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Abstract: - We examine the relationship between the performance of a neural network (NN) model in recognizing emotions and the fuzziness of the rules it implements. We first propose a NN implementation of the Mimic system, which was designed to code facial expressions. It consists of rules mapping the movements of facial areas to the activation of facial muscles, and uses those muscle activations to predict the emotion expressed by the face. The suitability of the NN for extracting its underlying rules is assessed by a measure of the fuzziness on the set of synaptic weights. Preliminary simulations indicate that improving performance by training only the first layer of weights is done at the expense of rule clarity; however, sharpening the weights at their fuzziest point leads to perfect rule extractability and almost perfect recognition. By contrast, limiting the learning to the second layer of weights leads to perfect recognition with limited potential for rule extraction.
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1 Introduction

The present work is part of the European project "Principled Hybrid Systems: Theory and Applications (PHYSTA)", which aims to develop a theory for the systematic hybridisation of Neural Network models (NNs) with systems based on the traditional Artificial Intelligence (AI) methods. The hybrid approach will hopefully lead to models that combine the strengths of both kinds of systems.

One advantage of NNs compared to the more traditional AI approach is that they can be trained to solve problems from examples alone, even when the rules underlying the solution are not explicitly known. The other side of the coin is that unlike classical AI models, NNs are unable to provide explanations humans can understand regarding why a particular result was obtained. In general, the only explanation NNs could give would be of the type "the response is Y because it is the result of such and such computations".  However, in many cases, it would be very useful to understand why those computations are the right ones to carry out, for many reasons. This could be to improve the current method, to detect possible inconsistencies, unused or useless information or unverified assumptions, or simply for the pedagogical purpose of transferring the knowledge acquired by the NN to humans. Hence methods to extract explanatory rules from trained NNs are needed, in order to bridge the gap between subsymbolic (NN) and symbolic (rule-based) systems.

When the initial state (architecture and synaptic weights) of a NN is specified according to a set of already known rules, the learning procedure results in a modification of those rules through changes in synaptic weights, and the new rules can be retrieved by rule extraction. This procedure is known as rule refinement.

2
From Facial Expressions to Emotions

The goal of the present paper is to explore a few possibilities for extracting and refining rules in the context of a NN designed to recognize human emotions based on facial movements, since the problem of emotion understanding was chosen as the test application for the PHYSTA project [1]. Even though it is not the most up-to-date facial expression coding system, the Mimic [2] system was chosen as the starting point for the simulations because of its simplicity.

The systems developed to code the expressions of faces define a set of basic actions that usually have a physiological basis, such as the contraction of a muscle or of a group of muscles. Any facial expression can then be coded as a combination of those basic actions. A coding system like FACS [3] defines 46 such action units, about twice as many as the Mimic system. Because of its greater complexity, FACS may yield a better description of facial expressions and thus may allow a better performance in guessing the emotional content of an expression. However, performance in emotion classification is not the issue here, but rather simplicity of implementation so that hopefully the benefits of rule refinement will appear clearly. So the Mimic system, similar to FACS but less complex, is chosen for this first exploration because of its simplicity and because it's symbolic rules are readily available [4].

2.1 The Mimic System

The Mimic system is similar to a language, which was developed by Hjortsjo [2] to describe facial expressions. It uses a basic alphabet of 29 elements, 21 of which relate to the activity of facial muscles, and 8 to the movements of the head, the jaw and the eyes (called co-movements). The elements of this alphabet combine to form words, the analogues of facial expressions. A table summarizing the effects of each muscle on 8 facial areas is provided in [4]. Also provided is a summary of the muscles and co-movements involved in creating the 24 emotions described by Mimic. The emotions are organised in 8 groups of 3 emotions according to their semantic similarity, since several emotions can be slight variations of the same general emotional disposition. The semantic similarity of emotions translates into a similarity of the features between the corresponding facial expressions. This grouping of the emotions in 8 groups has implications for the evaluation of emotion recognition, because a confusion between two emotions belonging to the same group is not a mistake as serious as a confusion between two totally different emotions.
2.2
Neural Network Implementation

