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Introdution généraleContexte de l'étudeDes obstales d'éoulement de type diaphragmes (vanne, robinet, ...) sont présents dans les tuyauxde entrales nuléaires d'EDF, a�n de ontr�ler ou mesurer le débit sur une ligne. Sous de fortsdébits d'éoulement, ette perturbation de l'éoulement peut engendrer un bruit important, d'origineaéroaoustique, 'est à dire non pas engendré par les vibrations des strutures, mais par les �utuationsinhomogènes instationnaires qui se développent dans les régions de fortes turbulenes en aval prohede l'obstale.Ces bruits peuvent être de plusieurs types:
• dans tous les as, un bruit de turbulene apparaît, prenant naissane dans la région de fortesturbulenes résultant de la déstabilisation de l'éoulement par l'organe en aval prohe dudiaphragme;
• en éoulement d'eau, un bruit de avitation peut être observé. Il orrespond à l'implosion de bullesde vapeur et d'air, issues de la vaporisation du liquide dans les zones de fortes �utuations loalesde pression, en aval prohe du diaphragme. Ce phénomène de avitation intervient lorsque lesonditions hydrauliques sont partiulièrement fortes, 'est à dire lorsque la di�érene de pressionstatique de part et d'autre du diaphragme est partiulièrement importante (dizaines de bar);
• dans ertains onditions, des sons de si�ement peuvent être observés, en eau ou en air, et enonditions de fontionnement industrielle à EDF. Le si�ement orrespond à l'auto-entretien ('està dire, entretien par l'éoulement lui-même) d'une ampli�ation d'une �utuation aoustiqueau niveau de la ouhe isaillée qui se forme par ontration de l'éoulement au passage dudiaphragme, auto-entretenue.Au sein d'EDF R&D, es bruits aéro-aoustiques sont étudiés a�n de limiter, d'une part, la fatiguevibratoire des tuyaux, et d'autre part, le bruit engendré dans les installations et à l'extérieur desinstallations. Les bruits les plus noifs de e point de vue sont les bruits de avitation et de si�ement.Ainsi, des études sont menées à EDF R&D sur le bruit ausé par des singularités d'éoulement enonduit. Les travaux de la présente thèse s'insrivent dans e adre.Cadre de l'étudeL'objetif de e travail est de mieux omprendre les méanismes de génération de bruit par lessingularités en onduit sous éoulement. Nous avons étudié prinipalement le bruit de si�ement1



2 Introdution générale(hapitres 1 à 5). Des analyses approfondies de bruits de avitation ont été également e�etuées(hapitre 4).La on�guration d'étude est un tuyau droit sous éoulement uniforme et stationnaire, passant autravers d'une singularité d'éoulement. Les onditions d'éoulement étudiées sont les suivantes:
• l'éoulement est turbulent, ave un nombre de Reynolds dans le tuyau de l'ordre de 104 à 105;
• l'éoulement est subsonique, ave un nombre de Mah dans le tuyau de l'ordre de 10−3 en eau,et 10−2 en air.Les singularités d'éoulement étudiées sont majoritairement les diaphragmes irulaires entrés et�ns (hapitre 1). Nous avons également étudié des diaphragmes multitrou (hapitre 4) et des fentes(hapitre 1).Les vibrations de strutures sont négligées dans ette étude.Plan de l'étudeRappelsLe phénomène de si�ement est une auto-osillation entretenue par un phénomène de rétroation. Cetteauto-osillation résulte de l'ampli�ation d'une instabilité de type Kelvin-Helmholtz, 'est à dire uneinstabilité d'une ouhe de isaillement formée par déollement de l'éoulement, apparaissant en avalimmédiat du diaphragme. Cette instabilité est aratéristique du jet qui se forme par ontration del'éoulement au niveau du diaphragme. On parle de fréquene d'instabilité de ouhe de isaillement.Chapitre 1L'idée du hapitre 1 est de tester expérimentalement un ritère de prédition des fréquenes d'instabilitéd'une singularité sous éoulement. Ce ritère est proposé par Aurégan & Starobinsky (1999), et nousappliquons en propagation d'ondes planes dans les tuyaux.Ce ritère est un bilan de puissane aoustique global e�etué de part et d'autre du diaphragme.Il repose sur la représentation en matrie de di�usion du omportement aoustique du diaphragmesoumis à des ondes planes inidentes. C'est l'hypothèse d'un omportement aoustique linéaire dudiaphragme. Les fréquenes d'instabilité de e ritère sont omparées, également par nos mesures,à des fréquenes de si�ement e�etivement observées. Ainsi, le ritère peut être validé et permetd'obtenir des fréquenes potentielles de si�ement d'une singularité sous éoulement.Pour ela, nous utilisons la boule de mesure du LAUM (Laboratoire d'Aoustique de l'Universitédu Maine, Le Mans) en air. La validation de ette boule de mesure a été e�etuée préédemment (f.thèse de Grégoire Ajello, 1997)) et a montré que les données aoustiques obtenues sous éoulementonstant sont parmi les plus préises atuellement (au moins dans la gamme de fréquene 30-800 Hz).Les géométries les plus simples sont testées pour ommener ette étude: des diaphragmes monotrou,irulaires entrés, et �ns. D'autres singularités sont testées par la suite, dans une plus faible mesure:diaphragmes biseautés, fentes.



Introdution générale 3Chapitres 2 et 3Le travail expérimental mené au hapitre 1 apporte des données quantitatives sur le si�ement, mais abesoin d'être enrihi, et 'est l'objet des hapitres 2 et 3. En e�et, le ritère étudié dans le hapitre 1 seplae assez loin du diaphragme, et ne permet pas de omprendre e qui se passe loalement, au niveaude la zone de développement de l'instabilité. C'est l'objet d'une étude d'une on�guration préise,une expansion si�ante, onstituée par un diaphragme biseauté en aval suivi d'un double élargissementbrusque. Un alul numérique est ainsi développé pour simuler le omportement aéroaoustique deette on�guration, pour mieux omprendre le phénomène d'instabilité et l'importane de la zoned'ampli�ation. L'objetif est d'obtenir la matrie de di�usion de ette singularité, a�n de pouvoirappliquer le ritère de si�ement et le omparer aux résultats expérimentaux. L'objetif est aussi enomplément d'obtenir une visualisation des hamps aoustiques dans la on�guration, pour mieuxomprendre e qu'il s'y passe.La première étape dans le alul numérique est de valider la méthode multimodale. Cela est e�etuéen appliquant le alul à un élargissement brusque. C'est l'objet du hapitre 2. Les résultats obtenussont omparés aux données expérimentales (Ronneberger) et numériques (Boij) de la littérature. Cetteétape permet d'étudier et de valider ette méthode sur une on�guration simple.Le hapitre 3 présente l'appliation de la méthode multimodale à une on�guration de diaphragmesi�ante. Les résultats obtenus sont omparés aux données expérimentales que nous avons mesuréespour ette on�guration. L'analyse des résultats permet de mieux omprendre l'importane de lazone d'ampli�ation, et notamment l'évolution de la fréquene d'instabilité en fontion des paramètresgéométriques de ette zone.Le développement d'un ritère d'instabilité, suivi d'une ompréhension plus �ne du méanismed'instabilité, forme une base ohérente permettant de mieux appréhender le phénomène de si�ementde diaphragme en onduit. En pratique, d'autres problèmes se posent et nous avons omplété etteétude par deux études supplémentaires, onstituées par les hapitres 4 et 5.Chapitre 4En eau, le phénomène de si�ement peut apparaître en présene de avitation, omme ela est observépar des mesures industrielles. Il est intéressant de onfronter les résultats obtenus en air au hapitre 1ave es si�ements obtenus en ondition industrielle en eau. C'est l'objet du hapitre 4.Pour ela, nous analysons des expérienes préédemment menées à EDF, sur des diaphragmesmonotrou et multitrou. Les onditions de débit et de pression sont typiques du régime de fontion-nement de entrale nuléaire (nombre de Reynolds de l'ordre de 105). Les spetres de bruit obtenusdans es onditions de avitation sont aussi analysés.Chapitre 5Les phénomènes de si�ement sont liés à des résonanes de onduit, et la prise en ompte de laorretion de longueur pour un diaphragme sous éoulement permet d'a�ner le alul de es fréquenesde résonane. C'est l'objet du hapitre 5 d'étudier e modèle de orretion de longueur.Nous étudions le modèle de orretion de longueur sur des diaphragmes et des élargissementsbrusques. Nous utilisons les données expérimentales présentées au premier hapitre sur les diaphragmes,



4 Introdution généraleet nous utilisons la méthode numérique présentée aux hapitres 2 et 3, sur un élargissement brusque.Les données obtenues sont omparées aux données disponibles dans la littérature, onernant leomportement aoustique des diaphragmes sans éoulement et le omportement aéro-aoustique desterminaisons de tuyau.L'objetif de ette étude est de véri�er, dans le as sans éoulement, la validation des résultats dela littérature ave nos données expérimentales et théoriques, et d'autre part, de présenter nos donnéesexpérimentales ave éoulement, données qui sont rares dans la littérature.Nota BeneLes hapitres ont été rédigés en anglais par ommodité pour la ollaboration ave les étudiants del'Université Tehnique d'Eindhoven (hapitre 2 et 3), et dans l'optique de la rédation de publiationdans une revue internationale (hapitre 1).CollaborationsCette thèse est une ollaboration entre, d'une part, le Laboratoire d'Aoustique de l'Université duMaine (LAUM, UMR CNRS 6613) au Mans, et l'entreprise EDF. La diretion de la thèse a été assuréepar Yves Aurégan du LAUM.Le thésard a e�etué sa thèse au sein d'EDF R&D (Clamart), dans le Département AMA, groupeT63: `Aoustique, vibrations sous éoulement et dynamique des mahines', et dans le Laboratoire deMéanique des Strutures Industrielles Durables (LaMSID, UMR CNRS 2832).De plus, une ollaboration a été entretenue tout au long de la thèse ave Mio Hirshberg del'Université Tehnique d'Eindhoven (Pays-Bas). Nous avons également pu y disuter de la méthodemultimodale ave Gerben Koojmann (thésard).



