
MODULAR LATTICES OVER CM FIELDS

IVAN SUAREZ

Abstract. We study some properties of Arakelov-modular lattices,
which are particular modular ideal lattices over CM �elds. There are
two main results in this paper. The �rst one is the determination of
the number of Arakelov-modular lattices of �xed level over a given CM
�eld provided that an Arakelov-modular lattice is already known. This
number depends on the class numbers of the CM �eld and its maximal
totally real sub�eld. This �rst part gives also a way to compute all
these Arakelov-modular lattices. In the second part, we describe the
levels that can occur for some multiquadratic CM number �elds.

Introduction

This paper deals with ideal lattices over CM �elds. A lattice is a free Z-
module of �nite type, together with a positive de�nite symmetric bilineare
form. In 1995, Quebbemann introduced the notion of modular lattice, i.e. a
lattice which is similar to its dual (see [7] and [8]).The idea here is to combine
this notion with the notion of ideal lattice, which is a lattice arising from
a number �eld with a trace construction (see �1, and [3], [2]). This led to
the introduction of Arakelov-modular lattices in [4]. In [4], we were mainly
interested in Arakelov-modular lattices over cyclotomic �elds. The purpose
of this paper is to investigate the more general case of CM �elds, and to give
explicit results over multiquadratic �elds.

After giving some de�nitions in Section 1, Section 2 is devoted to strongly
Arakelov-modular lattices. In section 3, there are given the action of two
groups (one of them being the class group) on the set of Arakelov-modular
lattices of a given level which turn out to be transitive. Section 4 deals with
the problem of �nding Arakelov-modular lattices over multiquadratic �elds.

1. Definitions and notation

1.1. Modular lattices. A lattice is a pair (L, b), where L is a free Z-module
of �nite type and b : LR × LR → R is a de�nite positive symmetric bilinear
form on LR := L⊗Z R.

The dual lattice of the lattice (L, b) is the lattice (L∗, b), where

L∗ = {u ∈ LR : b(u, L) ⊂ Z}.
A lattice (L, b) is said to be integral if L ⊂ L∗. If moreover b(u, u) ∈ 2Z

for each u ∈ L, then the lattice is said to be even.
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Let L be an integral lattice. The level of the lattice L is the exponant of
the group L∗/L. The level of a lattice is therefore the smallest integer ` such
that the rescaled lattice (L∗, `b) is integral.

De�nition 1.1 (see [7]). A lattice (L, b) is said to be modular if

• (L, b) is even,
• (L, b) ∼= (L∗, `b), where ` is the level of the lattice.

De�nition 1.2 (see [8]). Let (L, b) be a modular lattice of level `. De�ne
for each exact divisor m||` (i.e. m|` and gcd(m, `/m) = 1) the lattice Lm :=(

1
mL
)
∩ L∗. Then the lattice (L, b) is said to be strongly modular if for each

m||`, the two lattices (Lm,mb) and (L, b) are isometric.

1.2. Ideal lattices. (see also [3] and [2])
Let K be a CM-�eld, and let F be the maximal totally real sub�eld of K.

Denote by x 7→ x the complex conjugation. Recall that K is totally complex
and that F is the �xed �eld by the conjugation (so we have [K : F ] = 2).

De�nition 1.3. An ideal lattice over K is a lattice (I, b), where
(i) I is a fractionnal ideal of K and
(ii) there exists a totally positive element α ∈ F such that b(x, y) =

TrK/Q(αxy) for all x, y ∈ I.

Notation: The ideal lattice (I, b) with b(x, y) = Tr(αxy) will be denoted
(I, α).

Let DK denote the di�erent of K/Q. If (I, α) is an ideal lattice over K,
its dual lattice is also an ideal lattice (I∗, α) over K, where

I∗ = α−1D−1
K I

−1
.

Let (I, α) be an ideal lattice (over K). For each β ∈ K×, the mul-
tiplication by β induces an isometry between the ideal lattices (I, α) and(
βI, (ββ)−1α

)
. Two such ideal lattices are called Arakelov-equivalent (nota-

tion : (I, α) ∼=A

(
βI, (ββ)−1α

)
).

De�nition 1.4. An even ideal lattice (I, α) of level ` is said to be Arakelov-
modular if the ideal lattices (I, α) and (I∗, `α) are Arakelov-equivalent.
An even ideal lattice (I, α) of level ` is said to be strongly Arakelov-modular
if for each m||`,

(Im,mα) ∼=A (I, α).