As just mentioned, the Mimic system distinguishes three levels of description of facial expressions, each expression involving a set of muscles, a list of the facial regions affected and an emotional content. In terms of connectionist implementation, this straightforwardly translates into a neural network architecture comprising three layers of neurons: one layer of 8 units corresponding to 8 facial regions, one layer of 21 units for the 21 muscles (or groups of-) and one layer of 24 units for the 24 emotions described. Since the goal of the system is to categorize the emotion from visual features, the layer of facial region units constitute the input, and the layer of emotion units is the output. An input node is activated when the corresponding facial area is in a non-neutral state. The muscle units constitute the hidden layer, which can be viewed as a low-level symbolic representation of the input (the emotion label being a high-level symbolic representation).

The two tables specifying the influence of each muscle on the facial regions on one hand, and the involvement of each muscle for a given emotion on the other, provide us with a good starting point for the initialization of the synaptic weights that have muscles as targets (W1) or sources (W2), respectively. Entries in both tables take one of three possible values, corresponding to strong, medium or no involvement of the muscle in each expression or in each facial region appearance. This translates into 3 possible initial synaptic weight values, set at 0, 1/2 and 1.

The activation pattern of the hidden layer does not represent an intermediate classification of the input but rather an array of possibilities that are not mutually exclusive. We want the activation of a hidden neuron to reflect the possibility of the corresponding muscle to be active. This activation should be maximal (e.g., equal to 1) when all the corresponding facial regions it influences are activated (in a non-neutral state). As a consequence, an activation rule of the kind used in ART2 [5] networks using the fuzzy AND operator seems the most appropriate for our problem. However, the amount of information in input I irrelevant for muscle #h should not diminish the activation of h, since many muscles at a time are usually responsible for the whole face appearance. Therefore normalizing with 
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 is undesirable, as it lowers the activation when features present in I are irrelevant for h. If 
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 is the vector of synaptic weights with h as targets, the vector 
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 contains the input features that should be present as evidence for muscle h to be active. The activation of muscle node h should increase as this vector contains more of the required features stored in 
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. It yields 1 when all the conditions for muscle h to be active are verified, that is when 
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 thus ensures that the maximum activation of all hidden units is the same regardless of their differences in the number of input features they take into account (e.g., it should be 1 when all features are present in I, whether this means 2, 3, or any number of facial regions are affected).

The same reasoning applies to the computation of the activations for the output layer. The output does not code not 'pure' emotions in the sense that they are not mutually exclusive or independent from each other [6]. Several emotions can be simultaneously present with different intensities (activation levels). For instance, though a person's emotional state could be best described as being perplexity, this state could also involve curiosity, surprise and/or suspicion to some degree. Hence the output of the model is not strictly a classification output but rather an array of possibility regarding the emotions involved, and the activation rule is also relevant for the computation of the activations of the output nodes.

2.3 Test on the 6 'Universal Expressions'
To carry out a first test of the model, the 6 'universal' expressions detailed in [7] were used. They are surprise, fear, disgust, anger, happiness and sadness. The inputs for these expressions were coded according to the verbal description provided in that paper. The descriptions do not mention the co-movements accompanying the expressions, so we assume that the corresponding inputs have the correct values for all the examples. 

The recognition performance of the model is quite poor at first, because of the limited accuracy of the Mimic rules and of the information content allowed in the input by the coding scheme. Indeed, only knowing which ones of 8 facial areas are in a non-neutral state represents a significant impoverishment of the information usually available to humans, and it would be unrealistic to expect high recognition performance based on that information and simple rules without involving any learning. So we have a priori two kinds of solutions to improve the model: refining the input coding scheme to enhance the information given to the model, or modifying the mapping rules by training the model. The former approach is discussed in [8], whereas the present paper focuses on the implications of the latter approach.