Chapter 1Experimental study of a whistlingriterion for singularities in air pipe �ow
1.1 Introdution1.1.1 MotivationsWhistling is sometimes observed in piping systems of nulear plants, in dut with water (see the studyof whistling ori�es in water at hapter �ve). It may drive pipe vibrations, and thus an damage thestruture. The study of whistling provides information to understand the phenomenon, to predit itsourrene, and to design safe ori�es and other singularities.The present experimental work is arried out in air, as it is expeted that the whistling phenomenonis similar in air and in water (hypothesis that we evaluate in this work). The main di�erenesshould be the ourrene of avitation and a stronger oupling with the pipe walls (due to the higherompressibility) in water.
1.1.2 AbstratAn experimental study on the aousti response of single-hole ori�es under onstant �ow is presented,assuming plane wave propagation in the duts. An energeti riterion derived by Aurégan andStarobinsky (1999) is used to predit, from the measured sattering matrix, the onditions underwhih whistling ould our. The idea is to apply an energeti aousti balane from both sides ofthe singularity to detet the so-alled potentially whistling frequenies for whih there is produtionof aousti power by the singularity. Results obtained are ompared with experimental data fromliterature (Anderson), and from other experiments at EDF in water (presented in hapter 4).5



6 1 Experimental study of a whistling riterion for singularities in air pipe �ow1.2 Bibliography introdution to self-sustained osillations in on-�ned �ow1.2.1 AeroaoustisAoustis is the study of sound: its generation, transmission and reeption. Aeroaoustis is a branhof aoustis: it is the study of the sound generated in a �uid �ow, when interating with a solid surfaeor with another �ow. It is a relatively young disipline, onsidered as born in the 1950's after Lighthill'swork.The fundamental issue of aeroaoustis is that the noise is onstituted of aousti �utuations whihhave amplitudes ompared to the main �ow pressure and veloities, whih is itself quite di�ult to knowas �uid mehanis equations are not solvable in a general ase. No omplete theory of the generation ofnoise by aerodynami �ows has yet prevailed until now. However, the so-alled aeroaousti analogiesare an e�ient way to study most pratial aeroaousti issues. An analogy onsists in writing theaousti equations under some assumptions, in a form similar to the wave equation of lassial aoustis,so that propagation terms and soure terms an be unambiguously identi�ed.In theory, an in�nite number of analogies an exist, but by far the most ommon and widely usedis Lighthill's aeroaousti analogy, �rst proposed by James Lighthill (1952) when noise generationassoiated with the jet engine was beginning to be plaed under sienti� srutiny. This theory isonsequently partiularly adapted to study the noise generated by a turbulent �ow. It assumes thatthe sound is produed by the instationary inhomogeneities of the �utuations in the �ow, that is, theloal �utuations in spae and time of the �ow. In other terms, the quiesent �ow is taken as thereferene �ow, where no sound is reated.In this work, we are onerned with a partiular noise, di�erent from a purely turbulent one:the whistling, assoiated with self-sustained osillations. This is an exoti phenomenon, enounteredsometimes in everyday life (human whistling, whistler), but also in dut �ow of nulear plants.1.2.2 Plane-wave propagation in dut with uniform mean �owWe present brie�y the equations desribing the aousti propagation in the plane wave approximationfor an isentropi and onstant mean �ow. More details an be found in Rienstra and Hirshberg (2003),Ajello (1997), Davies (1988), Piere (1981).First, we suppose the mean �ow to be uniform, of Mah number M0 = U0

c0
ex, where U0 is the�ow veloity, ex is the unitary vetor in the diretion of the dut and orientated in the �ow way (seeFig. 1.2), and c0 is the speed of sound in the �uid.Seond, we neglet any viso-thermal dissipation e�ets.To determine the aousti propagation, the aousti variables are de�ned as �rst order of the total�uid mehanis variables, and denoted ρ′ (aousti volume density), p′ (aousti pressure), u′ (aoustiveloity). Hene equations of propagation for the aousti �eld are given by the �rst order of �uidmehanis equations applied to the total �ow:

• the aousti mass onservation equation:
D0ρ

′

Dt
= −ρ0div(u

′); (1.1)



1.2 Bibliography introdution to self-sustained osillations in on�ned �ow 7
• the aousti momentum onservation equation:

ρ0
D0u

′

Dt
= −gradp′; (1.2)

• the �uid onstitutive law:
c20 =

p′

ρ′
, (1.3)where D0/Dt = ∂/∂t+ U0.grad is a spei� onvetive derivative. It is used onveniently due to theassumptions of the mean �ow: uniform, inompressible and stationary (so that the terms grad(U0),

div(U0) and ∂U0/∂t vanish in the �rst order equations).The ombination of those previous equations gives the general equation of aousti propagation.Written for the aousti pressure, it takes the form:
△p′ − 1

c20

D2
0p

′

Dt2
= 0, (1.4)ompleted by a boundary equation, suh as the rigidity of the dut walls.The solutions of this equation are found by looking for harmoni solutions at the pulsation frequeny

ω. A denumerable set of solutions is obtained, and alled modes. This set of modes represents a basisin the spae of solutions. The modes are either propagative either evanesent. In partiular, below theso-alled ut-o� frequeny of the dut, only the �rst mode propagates, while the other are evanesent.This �rst mode is the plane wave mode. For this mode, the aousti variables are only funtion of xand ω and satisfy the propagation equation (this writing is partiular to a uniform, inompressible,stationary mean �ow):
[

(1 −M0)
∂

∂x
− jk0

] [

(1 +M0)
∂

∂x
+ jk0

]

p′ = 0, (1.5)with k0 = ω/c0 the wave number in a quiesent �uid.The solution of this equation is onstituted by two plane waves, so that the aousti pressure p′ inthe dut is the sum of the two plane waves: p′ = P+ + P−, with:
• a downstream propagating wave P+:

P+ = P+(0)ej(ωt−k+x), (1.6)where k+ = k0/(1 +M0) is the downward wave number under onstant �ow M0;
• an upstream propagating wave P−:

P− = P−(0)ej(ωt+k−x), (1.7)where k− = k0/(1 −M0) is the upward wave number under onstant �ow M0.



8 1 Experimental study of a whistling riterion for singularities in air pipe �ow1.2.3 Self-sustained osillations1.2.3.1 The physial mehanism of self-sustained osillations: feedbak loopThis setion is a brief presentation of self-sustained osillations. It follows literature, and partiularlyAurégan et al. (2002), Rienstra and Hirshberg (2003), Billon (2003).Self-sustained osillations di�er from turbulene osillations as they generate very spei� sounds,like whistling sound, haraterized by a high intensity and a spetrum with disrete frequenies (thatis the whistling frequeny and harmonis).The term used 'self' signi�es that these osillations our without imposing any external fore.They our spontaneously in the �ow, but under quite partiular onditions. These onditions are thefollowing, and are illustrated in Fig. 1.1:

Figure 1.1: Mehanism of self-sustained osillations with aousti feedbak (from Rienstra andHirshberg (2003)).
• the presene of a loalized region of the �ow very sensitive to small �utuations so as to be ableto amplify those �utuations. The main �ow and the �utuations are strongly oupled, an energytransfer from the main �ow to the �utuations ours. In many ases (and in partiular in thisstudy), this region is an unstable shear layer, oming from a separation point of the �ow, suhas the one of a jet or a wake. The instability is a Kelvin-Helmholtz type one (Drazin and Reid,1981);
• far away from this loalized region of ampli�ation, the �utuations, whih have been propagated,have to be su�iently re�eted at some point. The re�etion an ome either from an obstale ofthe �ow (hene produing an hydrodynami feedbak), either from an aousti re�etion (aoustifeedbak). Thus, an important part of the �utuations is redireted towards the ampli�ationregion;
• in the region of ampli�ation, the phase of the re�eted �utuations has to be idential to theone of the newly rising �utuations. Thus, the amplitude of the �utuations rises in eah loop.This linear desription gives theoretially in�nite amplitude of the �utuations. Atually, asaturation amplitude is reahed, stabilizing the amplitude of the �utuations (an in�nite amplitudewould orrespond to an in�nite aousti energy, whih ontradits the priniple of onservation ofenergy).



1.2 Bibliography introdution to self-sustained osillations in on�ned �ow 9The feedbak haraterizes the self-sustained osillations. Two main types of feedbak are di�eren-tiated: (Rienstra and Hirshberg, 2003):
• hydrodynami feedbak: the feedbak is reated by an inompressible �ow due to the preseneof an obstale (for instane, the phenomenon of edge tone, hole tone, ...) ;
• aousti feedbak: the feedbak is reated by an aousti re�etion (for instane, a side branhin a pipe, a sudden enlargement, or an open pipe termination). This is the ase studied in thiswork.The whistling assoiated with hydrodynami feedbak is the most extensively disussed in literature(Blake and Powell, 1986; Rokwell, 1983). In partiular, edge tone whistling onstituted by a jetimpating an edge.On the ontrary, there are few referenes quantitatively desribing whistling of an ori�e withaousti feedbak. The phenomenon is well desribed in overviews (Blake, 1986; Rienstra andHirshberg, 2003) but quantitative studies are sare. The only referene found is Anderson papers(Anderson, 1952, 1953, 1953b, 1954, 1955, 1955b, 1956), whih deals with the whistling of ori�e in apipe with a jet termination (that is, an open air exit after the ori�e). In our on�guration, that is thewhistling of a thin ori�e in a on�ned dut with aousti feedbak, no studies have been found.1.2.3.2 The linear assumption when studying self-sustained osillationsWe want to insist here on the neessary distintion to be made between the instability frequeny, andthe whistling frequeny. This distintion is made throughout this hapter.The proess of ampli�ation is a linear one. The most unstable 'Kelvin-Helmholtz type' frequenyof the shear layer is ampli�ed exponentially due to this linear ampli�ation. We an all this frequenythe frequeny of osillation.The proess of saturation is a non-linear phenomenon. It is not modelled, and very little is knownabout this phenomenon. All we an say is that the frequeny of osillation an be theoretially subjetedto a shift in the saturation proess: the resulting frequeny obtained, that we an all the whistlingfrequeny, has to be di�erentiated from the osillation frequeny.Hene the frequeny for whih the instability begins to growth, that is, the frequeny of osillation,and the frequeny for whih the ampli�ation proess saturates, that is, the whistling frequeny, aretheoretially di�erent frequenies. They should be distinguished (Sarpkaya, 2004), as the whistlingfrequeny omes from a non-linear saturation proess: a shift in the frequeny may arise during thisnon-linear saturation. The fundamental assumption adopted usually is that those two frequeniesoinide, or at least are lose. This is a very pratial assumption, as it allows studying the whistlingfrequeny with a linear theory of ampli�ation.In our work, the two frequenies are naturally di�erentiated: our potentially whistling frequenyorresponds to the frequeny of osillation, and we show that when using re�eting onditions in thedut, the observed whistling frequenies are lose to this potentially whistling frequeny.1.2.3.3 Theory for self-sustained osillations: vortex soundThe analogy of Lighthill is not suited to the study of sound generated by self-sustained osillations,as it assumes no retroative e�et of the aousti perturbations on the main �ow. Another analogy is



