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Introduction

Euclidean lattices defined over algebraic number fields have been studied in several papers,
and from different points of view. On one hand, it is often possible to construct interesting
lattices in this way (see [1], [2], [3], [4], [7], [12]); on the other hand, the geometric properties
of the lattices yield arithmetic information about the number field (cf. [6]). As in [5], we call
these lattices ideal lattices (see §1 for the precise definition). They correspond bijectively with
Arakelov divisors over the number field (see [13]).

Most of the existing constructions of ideal lattices concern CM–fields, especially cyclotomic
fields. One of the objectives of the present paper is to give constructions over totally real
number fields as well.

Let K be an algebraic number field, and let OK be its ring of integers. Let σ : K → K
be a Q–linear involution, let F be the fixed field of this involution, and let us denote by OF
the ring of integers of F . In §2, we define a number field K ′, a quadratic extension of F ,
with the property that some ideal lattices over OK are also ideal lattices over OK′ . Using
this method, we obtain well-known lattices, such as root lattices, the Coxeter-Todd lattice,
the Leech lattice, as ideal lattices over totally real fields, in particular maximal totally real
subfields of cyclotomic fields (see §3).

The second part of the paper is concerned with upper bounds of Euclidean minima. Recall
that for any number field L, one defines the Euclidean minimum M(L) of L as

M(L) = sup
x∈L

inf
c∈OL

|NL/Q(x− c)|.

Let dL be the absolute value of the discriminant of L and n = [L : Q]. For totally real number
fields L, a conjecture attributed to Minkowski states that

M(L) ≤ 2−n
√
dL

(see for instance [9], §3). This conjecture has been proved for n ≤ 6 (cf [8]). The conjecture
also holds for the maximal totally real subfields of cyclotomic fields of prime power conduc-
tor (see [6], [10]). The results of §2 combined with some results of [6] give the following
proposition.

Proposition. Let m > 1 be an odd integer. Then Minkowski’s conjecture holds for the
maximal totally real subfield of the 4m-th cyclotomic field.
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1. Definitions and notation

1.1. Lattices. A lattice is a pair (L, b), where L is a free Z-module of finite rank and b :
L× L→ R a positive definite symmetric bilinear form.

Let (L, b) be a lattice of rank n, set q(x) = b(x, x) and set LR = L ⊗Z R. Define the
minimum (resp. the maximum) of (L, b) as

min(L, b) = inf{q(x) : x ∈ L, x 6= 0},

max(L, b) = inf{λ ∈ R : for all x ∈ LR, there exists y ∈ L with q(x− y) ≤ λ}.
Let det(L, b) be the determinant of (L, b). The Hermite invariants of (L, b) are

γ(L, b) =
min(L, b)

det(L, b)
1
n

,

and

τ(L, b) =
max(L, b)

det(L, b)
1
n

.

The invariant γ is related to the sphere packing density of a lattice (L, b), and the invariant
τ is related to its thickness. The invariants γ and τ only depend on the isometry class of a
lattice.

1.2. Euclidean minima. Let K be a number field, and let OK be its ring of integers.

Definition 1.1 (see [9], §3). The Euclidean minimum of the field K is

M(K) = sup
x∈K

inf
c∈OK

|NK/Q(x− c)|.

If KR = K ⊗Q R, we can define in a similar way

M(KR) = sup
x∈KR

inf
c∈OK

|NKR/R(x− c)|.

Clearly, we have M(KR) ≥M(K).

1.3. Ideal lattices. Let K be a CM-field or a totally real field of degree n over Q. Let σ be
the complex conjugation if K is a CM-field, and the identity if K is a totally real field. The
ring of integers of K is denoted OK and dK denotes the absolute value of the discriminant of
K.

An ideal lattice over K is a pair (I, b), where I is a (fractional) ideal of K and

b : I × I → R

is a positive definite symmetric bilinear form satisfying the invariance relation b(λx, y) =
b(x, λσy) for all x, y ∈ I, and for all λ ∈ OK . For each ideal lattice (I, b), there exists
a totally positive element α ∈ KR = K ⊗Q R such that b(x, y) = TrKR/R(αxyσ) (cf [5],
Proposition 1).

Let P be the subset of totally positive elements of KR. For α ∈ P, the ideal lattice (I, bα),
with bα(x, y) = Tr(αxyσ) is denoted (I, α).

For an ideal I of K, define

γmin(I) = inf{γ(I, α) : α ∈ P}, and

τmin(I) = inf{τ(I, α) : α ∈ P}.
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These definitions only depend on the class of I in the ideal class group of K. Indeed, if
J = βI, then the ideal lattices (I, α) and (J , β−1−σα) are isomorphic.