3 Learning

Training the model to ameliorate the performance will modify the synaptic weights and thus will change the rules used for the mappings of the facial features to muscle activations and of the latter to emotions. Modifying both layers of synaptic weights simultaneously will undoubtedly change the symbolic meaning of the hidden units. This would make the activation pattern of the hidden layer uninterpretable. The rules for both mappings would also become incomprehensible. Moreover, the activation rule we use is not derivable, so there is no straightforward learning algorithm to enable learning simultaneously at both levels. It should be possible to approximate the present activation rule by a derivable function, and then to use some kind of error backpropagation learning algorithm. But for now, we limit ourselves to the learning of W1 or W2. Forcing one layer of weights to be fixed has the effect of 'locking' the symbolic meaning of the hidden units so that it will remain linked to muscle activity instead of moving towards a subsymbolic meaning.

If only the second synaptic layer W2 is trained, the mapping from facial regions to muscles is fixed and the hidden units retain their symbolic meaning due to these bottom-up constraints. Conversely, if only the first synaptic layer W1 is trained, the mapping from muscles to emotions is fixed and the hidden units retain their symbolic meaning due to these top-down constraints. We examine in turn each of these strategies.

When learning is limited to W2, the training set is comprised of muscle activation vectors as inputs (computed by bottom-up propagation of activation from facial features through the fixed layer W1) and of emotions as targets. Because of the possible co-existence of several emotions, only the node associated with the emotion label of the current example has a specified target value, equal to 1. The other output values are not set to 0. This situation is similar to the learning occurring in ART-based models, where only the weights of the winner node are updated. In our case, there is only one example in the training set for each emotion to learn because of the coarse description of facial appearance allowed by the coding of the input. There is no 'crosstalk' between examples, and any weight in W2 gets updated by only one example. This means that perfect performance is attainable by one-pass learning, which consists of setting the weights equal to the muscle inputs to force directly perfect resonance:
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When learning is limited to W1, the training set is comprised of facial feature vectors as inputs and of muscle activation vectors as targets, computed by top-down propagation of activation from emotion nodes through the fixed layer W2. The learning process is not as simple as above because learning one example involves updating all the weights of W1, and therefore there is crosstalk between examples. A particular weight gets updated by all the examples, possibly in different directions. Hence learning has to be achieved through incremental update of the weights, which will hopefully converge to a satisfactory solution. The weight update is given by: 
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Note that this learning rule is not different from that used to train W2, which is the particular case where 
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=1. A different random order is used for each learning epoch to counterbalance the effects of the order in which the examples are presented during learning.

4 Comparing Solutions
That learning improves the performance in emotion recognition is a good point. Correcting the mistakes of the model is precisely the role of learning. However, good or even perfect recognition is not sufficient for our purposes in the context of hybrid systems, one reason for using them being their potential for explaining their responses in terms understandable by humans. Thus, amongst several solutions, the one suiting best our purpose does not necessarily yield the best recognition rate but rather realises the best compromise between correct recognition and rule extractability. We present in turn the methods used to evaluate both of these qualities.

4.1 Measuring Performance
There are several ways of computing the NN recognition performance because there are different schemes available to interpret the output layer activations. One solution is to simply count the number of expressions for which the right answer does not have the highest activation, and to consider those as mistakes. From those, we compute the rate of correct responses to have a general indication of the performance, but we do not use this as a direct measure of performance because with only 6 test examples, it can take only 7 possible values between 0 and 100%, and big absolute differences between recognition rates may be misleading.
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It is also possible to take a more sensitive approach by taking into account how close the right answer is to being correct. This can be measured by looking up how the target node ranks on the list of responses ordered by decreasing possibility (e.g., if it came in second position, third, last, etc..). A correct response is given a rank equal to 0, and the rank is averaged over the 6 examples. Yet another possibility is simply to compute the Summed Squared Error (SSE) on the activation of the target nodes of the 6 examples. The results of these measures are given in the  columns of Table 1 labelled '# errors', 'Mean rank' (under 'Emotions') and 'SSE', respectively. 