10 1 Experimental study of a whistling riterion for singularities in air pipe �owused e�iently: the `vortex sound theory'. It omes from the pioneer work of Powell (1964), and itslatter generalization by Howe (1975).In this approah, we all vorties all points where the vortex vetor ω = rot(v) (where v is the �owveloity) is non-vanishing. The �nding is that a vortex is assoiated to a soure of sound, of a dipoletype (produed by an external fore), whih is e�ient (energy transfer from the �ow to the aousti�ow) when the aousti veloity is non-vanishing at this point. This has been a major advane in thedomain, as using this theory, the problem is no more a dynami one but beomes a kinemati one:how do vorties evolve (in non-visous �ow, the irulation of vorties is onserved).The work of Howe gives an understanding of the reation/dissipation of aousti energy by the �ow.It assumes low Mah number, high Reynolds number and isentropi �ow. The analogy deomposesthe mean �ow veloity v into irrotational and inompressible parts:
v = grad(φ) + rot(ψ). (1.8)The aousti veloity is de�ned as the non-stationary part of the irrotational part of the mean �ow:

vac = grad(φ′). (1.9)The power P generated by the vortiity �eld ω(x, t) (x is the position vetor) in the �ow �eld v(x, t)and the aousti �eld vac(x, t) is then given by:
P = −ρ0

∫

T

[∫∫∫

V
[ω(x, t) ∧ v(x, t)] .vac(x, t) dx

]

dt, (1.10)where ρ0 is the average �uid density, V is a volume of non-vanishing ω(x, t), and T is an aoustiperiod.As an appliation, the ase of the shedding of vorties by an ori�e is onsidered. At the point ofloation of the developed vortex, just downstream of the ori�e, the �ow vetor is assumed to be inthe longitudinal �ow diretion, hene the vetorial produt ω ∧ v is in the transverse diretion. Itappears that the quantity (ω ∧ v) .vac depends on the transverse omponent of the aousti veloity.Consequently, this model enhanes the importane of the transverse aousti veloity in the powergenerated by the vortiity �eld in the aousti �eld.



1.3 Presentation of the whistling riterion 111.3 Presentation of the whistling riterionThis setion presents the idea of Aurégan and Starobinsky (1999) to detet potentially whistlingfrequenies for singularities in on�ned �ow. This theory is applied to our on�guration of study:an ori�e in pipe �ow with plane wave propagation.1.3.1 Con�guration of study: a singularity in straight pipe under onstant �owThe on�guration of study is presented in Fig. 1.2: a singularity plaed in a straight rigid pipe andsubjeted to a onstant �ow of Mah number M0 is onsidered. Plane wave propagation is assumed.The singularity is an obstale of the �ow, dissipating hydrauli energy and hene reating a statipressure drop aross the ori�e. It an be of any forms, but single-hole ori�es, multi-hole ori�es andvalves are the most ommon ones in piping systems of nulear power plants.Two regions are di�erentiated (see Fig. 1.4): the �rst one orresponds to the upstream of the ori�e(subsript 1), and the seond to the downstream of the ori�e (subsript 2), so that we use the followingnotation for the aousti pressure:upstream: p′1(x, ω) = P+
1 e

j(ωt−k+x) + P−
1 e

j(ωt+k−x), (1.11)downstream: p′2(x, ω) = P+
2 e

j(ωt−k+x) + P−
2 e

j(ωt+k−x). (1.12)

Figure 1.2: Con�guration studied: singularity in a onstant uniform pipe �ow M0.1.3.2 Elaboration of the whistling riterionThe fundamental idea to haraterize the whistling of the singularity is to apply an aousti energybalane in a region of study enlosing the soure region. The aousti power going out of the regionis denoted Pout, and the aousti power going in the region is denoted Pin. When whistling ours,aousti energy is produed in the soure region:
Pout > Pin. (1.13)This is a neessary ondition for whistling, whih we use as a riterion to detet whistling.At that point, the energy balane an be elaborated. The important point is that, in uniform �ow,the de�nition of the aousti energy is non-equivoal, as demonstrated by Morfey (1971): it satis�es



12 1 Experimental study of a whistling riterion for singularities in air pipe �owthe linearized equations of mass, momentum and energy onservation as well as the standard energyonservation form. In instantaneous form, it is written:
∂E

∂t
+ ∇.I = −D, (1.14)where E is the density of aousti energy, I the intensity �ux of aousti energy and D the rate ofaousti energy dissipation per unit volume.To express those quantities, the variables of the aousti mass veloity m' and the aousti totalenthalpy Π′ are introdued. They are onvenient variables when in presene of �ow. They are de�nedas (Morfey, 1971):

m′ = ρ0 v′ +
p′

c0
M0, (1.15)

Π′ =
p′

ρ0
+ c0 v′ M0, (1.16)where v′ is the aousti veloity, ρ′ the aousti density. One should note that the variables (ρ0Π

′,
m′/ρ0) are similar to (p′,v′) without �ow. In our on�guration of a uniform �ow, these quantitiesfrom both sides of the singularity get simple expressions (i = 1 for upstream, i = 2 for downstream):

m′
i =

1

c0

(
Π+

i − Π−
i

)
, (1.17)

Π′
i =

1

ρ0

(
Π+

i + Π−
i

)
, (1.18)with:

Π+
i = (1 +M0)P

+
i , (1.19)

Π−
i = (1 −M0)P

−
i . (1.20)One should note that the terminology `aousti total enthalpy' refers to aousti exergy multiplied bythe density of the �uid: Π′ = ρ0B

′ where B′ is the aousti total enthalpy de�ned as B′ = p′/ρ0 +U0u
′(Rienstra and Hirshberg, 2003), negleting the variation of entropy (hene total enthalpy and exergyare the same).With these notations, the density of aousti energy is realled to be:

E =
1

2

(
v′m′ + ρ′Π′

)
, (1.21)and the intensity �ux of aousti energy, I, whih will be used in the following, is given by:

I = Π′ m′. (1.22)In integral form, using the ontrol volume de�ned previously, of volume V , enlosed by a surfae
S and with outer normal vetor n, and applying the theorem of Gauss to transform the intensity �uxexpression, we get:

∂

∂t

∫∫∫

V
E +

∫∫

S
I.n = −

∫∫∫

V
D. (1.23)



1.3 Presentation of the whistling riterion 13In time average, as we onsider aousti �elds, the average of the density of aousti energy < E >is onstant on an aousti period, hene we get:
P =

∫∫

S
< I.n >= −

∫∫∫

V
< D >, (1.24)de�ning P as the total aousti power going through the surfae S and the time average:

< X >= lim
T→+∞

1

T

∫ T

t=0
X. (1.25)In plane-wave propagation, the aousti intensity �ux on a given surfae an be deomposed in 2terms: one orresponding to a propagation of the �ux downstream I+, the other one orresponding toa propagation of the �ux upstream I−.Also, the total surfae S is made of 2 terms: the surfae upstream, and the surfae downstream S2(see Fig.1.3). We an hene de�ne the time-averaged aousti power going out of the ontrol volume,denoted Pout, and the time-averaged aousti power going in the ontrol volume, denoted Pin:

Pin =

∫∫

S1

< I+.n > +

∫∫

S2

< I−.n >, (1.26)
Pout =

∫∫

S1

< I−.n > +

∫∫

S2

< I+.n > . (1.27)The appliation of the idea of the whistling riterion gives:
• if Pout < Pin: the aousti power going out of the singularity is a fration of the aousti powerinident on the singularity. The singularity dissipates a part of the inident aousti energy;
• if Pout = Pin: the aousti power going out of the singularity is equal to the aousti powerinident on the singularity. This ase is obtained when there is no energy exhange between the�ow and the aousti �utuations;
• if Pout > Pin: the aousti power going out of the singularity is higher than the aoustipower inident on the singularity. The singularity produes aousti energy. This produtionorresponds to a onversion of the aerodynami energy into an aousti energy in the shear layersformed just downstream of the singularity.1.3.3 Formulation of the whistling equations1.3.3.1 In�uene of the singularity: the sattering matrixAssumptions for the model of the sattering matrixA so-alled sattering matrix desribes the aousti in�uene of the singularity. The following as-sumptions are made to use this model.Firstly, the singularity is assumed to be aoustially ompat: the harateristi length of thesingularity is far smaller than the wavelength. In this assumption, the �ow through the singularity anbe onsidered as loally inompressible.



14 1 Experimental study of a whistling riterion for singularities in air pipe �owSeondly, a ontrol volume is de�ned, enlosing the singularity. The boundaries of this ontrolvolume are hosen suh that upstream and downstream of its boundaries the �ow is uniform, asillustrated in Fig. 1.3.The aousti behaviour, inside and outside this volume, is desribed as the following:
Figure 1.3: De�nition of the ontrol volume to apply the energy balane.

• outside the volume: plane-wave propagation is assumed;
• inside the volume: an inompressible �ow behaviour is assumed. The ontrol volume ats as adisontinuity for the far �eld (see Fig. 1.4). A linear aousti behaviour is assumed in the ontrolvolume, so that the outgoing plane waves P−

1 and P+
2 are linked to the inoming plane waves

P+
1 and P−

2 by the sattering matrix at x = 0.

Figure 1.4: The aousti sattering matrix of the singularity under onstant pipe �ow M0.The sattering matrix in terms of pressure (measured)In the linear approximation, anehoi aousti re�etion oe�ients R+, R− and transmission o-e�ients T+, T− desribe ompletely this sattering proess representing the aousti in�uene of thesingularity. It an be onveniently written in a 2x2 matrix system:
(

P+
2

P−
1

)

=

(

T+ R−

R+ T−

)(

P+
1

P−
2

)

, (1.28)



1.3 Presentation of the whistling riterion 15taking the phase origin at x = 0.The matrix is alled the sattering matrix, and noted S:S =

(

T+ R−

R+ T−

)

. (1.29)This is a 2x2 omplex matrix haraterizing the aousti in�uene of the singularity in terms ofpressure. It depends only on the singularity, on the �ow M0 and on the pulsation frequeny ω. It doesnot depend on the aousti boundary onditions upstream and downstream of the singularity, as longas a linear behaviour prevails.Similarly to this de�nition, a sattering matrix in terms of enthalpy is introdued, in order to presentthe whistling riterion.The sattering matrix in terms of total enthalpyIn order to determine the aousti energy of the plane waves, formulation into total enthalpy wavesrather than pressure waves has to be used. Indeed, the time-averaged aousti intensity �ux is funtionof the amplitude of the aousti total enthalpy waves, in a dut setion (i=1 for upstream, i=2 fordownstream), following Morfey (1971); Doak (1995); Aurégan and Starobinsky (1999):
< Ii >=

1

ρ0c0

(
Π+ 2

i − Π− 2
i

)
ex, (1.30)where ρ0 is the density of air and ex the unitary vetor in the diretion of the �ow (see Fig.1.4).The sattering proess, formulated previously in pressure waves (Eq. 1.28), is then formulatedsimilarly in terms of total enthalpy waves:

(

Π+
2

Π−
1

)

=

(

T+
e R−

e

R+
e T−

e

)(

Π+
1

Π−
2

)

. (1.31)The matrix Se is the sattering matrix for enthalpy waves:Se =

(

T+
e R−

e

R+
e T−

e

)

. (1.32)The oe�ients of the sattering enthalpy matrix Se are simply determined from the oe�ients of themeasured sattering pressure matrix S by:
T+e = T+, T−e = T−, (1.33)

R+e =
1 −M0

1 +M0
R+, R−e =

1 +M0

1 −M0
R−. (1.34)1.3.3.2 The aousti energy balane aross the singularityIn this setion, the aousti energy balane aross the singularity is made using the sattering matrixin terms of enthalpy.



