingmistunings (Lynch et al., 1990) or within-key changes to a melody (Trainor and Trehub,1992).The two probe tone taskKrumhansl and Keil (1982) tested children of di�erent ages and adults with thetwo-probe tones technique (mentioned in Chapter 4) to �nd out if the distinction ourperceptual system draws between the groups of tones revealed by the tone pro�les (dia-tonic set, major triad, tonic, represented in Figure 6.1) emerge at di�erent stages. Thefour-tone sequence chosen to establish the context contained only notes from the ma-jor triad, C E C G. The context was followed by two notes (probes) and the childrenwere asked to judge how good or bad was the resulting 6-note sequence, consideredthe beginning of a melody. Children indicated their judgments by pointing to one ofseven dots. The extreme and middle dots were labeled with smiling, frowning andneutral faces. The pair of probe tones contained either two chromatic notes or twodiatonic notes, with all possible pairs for the latter case. Each pair of probes fell into



116one of �ve categories: triad-triad, nontriad-triad, triad-nontriad, nontriad-nontriad andnondiatonic-nondiatonic (e.g., C-E, F-G, G-F, D-A and F#-G#, respectively). Thesecategories are listed in decreasing order of importance in the hierarchy, therefore thisorder should correspond to progressively lower average ratings. The non-trivial caseconcerns the relative order of the nontriad-triad and triad-nontriad categories (condi-tions 2 and 3). However, we know that the former should correspond to stimuli ratedhigher because the unstable note is played �rst and is assimilated to a more stable noteover time (refer to discussion of asymmetry in Section 1.4).The results led to a surprisingly clear picture of the developmental changes insensitivity to tonal functions, summarized in Figure 6.2. Distinctions between diatonicnotes and chromatic notes appeared �rst (grades 1 and 2, condition 5 is di�erent fromothers). Then triadic notes get progressively more di�erentiated from other diatonicnotes: both notes need to be in the triad for a better rating of the pair by 3rd-4th graders,whereas one triadic note is su�cient to distinguish the pair from non-triadic pairs by 5th-6th graders (cond. 1 vs 2,3,4 in 3rd-4th grade; cond. 2,3 vs 4 in 5th-6th grade). Finally,only adults showed reliable di�erent ratings depending on the order of presentation ofone triadic and one non-triadic note (cond. 2 vs 3, the asymmetry discussed earlier).The di�erences in ratings between probe pairs categories monotonously increased withage, re
ected by a steeper function for older children and adults. This summarizes thegeneral tendency of increased di�erentiation between probe pairs with age.
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118This order of acquisition of the hierarchy seems natural from the point of view ofinformation theory, because it must be optimal in some sense (maximizing the variance)to extract big clusters of elements from a population �rst and then work on progressivelysmaller clusters, instead of extracting successively small clusters. However, as pointedout by the authors, two facts are surprising from a psychophysical point of view, bothsuggesting that the children, especially the youngest ones, did not rely on the low-level acoustic properties of the stimuli in their judgments (or at least not enough to bedetected).First, the tonic notes (C and C', an octave apart) did not receive higher ratingsthan the other triadic notes until the adult stage, in spite of being the tonal centerwhich is uniquely de�ned by the set of diatonic notes, and in spite of constituting halfof the context stimulus (2 notes out of 4). Second, the notes of the major triad, thatconstitute the whole musical context and therefore should elicit sensory priming, didnot receive higher ratings before 3rd-4th grade. The authors acknowledge that this doesnot mean that children do not perceive such simple physical properties, but only thatother factors had more in
uence on the responses.The single probe tone taskUsing only slightly di�erent experimental conditions, Speer and Meeks (1985) andCuddy and Badertscher (1987) showed that children could exhibit preferences for thetonic vs other triadic notes and for the triadic vs other diatonic notes as early as 1stand 2nd grade. The latter study included a condition using the same context stimulusas Krumhansl and Keil's, so it is probably the change from two probe tones to only one



119probe that enabled the children to exhibit di�erentiated sensitivity to tonic and triadictones in both these studies. Using a complete major diatonic scale instead of a 4-notemelody to establish the context may have helped too.In fact, Cuddy and Badertscher's study concludes that the major triad contextis more e�cient than the major scale in instantiating the tonal context. Looking atthe pro�les generated by those two contexts, it is clear that the former gives rise toa pro�le much closer to that obtained by Krumhansl and Kesslser's (1982) than thelatter. This means that children can handle a 4-note context more easily than an 8-note context. But this does not mean that the triadic/diatonic distinction precedesthe diatonic/chromatic distinction. The same graphs reveal that besides very highratings for the tonic, children gave very similar ratings to all diatonic notes, clearlydi�erentiating them from the chromatic notes but not di�erentiating the triadic notesfrom the other diatonic notes.Thus, the results of those di�erent studies may not be as incompatible as suggestedat �rst look: as suggested by all studies, the diatonic scale structure is internalizedby the time children get to �rst grade. This also agrees with experimental resultsusing a totally di�erent method, such as Dowling (1990) and Andrews and Dowling(1991) who showed that tonality e�ects emerged around 7 years of age in a complextask such as the recognition of a familiar melody with interleaved distractors. Also,as the more recent studies suggest, the importance of the major triad and of the tonicarises around this time but is not so well established, and is therefore exhibited onlywith a simpler task (only one probe tone) or with context stimuli more sensitive to



120the triad and tonic di�erentiations (major scales). Lamont and Cross (1994) addressedthe apparent inconsistencies of the studies mentioned above with two experiments. Oneinvolved the probe-tone technique with new types of contexts (chord sequence and majorscale notes in random order), and the other used a totally di�erent method, trying toactively involve the children in musical `games' so they have the chance to exhibit theirhighest degree of sophistication. The results of both experiments give partial supportto the previous studies, especially Krumhansl and Keil's, and good support to thepresent conclusion overall, even if the complexity of the results obviates any simpledevelopmental sequence that accounts for all the data: the 4-way analysis of variance[Age � Sex(School) � Context � Probe tone] found three main e�ects, �ve one-wayinteractions, four two-way interactions and the three-way interaction!6.3 An innate bias?The numerous studies by Trainor and Trehub (1992, 1993, 1994; see also Trehubet al. 1986) can also help understanding the di�culties of replicating the sequenceof apparition of sensitivities to tonal functions, even though they did not speci�callyaddress this issue. First, it was shown that children are already sensitive to diatonicismby ages 4 to 6, consistent with the fact that by age 7 the diatonic scale is well established.Supporting an explanation of this phenomenon based on progressive acculturation, 10-month olds never exhibited such sensitivity. However, infants that young are a�ected bythe distance between the keys of transposed melodies when detecting a semitone changein one note. Is it possible to exhibit a key-distance e�ect without having internalizedthe structure of the diatonic scale? It could be, if we consider that infants more readily



121detected the alteration of an interval between consecutive melodies when those melodieswere a �fth apart than when they were a major third apart (respectively one and foursteps apart around the circle of �fths). However, as the authors point out, we do notknow whether this e�ect is systematically related to the key distance, because onlytwo distance conditions were contrasted, near key (transposition to the �fth) vs far key(transposition to the major third). The e�ect may simply be due to the particularityof the �fth.This study, along with previous research (Trehub, Thorpe and Trainor, 1990; Tre-hub and Unyk, 1991), con�rms the idea that the perfect �fth may hold a special status inthe way it is processed by the perceptual system, constituting a prototype for auditorypatterns because of the simplicity of the frequency ratio (3:2). The authors concludethat the enhanced processing of the perfect �fth results from an innate bias of our au-ditory perceptual system, after rejecting the possibility that it could be the result ofthe learning occurring during the �rst ten months of life. The latter explanation wasrejected based on the fact that unlike adults, 6-month olds detect the mistuning of notesequally well in melodies based on the Western major scale or in melodies based on theJavanese Pelog scale (Lynch et al., 1990).However, all that is shown in Lynch et al.'s study is that the categorical perceptionof pitch is acquired rather than innate, and is not completely acquired by six monthsof age, because detecting mistunings is a task that reveals the extent to which pitchperception is categorical. This experiment rules out the acculturation explanation inTrainor and Trehub's (1993) study only under the assumption that acculturation does