It is also possible to apply the first two of these measures after combining the responses of the NN into 8 groups, each made of 3 emotions similar to each other (as defined in Mimic). Such a grouping could lead to better predictions, because it may dilute the importance of the idiosyncrasies of one emotion in the group, and move the focus to the common points of the 3 emotions, a better reflection of the general emotional disposition. For instance, it can make sense to group the responses for mild/smiling/friendly, happy and hearty laughter under a same label, especially given that the coarseness of the input coding may not allow the model to draw a distinction between them. The number of errors and summed ranks computed after grouping, appear in Table 1 under the column 'Grouped'.

4.2 Measuring Fuzziness
Synaptic weights equal to 1 or 0 (sharp values) are good for rule extraction purposes, as they are straightforwardly interpreted as meaning 'This feature is essential for that muscle or that emotion to be active' or 'This feature is totally irrelevant to the activation of that muscle or of that emotion', respectively. As the weights depart from those sharp values, their implications are more difficult to grasp for humans, and middle (fuzzy) values provide poor information for extracting rules. There exists many indexes of fuzziness aiming to reflect the fuzziness of a set of numbers, which are measures monotonously related to the proportion of sharp values relative to that of fuzzy values [9]. Different indexes emphasize more or less various properties that are desirable from them. We choose here to use Kaufmann's index of fuzziness because it is quite simple and has the properties of sharpness (iof=0 when all values are sharp), maximality (iof=1 when all values are .5), symmetry (a set and its complement have same iof) and resolution (iof decreases when we substitute sharp values for fuzzy ones) [10]. The index is computed by the formula: where 
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Learning
IOF
Emotions
Grouped
SSE



# errors
Mean rank
# errors
Mean rank


NO
.23 and .26

W2 = .26
3
.83
1
.17
.18

W1
.55
2
.83
0
0
.06

Sharpened
0
1
.33
0
0
.11

W2
.34
0
0
0
0
.00

Sharpened
0
4
1.17
0
0
.23

Table 1: Index of fuzziness and 5 measures of performance for the model before learning, after training W1 (16 epochs) or W2, and after learning followed by sharpening. Performance is evaluated on 6 examples (Nb errors max = 6, Mean rank max= 23 for 'Emotions' and 7 for 'Grouped').

This amounts to computing the distance between the two sets, and normalizing according to the number of weights so that the index range is [0,1]. We choose to use the Euclidian norm (q=2) in order to give more importance to very fuzzy weights (close to .5) relative to slightly fuzzy ones (close to 0 or 1) that may be so because of small errors.

Computing the fuzziness index of a synaptic layer will give us an idea of how suitable the mapping solution it implements is for rule extraction. The value of the index increases with the fuzziness of the set, so high values (close to 1) mean poor rule extractability. Conversely, an index equal to 0 means perfect translation of the mapping in terms of symbolic rules, without any loss of information. The index of fuzziness is given in the first column of Table 1 labelled 'IOF'.

4.3 Sharpened Solutions
We can wonder whether the recognition performance of the trained network would be significantly degraded when using the sharp approximations of W1 or W2 for the synaptic values. The sharp sets of weights W1* and W2* were computed by taking the closest sharp value for each weight: values under .5 were rounded down to 0, and values above .5 were rounded up to 1. The fuzziness indexes of the sets thus obtained are 0, and they are perfect for extracting rules. We hope that this rounding off of the values still leads to high recognition rates, so we have a model that performs well and can explain its decisions. The performances of the network were tested with the sharpened versions of each synaptic layer and appear in the rows labelled 'Sharpened' in Table1.