16 1 Experimental study of a whistling riterion for singularities in air pipe �owFollowing Morfey (1971), the expression of the time-averaged aousti power in presene of uniform�ow is, in a dut setion (i=1 for upstream, i=2 for downstream):
Pi = Sp < Ii > . ex. (1.35)If the inoming enthalpy waves and outgoing enthalpy waves are written in a olumn vetor:

Πin =

(

Π+
1

Π−
2

)

, Πout =

(

Π+
2

Π−
1

)

, (1.36)then the aousti powers going in and out of the singularity are funtion of their respetive wave vetorand take the form (Aurégan and Starobinsky, 1999):
Pin = Sp ||Πin||2 , Pout = Sp ||Πout||2 , (1.37)where Sp is the pipe ross-setion, and ||Πin||2 = (Πin,Πin) is the square of the norm, de�ningthe salar produt (X,Y) =T XY , the notation T standing for the Hermitian transpose (omplexonjugate transpose). One should note that, by de�nition, those aousti power are always positive.The sattering matrix in terms of total enthalpy (see Eq. 1.31) is used to link the inoming andoutgoing energies. As:

Πout = Se Πin, (1.38)the aousti power going out of the ori�e is only funtion of the inoming waves vetor Πin:
Pout = Sp

TΠin
TSeSeΠin. (1.39)To apply the whistling riterion idea, the sign of the aousti energy dissipated by the singularity

Pin − Pout has to be determined:
Pin − Pout = Sp

TΠin(Id −T SeSe)Πin, (1.40)where Id is the identity matrix.The hermitian 2x2 matrix Id−T SeSe is self-adjoint. Hene it is diagonalizable with real eigenvalues
ξmin and ξmax, sorted so that ξmin ≤ ξmax, assoiated with orthonormalized eigenvetors Πmin and
Πmax. It is worth noting that the appliation of an algebra theorem (see for instane Lang (2004)),beause the eigenvalues of TSeSe are positive or null, the eigenvalues of Id −T SeSe are inferior tounity: ξi ≤ 1. This is the mathematial onsequene of the physial fat that the aousti powers arede�ned positive.In the basis (Πmin,Πmax) of the eigenvetors, the aousti dissipated power, seen as a quadratiform funtion of Πin, takes the expression:

Pin − Pout = ξmin |(Πin,Πmin)|2 + ξmax |(Πin,Πmax)|2 . (1.41)The minimum and maximum of this quadrati form are obtained for Πin = Πmin and Πin = Πmax,so that:
ξmin =

Πin

min

(Pin − Pout

Pin

)

, ξmax =
Πin

max

(Pin − Pout

Pin

)

. (1.42)



1.3 Presentation of the whistling riterion 17Consequently the eigenvalues give a braket of the non-dimensional aousti power (Pin − Pout)/Pindissipated by the singularity:
ξmin ≤ Pin −Pout

Pin
≤ ξmax. (1.43)The sign of the minimum eigenvalue determines the whistling riterion:

• if ξmin ≥ 0 ⇒ Pout ≤ Pin, for any Piin:the singularity dissipates the inoming aousti energy, whatever the inoming waves. Thesingularity an not whistle at that frequeny, whatever the re�etions outside of this system;
• if ξmin < 0 ⇒ Pout > Pin, for some Πin:there exists some ouples of inident total enthalpy waves for whih the aousti power goingout of the singularity is larger than the inoming aousti power. For those inident waves, thesingularity is potentially produing aousti energy. It is onsequently prone to whistle at thatfrequeny, depending on the aousti boundary onditions.1.3.3.3 Models for the sattering matrix oe�ientsA simple models is used to determine the sattering matrix oe�ients, assuming an inompressibleand quasi-stationary behaviour. It is experimentally evaluated in setion 1.5.2.1.An inompressible and quasi-stationary model is introdued (see sheme in Fig. 1.5). It is a lassialmodel, desribed in details in Ajello (1997); Hofmans (1998); Hofmans et al. (2000); Durrieu et al.(2001). Two regions are distinguished: the �rst one inludes the region upstream of the turbulentmixing region (also alled vena ontrata) where the linearized Bernoulli equation and the linearizedmass onservation are applied; the seond one inludes the region downstream of the jet, where thelinearized onservation of momentum quantity and the linearized mass onservation are applied. There�etion and transmission oe�ients orresponding to this model are the following:
Figure 1.5: Sheme of the �ow and notations for the quasi-stationary inompressible model.

R+
quasi−stat = R−

quasi−stat =
M0β

2 +M0β
, (1.44)

T+
quasi−stat = T−

quasi−stat =
2

2 +M0β
, (1.45)with β =

(
Sp

Sj

)2

− 1, (1.46)where Sj is the setion of the jet. The ontration oe�ient α is introdued, as usual, as α = Sj/Sd.



18 1 Experimental study of a whistling riterion for singularities in air pipe �ow1.4 Measurements on�gurations1.4.1 Experimental set-up of the LAUM1.4.1.1 Set-upThe set-up is illustrated in Fig. 1.6 and desribed in the following (see also (Auregan and Leroux,2003)). It onsists out of an open loop with a steel irular dut of inner diameter D = 30 mm and athik and smooth wall (thikness e = 4 mm, roughness of the order of the mirometer).In absene of �ow, the ut-o� frequeny of the dut is equal to fcut−off = 6.7 kHz, as alulated from(Angot, 1972; Piere, 1981):
fcut−off ≈ 1.84 c0

πD
, (1.47)where D is the pipe diameter, and c0 the speed of sound in quiesent �uid. We use the speed of soundin air, under P0 = 1 atm, and negleting the e�et of dampness (Wong, 1985):

c0 = 343.2042

√

T0 + 273.15

293.15
, (1.48)where T0 is the ambient temperature expressed in Celsius degrees.A onstant air �ow is generated by a ompressor Aerzen Delta blower GM10S (n°1 in Fig. 1.6).The volume �ow rate is measured with a �ow meter ITT Barton 7402 (n°2) with an auray of 10−2ms−1.Two aousti soures are present, one upstream (n°4) and one downstream (n◦8) of the ori�e. Theyare made of a loudspeaker and a ompression hamber. They allow an aousti level up to 160 dB inthe measurement frequeny range 400-5000 Hz.Anehoi terminations are plaed upstream (n◦3) and downstream (n◦9) of the measurement zone.They are presented in setion 1.4.1.3.The dut is 2 m long upstream of the 4 upstream mirophones to allow a fully developed turbulent�ow.The temperature is measured with two transduers, eah on one side of the ori�e, with an aurayof 10−2 K.

Figure 1.6: The experimental set-up.



1.4 Measurements on�gurations 191.4.1.2 Test setionFig. 1.7 illustrates the test setion. The singularity (n◦6 on the �gure) is loated at the middle of thetest setion. Measurements are made with 2 series of 4 pressure transduers (mirophone B&K 49381/4�, preampli�er B&K 2670 with Nexus) from both sides of the singularity :
• one series of 4 mirophones upstream (n◦5 in Fig. 1.6), denoted u1 to u4 while inreasing indexgoing away from the singularity;
• one series of 4 mirophones downstream (n◦7 in Fig. 1.6), denoted d1 to d4 while inreasing indexgoing away from the singularity;The use of 2x4 mirophones allows an over-determination, hene a better determination, of thetransmitted and re�eted waves.The distane between onseutive mirophones of a series is not onstant: going away of theori�e, it equals 10.0 mm, 37.48 mm and 59.67 mm (that is: xu1 − xu2 = xd1 − xd2 = 10.0 mm,

xu2 − xu3 = xd2 − xd3 = 37.48 mm, xu3 − xu4 = xd3 − xd4 = 59.67 mm). The hoie of these distanesallows to avoid the problem of measurement preision when half of the aousti wavelength is lose tothe distane between 2 mirophones (Boden and Abom, 1986).The distane between mirophone u1 and the singularity is of the order of 12D. The distane betweenthe singularity and mirophone d1 is of the order of 20D.
flow

u1u2u3u4 d1 d2 d3 d4
downstream
source

upstream
source

p1
+

p1
-

4 upstream
microphones

4 downstream
microphones

p2
+

p2
-

measured
device

Figure 1.7: The measurement zone.1.4.1.3 Aousti boundary onditions of the test setionThis experimental set-up is designed to measure the sattering matrix of a singularity. This matrixis independent of the aousti boundary onditions of the set-up, as long as the singularity does notwhistle. To avoid any whistling, it is preferable to have low re�eting aousti boundary onditions ofthe test rig. The use of suh anehoi boundary onditions also appears to enhane the auray inthe measurement.
• upstream of the measurement zone, (about 2 m from the singularity), an expansion is plaed,imposing a low upstream re�etion oe�ient: |Ru| < 0.2. Data for Ru are shown in Fig. 1.8;
• downstream of the measurement zone, (about 3 m from the singularity), a quasi-anehoitermination is arranged: holes are non-uniformly arranged in the wall of the dut of a lengthof tens of entimetres and overed with a piee of textile. The textile gives a resistane to the
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Figure 1.8: Upstream re�etion oe�ient of the measurement zone, without �ow.holes and seondarily prevents whistling due to the grazing �ow. This on�guration imposes alow re�etion oe�ient: |Rd| < 0.4.
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Figure 1.9: Downstream re�etion oe�ient of the measurement zone, without �ow.Those aousti boundary onditions suppress whistling in most of our ases.1.4.2 Measurement proeduresPreliminarily of any series of measurement, a alibration of the mirophones is needed. Then, twotypes of measurements are made with this experimental set-up: the measurement of the sattering