These invariants are related to the Euclidean minimum of the field K thanks to Theorem
5.1 of [6] :

Theorem 1.2. We have

M(KR) ≤
(
τmin(OK)
γmin(OK)

)n
2

.

Notice that γmin(OK) = nd
− 1

n
K (cf [6], Lemma 4.3), so in order to get an upper bound to

the Euclidean minimum of the number field K, it only remains to construct an ideal lattice
over OK having a good invariant τ . The following corollary will be helpful in the sequel (cf
[6], Corollary 5.3).

Corollary 1.3. If τmin(OK) ≤ n
4 , then M(KR) ≤ 2−n

√
dK .

2. A construction

Let F be a field of characteristic not 2. Let K be a quadratic extension of F , and let ϑ ∈ F
be such that K = F (

√
ϑ). Assume that −1 6∈ K×2

, and let K ′ = F (
√
−ϑ). The field K ′ is

then a quadratic extension of F different from K. Set L = KK ′, and let σ (resp. σ′) be a
generator of Gal(K/F ) (resp. of Gal(K ′/F )).

Define ϕ : K → K ′ to be an F -linear map such that ϕ(1) = 1 and ϕ(
√
ϑ) =

√
−ϑ. Notice

that for all x, y ∈ K we have :

(1) TrK/F (xyσ) = TrK′/F (ϕ(x)ϕ(y)).

We have the following formulas, which can be obtained by straightforward computation.

• NK′/F (ϕ(x)) = −NK/F (x) + TrK/F (x)2

2 = TrK/F (x2)

2 ,

• NK/F (ϕ−1(x)) = −NK′/F (x) +
TrK′/F (x)2

2 =
TrK′/F (x2)

2 ,
• ϕ(xσ) = ϕ(x)σ

′ ⇒ TrK′/F (ϕ(x)) = TrK/F (x),
• ϕ−1(ϕ(x)ϕ(y)) = xy − (x−xσ)(y−yσ)

2 ,

• ϕ(ϕ−1(x)ϕ−1(y)) = xy − (x−xσ′ )(y−yσ′ )
2 .

In the sequel, we assume that F is a number field and that K/Q is not ramified at 2. We
are now ready to investigate the nature of ϕ(OK) and ϕ−1(OK′).

Proposition 2.1. If K/Q is not ramified at 2, then ϕ(OK) is a fractional ideal of OK′.
Moreover, the ideal b = ϕ(OK) satisfies b2 = 1

2OK′.

We will need the following lemma.

Lemma 2.2. With the above assumptions, we have DL/K′ = OL and DK′/F = 2c, where c is
an integral ideal prime to 2.

Proof. Let K ′′ = F (
√
−1). Then DK′′/F = 2OK′′ .

Since all primes q of F dividing 2 are unramified in K/F , K is the fixed field of their group
of inertia. Any such q is then ramified in K ′/F and all primes of K ′ resp. K ′′ dividing 2 are
unramified in L/K ′ resp. L/K ′′.

Hence 2DL/K′′ = DK′′/FDL/K′′ = DL/F = DK′/FDL/K′ implies DK′/F = 2c with c as
asserted. �
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Proof of Proposition 2.1. Notice that since K ′/F is wildly ramified, we have TrK′/F (OK′) ⊆
2OF . Let’s show first that ϕ(OK) ⊇ OK′ ⊇ 2ϕ(OK). Let x ∈ OK . Using the formulas,

we see that TrK′/F (2ϕ(x)) = TrK/F (2x) ∈ OF and NK′/F (2ϕ(x)) = TrK/F (4x2)

2 ∈ OF ,

so ϕ(2x) ∈ OK′ . Conversely, if y ∈ OK′ , then NK/F ϕ
−1(y) =

TrK′/F (y2)

2 ∈ OF (since
Tr(OK′) ⊆ 2OF ), and TrK/F (ϕ−1y) = TrK′/F (y) ∈ OF . Therefore ϕ−1y ∈ OK .