122not happen faster for triad processing than for categorical perception of pitch. Replicat-ing Trainor and Trehub's results with newborn babies would rule out the acculturationexplanation of the key distance e�ect more clearly. Even though it is not known whetherthe priviledged processing of the perfect �fth is present at birth or learned during the�rst 10 months, in either case it seems to be the second feature of the tonal hierarchy hu-mans are sensitive to, second only to the unison/octave relationship, already perceivedat the age of three months (Demany and Armand, 1984).In summary, for children younger than 7, the naturally priviledged position ofthe perfect �fth coexists with an increasing sensitivity to diatonicism, and probablytranslates into a preference for the major triad over other diatonic notes in certaincircumstances. However the latter may not always be detected since its acquisitionis slower and requires more time than the preference for diatonic notes over chromaticones. Table 6.1 summarizes the main results of the developmental studies. An `X' in thecolumn labeled `Tonic' means that the ratings received by the tonic were signi�cantlydi�erent from those received by the other triadic notes. An `X' in the column labeled`Triad' means that the ratings received by the triadic notes were signi�cantly di�erentfrom those received by the other diatonic notes. An `X' in the column labeled `Diatonic'means that the ratings received by the diatonic were signi�cantly di�erent from thosereceived by the chromatic notes.



123TABLE 6.1: Development of tonal sensitivity exhibited by the 2 probe-tone technique| means no reliable e�ect; X means a di�erentiation between the notes in the setand those in the embedding (immediately larger) set; XX means X plus a di�erentiationbetween one and zero (out of two) note in the triad; XXX means XX plus a temporalorder e�ect of the triadic note (�rst vs second probe); ? means no data available.Article Age group Context Tonic Triad DiatonicKrumhansl 1st + 2nd Grd CECG (2 probes) | | Xand Keil 3rd + 4th Grd | X X1982 5th + 6th Grd X XX XAdult X XXX XCuddy and 1st-6th Grd CECG (1 probe) X X XBadertscher (3 groups; Ascending scale X X X1987 no di�erence) Diminished triad | | |Adult Triad X X X(3 exp. levels; Ascending scale X X Xno di�erence) Diminished triad X | XSpeer and 2nd & 5th Grd Ascending scale X X X(5th Grd)Meeks 1985 (no di�erence) Descending scale X X XTrainor and 5-yr-old melodies(10 notes, ? ? XTrehub 1994 7-yr-old I-V-I modulation) ? X XAdult X X X



1246.4 ARTIST's early yearsIt was seen in Chapter 4 that exposure to 288 pieces was su�cient for ARTIST toreach the adult-like stage of musical sophistication. We can wonder whether ARTIST'slearning is so fast that it will directly reach 'adulthood' upon leaving its originallyblank state. Alternatively, substantially less exposure to music could bring ARTIST toa partial learning of tonality. If this were to be the case, would that partially developedsense of tonality be similar to children's?6.4.1 ProcedureARTIST was tested with the two-probe tone technique at three di�erent pointsduring learning plus at the �nal stage, re
ecting di�erent levels of exposure to music.We know that the rate of creation of the categories during learning is very fast in thebeginning and slows down pretty quickly. Therefore the di�erent levels of exposure choseto test ARTIST were not equally spaced in terms of amount of exposure (number ofpieces learned). ARTIST was tested mostly during the very early stages of developmentsince the major changes in architecture (addition of categories) happen early (see Figure2.4). ARTIST was tested with the two-probe tone technique after exposure to 24, 48, 144and 288 pieces. The 24 preludes were presented an equal number of times in a randomorder. That is, the 4 stages respectively corresponded to 1, 2, 6 and 12 exposures toeach prelude. Each exposure of a prelude was in a random key, independently from allthe other exposures.The context used was the 4 notes sequence C-E-C-G, identical to Krumhansl's.Following the context, all 144 pairs of tones were used to probe ARTIST in order to



125cover all possible cases and have rating averages as reliable as possible for each ofthe 5 tonality conditions. Probe pairs therefore included all 70 diatonic-nondiatonic(unordered) pairs, absent in Krumhansl's test, as well as all 25 nondiatonic-nondiatoniccombinations, of which only 7 were present in Krumhansl's study. These di�erencesonly resulted in di�erent number of trials for tonality condition 5 (95 vs 7). As itwas done in simulation 2, each sequence (144 in this case) was used 12 times, to allowthe tonic to take all 12 pitch values. This insures maximum reliability of ARTIST'sresponses by involving all of its knowledge rather than just the knowledge pertainingto one particular pitch as the tonic. This is even more important than in simulation 2because at intermediate stages of learning, the exposure of ARTIST may not be balancedregarding to the keys of the stimuli (tonic pitches). Thus, the total activation in F2 wasrecorded for the 1728 trials at each of the 4 developmental stages. The opposite wastaken as ARTIST's rating of the stimuli, since we know from simulation 2 that preferredstimuli minimize F2's total activation.6.4.2 Results and discussionMain e�ect of probe pair typeThe results are plotted as 4 di�erent functions (ratings as a function of probe pairtype), one for each developmental stage, in Figure 6.3. The resemblance with Krumhansland Keil's results (1982; see Figure 6.2) appears immediately. For all developmentalstages, ratings decreased as the pair of probes occupied lower positions in the hierarchy:there was a slow decay between tonality conditions 1 to 4, and a sharp drop for tonality



126condition 5. ARTIST accounts for the main e�ect of stimulus category with the samepattern of average rating per category as humans.Interaction between musical exposure and probe pair typePart of the interaction between age and type of probe pair is also accounted for:the function gets steeper as amount of learning increases. With more exposure tomusic, ARTIST's ratings increased for good sounding stimuli (tonality condition 1)but decreased for those sounding less good (tonality condition 5) in a systematic way.This shows that with more experience at listening to music, ARTIST is better able todi�erentiate its answers depending on the type of stimulus.
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127four functions of developmental stages cross somewhere between tonality conditions 1and 5 to reverse their order (e.g., adults at the top in tonality condition 1 and at thebottom in tonality condition 5). However there is one di�erence between ARTIST'sand humans' data: the exact place where the functions cross. For ARTIST, they crossbetween tonality conditions 4 and 5, meaning that the four functions are in the sameorder for tonality conditions 1 through 4. In fact, those functions look parallel on thisplot.In contrast, human listeners' functions are not parallel but cross between tonalityconditions 2 and 3, as shown in Figure 6.5 (close up from Figure 6.2). The relativeorder of the functions is already completely inverted in tonality condition 4 (adults atthe bottom) compared to tonality condition 1 (adults at the top). This means thatwith more exposure to music, the increased di�erentiation between ratings was alreadyapparent between tonality conditions 1 and 4. This appeared not to be the case withARTIST. However, the lines between tonality conditions 1 to 4 may not be completelyparallel. It could be that the 
uctuations of the functions are so small compared tothe drop of the ratings in tonality condition 5 that they were made invisible by thesmall scale. To test this hypothesis, Figure 6.3 was redrawn as Figure 6.4 after tonalitycondition 5 was dropped and the 4 functions were centered. This revealed that theinteraction between musical exposure and probe pair category for ARTIST was in factalmost identical to that for humans.
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Figure 6.4: ARTIST's goodness ratings of probe tone pairs for only 4 tonalityconditions of pairs' position in the tonal hierarchy and amount of learning (close-up ofFigure 6.3 with functions re-centered).
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Figure 6.5: Human data from Krumhansl and Keil (1982) restricted to tonalityconditions 1 to 4 (close-up of Figure 6.2).