1.4 Measurements on�gurations 21matrix of the singularity (using the loudspeakers), and the measurement of the sound generated in thepipe (without using the loudspeakers).1.4.2.1 Calibration of the mirophonesThe alibration of the 8 mirophones is needed to link the responses of the mirophones to eah other.The alibration proedure uses a referene mirophone. The transfer funtion between this referenemirophone and the mirophone being alibrated is measured, using the soure and a onstant distanebetween both mirophones. The alibration provides 8 transfer funtions that are used as a orretionof the signals obtained from the mirophones.The quality of the measurements depends ritially on the quality of the alibration. Hene anestimation of the quality of the alibration is helpful. A possible way to verify the alibration is todo a measurement without ori�e and without �ow. The sattering matrix of a pipe without �ow isobtained. From it, two estimations an be made:
• the phase of the transmission oe�ient gives the distane between the �rst upstream mirophone(u1) and the �rst downstream mirophone (d1), as there is no singularity in this measurement.The value obtained is ompared to the atual length. A typial result for suh a measurement isgiven in Fig. 1.10. The distane between the �rst upstream mirophone and the �rst downstreammirophone is typially obtained with an unertainty less than 2 mm (that is 2% of error), inour frequeny range of study: 400-5000 Hz.
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Figure 1.10: Experimental determination of the distane between mirophones u1 and d1, measuringwhen the singularity is replaed by a straight tube, and without �ow.
• the magnitude of the transmission oe�ient is determined by the attenuation of the wavesbetween the �rst upstream mirophone (u1) and the �rst downstream mirophone (d1). This



22 1 Experimental study of a whistling riterion for singularities in air pipe �owattenuation is ompared to the omputed one, using the model of Kirhho� (Ajello, 1997; Peterset al., 1993) (no �tting variables):
k± =

ω

c0
K0, (1.49)taking into aount damping due to visosity (with the shear number Sh = D

2

√
ω
ν ) andtemperature (with the Prandtl number Pr = ν/κ, with ν the inemati visosity and κ thethermal ondutivity; Pr = 0.71 for air):

K0 = 1 +
1

Sh

1 − j√
2

(

1 +
γ − 1√
Pr

)

, (1.50)where γ is the ratio of spei� heats at onstant volume and pressure (γ = 1.4 for air). Thisexpression is valid for low Helmholtz numbers ka << 1.A typial result is given in Fig. 1.11. The model is found very satisfatory up to 4 kHz. Beyond4 kHz, the Helmholtz number is not negligible, as kD/2 ≥ 1.1, hene the theory is no more valid.
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Frequency (Hz) Figure 1.11: Experimental determination of the quality of the attenuation model for the wave numberapplied from Kirhho� theory, measuring when the singularity is replaed by a straight tube, andwithout �ow.1.4.2.2 Measurement of the sattering matrixThe method to measure the sattering matrix of the singularity is a 2 soures method, whih is desribedin details in Ajello (1997). Two measurements are made: one using the upstream loudspeaker (sendinga plane wave P+
1 ); the other one using the downstream loudspeaker (sending a plane wave P−

2 ). The



1.5 The whistling riterion on irular entred ori�es 23oe�ients (R+, R−, T+, T−) of the sattering matrix are determined from those two measurements:
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 . (1.51)The upstream plane waves are determined using transfer funtions Hunum (n 6= m, n ∈ [1, 4],

m ∈ [1, 4])) between the di�erent upstream mirophones un, um:
p−1
p+
1

=
Hunume

−jk+xum − e−jk+xun

ejk−xun −Hunume
jk−xun

. (1.52)Similarly, the downstream plane waves are determined using transfer funtions Hdndm
(n 6= m) betweenthe di�erent downstream mirophones dn, dm(n ∈ [1, 4],m ∈ [1, 4])). Those transfer funtions areobtained by the measurement. The wave numbers k+ and k− are determined with the model ofKirhho� (Ajello, 1997) taking into aount viso-thermal dissipation in the propagation.The parameters used for the measurement of the sattering matrix are the following. The typialfrequeny range of our measurements is 400-4000 Hz (sometimes 400-5000 Hz), with a frequenyresolution of 10 Hz (sometimes 5 Hz). A HP-software drives the measurement as a `Swept Sine' typemeasurement. The soure level is approximately 130 dB (SPL) and hosen in relation to the �ow ratein order to avoid non-linear e�ets due to an exessive soure level. For eah frequeny, the settletime before eah measurement is 1000 yles and the integration time is 1000 yles. This range ofparameters is hosen in order to redue the error to an aeptable level.1.4.2.3 Measurement of the broadband noiseThe measurement of the �ow sound generated in the pipe (without drive of exterior soures) is madewith a `Frequeny Response' type measurement.The parameters used for the measure of the noise are the following. The frequeny range is 0-6400Hz, with 4 Hz of frequeny resolution. The spetra obtained represent an average of 50 data aquisition.1.5 The whistling riterion on irular entred ori�es1.5.1 Ori�es testedSingle-hole ori�es are the main singularities tested. Indeed, they represent the simplest geometry tobegin with the study of the whistling riterion.The ori�es tested (see Fig. 1.12) are of aluminium, with a irular and entred single hole. Theedges of the hole are neat sharp angle edges (no bevel is visible on both sides).In total, 19 ori�es have been tested with di�erent thikness t and diameter d, see Tab. 1.5.1 andFig. 1.13. The range of thikness-to-diameter ratio is 0.15 ≤ t/d ≤ 1.5. This range orresponds to thinori�es, aording to Idel'ik (1969): t/d . 2.



24 1 Experimental study of a whistling riterion for singularities in air pipe �ow

(a) Front view (b) Side viewFigure 1.12: Tested single-hole irular-entred ori�es with no bevel.
t/d 0.15 0.20 0.22 0.24 0.26 0.29 0.30 0.29 0.33 0.40ori�e CC1 CC16 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9

t (mm) 3 5 5 5 5 7 3 5 5 8
d (mm) 20 25 23 21 19 24 10 17 15 20
t/d 0.42 0.50 0.50 0.62 0.67 0.67 0.71 1.00 1.50ori�e CC17 CC10 CC18 CC11 CC12 CC19 CC13 CC14 CC15

t (mm) 10 5 10 5 6 10 5 10 15
d (mm) 24 10 20 8 9 15 7 10 10Table 1.1: Features of the single-hole ori�es (no bevel).
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Figure 1.13: Charateristis of the ori�es tested: irular entred ori�es with no bevel.



26 1 Experimental study of a whistling riterion for singularities in air pipe �ow1.5.2 Sattering matrix oe�ients1.5.2.1 Typial oe�ients of the sattering matrixTypial oe�ients obtained for the sattering matrix are presented in Fig. 1.14 and 1.15 and analysedin the following:
• First, the low-frequeny behaviour of the sattering matrix oe�ients is well desribed by aninompressible quasi-stationary model (introdued in setion 1.3.3.3).This model depends on the vena-ontrata oe�ient α. Di�erent values of α are used to ompareto measurements in the limit of vanishing frequeny. Results are indiated in Tab. 1.5.2.1.A fair agreement is obtained with α=0.70 (see �gures), whih is known (Blevins, 1984) asbeing a reasonable value for an ori�e with no visible bevel in a fully-developed turbulent �ow(Re & 5 103).Also, the assumption of inompressibility and no dissipation, giving the relation |R+| + |T+| =

|R−|+|T−| = 1 (see setion 1.3.3.3) is well satis�ed for low Strouhal numbers fd/Ud, as illustratedin Fig. 1.16.
α 0.65 0.70 0.75

R+, R− 0.32 0.29 0.26
T+, T− 0.68 0.71 0.73Table 1.2: Evaluation of a quasi-steady aousti model to predit the sattering matrix at low frequeny.

• Seond, the transmission oe�ient exhibit values with an amplitude above 1. This is an usualexperimental observation. This behaviour orresponds to a prodution of aousti energy by theori�e, whih is onsequently potentially whistling at those frequenies. This behaviour is henediretly linked with the whistling riterion, and further ommented in setion 1.5.2.1.
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Figure 1.14: Typial re�etion oe�ients obtained from measurements of irular entred single-holeori�es - ori�e t = 5 mm, d = 15 mm with M0 = 2.60 10−2. The arrow indiates the inompressibleand quasi-stationary model limit, using a ontration oe�ient α = 0.70.
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Figure 1.15: Typial transmission oe�ients obtained from measurements of irular entred single-hole ori�es - ori�e t = 5 mm, d = 15 mm with M0 = 2.60 10−2. The arrow indiates theinompressible and quasi-stationary model limit, using a ontration oe�ient α = 0.70.
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Figure 1.16: Evaluation of the inompressible and lossless model ompared with measurements: forlow Strouhal numbers, the behaviour of the sattering matrix oe�ients follows the model - ori�e
t = 5 mm, d = 15 mm with M0 = 2.60 10−2.



1.5 The whistling riterion on irular entred ori�es 291.5.2.2 Non linear behaviour due to high level of the exitation soureThe `2 soures method' assumes a linear aousti behaviour of the system. In this assumption, thedetermination of the sattering matrix oe�ients is independent of the level of the exitation soure.In our experiments, we limited our soure amplitude in order to avoid non-linear e�ets. So as todetermine the amplitudes at whih suh e�ets our, we present data for inreasing levels.As illustrated in Fig. 1.17 and 1.18, these non-linear e�ets are observed for frequenies identi�edas potentially whistling frequenies. Instead of a typially linear hump form, a threshold is observed,exhibiting a saturation phenomenon.
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Figure 1.17: The level of the exitation amplitude of the soure loudspeaker has an in�uene on thesattering matrix oe�ients, here for |T+| - ori�e t = 5 mm, d = 17 mm with M0 = 2.59 10−2.Investigations indiate that for a level value of u′rms/U0 ≈ 10−1, suh non-linear e�ets beomesigni�ant under onditions at whih whistling an our Pout > Pin. When absorption prevails
Pout < Pin, the response is almost independent of the amplitude up to u′rms/U=0.3.1.5.3 Potentially whistling frequeniesIn this setion, the appliation of the whistling riterion is studied. The evolutions of the eigenvalues
ξmin and ξmax of the matrix I −T Se Se are investigated.Typial evolutions obtained for these eigenvalues are shown in Fig. 1.19:

• the two eigenvalues an learly be distinguished: the �rst one (denoted ξnonevo) lose to zero,and another one (denoted ξevo), taking both positive and negative values;
• the evolving eigenvalue ξevo shows a hump form as visible in the �gure. This form is systematifor irular-entred ori�es without bevel;
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Figure 1.18: The level of the exitation amplitude of the soure loudspeaker has an in�uene on theeigenvalues obtained from measurements of sattering matrix oe�ients - ori�e t = 5 mm, d = 17mm with M0 = 2.59 10−2.
• a major experimental result is obtained: ranges of frequenies exist for whih the minimumeigenvalue is negative. Following the whistling riterion, these ranges of frequeny orrespondto potentially whistling frequenies. In the �gure, two ranges of frequenies are observed,orresponding to two di�erent hydrodynami modes of whistling.In order to test the onsisteny of this whistling indiator, an ori�e with a bevel on one side isstudied. The idea is to test the in�uene of the side of the bevel on the whistling riterion: bevelupstream, bevel downstream. Results are given in Fig. 1.20:
• bevel upstream: the eigenvalues are always positive: for all frequenies, the ori�e dissipatesaousti energy, and will never whistle. This observation agrees with literature, as thison�guration is well-known to be a typial non-whistling one (Rienstra and Hirshberg, 2003).
• bevel downstream: a frequeny range, 2200-3700 Hz, is found for whih the ori�e an produeaousti energy. This also on�rms literature as the on�guration of a bevel downstream is knownto be a typial whistling on�guration (Wilson et al., 1971; Hirshberg et al., 1989).1.5.4 Strouhal numbersConsidering a range of potentially whistling frequeny, the amplitude of the eigenvalue takes a humpform, so that a peak frequeny, denoted fpeak, orresponding to the minimum amplitude reahed bythe evolving eigenvalue, is identi�able (as shown in Fig. 1.21). This frequeny represents the highest
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Figure 1.20: In�uene of the bevel on the whistling riterion using the potentiality of whistling with theevolving eigenvalue ξevo: no whistling potentiality is found when the bevel is plaed at the upstreamedge of the ori�e, whereas a range of potentially whistling frequenies is found (here 2200-3700 Hz)when the bevel is plaed at the downstream edge of the ori�e - ori�e with a bevel rbevel=1 mm, t = 5mm, d = 10 mm (CCb2) with M0 = 7.6 10−3..potential whistling frequeny for this whistling mode. Results obtained for this frequeny are studiedin this setion.The peak frequeny fpeak is made non-dimensional, using the ori�e thikness t and the ori�eveloity Ud = U0 (D/d)2 , hene de�ning the Strouhal number:
Stpeak =

fpeakt

Ud
. (1.53)An example of a ollapse in x-oordinate with this Strouhal number is given in Fig. 1.22 (to be omparedwith Fig. 1.21).The best ollapse of peak Strouhal numbers obtained with this hoie of these saling variables t and Ud.Other saling variables have been tested and lead to less satisfatory ollapse: lengths d,D, (D− d)/Dand veloity U0. For instane, the hoie of a Strouhal based on the ori�e diameter d leads to a farless satisfatory ollapse, as illustrated in Fig. 1.24 (ompared with Fig. 1.23, where the Strouhal isbased on the ori�e thikness t).Distintion of �ow regimes for the Strouhal numberStrouhal numbers fpeakt/Ud obtained for all ori�es are given in Fig. 1.23 for the �rst whistling mode,as funtion of the pipe Reynolds number ReD = U0D/ν. In the range of Reynolds number studied(2 103 ≤ ReD ≤ 8 104), Strouhal numbers appear to vary signi�antly. Two main regions an bediserned:
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• a �ow below or lose to the laminar-turbulent transition: ReD . 5 103);
• a fully turbulent �ow: ReD & 5 103, most of the ases.The Strouhal numbers for low-Reynolds number are signi�antly higher, up to 50%, ompared withthose obtained for a fully turbulent main �ow. Explanations of this observation may be the following:Firstly, for a �ow in laminar state, the main �ow impating the upstream edge of the ori�e is verydi�erent from a �ow in turbulent state.Seondly, for low Reynolds numbers, the jet vena-ontrata setion in the ori�e is known (see Tab.1.5.4from Blevins (1984)) to vary very muh ompared to its high Reynolds number value, as indiated inTab.1.5.4.

Table 1.3: Strong variations of the jet vena-ontrata setion for pipe Reynolds numbers between 103and 104 from Blevins (1984).For this latter reason, the Strouhal number ft/Uj based on the jet veloity should be more preisethan the one used in this study ft/Ud. However, the value of Uj is experimentally di�ult to obtain;
Uj an be estimated from the measure of the pressure drop aross the ori�e. This requires statipressure transduers from both sides of the ori�e, whih were not available in our experiments.Strouhal numbers are onstant for turbulent �ow regimeThe main result of this Strouhal number study is that for most of the ases, that is for fully tur-bulent Reynolds numbers (5 103 ≤ ReD ≤ 8104), Strouhal numbers obtained are almost onstant:Strouhal numbers (mode 1) are in the range 0.2-0.3 (f. Fig. 1.23). This is in lose agreement withliterature. Anderson (1953b) indiates a value around 0.26-0.29 for thin ori�es (0.1 ≤ t/d ≤ 0.5) in aon�guration of a free jet (exit towards free spae). The omparison is shown in Fig. 1.26) using therepresentation given by Blake (1986).For turbulent Reynolds numbers (5 103 ≤ ReD ≤ 105), various linear �ts on data with multipleparameters have been used to estimate the importane of di�erent parameters on the Strouhal number:
1/ReαD, ln(ReD), (d/D)α, (t/d)α , [D/(D − d)]α, with α > 0.It is found that the Strouhal number varies mainly with two parameters: the Reynolds number ReD



1.5 The whistling riterion on irular entred ori�es 35and the distane to the wall D/(D− d). For the �rst hydrodynami mode, the linear regression givingthe least standard deviation on data is the following:
Stpeak = 0.2048

(

1 +
57.6936√
ReD

+ 0.0596
D

D − d

)

, (1.54)giving a standard deviation of 1.6 10−3 on 65 data points;Hydrodynami modes of higher orders (≥ 2) are given in Fig. 1.25. The Strouhal numbers aresigni�antly higher than for the �rst whistling mode. The values obtained are onsistent with datafrom Anderson (1954).
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1.5 The whistling riterion on irular entred ori�es 391.5.5 Conditions of whistling for the inident wavesSo far the eigenvalues of the sattering matrix have been analysed. The analysis of the orrespondingeigenvetors is done in this setion, in order to investigate the onditions linked to whistling andnon-whistling behaviour.The eigenvetors Π1 and Π2, assoiated with the eigenvalues ξ1 (minimum) and ξ2 (maximum), areonsidered (see an example illustrated in Fig. 1.29). Their omponents are denoted ai and bi:
Π1 =

[

a1

b1

]

, Π2 =

[

a2

b2

]

. (1.55)The omponents of the eigenvetors orrespond to the inident total enthalpy waves, so that:
Πi =

[

ai

bi

]

≡
[

(1 +M0)p
+
1

(1 −M0)p
−
2

]

. (1.56)The evolution of the omponents of the eigenvetors Π1 and Π2 is given in Fig. 1.27 and 1.28. First,it is observed that the imaginary part of the omponents an be negleted ompared to the real part.Seond, the real part appear learly to get two values: +1 or -1 broadly (in �rst order analysis). Thosetwo values orrespond to di�erent exitation onditions for the inident enthalpy waves:
• ai/bi ≈ 1 orresponds to an exitation (1 −M0)p

−
1 − (1 +M0)p

+
2 ≈ 0. This is a ondition of thetype of an aousti veloity node v′ ≈ 0.

• ai/bi ≈ −1 orresponds to an exitation (1 −M0)p
−
1 + (1 + M0)p

+
2 ≈ 0. This is a ondition ofthe type of an aousti pressure node p′ ≈ 0.The onditions obtained are plotted in Fig. 1.29:

• strong energy exhange between the aousti �eld and the main �ow (that is passive dissipationand whistling behaviours) ours when a pressure node ondition p′ = 0 is formed at the ori�eby the exitation waves;
• inversely, no energy exhange between the aousti �eld and the main �ow is obtained for aveloity node type.These results on�rm very well what is known on whistling and non-whistling ondition.
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Figure 1.27: Representation of the wave (eigenvetor) orresponding to the eigenvalue ξ1 (see Fig. 1.29)in a non-dimensional representation b1/a1 = [(1−M0)p
−
2 ]/[(1+M0)p

+
1 ] - ori�e t = 5 mm, d = 19 mmwith M0 = 4.19 10−2.
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Figure 1.28: Representation of the wave (eigenvetor) orresponding to the eigenvalue ξ2 (see Fig. 1.29)in a non-dimensional representation b1/a1 = [(1−M0)p
−
2 ]/[(1+M0)p

+
1 ] - ori�e t = 5 mm, d = 19 mmwith M0 = 4.19 10−2.
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Figure 1.29: Potentially whistling eigenvalues and the orresponding wave onditions in terms ofaousti pressure p′ and aousti veloity v′ at the ori�e (x = 0) - ori�e t = 5 mm, d = 19 mm with
M0 = 4.19 10−2.



42 1 Experimental study of a whistling riterion for singularities in air pipe �ow1.5.6 Non-dimensional potentially whistling eigenvaluesThe magnitude of the eigenvalue is a ratio of potentially dissipated aousti energy. In this setion, aseondary dimensionless representation is proposed.The amplitudes orresponding to the peak potentially whistling frequenies are onsidered. Asatisfatory dimensionless representation is obtained: they are proportional to the Mah number asillustrated in Fig. 1.30 and 1.31.The dipole assoiated to whistling explains the proportionality with the Mah number, as in a quasi-
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Figure 1.30: Representation of the potentially whistling eigenvalues for a given ori�e at di�erent Mahnumber: the magnitudes evolve strongly - ori�e t = 5 mm, d = 19 mm.steady approximation for a free jet emerging in free spae, one gets:
∆p =

1

2
ρ0U

2
0 ⇒ ∆p′ = ρ0c0M0u

′, (1.57)where ∆p is the stati pressure drop aross the ori�e, ∆p the aousti pressure drop aross the ori�e,
u′ the aousti veloity in the pipe.The Mah number is not the only saling variable: the ratio of the peak eigenvalue to theMah number is found to depend on the geometry of the ori�e, as shown in Fig. 1.32. Globally
(ξevo)(fpeak)/M0 depends linearly on the ontration ratio D/d. However, data are not su�ient to�nd another saling variable of this quantity.
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44 1 Experimental study of a whistling riterion for singularities in air pipe �ow1.6 The whistling riterion on other singularitiesAdditionally to the irular entred ori�es, other singularities have been tested: ori�es with beveland smile shaped slits.1.6.1 Importane of the bevel for the whistling of ori�esOri�es with bevels are shematised in Fig. 1.33 and their features are given in Tab. 1.6.1. Two typesof bevels are studied: a rounded bevel and a straight bevel.