2. Some properties of modular lattices

We keep in this section the notation of �1.2.
In [4], �3, it is shown that the existence of an Arakelov-modular lattice

of level ` on K is equivalent to the existence of a totally positive element
α ∈ F , an ideal I and an element λ ∈ K such that :

(i) λλ = `, and
(ii) αII = λD−1

K (which is equivalent to λI∗ = I).
Moreover, the element λ can be chosen such that λ2 = ζ` for some 2r-

th root of unity ζ ∈ K. In that case, the following proposition gives the
corresponding λ.
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Proposition 2.1. Let λ ∈ K be an element satisfying λ2 = ζ` for some
primitive 2r-th root of unity ζ ∈ K. Then we have :

(i) λ = ±
√
` if r = 0,

(ii) λ = ±
√
−` if r = 1,

(iii) λ = ±(1 + ζ−1)−1
√

(ζ + ζ−1 + 2)` if r ≥ 2.

For strongly Arakelov-modular lattices, we have the following result (see
[4], Proposition 3.3).

Proposition 2.2. Let (I, α) be an Arakelov-modular lattice over K. This
lattice is strongly Arakelov-modular if and only if for each m||`, there exists
βm ∈ OK such that:

(i) βmβm = m, and
(ii) βmOK = βmOK .

Moreover, if the preceding conditions are satis�ed, then the βm's can be cho-
sen such that β2

m = ζ(m)m, where ζ(m) is some 2rm-th root of unity (depending
on m).

Notice that if such a set of βm exists in K, then all Arakelov-modular
lattices of level ` over K are indeed strongly modular.

Proof. If such a set of βm for m||` exists, then [4], Proposition 3.3 shows that
(I, α) is strongly Arakelov-modular.

Conversely, if (I, α) is strongly Arakelov-modular, then we can choose for
each m||` an element βm ∈ K such that

(
βmIm, (βmβm)−1mα

)
= (I, α),

where Im =
(

1
mI
)
∩ I∗. The ideal Im can be explicitely determined as

follow. Let's choose λ ∈ OK such that λλ = ` and such that λI∗ = I (such
a λ exists thanks to the preceding remark). We have

Im =
(

1
m
I
)
∩ I∗ = (m−1I) ∩ (λ−1I) = ((m−1OK) ∩ (λ−1OK))I = b−1

m I,

where bm = mOK + λOK . Since λ2OK = `OK and since m||`, we get that
b2

m = mOK . Moreover, the de�nition of βm shows that βmIm = βmb−1
m I =

I, i.e. that βmOK = bm. Finally, since (βmβm)−1mα = α, we get that
βmβm = m and we are done.

Finally, if βm satis�es the conditions of the proposition, then βm/βm is a
root of unity, from which the odd part can be removed, as in [4], Proposition
3.4 (since each n-th root of unity with n odd is a square). �

3. Classification of modular lattices over CM fields

Denote the set of Arakelov-modular lattices over K of level ` modulo
Arakelov-equivalence by AMK(`). Let Cl(K) denote the ideal class group of
K and let EK be the group of units of OK . Let G = Gal(K/F ), and de�ne
C1 = Cl(K)G, C2 := {[J ] ∈ Cl(K) : ∃α ∈ K such that αJ = αJ }. It is
easily checked that C2 = IG

K/P
G
K ⊂ C1, where IK (resp. PK) is the group

of ideals (resp. principal ideals) in K. In the following, we will assume that
AMK(`) 6= ∅. We then call A` ⊂ F× the set of α ∈ F for which there exists
an ideal I such that the ideal lattice (I, α) is Arakelov-modular of level `.
The aim of this section is to describe AMK(`).
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Remark 3.1. The set A` is exactly the set of totally positive α ∈ F such
that there exists an ideal I in K satisfying α−1λD−1

K = II.

The class group of K acts on AMK(`) as follow.
Let [J ] ∈ Cl(K) and let [I, α] ∈ AMK(`). We can form the ideal lattice

[J ]·[I, α] := [JJ −1I, α], and it is easy to check that [JJ −1I, α] ∈ AMK(`).
This gives an action of Cl(K) on AMK(`).

The stabilisor of any ideal lattice of AMK(`) is the group C2. Indeed, if

[J ] · [I, α] = [I, α], then there exists β ∈ K such that JJ −1I = βI and
ββ = 1. Hilbert Theorem 90 gives then the existence of γ ∈ K such that
β = γ−1γ, and we therefore get that γJ = γJ , i.e. that [J ] ∈ C2.