129In fact, ARTIST's increased di�erentiation between types of stimuli is present evenbetween tonality conditions 1 and 4, where the function gets steeper with musical ex-posure. In summary, ARTIST accounts for a very large part of the interaction.The limits of ARTISTThere are still two minor phenomena present in human data that ARTIST cannotaccount for. They are the lack of main e�ect of musical exposure for tonality conditions1 to 4, and the asymmetry e�ect (tonality condition 2 vs 3). Each is discussed in turn.Unlike human data, ARTIST's data shows that for all tonality conditions 1 through4, ratings are highest with the most exposure to music. But many parameters a�ectthe relative vertical positions of the four functions. For instance, the way the functionswere centered before they were plotted determines the vertical gap between them. Orig-inally, before centering occurred, the function with smallest exposure to music providedthe highest ratings in all conditions, consistently with human data where younger chil-dren gave higher ratings overall. The human data were centered and normalized foreach subject in order to compensate for this. It is apparent from Figure 6.4 that hadthe normalization been based only on the rating values for tonality conditions 1 to 4(ignoring condition 5), all the data would have matched close to perfectly, with onlythe asymmetry unexplained. So anything that a�ects the way humans' or ARTIST'sfunctions are centered can potentially explain the di�erence between data. This couldbe the di�erent number of trials between both tonality conditions 5, a non-linear useof the 7-point scale of goodness by humans, or the fact that the number of nodes in F2varies greatly from one developmental stage to the other (many of them are created by



130learning in between those stages, thus a�ecting the total output). It is possible thata di�erent vigilance or learning parameter would yield a perfect match between databy in
uencing the number of nodes created during learning. In any case, ARTIST andhuman data only di�ered by an additive constant, which makes the di�erence betweendata sets insigni�cant and meaningless.On the other hand, the di�erence between human data and ARTIST's that seemsmeaningful concerns the ratings of the tonality conditions 2 vs 3. Adults showed apreference for the probe order nontriad-triad rather than the opposite. It is well-knownthat the stability of the last note of a musical sequence is of prime importance indetermining how good the sequence sounds. Almost all melodies end on the tonic forthis reason. In fact, we can be rather surprised that this e�ect did not appear soonerthan at the adult stage. ARTIST did not exhibit this e�ect, may be because it hadnot reached its 'adult' stage yet, and it is possible that even more exposure to musicwould eventually trigger the e�ect. It is also possible that ARTIST will not di�erentiatebetween the two orders of the probe tones because they occur close to each other intime. Thus decay of activation may not have e�ects di�erent enough on the tones todistinguish them. Increasing the activation decay or playing the stimuli at a slowertempo may solve this problem.There might be also a more likely explanation. Looking at closely tonality condi-tions 2 and 3 of Figure 6.4, we can see a slight asymmetry that goes in the oppositedirection than the asymmetry exhibited by humans. It is very slight but consistent, itappears at all four developmental stages. The slight asymmetry in ARTIST's rating



131is in fact systematically related to the slight di�erence in activation decays for bothtones. After all, ARTIST may reliably �nd the order triad-nontriad more stable thanthe opposite. Considering the input activations after presentation of the whole musicalsequences of tonality conditions 2 and 3, only four nodes are activated, and three ofthem constitute the major triad C-E-G. This pattern is probably overlearned at thehighest degree by ARTIST's F2 nodes and may be a special case. C-E-G constitutethe C major chord, which was probably learned in many combinations with repetitions,inversions, etc... Thus the addition of a fourth note in this pattern could drop signi�-cantly the matching activations of many nodes, the more recent the note, the bigger thedrop. Taking into account that ARTIST's rating is inversely proportional to the totalactivation, a drop in activation would yield a higher rating of stability.In summary, the recency of a fourth note intruding on the overlearned major chordpattern of notes may be responsible for a decline in activation, that is, an increase ofthe ratings. More research is needed at this point to validate this hypothesis.ConclusionExcept for the order e�ect of the probe tones, ARTIST can account for all thehuman developmental data of Krumhansl and Keil (1982). In the beginning, ARTISTis only sensitive to the presence of nondiatonic notes in the probe pair. As exposure tomusic increases, triadic notes are progressively extracted from the other diatonic notesfor preferred processing. Ratings also get more contrasted from one category of probepair to the other, showing a more reliable di�erentiation similar to humans'.



CHAPTER 7SIMULATION 4: THE MUSICAL MODESChapters 4 and 6 showed that ARTIST internalized the invariants of the music itwas exposed to, and that using this knowledge led to behaviors similar to humans' onboth the one and the two probe-tone tasks. The behavior in question entails givingratings of how good or bad musical sequences sound. The musical sequences used wereprototypical contexts (scales or chords) followed by one or two probe tones, but werenot anything like real musical excerpts. However the tone pro�les appear to be alsorelevant to more general musical situations. For instance, Cuddy (1993) showed thatthe tone pro�les obtained by using real melodies as contexts were very similar to thoseobtained by Krumhansl and Kessler (1982). Thus it is likely that ARTIST's preferencefor some probe tones as a function of a particular context captures the essence of tonalityin music, and generalizes to judgments involving more real musical situations, such aspreferences for some melodies over some others. This claim should nevertheless betested, and this is one of the two goals of the present chapter. The other goal is to testwhether ARTIST is sensitive to di�erent forms of music within tonal music. Thus far,ARTIST's responses have been shown to match humans', but only in the context ofmajor and minor modes. In fact, several other modes exist in tonal music, even thoughtheir use has become rare nowadays. This explains that they have been the focus of verylittle research, and that no data was readily available from the litterature with which132



133to compare ARTIST's responses. Therefore, an experiment manipulating the mode ofmelodies had to be conducted with human subjects.The quality of a model is often assessed through its ability to make accurate pre-dictions, and the problem at hand gives us an opportunity to do just that. That is,given several groups of melodies with di�erent characteristics, ARTIST can be usedto predict those harmonious to human ears from those less harmonious. Then an ex-periment involving human subjects can be designed to test the accuracy and relevanceof ARTIST's prediction. ARTIST's and humans' responses to the di�erent modes arepresented respectively in Sections 7.1 and 7.2. Since we are free to choose the stimuli ofthe experiment (as long as they are the same as the simulation's stimuli), this approachalso enables us to gather further interesting information along the way, as the nextparagraphs explain.The �rst advantage of this approach is that ARTIST can be tested on some rathersubtle points. All the melodies used in the present simulation are constrained to be tonal,which is a prerequisite to being associated with a particular mode (the concept of modeis explained in more details at the beginning of the next section). The characteristicchosen to di�erentiate one group of melodies from another is the mode. One reasonfor this is that the di�erence between two melodies with distinct modes is rather subtle(because they are both tonal), compared to the di�erence between a tonal melody and anatonal one, for instance. ARTIST most probably responds di�erently to tonal vs atonalmelodies because atonal melodies lack the kind of regularities found in its environment,made exclusively of tonal melodies in the major and minor modes. In contrast, tonal



134melodies of all modes exhibit the same kind of regularities. Speci�cally, each modeis associated with a particular pattern of intervals. Given its close approximation ofKrumhansl's tone pro�les, ARTIST seems to have extracted the notion of key, andtherefore should be sensitive to the pattern of intervals. Speci�cally, it should exhibita preference for the major and minor modes which are the only familiar ones. Thatis, this preference would probably appear with the probe tone task, using the scales ofthe di�erent modes as contexts. But it is not obvious that such a preference will beexhibited with less uniform musical sequences such as real melodies. Thus it is a goodchallenge for ARTIST to exhibit a sensitivity to the mode instantiated by real melodies.Second, the human data can be interesting in itself, as it will reveal an aspect of20th century listeners' tastes. The results are not generalizable to listeners of othertimes because the use of modes other than major and minor was more widespread inearly music than it is now.Finally, the beginning of an answer can be brought to the following question: Canthe aesthetic di�erences between the 'unused' modes (other than major and minor), ifany, come from exposure to only major and minor modes? Can these di�erences beexplained by their degree of similarity to the familiar modes? Because ARTIST wasonly exposed to the major and minor modes during learning, a good match betweenARTIST's and humans' data would go in the direction of an a�rmative answer tothis question. A poor match would suggest that ARTIST was missing some crucialinformation or that it is inherently limited and cannot solve this kind of problem.