5 Discussion

When W1 is being trained, the behavior of the network is very robust. Many simulations were carried out, and the pattern of results was always the same, with different values of 
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 and even though the order of presentation of the example was random. As W1 undergoes training, the number of errors rapidly drops from 3 to 2 (after 3 epochs with 
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=.01). It does not get any smaller with further learning, even though the SSE converges to a low asymptotic value of .02 . The performance after grouping remains close to perfect (one error, sum of ranks=1). Meanwhile, the fuzziness of W1 sharply rises from .23 to over .5, before settling down around .4 . The maximum fuzziness is reached after a few epochs, about when the number of error drops. It is also at this stage that the performance of the sharpened solutions is the best: it is almost perfect just like before learning when responses are grouped into 8 clusters of 3 emotions, but gets progressively worse as training continues.

Figure 1 shows how the fuzziness and the SSE measured with W1 typically change as a function of learning, along with the SSE obtained by using the sharpened set of weights W1* (iof=0), shown as the dashed line. The functions in the figure suggest that there is a trade-off between fuzziness and performance, as an increase in fuzziness is accompanied by a decrease of the SSEs (both down to one third of their initial values when fuzziness is maximum), and as a drop in fuzziness is accompanied by an important increase of the SSE for W1* and by a very slow decrease for W1. The best performance for W1* is reached after 16 training epochs, when the fuzziness of W1 is maximum. The results in Table 1 were computed at this key stage of learning.

For comparison with the solutions found by training W2, the two data points obtained for W2 and its sharpened set W2* are also plotted on the figure, as a square and a diamond, respectively. Even though W2 is fully trained after only one epoch, the data points are plotted with x=6 because this is the point where W1 and W2 have similar values of fuzziness, around .35 . This allows a direct comparison of the performances of solutions with same potential for rule extraction.

Figure 1: Fuzziness of W1 and SSE for W1, W2 and the sharp sets as a function of training (
[image: image18.wmf]b

=.01).

It is apparent from the graph that the best trade-off between fuzziness and performance is reached by W1* obtained by sharpening the W1 solution after 16 epochs, when it is at its fuzziest. W1* is perfect for rule extraction because of its null fuzziness, and Table 1 shows only one emotion was not recognized correctly, being the third choice. Moreover, recognition is perfect when emotions are grouped by 3 according to their similarity.

 Training W2 also leads to a good performance/fuzziness ratio, with a perfect performance according to all criteria, but with a limited potential for rule extraction (iof=.34). Sharpening this solution to allow perfect rule extraction leads to perfect emotion group classification, and therefore is excellent for an approximate guess of the emotional content of a face. However, as Table 1 shows, its recognition of separate emotions is limited (4 errors out of 6), even if the correct response is never far from being the most activated (mean rank=1.17).

6 Conclusion

We have presented a NN model, initialized based on the rules derived from the Mimic system. Those rules can be used to guess which facial muscles are active based on the appearance of 8 facial regions. Another set of rules can then be used to predict the emotion expressed by the face, based on the activity of the muscles. 
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The performance of the system, poor at first, can be dramatically improved through learning and even lead to perfect recognition in some cases. When training is limited to the first layer of weights, this improvement is associated with an important degradation of the comprehensibility of the rules, as estimated by the fuzziness value of the set of weights. However, sharpening the solution at its fuzziest point for perfect rule extractability leads to excellent performance in emotion recognition, and this constitutes the best performance/fuzziness trade-off. 

On the other hand, training only the second layer of weights was the only solution for perfect recognition performance, because W2 is free from crosstalk between examples. However, the measure of fuzziness reveals that its potential for rule extractability is decent but limited.

In summary, it seems possible to retrain NNs to have them adapt to new inputs or new environments, with only limited or no loss in rule intelligibility. Further research will show whether or not this generalizes to greater data samples that contain several examples for each emotion or new examples not in the training set. In particular, it will be interesting to test whether the method of sharpening the fuzziest set can be generalized.
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