Let’s show now that ϕ(OK) is an OK′-module. Take x ∈ OK and y ∈ OK′ . We want to

show that yϕ(x) ∈ ϕ(OK). We have ϕ−1(yϕ(x)) = xϕ−1y − (x − xσ)ϕ−1
(
y−yσ′

2

)
. Recall

that OK′ ⊆ ϕ(OK), so xϕ−1y ∈ OK . Moreover, y − yσ
′ ∈ DK′/F ⊆ 2OK′ . It follows that

ϕ−1(yϕ(x)) belongs to OK .
Let b = ϕ(OK) and let’s show that b2 = 1

2OK′ . Recall that for all x, y ∈ OK , we have
TrK′/F (ϕxϕy) ∈ OF . So b ⊆ b−1D−1

K′/F = 1
2c−1b−1, where c is an integral ideal prime to 2 (see

Lemma 2.2). Hence b2 ⊆ 1
2c−1, which is possible only if b2 ⊆ 1

2OK′ since OK′ ⊆ b ⊆ 1
2OK′

from the first part of the proof. Moreover, the extension K/F is tamely ramified therefore
there exists γ ∈ OK such that TrK/F γ = 1. For such a γ, we have TrK′/F (ϕ(γ)) = 1. As the
extension K ′/F is wildly ramified, this is only possible if for each prime ideal P of K ′ above
2, we have valP(ϕγ) ≤ −1. Therefore, valP(b) ≤ −1 for all P|2. Given that b2 ⊆ 1

2OK′ , we
obtain that b2 = 1

2OK′ , and this achieves the proof. �

Proposition 2.3. If a is a (fractional) ideal of OK satisfying aσ = a, then ϕ(a) is an OK′-
ideal.

If a is an ideal of OK such that aσ 6= a, then ϕ(a) is not an ideal of OK′.

Proof. The proof of the first point is similar to the one which shows that ϕ(OK) is an OK′-

module. In fact, for x ∈ a and y ∈ OK′ , we have ϕ−1(yϕ(x)) = xϕ−1y− (x−xσ)ϕ−1
(
y−yσ′

2

)
.

Moreover, both xϕ−1y and x − xσ are in a, so the conclusion comes from the fact that

ϕ−1
(
y−yσ′

2

)
∈ OK .

Let a be an ideal such that aσ 6= a and assume that ϕ(a) is an OK′-module. Notice that for

all x ∈ a and for all y ∈ OK′ , we have ϕ−1(ϕ(x)y) = xϕ−1(y)−xϕ−1
(
y−yσ′

2

)
−xσϕ−1

(
y−yσ′

2

)
.

Since xϕ−1(y) and xϕ−1
(
y−yσ′

2

)
are in a, ϕ(a) is an ideal if and only if for all x ∈ a and

for all y ∈ OK′ , we have xσϕ−1
(
y−yσ′

2

)
∈ a. This is the case if and only if the ideal I of K

generated by ϕ−1(y−y
σ′

2 ) for y ∈ O′K satisfies I ⊆ a1−σ. Given that Iσ = I, this is equivalent
to asking that I ⊆ a1−σ ∩ aσ−1. Let b = a1−σ ∩ aσ−1. Notice first that b is an integral ideal
different from OK since a 6= aσ. Let P be a prime ideal dividing b, and let p = P ∩ F . The
ideal I is generated by the elements b

√
ϑ such that b2ϑ ∈ F . By the strong approximation

theorem, there exists b ∈ F such that valp(b) = −bvalp(ϑ)
2 c and valq(b) ≥ − valq(ϑ) for all

q 6= p. Take such b and notice that valp(b2ϑ) = 0 or 1. But b2ϑ ∈ I ∩F ⊆ p, so valp(b2ϑ) = 1.
This implies that p ramifies in K and contradicts the fact that P 6= Pσ. Hence ϕ(a) is not
an ideal of OK′ , and the proposition is proved. �

In order to be complete, the case of ϕ−1(OK′) is handled in the next proposition.

Proposition 2.4. ϕ−1(OK′) is an order of K. Moreover, if b is an ideal of OK′ satisfying
b = bσ

′
, then ϕ−1(b) is a ϕ−1(OK′) fractional ideal.
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Proof. If x, y ∈ OK′ , then the formula ϕ(ϕ−1(x)ϕ−1(y)) = xy − (x−xσ′ )(y−yσ′ )
2 associated to

the fact that y ≡ yσ
′

mod 2OK′ gives that ϕ−1(OK′) is an order of K. Moreover, the same
formula (with x ∈ b and y ∈ OK′) shows that ϕ−1(b) is a ϕ−1(OK′)-ideal. �

3. Ideal lattices over totally real fields

Let K be a CM-field, let F be the maximal totally real subfield of K, and let K ′ be as in
section 2. We assume in this section that 2 does not ramify in K. Thanks to the map ϕ, and
in particular thanks to the equality (1), we can sometimes shift ideal lattices from K to K ′.
More precisely, we have the next proposition.

Proposition 3.1. If (I, α) is an ideal lattice over K such that I is an ambiguous ideal, then
(ϕ(I), α) is an ideal lattice over K ′ isomorphic to (I, α).

Actually, we have the following stronger result.