1357.1 Predictions from music theoryThis simulation is designed to investigate whether the model can predict the 'good-ness' ratings given by humans to melodies of di�erent modes.The concept of mode is in some sense complementary to that of key. All major keysshare the same pattern of semitone intervals ascending from the tonic (2,2,1,2,2,2,1). Itfollows that any key transposed to C becomes identical to the key of C. Nevertheless,di�erent keys have di�erent tonics by de�nition and therefore the sets of the pitch classesthey contain are di�erent.Conversely, in their usual notation, the seven modes contain the same set of 7pitch classes (the diatonic notes), but have di�erent tonics. It follows that each modeis associated with a unique pattern of intervals. Consequently, when transposed to acommon tonic like C, the modes contain di�erent pitch classes.Therefore there are 7 di�erent modal scales, shown below with the patterns ofintervals (tones or semitones) that uniquely de�ne them and with an example of thescale after transposition to the tonic C:C D E F G A B C' (C major scale = Major mode, intervals 2,2,1,2,2,2,1)D E F G A B C D' (2,1,2,2,2,1,2) Dorian transposed to C: C D Eb F G A Bb C'E F G A B C D E' (1,2,2,2,1,2,2) PhrygianF G A B C D E F' (2,2,2,1,2,2,1) LydianG A B C D E F G' (2,2,1,2,2,1,2) MixolydianA B C D E F G A' (2,1,2,2,1,2,2) Aeolian (Natural minor)B C D E F G A B' (1,2,2,1,2,2,2) Locrian



136The traditional explanation of the arrangement of the keys around the circle of�fths is that the more pitches shared by two keys, the closer the keys around the circle.The similarity between the sets of pitches of two keys is believed to be at the origin ofthe perceptual similarity of the keys. If the same principle holds for the modes, countingthe number of pitches common to the di�erent modes should give a good index of theperceptual similarity between modes.
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137tional to the number of pitch classes shared with the major mode. If this is the case,the human data will look like the graph in Figure 7.1, based on the number of commonpitches between each mode and the major one. For instance, we can count from theexample above that the dorian mode shares �ve pitch classes with the major mode (wedo not count the tonic twice even though it appears at the beginning and at the end ofthe scale).Another reasonable hypothesis is that people perceive the similarity between keysor modes based on the similarity of their sequences of intervals. For example, the dorianmode has three intervals that are identical and in the same place as in the major mode(positions 1, 4 and 5). As seen in Figure 7.2, the prediction based on shared intervalsis very similar to that based on shared notes, the only notable di�erences being theratings for the E and B modes (Phrygian and Locrian, respectively).Note that these predictions are consistent with the key distances as measuredaround the circle of �fths. This is because the distances between modes are monotonously related to the distances between keys. However, this relationship is not strictlymonotonous and in some cases, two keys neighbor around the circle of �fths have thesame 'modal distance' from the major mode.
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139Out of curiosity, the modal scales were given to ARTIST as inputs. The totalactivations were recorded for each, and are plotted in Figure 7.3. ARTIST's prediction�ts the theoretical predictions quite well, except that the Locrian mode (B) rating is alittle too high. ARTIST's prediction seems to depend on both the number of notes andintervals shared with the major mode, because the rating for the Dorian mode (D) isin between the two theoretical predictions for this mode.ARTIST was also subjected to the probe tone task 6 times, following the sameprocedure as used in Chapter 4. The only di�erence was that the 6 contexts were themodal scales other than the major mode scale, since the tone pro�le for the latter isalready available. Six new tone pro�les were thus obtained, for the Dorian, Phrygian,Lydian, Mixolydian, Aeolian, and Locrian modes, shown in Figure 7.4. The intermodaldistances were computed in the same way inter-key distances were computed in Chapter4: The correlations between the modal pro�les and the Major mode pro�le were takenas an index of distance from the major mode. The results are plotted in Figure 7.5.The match with the theoretical predictions of Figure 7.2 is even better than that ofthe prediction based on activations in Figure 7.3, now the prediction is lowest for theLocrian mode. The resemblance between predictions from music theory and the twotypes of prediction given by ARTIST suggest that it processes the di�erent musicalmodes in a very plausible way.
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143Cakewalk, so this �le can be used for playing the melodies to human subjects or forpresenting them to ARTIST.All the melodies were modi�ed in order to avoid other musical features that couldbe confounded with mode, and so that mode is the only distinguishing feature betweengroups of melodies. That is, each melody was translated to a 4/4 meter, was givenrhythmic variations if too isochronous, and was given a tempo so that the average notedensity was close to 2 notes per second. Also, notes were added or changed so that eachmelody had at least one occurrence of every pitch class in the mode; this insured thatthe mode was unambiguously de�ned. The melodies were 14 to 24 notes in length andended on the tonic.The melodies were shifted to each of the other �ve modes, along the diatonic scale.This of course a�ected the patterns of intervals (in semitones) of the melodies, whilerhythm and pitch contour were preserved. The identities of the melodies as de�ned bythe usual principle of transpositional invariance were changed.The resulting in 108 melodies were classi�ed into 6 groups, one for each mode. Eachof the 18 melodies in a group has 5 counterparts, one in each other group, that has samerhythm and pitch contour but a di�erent interval pattern. Thus the groups di�ered onlyon the intervals present in their melodies and were identical regarding everything else.Method/ResultsAs in the previous simulations, the model's rating of each stimulus was the sum of12 ratings. Every melody was presented 12 times with the tonic taking all the pitch classvalues. This way, the rating is independent of the absolute pitch level of presentation of



144the melodies. For each presentation, the sum of the neural activations at the top layerof neurons (F2) was recorded.This 'goodness' judgment task is the same as the judgment involved in the probetone task, so the same measure as used to retrieve the major pro�le was used here. Thatis, the activations at the abstract level were summed, and the resulting pro�le shouldsigni�cantly correlate negatively with the human data. The pro�le given by ARTISTtaken upside down is the prediction for the modal scales goodness.When the neural activation is summed and recorded after the end of the presen-tation of a melody, the result depends critically on the content of the last measure ofthe melody, which provided the input processed most recently. However, we do notknow the extent to which the previous measures a�ect the result. ARTIST's behaviorcould be chaotic (i.e., very sensitive to initial conditions) and the carrying over of top-down activation may lead to a result that depends on all the previous measures. It isalso possible that neural activations previous to the last input are 
ushed through thebottom-up and top-down cycle of activation and do not contribute signi�cantly to the�nal result.Therefore, to make sure ARTIST's rating re
ects the rating of a whole melodyand not only of the way it ends, the neural activation needs to be computed after eachactivation cycle. This way, the rating of every measure in the melody is taken intoaccount. So this measure is very sensitive to the length of the melody, and it cannot beused to compare two melodies if they have di�erent numbers of measures. Averagingneural activation over number of measures would be a solution to this, but for the present