Let [I, α] ∈ AMK(`). The orbit of the ideal lattice [I, α] under Cl(K)
in AMK(`) is exactly the set of Arakelov-modular lattices of level ` which
can be written [I ′, α] for some ideal I ′. Therefore, we have a bijection
AMK(`)/Cl(K) ∼= A`/NK/F (K).

In order to complete the description of AMK(`), we will now be interested
in A`/NK/F (K). First of all, recall that the Hasse norm theorem states that
the following sequence is exact:

0→ Ĥ0(K/F,K×)→
⊕

v

Ĥ0(Kv/Fv,K
×
v )→ Z/2Z→ 0.

In this exact sequence, the direct sum is taken over the set of places v of

F , we have Ĥ0(K/F,K×) = F×/NK/F K
×, and the last application is the

sum on coordinates. The �eld Fv denotes the completion of F at v, and Kv

denotes the completion of K at some place above v.

Let λ ∈ K be such that λλ = `. Each Arakelov-modular lattice (I, α) of
level ` over K satis�es

λD−1
K = αII.

Therefore, if (I, α) and (I ′, α′) are two Arakelov-modular lattices of level
`, then αII = α′I ′I ′. Since α/α′OF is the norm of some ideal of K, the

element α/α′ maps to 1 via the map Ĥ0(K/F,K×) → Ĥ0(Kv/Fv,K
×
v ) for

each place v which is unrami�ed (since for local �elds, the norm map is
surjective on the units if the extension is unrami�ed). Notice that α/α′ also
maps to 1 for each in�nite place v, since α/α′ is totally positive.

This says that α/α′ ∈ N , whereN ⊂
(⊕

v Ĥ
0(Kv/Fv,K

×
v )
)
∩Ĥ0(K/F,K×)

is the subgroup of elements which are local norm whenever v is in�nite or
unrami�ed in K.

Conversely, if γ ∈ K× maps to an element of N , then γ ∈ F is totally
positive. Moreover, γ is a norm locally whenever p is a prime ideal which
does not ramify in K/F . So we have the decomposition γOK = JJ for
some ideal J . Therefore, for each α ∈ A`, the element γα is also in A` (see
Remark 3.1). Notice that if γ ∈ K× maps to 1 ∈ N , then the Hasse norm
Theorem implies that γα and α are in the same class in A`/NK/F (K×).
Therefore, we get the following proposition.

Proposition 3.2. The subgroup N ⊂
(⊕

v Ĥ
0(Kv/Fv,K

×
v )
)
∩Ĥ0(K/F,K×)

acts freely and transitively on AMK(`)/Cl(K).
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This proposition allows us to compute |AMK(`)|.
First of all, let r be the number of rami�ed �nite primes in K/F . We have

|N | = 1 +
(
r
2

)
+
(
r
4

)
+ · · · = 2r−1.

Therefore, the number of Arakelov-modular lattices of level ` over K is

|AMK(`)| = 2r−1|Cl(K)/C2|.
Let G = Gal(K/F ) be the Galois group of K/F , and denote by IK (resp.

PK) the ideal group of K (resp. the principal ideal group of K). The group
C2 is isomorphic to IG

K/P
G
K . Fortunately, the order of this group is known

(see for instance the proof of [6], Chap. 13, lemma 4.1). Actually, we have

Lemma 3.3.

|C2| =
e(K/F )hF

[K : F ]|Ĥ0(EK)|
.

Here, hF = |Cl(F )|, and e(K/F ) =
∏

v e(v), where the product is taken
over all the places of F , and where e(v) is the local rami�cation degree at v.

The group Ĥ0(EK) = EF /NK/F (EK) can be computed as follow.
Write e(K/F ) = e0(K/F )e∞(K/F ), where

e0(K/F ) =
∏

p �nite

e(p) and e∞(K/F ) =
∏

v in�nite

e(v).

Since K is a CM-�eld, we have [EK : EFµK ] = 1 or 2, so [NK/F (EK) :
NK/F (EFµK)] = [EK : EFµK ]. Furthermore, since NK/F (EFµK) = E2

F ,
we get that

|Ĥ0(EK)| = e∞(K/F )
2[EK : EFµK ]

.

But e0(K/F ) = e(K/F )/e∞(K/F ) = 2r, so

|C2| = 2r+1[EK : EFµK ]hF .

Finally, we obtain the following formula for |AMK(`)|.