Proposition 3.2. Let (I, α) be an ideal lattice of K. If the ideal I is in the same ideal class
as an ambiguous ideal, then there is an ideal lattice over K ′ isomorphic (as a lattice) to (I, α).

Proof. If β ∈ K, then the lattices (I, α) and (βI, β−1−σα) are isomorphic, where σ denotes
the complex conjugation. �

We will now use this proposition to shift ideal lattices constructed over CM-fields on some
totally real fields. In the sequel, ζm denotes a primitive m-th root of unity, and set ηm =
ζm + ζ−1

m .
The root lattice Ap−1. For an odd prime p, this lattice is an ideal lattice over the

field Q(ζp) (see [3], §3). If P is the ideal generated by 1− ζp, then the ideal lattice (P, 1
p) is

isomorphic to Ap−1. Therefore, Proposition 3.2 asserts that the lattice Ap−1 is an ideal lattice
over the field Q(η4p). A direct construction can be obtained as follow. The ideal lattice (P, 1

p)
is isomorphic to the ideal lattice (Z[ζp], (2 − ηp)p−1). Let a be the ideal of Q(η4p) satisfying

a−2 = 2Z[η4p]. This ideal is the principal ideal generated by a = 1
2

∑p
i=0(−1)i

(
p
i

)
(ζi4p +

ζ−i4p ). Proposition 2.1 implies that the ideal lattice (a, (2−ηp)p−1) is isomorphic to Ap−1. Since
a is principal, the lattice (Z[η4p], α) is also isomorphic to Ap−1, where α = aa(2− ηp)p−1.

The root lattice E6. An ideal lattice isomorphic to E6 can be found in Q(ζ9) (see [3],
§3). Since Q(ζ9) has class number 1, Proposition 3.2 implies that there exists an ideal lattice
isomorphic to E6 in Q(η36). Actually, let P3 be a prime ideal of Q(ζ9) above 3, let P′

2 be
a prime ideal of Q(η36) above 2, and let P′

3 be a prime ideal of Q(η36) above 3. The ideal
lattice (P−4

3 , 1) is isomorphic to E6 (cf [3], §3). Moreover, the ideal P−4
3 is the principal ideal

generated by (2 − η9)−2. Therefore, ϕ(P−4
3 ) = ϕ((2 − η9)−2Z[ζ9]) = (2 − η9)−2ϕ(Z[ζ9]) =

P′−4
3 P′−1

2 . So, the ideal lattice (P′−1
2 P′−4

3 , 1) over Q(η36) is isomorphic to E6.
The root lattice E8. The lattice E8 can be realised as an ideal lattice over Q(ζ15) (see [3],

§3). Since Q(ζ15) has class number 1, this lattice can also be realised over Q(η60). Actually,
let ψ be the minimal polynomial of η15 and set α = 1

ψ′(η15)η15(ζ7
15 + ζ−7

15 ). Let P′
2 be a prime

ideal of Q(η60) above 2. The element α is totally positive and the ideal lattice (Z[ζ15], α) is
isomorphic to E8 (cf [3], §3). Therefore, the ideal lattice (P′−1

2 , α) over Q(η60) is isomorphic
to E8.
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The Coxeter-Todd lattice K12. The Coxeter-Todd lattice can be realised as an ideal
lattice over Q(ζ21) (cf [7], §4). Actually, if P7 is a prime ideal above 7, then the ideal lattice
(P−5

7 , 1) is isomorphic to the lattice K12. Let ζ = ζ21 be a primitive 21-st root of unity.
We can choose for P7 the principal ideal generated by α = 1 + ζ7 − ζ8 + ζ9. Therefore, the
ideal lattice (OK , (αα)−5) is isomorphic to K12. Let K ′ = Q(η84) and let P′

2 be a prime
ideal of OK′ above 2. We can now use the results from section 2 to see that the ideal lattice
(P′

2, (αα)−5) over Q(η84) is isomorphic to the Coxeter-Todd lattice K12.
The Leech lattice Λ24. The Leech lattice can be realised as an ideal lattice over the field

Q(ζ35). Let ψ be the minimal polynomial of ζ35 + ζ−1
35 . Set u = (ζ−3

35 + ζ3
35)(ζ

−6
35 + ζ6

35)(ζ
−9
35 +

ζ9
35)(ζ

−12
35 +ζ12

35 ) and α = u
ψ′(ζ35+ζ−1

35 )
. Then α is a totally positive element and the ideal lattice

(Z[ζ35], α) is isomorphic to the Leech lattice (see [2], §5). Therefore, if a is the ideal of Z[η140]
such that a2 = 1

2Z[η140], then Proposition 2.1 implies that the ideal lattice (a, α) over Q(η140)
is isomorphic to the Leech lattice.