145simulation, we are comparing groups of 18 melodies rather than individual melodies.The total number of measures for the 18 melodies is the same across the six groups ofmelodies, so there is no need to correct for melody length.In summary, ARTIST's goodness rating for one mode was computed by summingthe neural activations for all units in F2 and after each measure, for all 18 melodiesplayed in this mode, and on 12 presentations with di�erent pitch heights. The ratingsfor all six modes are shown in Figure 7.5. This was obtained with simple tones asopposed to Shepard tones, so this constitutes ARTIST's de�nitive prediction becausethe stimuli will not be played with Shepard tones to the human subjects.However, it could be interesting to look at ARTIST's responses with Shepard tones,because this could re
ect the way very experienced listeners process music, i.e., interms of pitch classes. It was mentioned in Chapter 4 that the tone pro�les obtained byKrumhansl and Shepard (1979) for novices depend almost exclusively on pitch distances,whereas experienced listeners' pro�les depended on the tonal relationships between pitchclasses. This suggests that experienced listeners are less sensitive than novices to thecontour of a melody and to the octave on which notes are played. For them, the pitchclasses themselves are the most important features determining pleasantness. It is thisidea that prompted Krumhansl and Kessler (1982) to use Shepard tones in the followingstudy, that �t very well the results of the experienced listeners in the previous studywhere Shepard tones were not used.In the most extreme ideal case, experienced listeners could be processing all notesaccording to their pitch class only and totally ignoring the pitch height. In other words,



146they would hear all the notes as Shepard tones. The reality is certainly not so extreme,but following this idea allows us to predict how the relative ratings for modes changeas listeners get more experienced. ARTIST's responses with Shepard tones are shownin Figure 7.6, predicting that the modes of F, G and A will sound relatively betterto experienced listeners' than to novices. The F and G modes should receive highratings according to the theoretical predictions (Figures 7.1 to 7.3, and 7.5), so this isin agreement with the hypothesis that experienced listeners, by processing the stimulimore in terms of pitch classes, would produce results more consistent with the rules oftonality than unexperienced listeners would. Further research could tell us if simulatingmusical expertise by more exposure to music (like it is done in the previous chapter)would yield the same prediction.
A last caveat regarding the latter prediction should also be considered. It is possiblethat the Shepard tone-like processing of all notes by experienced listeners be an artifactdue to the particularity of the stimuli in Krumhansl and Kessler's (1982) study. Forinstance, the monotonously ascending or descending contour of scales is not a�ectedby the use of Shepard tones because scales are sequences of small steps of one or twosemitones. But the contour of melodies is a�ected, and what was true in the context ofa scale may not generalize to the processing of real melodies.
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1487.3 Human experimentSubjectsTwenty students from the University of Texas at Dallas received course credit inexchange of their participation. Half of them received some musical training for 5years or less (mean=1.6, std=1.5), and were categorized as `inexperienced'. The othersubjects were categorized as `experienced' (mean=11.4, std=4.9).StimuliThe starting pitch of each melody was randomized to avoid any possible e�ect ofpitch height. The order of presentation was randomized within the constraints that notwo consecutive trials should be in the same mode (except for major, see below) or thesame original melody. Otherwise, priming of the mode or of the melody could occurand there may be some undesirable e�ect of context.Five out of every six melodies are in an unfamiliar mode (not major nor minor),so there might be an e�ect of habituation: After many exposure to strange soundingmelodies, the following ones may not sound so di�erent any more and all melodies mayend up having similar ratings. So we need to remind the listener from time to timewhat 'normal' melodies sound like. This should insure that the perceptual contrastbetween modes remain. To this end, four supplementary major melodies were chosenfrom French children's songs and recorded. One supplementary melody was insertedevery �ve trials, and the corresponding ratings were ignored in the data analysis. Fur-thermore, to counterbalance the kind of context e�ect just mentioned, the number oftrials immediately following a major mode trial should be the same for all the modes.



149However, this was not possible because the number of major mode trials was not aneven multiple of 6. In the end, the number of trials following major melodies was 6 forthe A, C, D and E modes, and 5 for the F and G modes.MethodSubjects were asked to rate how good each of the 108 modal melodies sound, on a7-point scale (from 1=`very bad' to 7=`very good'). They were speci�cally instructedto rate the entirety of the melody to prevent recency from clouding the judgments,which may naturally focus on the ending of the melody. Instructions also emphasizedthat judgment should be made on the pitch dimension, and that subjects should try toignore other features such as contour or rhythm as much as possible. The six instancesof a melody have same contour and rhythm, and if those features prevail over mode forthe ratings, no e�ect of mode will be found.Each melody was originally composed in a given mode, and then shifted to all theother modes, so two factors were associated with each trial: composition mode andplayed mode. From ARTIST's predictions, we expect a main e�ect of played mode andan interaction between played mode and expertise level. The summed neural activationsin ARTIST for the two expertise conditions are not directly comparable so no predictionis available regarding the possible main e�ect of expertise. However there should notbe any e�ect if subjects in both groups center their judgments around the middle of therating scale.



150ResultsThe 2 expertise levels � 6 composition modes � 6 played modes design wasanalysed by a 3-way ANOVA with melodies nested in composition mode and crossedwith played modes, and subjects nested in expertise level. The ANOVA found themain e�ects of composition mode and of played mode to be signi�cant, F (5; 71) =7:76 and 6:19;MSe = 6:46; p < :00001 and p < :0001, respectively. There was alsoa signi�cant interaction between composition mode and expertise level, F (5; 71) =3:41;MSe = 1:16; p < :01. The interaction between composition mode and playedmode was not signi�cant, F (25; 71) = 0:46;MSe = 6:46; p = :98.On the average, the melodies played in Aeolian (A) mode received the highestratings, followed in decreasing order by the Major (C), Dorian (D), Mixolydian (G),Phrygian (E), and Lydian (F) modes, as shown in Figure 7.8. This was also the orderof preference exhibited by the group of musicians. Non-musicians ranked the modes inalmost the same order, but preferred the Phrygian to the Mixolydian mode. Howeverthe di�erence in ratings between these two modes was slight and the interaction betweenplayedmode and musical expertise was not signi�cant, F (5; 71) = 1:31;MSe = 1:16; p =:27. The melodies originally composed in the major mode (C) received the highestaverage ratings, followed by those composed in Dorian (D), Aeolian (A), Phrygian (E),Mixolydian (G), and Lydian (F) modes, as shown in Figure 7.9. This factor interactedwith the listeners' musical expertise: Compared to non-musicians, musicians gave higherratings to the 3 modes rated highest (C, D and A) and lower ratings to the 3 other ones.
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152A 2-way ANOVA with mode and musical expertise as crossed factors was alsoconducted on the ratings that relate only to the melodies played in their original modeof composition. This was done in order to check whether all the melodies originallysounded equally good in their own mode of composition, because it is possible that thedi�erence observed for the modes in the previous analyses are due to an asymmetryof the e�ect of modal transposition. For instance, the original melodies composed inthe modes of C and F may sound equally good, and the C melodies could retain thisquality after transposition to the F mode but not the F melodies after transposition tothe C mode. The ANOVA revealed that only the main e�ect of mode was signi�cant,F (5; 90) = 14:16; p < :000001 . As Figure 7.10 shows, the average ratings obtained bythe di�erent modes are very similar to those obtained with the analyses on the completeset of stimuli.
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153The Pearson correlation between ARTIST's predictions (Figure 7.6) and humans'ratings (Figure 7.8) was low and did not reach signi�cance, r(5) = �:11; p > :10 . Themismatch between predicted and actual results for the A mode is mostly responsible forthe insu�ciency of the correlation: The melodies played in the A mode obtained thehighest ratings from humans whereas ARTIST predicted the lowest ratings, in agree-ment with music theory. Besides this important discrepancy, examined in the generaldiscussion, ARTIST's predictions were globally similar to humans' results. High rat-ings went to the C and D modes and lower ratings to the E, F and G modes. Still,the rank order of the modes predicted by ARTIST is not accurate, and the Spearmancorrelation coe�cient computed on the rank of the modes was not signi�cant either,r(5) = �:09; p > :10 . ARTIST predicted the F mode to be slightly more pleasant thanthe E and G modes, whereas it was less pleasant to human ears than the other modes,and this contributed with the bad A mode prediction to make the Spearman correlationso low.To test whether ARTIST's predictions other than for the A mode are realistic,they were compared to human data through a contrast analysis that was performedonly on the 5 other modes. The set of coe�cients used to represent the predictionsin the contrast was the set of integers (+5;+1;�2;�1;�3) and correlated almost per-fectly with the original predictions, Pearson r(3) = :999 . The quasi-F for the con-trast between the predictions and human data for the 5 modes only was signi�cant,F (4; 59) = 5:85;MSe = 6:64; p < :05 .