Proposition 3.4. If AMK(`) 6= ∅, we have

|AMK(`)| =

{
hK
2hF

, if [EK : EFµK ] = 1,
hK
4hF

, if [EK : EFµK ] = 2.

The group C2 is also easy to describe. We have the map jK/F : Cl(F )→
Cl(K)G = C1 induced by the extension of ideals from F to K. Since K is a
CM �eld, the kernel of jK/F has order 1 or 2, and of course jK/F (Cl(F )) ⊂
C2. Moreover, since C2 = IG

K/P
G
K , it is easy to see that C2 is actually

generated by im(jK/F ) and by the rami�ed primes in K/F (compare with
Lemma 3.3).

Notice that we also get an isomorphism ϕ : C1/C2 → (NK/F (K×) ∩
EF )/NK/F EK , which can be de�ned as follow. Let [J ] ∈ C1, and take

β ∈ K such that βOK = J −1J . Then ββ ∈ NK/F (K×) ∩ EF is the
desired element. It is easily seen that the kernel of this map is C2. The
surjectivity of this map will be checked later. This map comes from the
following observation. The class [J ] ∈ C1 is mapped to a totally positive
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unit u ∈ E+
F such that for each class [I, α] ∈ AMK(`), we have [J ] · [I, α] =

[I, uα].
In order to show that ϕ is surjective, we will call IK (resp. PK) the group

of ideals (resp. principal ideals) inK. The two following sequences are exact.

1→ PK → IK → Cl(K)→ 1

1→ EK → K× → PK → 1
From the �rst exact sequence, we get the long exact sequence in cohomology

H0(Cl(K))→ H1(PK)→ H1(IK) = 1,

From the second exact sequence, we get

H1(K×) = 1→ H1(PK)→ Ĥ0(EK)→ Ĥ0(K×),

which gives an isomorphism H1(PK) ∼= (NK/F (K×)∩EF )/NK/F EK . Now,

the map ϕ̃ : C1 → (NK/F (K×)∩EF ) is the composition of the two preceding
maps, and ϕ̃ is therefore surjective.

4. Modular lattices over multiquadratic fields

Proposition 2.2 suggests us to look for ideal lattices over multiquadratic
�elds. We will begin our investigation with the case of biquadratic �elds.

Lemma 4.1. Let p and q be two distinct primes, and de�neK = Q(
√
p,
√
−q).

Then there exists a totally positive element α ∈ Q(
√
p) and an ideal I in K

such that √
pOK = αII.

Proof. If
(
−q
p

)
= 1, then we have

√
pOK = PP for a prime ideal P in K.

If p = 2 or if p ≡ 1 mod 4, then there is a unit u in Q(
√
p) of norm −1.

Therefore, ±u√p is totally positive.

Finally, we must consider the case where p ≡ 3 mod 4 and
(
−q
p

)
= −1. It

is well known that the class number hQ(
√

p) of Q(
√
p) is odd (see [5], Theorem

41). Let's take a prime number r satisfying the following conditions:

(i)
(p

r

)
= 1,

(ii)
(−q

r

)
= 1, and

(iii)
(
−r
p

)
= 1.

The Dirichlet theorem on primes in arithmetic progressions asserts that such
a prime r exists if the three conditions are independent. The conditions
(i) and (ii) are independent since p 6= q. In view of condition (i), the
third condition asserts that r ≡ 3 mod 4. It is therefore independent of
condition (ii) unless q = 2. However, when q = 2, the conditions (ii) and
(iii) are equivalent to asking that r ≡ 3 mod 8. Therefore, a prime number
r satisfying conditions (i)− (iii) always exists.

Now, conditions (i) and (ii) imply that r is totally split in K. So let r
(resp. R) be a prime ideal in Z[

√
p] (resp. in OK) above r (resp. above

r). Let d be the order of r in Cl(Q(
√
p)) (recall that d is odd), and let ρ

be a generator of rd. We have NQ(
√

p)/Q(ρ) = ±rd. Now, condition (iii)
implies that r is not a norm in Q(

√
p)/Q, therefore, NQ(

√
p)/Q(ρ) = −rd. If
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we de�ne α =
√
pρ−1, and I = Rd, then either α or −α is totally positive

and
√
pOK = αII. So the lemma is proved. �

Lemma 4.2. Let p be a prime number, and let K = Q(
√
p,
√
−1). Then

there exists a totally positive element α ∈ Q(
√
p) and an ideal I in K such

that
√
pOK = αII if and only if p 6≡ 3 mod 4.