4. Upper bounds for Euclidean minima

4.1. General bounds. Let F be a totally real number field, and let K, K ′ and L be as in
section 2. Set n = [K : Q] = [K ′ : Q]. Assume that K is a CM-field and assume also that
K/Q does not ramify above 2. Then we have the following bounds for the Euclidean minima.

Proposition 4.1. We have M(K ′) ≤ 2nM(K). Moreover, if ϕ(OK) is a principal ideal of
K ′, then M(K ′) ≤ 2

n
2M(K).

Lemma 4.2. Let x ∈ K. For all embeddings F ↪→ R, we have |NK/F x| ≥ |NK′/F ϕ(x)|.

Proof. Recall that a := ϕ(OK) is an ideal of OK′ satisfying a2 = 1
2OK′ . Let α be a generator

of a if this one is principal, and let α = 1
2 otherwise. Let x ∈ K ′ and set y = ϕ−1(αx).

Let a real ε > 0 be given. Choose d ∈ OK such that |NK/Q(y − d)| < M(K) + ε. Set
c = ϕ−1d. Thanks to the lemma, we have |NK′/Q(αx − c)| ≤ |NK/Q(y − d)| < M(K) + ε.
This can be rewritten as |NK′/Q(x − α−1c)| < |NK′/Q α

−1|(M(K) + ε). Since α−1c ∈ OK′ ,
and since |NK′/Q α

−1| = 2n (resp. 2
n
2 ) when a is not principal (resp. when a is principal),

this concludes the proof. �

The F -linear map ϕ can be extended to an FR-linear map ϕ̃ : KR → K ′
R. It is easily

checked that the analogue of Lemma 4.2 for x ∈ KR and for ϕ̃ remains true. Hence we get
the following proposition.

Proposition 4.3. We have M(K ′
R) ≤ 2nM(KR). Moreover, if ϕ(OK) is a principal ideal,

then M(K ′
R) ≤ 2

n
2M(KR).

Proposition 4.4. We have M(L) ≥M(K)2.

Proof. The ring of integers of L is OL = OK+
√
−1OK , since DL/K = 2OL. Let a+b

√
−1 ∈ L,

with a, b ∈ K. A straightforward computation shows that NL/F (a + b
√
−1) = NK/F (a −

b)2 +
(
TrK/F (abσ)

)2 for all a, b ∈ K. In particular, for each embedding F ↪→ R we have
NL/F (a+ b

√
−1) ≥ NK/F (a− b)2. By adding to a and to b elements of OK , we may assume

that NL/Q(a+ b
√
−1) ≤M(L) + ε. Therefore NK/F (a− b)2 ≤M(L) + ε for each ε > 0, and

this implies that M(L) ≥M(K)2. �
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4.2. Maximal totally real subfields of some cyclotomic fields. Let m > 1 be an odd
integer and let n = ϕ(m). We keep the notation of the preceding section. In particular, ζm
denotes a primitive m-th root of unity and ηm = ζm+ζ−1

m . We will apply the results of section
2 to get the upper bound M(K ′) ≤ 2−n

√
dK′ for the totally real field K ′ = Q(η4m).

Let K = Q(ζm). The field K ′ associated to K by section 2 is the field K ′ = Q(η4m).

Proposition 4.5. We have M(K ′
R) ≤ 2−n

√
dK′.

Proof. Let n = [K : Q] = [K ′ : Q]. Following [6] §9, we have τ(Z[ζm], 1) ≤ n
4 . Therefore,

we can apply Proposition 3.1 to get that τ(b, 1) ≤ n
4 , where b = ϕ(Z[ζm]) is an OK′-ideal

satisfying b2 = 1
2Z[η4m]. Recall that the map from the class group of Q(η4m) to the class

group of Q(ζ4m) which maps a class [a] to the class [aZ[ζ4m]] is injective (cf [14], Theorem
4.14). Therefore, b is a principal ideal since bZ[ζ4m] is the principal ideal generated by 1+

√
−1

2 .
As b is principal, we have τmin(b) = τmin(OK′), and so τmin(OK′) ≤ n

4 . Hence Corollary 1.3
implies that M(K ′

R) ≤ 2−n
√
dK′ . �

Alternative proof. Since ϕ(Z[ζm]) is principal in Z[η4m], we can apply Proposition 4.3 to get
M(K ′

R) ≤ 2
n
2M(KR). Following [6] §10, the euclidean minimum of K satisfies M(KR) ≤

2−n
√
dK . The conclusion follows then from the equality

√
dK′ = 2

n
2
√
dK . �
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