154DiscussionThe results of the 2-way ANOVA performed on the original melodies only indi-cate that the e�ects of played mode and mode of composition uncovered by the 3-wayANOVA are not mere artifacts due to the transposition of the melodies to modes dif-ferent from the original ones. It could have been that the mode of a melody and all itsother features interact in such a strong way that just changing the mode would destroythe whole melodic Gestalt. But the results of the 2-way ANOVA rule out this possibilityas an explanation for the e�ects of mode, because the e�ect is very similar without anychange of mode.That no main e�ect of musical expertise was found means that both groups oflisteners centered their responses around the same value: The grand mean of the ratingsequaled 3.33 (3.00 for experienced listeners vs 3.67 for unexperienced listeners) and wasclose to the middle of the rating scale 3.5, suggesting that both groups of subjects wereable to use the rating scale properly.The average ratings for the 6 played mode conditions only re
ect the di�erences intonality between the modes, since those 6 groups of melodies included the same originalmelodies, and di�ered only in terms of the pitch intervals occurring in the melodies.Therefore the main e�ect of played mode has to be explained by the di�erences inintervals between the modes. The preference for the melodies played in A, C and Dmodes was unexpected, considering that the theoretical predictions of Section 7.1 rankedthe A and D modes towards the bottom of the goodness scale (see Figures 7.1 and 7.2).The high ratings for the major (C) mode were not surprising, even though this mode



155was expected to rank highest instead of numer two. The A and D modes probablyreceived high ratings because they are identical to the natural and harmonic minormodes, respectively. This shows that the psychological distances between modes cannotbe predicted from their similarity to the major mode only, and that similarities to theminor modes also need to be taken into account. This explanation is also supported ifwe consider that the F and G modes were not preferred to the E mode, contrary to whatwas expected from their respective similarities to the major mode. The E mode hasonly 1, 2 and 3 pitch classes di�erent from those of the three minor modes, vs 2, 2 and 3for the G mode and 2, 3 and 4 for the F mode. Therefore it appears that the distancesto the minor modes also play a crucial role in determining the relative pleasantness ofthe modes.Contrary to the playedmode factor, the composition mode factor implies di�erencesbetween groups of melodies based on all the features of melodies other than tonality(i.e., other than interval relationships). As mentioned before, those features can bethe length, the tempo, the rhythm, the note density, the contour of the melodies, etc...Even though subjects were asked to base their judgments on tonal relationships alone, itmust be virtually impossible to disregard completely the other aspects of the melodies.Consequently, there was a signi�cant e�ect of composition mode. The order of preferencefor the composition modes was di�erent from that for the played modes, but the generalrelationship was the same for both factors: A, C and D were rated above average,whereas E, F and G were rated below. This suggests that the melodies composed withthe most pleasant set of intervals end up having the most pleasant contour, rhythm, etc...



156This may be a natural consequence of the compositional processes used by composers;it may also be due to the fact that the melodies that had to be modi�ed to make theirmode unambiguous were mostly in the E, F and G modes, and that these modi�cationwere not done in a way as elegant as that of a professional composer. In any case, thereseems to be a relationship between the purely tonal aspect of melodies and all the otherfeatures.Musically experienced subjects gave higher ratings to the 3 best rated modes (C,A and D, rated higher than average) and lower ratings to the 3 lowest rated modes(E, F and G, rated lower than average) than unexperienced subjects did. Musicians'ratings were more di�erentiated as a function of composition mode, indicating thatthey may be more sensitive to the non-tonal aspects of melodies than nonmusicians.The reason might be that musicians have a more integrated perception of music thannonmusicians, that they have a greater tendancy to process musical stimuli wholistically.With a greater musical experience, they may have internalized the relationships betweentonality and the other features to a greater extent than nonmusicians have.Considering the relationship between tonal and nontonal features, it seems counter-intuitive that the interaction between played mode and composition mode did not evencome close to being signi�cant. However, it is perfectly possible for a melody to inheritfrom its original mode some goodness of form applying independantly to both tonal andnontonal features. These two orthogonal sets of features do not have to interact witheach other, and the attractiveness of a melody can simply depend on the sum of theirrespective main e�ects.



1577.4 General discussionThe contrast analysis shows that if we put aside the fact that ARTIST is totallyconfuzed regarding the Aeolian (A) mode, it gives a decent prediction of human ratingsfor the other modes: C was preferred to D, itself rated higher than the three othermodes E, F and G. The Aeolian mode is the natural minor mode, one of the threeminor modes that exist. Listeners are very familiar with this mode, and it is logicalthat melodies played in this mode obtained very high ratings. So why did ARTIST giveit such a low rating?The most probable explanation relates to the composition of the corpus used totrained ARTIST. In his preludes, Bach uses to a great extent the other forms of the minormode, namely the harmonic and ascending melodic minor modes. As a consequence,ARTIST's learning of the minor mode was split between its three variations, and thenatural minor probably did not have a chance to become as familiar as the major modefor ARTIST. This led to a substantially lower predicted rating for the minor mode.Another way of seeing this is that the mode of Aeolian melodies is quite ambiguousbecause of the great similarity between the three minor modes, and that ARTIST prefersstimuli that clearly fall in a familiar category rather than ambiguous stimuli that could�t in several categories. It is possible that the mode of an Aeolian melody is determinedby the presence of one note occurring only once in the melody. As a consequence, theAeolian melodies triggered high activations in the categories responsive to any minormode. The number of highly activated categories increases as stimuli become moreambiguous and �t in more categories. Since we take the opposite of the total activation



158as an index of ARTIST's pleasantness rating, the unusually large number of categoriesactivated by the ambiguity of the Aeolian melodies translates into a low rating for theA mode.Note that this is the same principle that gives to the un�tting probe tones theirlow ratings, as seen in Chapter 4. For instance, a C major scale followed by the probetone F# is ambiguous regarding the tonality, because it contains all the notes of thekeys of C major and G major. It follows that more categories are activated in this casethan in the cases where the probe tone �ts with the context and does not con
ict withthe C major tonality. Consequently, we need to take the opposite of the total activationto get high ratings for `good' stimuli and low ratings for ambiguous stimuli.The interaction between musical expertise and mode played was not signi�cant,so trying to simulate musicians' behavior by using Shepard tones may be irrelevanthere. The hypothesis that musicians emphasize more the pitch class dimension thannonmusicians when processing musical stimuli was not veri�ed. This could be becauseof the impossibility to disregard the rhythm, contour, and the other nontonal factors ina melodic context, as opposed to in a prototypical context of a scale and chord. Thispossibility is corroborated by the e�ect of composition mode, which is very reliablein spite of the instructions to the subjects to try to judge only the pitch dimension.Repeating the experiment using Shepard tones could increase the importance of thepitch class dimension and may validate ARTIST's predictions.