Proof. If p = 2 or if p ≡ 1 mod 4, then there exists a unit u such that u
√
p

is totally positive.
If p ≡ 3 mod 4, then the extension Q(

√
p,
√
−1)/Q(

√
p) is unrami�ed

et each �nite place. Therefore, class �eld theory tells us that the existence
of a decomposition

√
pOK = αII is equivalent to the fact that

√
pZ[
√
p]

belongs to the kernel of the Artin map. But since p ≡ 3 mod 4, p is inert
in Q(

√
−1), so the ideal

√
pZ[
√
p] does not belong to the kernel of the Artin

map. This conculdes the proof. �

We are now ready to investigate the existence of Arakelov-modular lattices
over some multiquadratic �elds.

Proposition 4.3. Let p1, · · · , pn and q be n+ 1 distinct primes. Let K =
Q(
√
p1, · · · ,

√
pn,
√
−q), and let ` be a square-free integer.

The set AMK(`) is not empty if and only if q|`|qp1 · · · pn.

Proof. Assume that AMK(`) 6= ∅. There exists an integer λ ∈ OK such that
λ2 = `ζ, for some 2r-th root of unity ζ. But K is a multiquadratic �eld and√
−1 6∈ K, so we must have ζ = ±1. Therefore we have λ2 = ±`, so that

`|qp1 · · · pn. Now, if (I, α) is an Arakelov-modular lattice of level ` over K,
then we have

λD−1
K = αII.

Therefore the ideal λD−1
K is an extension of an ideal over F . Since

√
−q||DK ,

this implies that
√
−q||λ, so that q|`.

Conversely, assume that q|`|qp1 · · · pn. For each prime pi, Lemma 4.1
shows that there exists a totally positive αi ∈ F and an ideal Ii such that√
piOK = αiIiIi. De�ne λ such that λ2 = −`. The ideal λD−1

K is a product
of ideals which can be written

√
piOK or 2OK , and this ideal can therefore be

written αII for some totally positive α ∈ F . This shows the existence of an
Arakelov-modular latticeof level ` over K, and thus completes the proof. �

Example 4.4. Let K = Q(
√

2,
√

5,
√

13,
√
−3). We have |AMK(6)| =

96. Moreover, a computation with PARI/GP ([1]) gives that some of the
Arakelov 6-strongly modular lattices over K are extremal (i.e. of minimum
6). All of them have automorphism group of order 210 · 36 · 5, and may be
isomorphic to the lattice described in [9].

Proposition 4.5. Let p1, · · · , pn be distinct primes, and assume that n ≥ 2.
Let K = Q(

√
p1, · · · ,

√
pn,
√
−1).

If one of the pi's satis�es pi ≡ 3 mod 4, then AMK(`) 6= ∅ if and only if
` | 2p1 · · · pn.
If each pi satis�es pi 6≡ 3 mod 4, then AMK(`) 6= ∅ if and only if ` | p1 · · · pn.

Proof. Assume that AMK(`) 6= ∅. This implies that `|disc(K/F ). Since ` is
square-free, we get that either `|2p1 · · · pn, if one of the pi's satis�es pi ≡ 3
mod 4, or `|p1 · · · pn otherwise.
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Conversely, let F = Q(
√
p1, · · · ,

√
pn) be the maximal totally real sub-

�eld of K. Assume �rst that p1 ≡ 3 mod 4. The extension K/F is then
unrami�ed at the �nite places (since Q(

√
p1,
√
−1)/Q(

√
p1) is unrami�ed).

Let ΨK/F : IF → Gal(K/F ) be the Artin map. The kernel of the Artin

map is precisely the set of ideals whose transfer to K can be written αII,
for some totally positive element α. Now for each prime pi, it is easy to see
that either an even number of prime ideals divide

√
piOF , either

√
piOF is

a prime ideal which is totally plit in K/F (the latter case can only happen
when n = 2). Since F/Q is a Galois extension, the value of ΨK/F (pi) does
not depend on the choice of a prime ideal pi above pi in F . Therefore, for
each pi, we have ΨK/F (

√
p

i
OF ) = 1, so each ideal

√
piOK can be written

αiIiIi for some totally positive element αi. Similarly, it can be checked that
ΨK/F (((1 +

√
−1)OK) ∩ OF ) = 1. The ideal (1 +

√
−1)OK can thus also

be written αII, for some totally positive element α and some ideal I in K.
Therefore, for each square-free `|2p1 · · · pn, there exists an Arakelov-modular
lattice of level ` over K.