(a) Straight bevel (b) Rounded bevelFigure 1.33: Sheme of tested irular-entred single-hole ori�e with bevel.ori�e CCb1 CCb2 CCb3
t (mm) 5 5 5
d (mm) 10 10 10bevel 1 side 1 side both sidesbevel type rounded straight straight
r (mm) ≈ 3 1 1Table 1.4: Features of the single-hole ori�es with bevel (r is the bevel radius of urvature).The idea is to ompare the referene ori�e, without bevel, illustrated in Fig. 1.34 to a large roundedbevel ori�e, plaed upstream for Fig. 1.35 or downstream for Fig. 1.36, to a small straight ori�e, plaedupstream for Fig. 1.37 or downstream for Fig. 1.38, and to a both sides bevel ori�e is presented inFig. 1.39.Results obtained demonstrate the importane and the position, whether upstream or downstream,of the bevel, on the potentiality of whistling of an ori�e:

• a bevel plaed on the upstream edge of the ori�e attenuates strongly the potentiality of whistlingof the ori�e. In general, an ori�e with a bevel upstream has no whistling potentiality. It is



1.6 The whistling riterion on other singularities 45illustrated in Fig. 1.35 and Fig. 1.37, ompared to the referene Fig. 1.35. One potentiallywhistling ase is found in Fig. 1.37 beause the bevel is straight, hene a vena-ontrata isforming for su�iently high veloities, whih favours potential whistling;
• on the ontrary, a bevel plaed on the downstream edge of the ori�e enhanes the potentialityof whistling of the ori�e. In general, an ori�e with a bevel downstream is potentially whistling.It is illustrated in Fig. 1.38 and Fig. 1.39, ompared to the referene Fig. 1.34. An exeptionis illustrated in Fig. 1.39, where the presene of the rounded bevel downstream dereases thewhistling potential ratio of the ori�e. This latter result needs further study.
• the form, rather than the size of the bevel, is ritial. A very small bevel an prevent fromwhistling, if plaed on the upstream edge of the ori�e, as illustrated in Fig. 1.35.The theory of Howe gives a model to understand qualitatively those results on the importane ofthe bevel (see (Hirshberg et al., 2002; Hourigan et al., 1990))It appears that the ollapse in Strouhal number ft/Ud for ori�es with bevel is not so good asfor ori�es without bevel. However, the same Strouhal numbers values are approximately found. Aninrease in the Strouhal number is found for ori�es with a bevel downstream: the Strouhal numbersshift from 0.3 without bevel towards 0.5 with bevel (Fig. 1.36, 1.38 and 1.39).
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Figure 1.36: Ori�e with a large (r = 3) rounded bevel on the downstream edge: potentially whistlingeigenvalues obtained for ori�e t = 5 mm, d = 10 mm (CCb1).
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Figure 1.37: Ori�e with a small (r = 1) straight bevel on the upstream edge: potentially whistlingeigenvalues obtained for ori�e t = 5 mm, d = 10 mm (CCb2).
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Figure 1.38: Ori�e with a small (r = 1) straight bevel on the downstream edge: potentially whistlingeigenvalues obtained for ori�e t = 5 mm, d = 10 mm (CCb2).
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Figure 1.39: Ori�e with a small (r = 1) straight bevel on both edges: potentially whistling eigenvaluesobtained for ori�e t = 5 mm, d = 10 mm (CCb3).



1.6 The whistling riterion on other singularities 491.6.2 Smile shaped slitsTwo smile shaped slits have been tested. They are shematised in Fig. 1.40 and their features are givenin Tab. 1.6.2.

(a) Front view. (b) Side viewFigure 1.40: Tested smile shaped slits.smile shaped slit F1 F2
e (mm) 5 5
R (mm) 15 8
θ (rad) π/2 0.69Table 1.5: Features of the smile shaped slits.The idea is to ompare this non-irular geometry with the previous irular ori�es. It appearsthat these smile shaped slits are potentially whistling (Fig. 1.41 and 1.42). Also, the Strouhal numberis very similar (slightly higher) than the one obtained for irular ori�es.These results on smile shaped slits ould indiate that any form of slit or ori�e would be potentiallywhistling. Indeed, all ori�es and slits tested in this study are potentially whistling, exeption madeby ori�es with a bevel on its upstream edge. This extension of the results needs further study.
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Figure 1.41: Smile shaped slit (F1): potentially whistling eigenvalues - t = 5 mm, Sd = 63 mm2.

0 0.5 1 1.5 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

f t / U
d

(P
in

−
P ou

t)/
P in

Figure 1.42: Smile shaped slit (F2): potentially whistling eigenvalues - t = 5 mm, Sd = 63 mm2.



1.7 Whistling on�gurations 511.7 Whistling on�gurationsIn this setion, on�gurations with no exterior soure are investigated. Aoustial re�etions fromboth sides of the ori�e are plaed, in order to make the ori�e spontaneously whistle for ertainranges of �ow regime. The objetive is to link the experimentally observed whistling frequenies withthe previously presented potentially whistling frequenies.It is not di�ult to obtain whistling from a potentially whistling ori�e. One has to plae aoustire�etion onditions from at least one side of the ori�e. We fous in the following in a partiularon�guration, to desribe more quantitatively those results when the ori�e under �ow whistlesspontaneously.1.7.1 Whistling on�gurationThe following whistling on�guration is studied. In order to provide the aousti feedbak neessaryfor whistling to our, aousti re�etions oe�ients upstream and downstream of the ori�e haveto be su�iently high. For the example desribed in this setion, the on�guration used is shown inFig. 1.43. The ori�e tested is t = 5 mm, d = 10 mm (CC10). The aousti re�etions used are thefollowing:

Figure 1.43: The studied whistling on�guration: an ori�e; upstream of the ori�e, an expansionhamber; downstream of the ori�e, an open pipe termination, to allow su�ient aousti feedbak.
• upstream of the ori�e (at 0.137 m from the upstream edge of the ori�e): an expansion hamberimposes a high re�etion oe�ient: |Ru| ≈ 0.8 in the frequeny range 400-2500 Hz, weaklydependent on the �ow veloity (Fig. 1.44);
• downstream of the ori�e (at 0.270 m from the upstream edge of the ori�e): an un�angedopen pipe termination. It imposes a high re�etion oe�ient: |R| > 0.4 in the frequeny range400-2500 Hz (Fig. 1.45);1.7.2 Comparison between whistling frequenies and potentially whistling fre-queniesWhistling frequenies, as illustrated in Fig. 1.46 and Fig. 1.47, orrespond to Strouhal numbers

fwhistlingt/Ud of 0.2-0.4. They are in well agreement with the potentially whistling frequenies
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Figure 1.44: Charateristis of the whistling on�guration: the re�etion oe�ient of the expansionhamber (seen from the ori�e).
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Figure 1.45: Charateristis of the whistling on�guration: the re�etion oe�ient of the un�angedopen pipe end (seen from the ori�e).



1.7 Whistling on�gurations 53determined by the whistling riterion (and presented in Fig.A.10). There is a slight disrepany forthe low limit, but a good agreement in tendeny.
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Figure 1.46: In the whistling on�guration, example of typial SPD spetrum obtained far downstreamof the ori�e (at mirophone d4), exhibiting whistling frequeny and harmonis (M0 = 4.62x10−3).The disrepany orresponds to a disrepany in the Strouhal number of 0.03 and in frequeny of140 Hz at its maximal value, around M0 = 7.7x10−3. This may be due to the di�erent �ow onditionimpating the upstream edge of the ori�e, beause the expansion hamber is only at 5D upstream ofthe ori�e. Hene the �ow onditions between the non-whistling and whistling on�gurations may bedi�erent.1.7.3 Comparison between whistling frequenies in air and in waterWe add in this setion the results obtained in hapter 4, when analysing measurements in water inan industrial loop, with high re�eting aousti boundary onditions. Whistling frequenies have beenobserved, in presene altogether of avitation phenomena.The omparison between our measured instability frequenies in air is plotted in Fig.1.48. Thisis a spetaular result. The values observed in water are quite lose to the values obtained for thepotentially whistling frequenies for thin irular entred ori�es in air. That gives a strong indiationthat the Strouhal number is not highly sensitive on the ompressibility of the �uid, on the preseneor not of avitation, on the pipe diameter and on the stati pressures in the pipe. This ompletessatisfatorily our study of the Strouhal number, as we have not varies those parameters.
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56 1 Experimental study of a whistling riterion for singularities in air pipe �ow1.7.4 A model to predit the instability frequenyIn this setion, we propose a simple model to predit the whistling frequeny (as shown in the previoussetion) of an ori�e in an aousti system with re�etion oe�ients.The on�guration of the model is illustrated in Fig. 1.49. An ori�e under onstant �ow in a dutis onsidered. It is represented by its sattering matrix under this �ow Se. The upstream Ru anddownstream Rd aousti re�etions are loalized at Lu and Ld from the upstream edge of the ori�e.

Figure 1.49: Sheme of the model to predit the whistling frequeny, in plane wave approximation,using the sattering matrix of the singularity Se and the arateristis of the aousti re�etions R,Lupstream and downstream of the singularity.The idea is to use a linear model of basi aousti propagation equations to identify frequeniesfor whih stationary plane waves exist. Then by feedbak loops, it is assumed that these stationaryfrequenies an be ampli�ed to reate whistling. Hene the frequeny of whistling is dedued. Itis assumed that there is no shift in frequeny during the ampli�ation and saturation of the waves.This hypothesis is impossible to estimate, as our model is linear, and ampli�ation and saturationphenomena are non-linear.The plane waves propagate in the duts assuming no attenuation:
p+
1 (x, ω) = P+

1 e
j(ωt−kx), p−1 (x, ω) = P−

1 e
j(ωt+kx), (1.58)

p+
2 (x, ω) = P+

2 e
j(ωt−kx), p−2 (x, ω) = P−

2 e
j(ωt+kx). (1.59)The aousti propagation equations in this on�guration an be expressed at x = 0. The in�ueneof the ori�e: (
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(
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)

, (1.60)with:
Se =

(

T+
e R−

e

R+
e T−

e

) (1.61)and the upstream and downstream re�etions:
P+

1 = Ru(x = 0, ω)P−
1 , (1.62)

P−
2 = Rd(x = 0, ω)P+

2 , (1.63)



1.7 Whistling on�gurations 57where Ru(x = 0, ω) = Ru(x = L,ω) e2jkL and Rd(x = 0, ω) = Rd(x = L,ω) e−2jkL.In this system, there are four unknowns, P+
1 , P