1597.5 ConclusionARTIST is able to pick up on rather subtle di�erences between several forms of tonalmusic. The ratings given by humans to melodies played in di�erent modes generallyfollowed ARTIST's predictions, in spite of a large discrepancy concerning the Aeolianmode. It seems that the similarities between the three minor modes confuse ARTIST'sjudgements, but it is probable that ARTIST would di�erentiate between minor modesbetter with more learning or with a higher vigilance.In spite of this shortcoming, ARTIST's predictions represent a great improvementfrom theoretical predictions (from music theory or from ARTIST with the mode pro-�les). Those theoretical predictions had very little in common with the actual results:only the high ratings for major mode (by hypothesis) and the low ratings for the Emode were accurate predictions. The ratings given to the modes when instantiated bymelodies di�er from the theoretical modal distances because melodies are more than amere exhaustive list of pitch classes de�ning a key or a scale. Melodies repeat somenotes more than others, give the notes di�erent durations to create rhythms, alter-nate ascending and descending intervals to de�ne a pitch contour, and do not have thepitch classes appearing in systematic orders. All this contributes to di�erentiating themelodies' ratings from the ratings obtained with scales or chords, which are in agree-ment with theoretical ratings. Like humans', ARTIST's ratings for melodies departedfrom the theoretical ratings, and the model was to a certain extent able to account forthe di�erent results obtained with real melodies.



160If the results of this chapter focusing on the modes generalize to the results ofChapter 4 regarding tonality (vs atonality), then the latter results may need to beinterpreted with more caution than previously thought. In Chapter 4, knowledge ofthe major and minor key pro�les led to the estimations of all the major-major, minor-minor and major-minor perceptual key distances (Figures 4.8 to 4.10, respectively). Therobustness of these results, along with their consistency with the key distances givenby music theory, tend to make us think that those key distances apply to all musicalsituations. Even though the key distances measured by Krumhansl and Kessler (1982)were inferred from data obtained with prototypical sequences (scales, chords and chordprogressions), it seemed likely, and was implicitely assumed, that the distances wouldbe the same when the keys are instantiated by melodies instead of scales or chords.For example, we took for granted that the respective impressions of 
uidity gatheredfrom a melody modulating from C major to G major, or from the 2-chord sequence Cmajor-G major were the same. But as we just saw with the modes, what is establishedfrom music theory and from experimental data with prototypical sequences may notalways generalize to real-world music, where melodies are extensively used. This maybe another example of the psychological importance of the temporal order of occurrenceof the notes in a melody, a point often emphasized by Brown (1988) and Butler (1989).



CHAPTER 8GENERAL CONCLUSIONThe main contribution of this thesis is that it shows that ARTIST, a simple ANNbuilt with minimal constraints, can extract a vast amount of musical knowledge similarto that of humans just by being exposed to a musical environment. Exposure to themusic only assumes a coding of the music in terms of discrete pitches and an exponentialtimely decay of the input activations. The fact that the stimuli are directly derived fromMIDI �les emphasizes how close they are to the actual musical signal, and it is also agreat advantage for further developments and applications of the model.The model learns in a strictly unsupervised fashion, its architecture is self-organizing and its implementation is biologically plausible. These qualities makeARTIST a realistic model of human learning. It is able to mimic human behaviorfor very di�erent types of tasks, which required di�erentiating between musical stimuliof varying degrees of tonality (Chapters 4 and 6) or between tonal melodies of di�erentstyles or modes (Chapter 7), or recognizing familiar melodies hidden among distractornotes (Chapter 3).The most impressive performance of the model is the replication of Krumhansl andKessler's (1982) measure of degree of tonality from human data on the probe-tone task,which established the tonal pro�les of keys and permitted to infer the perceptual keydistances: In one case, ARTIST's responses correlate 99% with human data. Further-161



162more, ARTIST is to my knowledge the �rst model to replicate those results solely onthe basis of learning, without being explicitely given any knowledge relating to musictheory. ARTIST was also given the 2-probe tone task, on which the pattern of responsesshow that it models the process of perceptual learning quite realistically. With moreexposure to music, ARTIST goes through the same developmental stages as childrenas they grow up: The notion of in-key vs out-of-key is learned �rst, and only then arethe triadic notes preferred to the other notes of the key (the diatonic notes). However,ARTIST never quite reached the adult-like stage where there is a preference for 2-noteprobes in the order least stable-most stable vs the most stable-least stable order. It ispossible that ARTIST would start to exhibit order e�ects with even more exposure tomusic. After all, there was no hint of order e�ect in the human data before the adultstage. But increasing the rate of the temporal activation decay would certainly makeARTIST more sensitive to the order of two consecutive notes, since this would increasethe di�erence in the activation levels corresponding to consecutive notes.ARTIST also processes simple melodies in a way similar to humans. ARTIST'spreference for melodies played in some particular modes resembles human preferencesto some extent, showing that it is able to distinguish several categories of musical stimuliwithin tonal music. Further, it is able to distinguish di�erent melodies within the samemode. It recognizes familiar melodies interleaved with distractor notes by spreadingtop-down activation when given the hypothetical identity of the melody, but not anunfamiliar melody even if it is in the same mode as the familiar melody.



163All those results are promising for the future of ARTIST, and further developmentof the model could lead to useful musical abilities. Since ARTIST has internalized therules of tonality, it should be possible to develop an algorithm to make it compose music.Manipulating the corpus used for learning could bias the composition towards di�erentmusical styles, or even towards a mix of musical styles never tried before. For instance, itcould give us an idea of what a collaboration between Mozart and Hendrix would soundlike. Another interesting application could be the development of an improvisationpartner, which improvisation would be in
uenced in real-time by the other player(s).Nevertheless, ARTIST has one major shortcoming in that it does not account fortranspositional invariance, a basic property of humans' musical processing. It is veryeasy for humans to recognize melodies when they are played on di�erent pitch levels,because the relationships between their constituent notes are the same and recognizedimmediately. Many models account for this property of our perceptual system to processinputs according to their relationships instead of according to the exact stimulation theyelicit. However, those models all hypothesize the transpositional invariance and buildthe model according to this property (Deutsch and Feroe, 1981; Scarborough, Miller andJones, 1989; Bharucha, 1991). According to my knowledge, no model to date acquiredtranspositional invariance through learning. Whether ARTIST would be able to do soby the addition of more layers of neurons to create more abstract categories remains tobe seen.



164To �nally conclude, the general properties desirable for a good model outlined byCross (1985, p.45|48) are summarized, as well as the way ARTIST conforms to thoseguidelines.1. \Perceptible dimensions of musical experience should be involved in the creationof structures [, because] any perceptible feature may play a role". The formation of cat-egories in ARTIST depends on pitch and metric (involving both duration and loudness)information.2 and 3. \The listener brings to a piece of music a history of musical experience,which is itself a product of the musical history of his or her culture.[...] The extent towhich [listeners are able to perceive music in terms of a fully coordinated structure] islikely to depend on the music itself, their previous experience of it, and their experiencewith music of the same style or idiom". ARTIST interprets any piece of music inrelation to all the music it has been exposed to, and the activation of many very di�erentcategories following unfamilar kinds of musical inputs suggests that ARTIST does not`perceive' such inputs as a fully coordinated structure.4. \The output of the model should be related to some aspect or aspects of judge-ment or behaviour relating to music." ARTIST's output relates to ratings of pleasant-ness of musical sequences or to the recognition of familiar melodies.5. \Structure often can be understood, at least partly, by reference to an extra-musical or historical context. For example, [...] music is associated with [...] dancing".As up to now, ARTIST's universe is purely limited to music so no reference to extra-musical context is possible.



1656. \It is necessary to model both horizontal and vertical structure." ARTIST'sinput accepts any number of notes to be played simultaneously (vertical dimension)and/or sequentially (horizontal dimension).7. \It is possible to identify a few global factors, whose operation could account formuch of the patterning of musical sound [(e.g., Gestalt principles)]." ARTIST does notconform to this principle, as was illustrated by the discussion above regarding trans-positional invariance, but expanding the model may allow ARTIST to identify those`global factors' by itself.8. \Groups [may be formed] and may combine to form higher-order groups".ARTIST's categories are a way of grouping the stimuli according to the similarity oftheir features. Adding more abstract layers on top of the one already existing wouldprovide ARTIST with the structures necessary to form higher-order groups.In summary, ARTIST's relevance as a model is not only psychological, but alsotheoretical as can be seen from its conformance to those principles.