Assume now that each pi satis�es pi 6≡ 3 mod 4. Lemma 4.2 gives the
existence of a decomposition

√
piOK = αiIiIi for each pi. This gives the

existence of an Arakelov-modular lattice of level ` overK for each square-free
`|p1 · · · pn, and thus completes the proof. �

The next proposition handles the case where K = Q(
√
p,
√
−1).

Proposition 4.6. Let p be a prime number, and let K = Q(
√
p,
√
−1).

If p 6≡ 3 mod 4, then AMK(`) 6= ∅ if and only if ` ∈ {1, p}.
If p ≡ 3 mod 8, then AMK(`) 6= ∅ if and only if ` = p.
If p ≡ 7 mod 8, then AMK(`) 6= ∅ if and only if ` ∈ {2, p}.

Proof. If p 6≡ 3 mod 4, Lemma 4.2 gives that AMK(`) 6= ∅ for ` = 1, p.

Assume now that p ≡ 3 mod 4. The extension Q(
√
p,
√
−1)/Q(

√
p) is

unrami�ed, so we have DK = (2
√
p). Therefore, there exists an Arakelov-

modular lattices of level ` over K if and only if ΨK/F ((λD−1
K )∩F ) = 1. For

λ =
√
p, we have ΨK/F ((λD−1

K ) ∩ F ) = ΨK/F (1/2OF ) = 1, so AMK(p) 6= ∅.
Now, for ` 6= p we must compute ΨK/F (q) for the prime ideal q of F above
2.

We have 2OF = q2. If p ≡ 3 mod 8, then qOK is a prime ideal, so
ΨK/F (q) = −1. If p ≡ 7 mod 8, then qOK = QQ, for a prime ideal Q of

OK , so ΨK/F (q) = 1. This gives the value of ΨK/F ((λD−1
K ) ∩ F ) for each

`|2p, and the proposition is proved. �

We are now interested in the caseK = Q(
√
p1, · · · ,

√
pr,
√
−q1, · · · ,

√
−qs),

with pi, q,j distincts primes and s ≥ 2.

Proposition 4.7. Assume that K = Q(
√
p1, · · · ,

√
pr,
√
−q1, · · · ,

√
−qs) is

de�ned as above. Assume also that r + s ≥ 3, and let ` be a square-free
integer.

The set AMK(`) is not empty if and only if `|p1 · · · prq1 · · · qs.

Lemma 4.8. Let q1 < q2 be two distinct primes. Let K = Q(
√
−q1,

√
−q2),

and let F = Q(
√
q1q2). The extension K/F is rami�ed if and only if q1 ≡
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q2 ≡ 1 mod 4 or q1 = 2 and q2 ≡ 1 mod 4. In the �rst case, the di�erent
is (2) and in the second case, the di�erent is (

√
−2).

Proof. The three �elds between Q and K are F1 = Q(
√
−q1), F2 = Q(

√
−q2)

and F . The extension K/F is unrami�ed at the primes of odd norm. There-
fore all the rami�cation in K/F comes from the dyadic rami�cation. If q1
and q2 are odd, we have DK/F 6= OK if and only if q1 ≡ q2 ≡ 1 mod 4,
and in this case we have DK/F = 2OK . If q1 = 2, the �eld extension
K/F is rami�ed if and only if −q2 ≡ 3 mod 4, and in this case we have
DK/F =

√
−2OK . �

Proof of Proposition 4.7. This time, we have F = Q(
√
p1, · · · ,

√
pr,
√
q1q2, · · · ,

√
q1qs).

Therefore, the di�erent DK/F can only be OK , 2OK or
√
±2OK (see Lemma

4.8). Moreover, if DK/F 6= OK , then there exists an ideal a such that a2 =
DK/F . We are now interested in the ideals I =

√
piOF or I = (

√−qj) ∩ F .
Since [F : Q] ≥ 4, we have either an even number of prime ideals dividing
I, or I is a prime ideal which splits in K. Therefore ΨK/F (I) = 1 and

IOK = αiJiJi for some totally positive element αi ∈ F . This shows that
for each ` dividing p1 · · · prq1 · · · qs, we have AMK(`) 6= ∅. �

Example 4.9. Let K = Q(
√

3,
√

5,
√
−2,
√
−7). For ` = 6 and for ` = 15,

we have |AMK(`)| = 16. A computation with PARI/GP gives us that for
` = 6 and for ` = 15, there is one extremal strongly Arakelov-modular lattice
of level ` over K.
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