APPENDIX ABASIC WESTERN MUSICOLOGICAL CONCEPTSThe reader is encouraged to follow the de�nitions on a keyboard if possible, and playalong as the intervals and scales are introduced. Not only will this give the explanationstheir perceptual counterpart and make them easier to follow, it will also prime the readerfor the explanations of the probe-tone technique and of the tone pro�les. Figures A andB show an example for each de�nition given thereafter.Pitch classes, octave equivalence and semitonesThere is a long history of di�erent tuning systems used in Western music. Thetuning system refers to the conventions used to constrain the relationships betweennote frequencies. Some tuning systems are based on the simplicity of frequency ratios,whereas others emphasize more the equal spacing of the frequencies (on a log-scale).The well-tempered tuning system is of the latter kind and accounts for almost all ofwestern music since Bach. While some of the following de�nitions are correct regardlessof the tuning system, some apply only to the well-tempered system.Western music uses notes that can be categorized into twelve pitch classes (alsocalled pitches): C,C# or Db, D , D# or Eb, E , F , F# or Gb , G , G# or Ab ,A , A# or Bb, and B, where C# denotes the category `C sharp' and Db denotes thecategory `D 
at'. Sometimes pitch class is also called chroma and another name for theset of twelve pitches is the chromatic scale, arranged around the chroma circle. The166



167notes with a sharp or 
at are said to be altered. All the notes of a given pitch belongto the same class in the sense that they have very similar perceptual attributes, eventhough their fundamental frequencies and perceived heights are di�erent. For instance,the notes C1, C2, C3, ... belong to the same pitch class C. The fundamental frequenciesof two successive Cs always have the same relationship, a frequency ratio equal to 1:2.Thus, all the notes of a particular pitch class have their frequencies linearly spaced ona logarithmic scale, and they are said to share the property of octave equivalence. Thespan of an octave contains 12 notes (one for each pitch class) equally spaced on a log-frequency scale. The interval between any two consecutive notes is therefore constant onthe log-frequency scale and is called a semitone. The semitone is the smallest intervalbetween two notes used in Western music, and is the unit most commonly used tomeasure intervals between two notes. Because the range delimited by two frequencies ina 1:2 ratio is divided in twelve, the frequency ratio of two consecutive notes is 21=12 orapproximately 1.06. For instance, one semitone separates C from C# (which frequencyis 1.06 times C's), whereas there are 5 semitones between C and F. The names commonlyused for the intervals smaller than an octave are given in the �gure. The interval of a�fth is special in that it is the most consonant of the intervals involving two di�erentpitches (the unison and the octave involve two notes having the same pitch), presumablybecause the frequency ratio of the two notes is one of the most simple fraction, beingvery close to 3:2 (27=12 exactly. Unison is 1:1 and octave is 2:1).



168In summary, the pattern of 12 pitches repeats itself from octave to octave, asthe note frequencies double. The perception of pitch has often been described as 2-dimensional, one dimension being the height and the other being the chroma.
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169A helical model of tones perception captures well the correspondence between thosetwo dimensions and the two salient psychological features of note perception, and hasbeen proposed with slight variations successively by Ruckmick (1929), Bachem (1950),Revesz (1954), Shepard (1964, 1982) and Pilker (1966), all cited by Krumhansl (1990).As can be seen on the �gure, the vertical axis corresponds to note height and thehorizontal plane to the circularity of chroma.Major and minor scalesThe major and minor scales (also called keys, or tonalities) are de�ned by takinga subset of 7 pitches out of the 12 constituting the chromatic scale. For the 7 pitchesto de�ne a major scale, their consecutive intervals must be (2,2,1,2,2,2,1) in number ofsemitones. Huron (1994) showed that this maximizes the number of consonant intervalsavailable. Still, we do not know whether this scale is the most used because of itsconsonance or vice-versa, since the perception of consonance was measured with subjectsthat had been mostly exposed to that scale. For example, choosing to start at C (as theorigin of the scale, it is called the tonic or root), the notes D (C + 2 semitones), E (D+ 2 semitones), F (E + 1 semitone), G (F + 2 semitones), A (G + 2 semitones), B (A+ 2 semitones) and C (B + 1 semitone) will belong to the scale. Thus, the scale of Cmajor is made of the notes (C,D,E,F,G,A,B, also called the diatonic set) and is the onlymajor scale with only non-altered notes, because if we choose any other tonic than C(we start the scale at any other place), following the semitones sequence (2,2,1,2,2,2,1)will lead us to include a # note in the scale. The two major scales most similar to Cmajor are G major (G,A,B,C,D,E,F#) and F major (F,G,A,Bb,C,D,E), in the sense



170that they share 6 pitches out of 7 with C major. B major is one of the least similar toC major, sharing only 2 pitches out of 7.Regarding the minor keys, there exist three di�erent minor modes. The mostcommon nowadays is the harmonic minor, corresponding to the sequence of semitones(2,1,2,2,1,3,1). Choosing C as the tonic, we �nd that (C,D,Eb,F,G,Ab,B) constitutethe C minor scale. A-minor is de�ned by the pitches (A,B,C,D,E,F,G#) and shares allpitches but one with C major, just like F and G major.Key distancesThe almost total overlap between C major and other scales such as A minor, F orG major has important psychological implications. The psychological distance betweentwo keys depends on the number of pitches they share, and so the perceived distancebetween those just mentioned is quite small. As a consequence, a change of key (alsocalled modulation) from one to the other will sound very smooth, logical, like a naturalevolution of the passage. Indeed, they constitute very common modulation, perhaps themost frequently found across all styles of Western music. Another implication of theresemblance between two keys is that some musical passage can be ambiguous regardingits tonality, evoking both keys at the same time. Sometimes knowing the key in whicha passage is written is a matter of minute detail, and of �ght between musicologists;roughly, it is the occurrence and timing (on a strong or weak beat) of the tonic thatwill instantiate one key more strongly than the other, but many other parameters canalso play a role.



171Repeating the process of counting the number of overlapping pitches for all 12possible major keys, we can summarize the distances between any two keys by organizingthem around a circle. It is called the circle of �fths because two adjacent keys are relatedby an interval of a �fth. It is important to note that the circle of �fths re
ects both thepsychological distance between keys and their number of common pitches. The two areconfounded, making it di�cult or sometimes impossible to distinguish music theoreticalconcepts from psychological ones, each kind having its counterpart in the other domain.ChordsSeveral notes played simultaneously form a chord. We will only mention the twomost basic types of chords here. They are the major and minor chords, made of threenotes. A set of three notes (not necessarily played together) is called a triad, and twoexamples of triads are given.As previously mentioned, the interval of a �fth is especially consonant, so the �fthwill be present in the chords along with the root (or tonic, the note giving its name tothe chord). That is, G (a �fth above C) is present in the chords built around C (C majorand C minor). The last note sounded in the chords is a third above the root. If theinterval de�ned by these two notes is a major third (like between C and E), the chordis major. If it is a minor third (like between C and Eb), the chord is minor. Thus, Cmajor contains the notes C,E,G whereas C minor contains C,Eb,G. In summary, majorand minor chords di�er in the place of one note (the third), which two possible placesare one semitone apart from each other (E and Eb are right next to each other on akeyboard).



172Two other types of triads, quite rare relative to the major and minor triads, aresometimes used in experiments, usually to contrast their e�ects with the latter triads.They are the augmented and diminished triads. The notes of the augmented triad de�nethe successive intervals of a major third and a fourth. Those of the diminished triadare separated by minor thirds. This gives for C (C,E,G#) and (C,Eb,F#) respectively.
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