−
1 , P

+
2 , P

−
2 , with four equations:
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. (1.64)There exists a non-vanishing solution if the determinant of the system is zero: this orresponds to theexistene of stationary plane waves at that frequeny, suh that:

RuRd(T
+
e T

−
e +R+

e R
−
e ) −RuR

+ −RdR
− + 1 = 0 (1.65)The study of the anellation of the determinant should hene give the whistling frequenies reportedin the previous setion.We apply this model to the whistling on�guration desribed in the previous setion. The satteringmatrix oe�ients used are the ones measured. The re�etion oe�ients used have been simpli�edompared to experiment. The loss is mainly on the phase information, but end orretions are takeninto aount (see Fig. 1.50):

Ru(x = 0, ω) = −0.8 e2jk(Lu+0.82a) (1.66)
Rd(x = 0, ω) = −[0.73 − 1.5 10−4 (f − 1000)] e−2jk(Ld+t+0.61a) (1.67)In this latter, we have used the end orretion of an exit of a tube with thin walls (formula of Levine andShwinger (1948)). Results are illustrated in Fig. 1.51, 1.52 and 1.53. Although re�etion oe�ientsused are approximate, the model seems to give satisfatory results. However, further study is neededto obtain more data and on�rm this result.
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Figure 1.51: Model to predit the whistling frequeny, example 1: the model gives a satisfatorypredition of the measured whistling frequeny - M0 = 5.2 10−3.
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Figure 1.52: Model to predit the whistling frequeny, example 1: the model gives a satisfatorypredition of the measured whistling frequeny - M0 = 5.2 10−3.
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Figure 1.54: Model to predit the whistling frequeny: parametri study varying the magnitude ofthe upstream re�etion oe�ient. The frequeny obtained with the model does not vary with themagnitude, and no whistling is obtained when the magnitude of the re�etion oe�ient is low enough(<0.5 here) - M0 = 1.64 10−2.



1.7 Whistling on�gurations 611.7.5 A failed model to predit the instability with Bode-Nyquist ideaAnother model has been tried to predit the instability frequeny of an ori�e in an aousti systemwith re�etion oe�ients. This model uses the ideas of Bode and Nyquist for the ampli�ation ofopen system. However, it has not given satisfatory results. The idea is however presented in thefollowing.Experimentally, it is found (see setion 1.5.5) that the sattering matrix, in the new basis of vetors(-1,1);(1,1), an be approximately written:
S′

e ≈
(

µ 0

0 1

)

, (1.68)where µ is the gain assoiated to the vetor in phase opposition (-1,1). The vetor in phase (1,1) isunaltered when going through the ori�e.The soure generates upstream and downstream plane waves. Eah waves ouple an be deomposedon the basis of vetor: (-1,1); (1,1). From the previous analysis of S′
e, the potentially ampli�ed waveis the one in phase opposition, ollinear to the vetor (-1,1): the soure is a dipole.Hene if the soure generates (−Π−

1s,Π
+
2s), it omes after an upstream and downstream aoustifeedbak in the system an ampli�ation of :
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, (1.69)where Ru and Rd are upstream and downstream re�etion oe�ients.Next, this wave is ampli�ed by the sattering matrix: the ampli�ation of the omplete return path(or open loop) of the vetor ollinear to (-1,1) is:
(
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−→ µ
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−Π−
1s

Π+
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) (1.70)Applying Bode and Nyquist theory, an ampli�ation (i.e. instability) ours at a frequeny if theboth following onditions are obtained:
• the gain is superior to the unity, that is:

∣
∣
∣
∣
µ
Ru +Rd

2

∣
∣
∣
∣
> 1 (1.71)

• the phase delay of the gain is an integer number of 2π: the returning wave is in phase with thegenerated one, that is:
phase

(

µ
Ru +Rd

2

)

= 0 (1.72)Unsatisfatory results have been obtained. The on�guration used is the same as desribed in theprevious setion (same re�etion oe�ients). The example desribed in the following is obtained for
M0 = 1.01 10−2, but four di�erent �ow veloities and two di�erent on�gurations have been tested.Whistling is observed, as illustrated in Fig. 1.55, at 1776 Hz in the example desribed. The model



62 1 Experimental study of a whistling riterion for singularities in air pipe �owpredits no whistling, as the magnitude of the gain (Fig. 1.58) is under the unity.However, some results are obtained: the assumptions of the model on the shape of the sattering matrix
S′

e are veri�ed (Fig. 1.56), the phase of the gain vanishes around 1820 Hz (Fig. 1.57) and the magnitudeof the gain is maximum at a value of 0.6 in the range 1550-1750 Hz. The unsatisfatory result of thismodel may be due to inauraies when adopting the approximate expression of the sattering matrix
S′

e. The magnitude of the gain may be sensitive to this approximation. However, this model is basedon this approximation, so that no improvement of the model is proposed.
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Figure 1.55: Presentation of the ase presented: the on�guration used is desribed in the previoussetion, using, from both sides of the ori�e, an expansion hamber and an open pipe end terminationto reate aousti re�etions, and a �ow of M0 = 1.01 10−2. The spetrum observed shows a whistlingfrequeny of 1776 Hz.
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Figure 1.58: Magnitude of the gain. The appliation of the Bode-Nyquist model asks for a value ofmagnitude over the unity, to predit whistling frequenies. No suh ondition is found around theobserved whistling frequeny 1776 Hz. However, a maximum value around 0.6 is obtained in the range1550-1750 Hz.



1.8 Broadband noise 651.8 Broadband noiseBroadband spetra are presented in omplements of the previous setions. The objetive is to studythe e�et of the potentially whistling frequenies on the spetra obtained in real onditions, that iswithout exterior soure and in presene of aousti re�etions from both sides of the ori�e.1.8.1 Broadband spetraMeasurements are done in `Frequeny Response' mode: no soure is used, only turbulene noise ismeasured. Aousti terminations are the same as for sattering matrix measurements (with a re�etionof about 6% of the aousti energy in one round trip).Spetra as PSD (Power Spetral Densities) are obtained at the 8 transduers. Only the spetrumat mirophone d4 is presented here. This mirophone is plaed at 55D downstream of the ori�e, sothat this observation point if far away from the soure region.A typial result for ori�e t = 5 mm, d = 15 mm is given in Fig. 1.59:
• the hump form around 5500 Hz seems to orrespond to the ampli�ation due to the �rst transversemode. This frequeny is relatively far from the ut-o� frequeny of the pipe at 6700 Hz without�ow, but we observe experimentally that this hump does not vary with the Mah number;
• the �rst hump form orresponds to potentially whistling frequenies. This is on�rmed by therepresentation in Strouhal number given in Fig. 1.60. Data ollapse very well in the x-oordinateswith the Strouhal representation. Also, data ollapse well in magnitude by dividing the PSD withthe square of the estimated pressure drop aross the ori�e (the vena ontrata oe�ient is takenequal to 0.70) with a lassial quasi-stationary model (see Hofmans (1998)).1.8.2 Lighthill saling lawsInvestigations have been lead to verify Lighthill saling laws: a dipole noise would follow a law in M4

d(Md is the Mah number at the ori�e), while a turbulene noise would follow a law in M6
d (Nelsonand Morfey, 1981).Results are shown in Fig. 1.61 and 1.62 with 1/3 band otave spetra. As a result, it seems thatthe behaviour of the ori�e is more omplex than those simple saling laws.
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Figure 1.59: Typial broadband noise spetra obtained far downstream (55D) of the ori�e: appearaneof a hump of prodution of aousti energy, orresponding to the potentially whistling frequenies -ori�e t = 5 mm, d = 15 mm with various Mah numbers.
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Figure 1.60: Non-dimensional broadband noise spetra obtained far downstream (55D) of the ori�e:the hump form of prodution of aousti energy orresponds to the potentially whistling Strouhalnumbers (here around 0.2 -0.3) - ori�e t = 5 mm, d = 15 mm with various Mah numbers.
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Figure 1.61: Evaluation of the non-dimensional noise representation using the Lighthill saling lawin M4
d when assuming a dipole noise: this representation is not satisfatory for the hump formorresponding to an assumed dipole type soure of sound - ori�e t = 5 mm, d = 15 mm.
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Figure 1.62: Evaluation of the non-dimensional noise representation using the Lighthill saling lawin M6
d when assuming a turbulene noise: this representation is not satisfatory for the broadbandspetrum outside the hump form - ori�e t = 5 mm, d = 15 mm.



68 1 Experimental study of a whistling riterion for singularities in air pipe �ow1.9 ConlusionThis hapter is an experimental study of a whistling riterion of singularities under onstant air �owin a straight pipe. The singularities tested are mainly a range of thin irular-entred single-holeori�es, with various thikness and diameter. The tested air �ow onditions are typial of nulearpower plant: high Reynolds number (of the order of 104-105), and low Mah number (of the orderof 10−2 in air). The whistling riterion into aount is a simple aousti energy balane, in our aselimited to a plane-wave propagation, applied to a region enlosing the vortex shedding and the ori�e.The idea is to assimilate the whistling with an aousti power prodution (physially, some energy ofthe �ow is transferred to aousti energy), and to link this aousti balane with the sattering matrixof the ori�e under this �ow.Our experimental results validate the whistling riterion:
• on the one hand, using this riterion, ranges of potentially whistling frequenies are systematiallyfound (setion 1.5.3), whatever the ori�e tested and the �ow imposed (as long as the ori�ehas no beaver on its upstream edge, and that the �ow is non-vanishing). These frequeniesorrespond to the frequenies of instability, of type Kelvin-Helmholtz, of the shear layer formedat the separation point on the upstream edge of the ori�e;
• on the other hand, our measurements in atual whistling onditions, that is, when there areaousti re�eting onditions from both sides of the ori�e (for instane, using an expansionhamber and an open pipe end termination), show that the whistling frequenies are lose tothe potentially whistling frequenies (setion 1.7). This indiates that the non-linear proess ofsaturation of the self-sustained osillation does not modify muh the frequeny of instability fromwhih it starts. A lose study on the level of orrespondene of these two frequenies has notbeen made;
• Additionally, the study of the broadband noise, when only turbulent noise is present beause theaousti re�eting onditions are too low, on�rms that an aousti prodution ours ar theseinstability frequenies, whih gives a diret on�rmation of the validity of the whistling riterion(setion 1.8).A deep study has been made on the potentially whistling or instability frequenies. Literature datahave been on�rmed and quantitatively established:
• a Strouhal number orresponding to these instability frequenies has been studied extensively onsingle-hole irular-entred ori�es without bevel (setion 1.5.3). Various saling variables havebeen tested to de�ne this Strouhal number, but the most satisfatory ones have proven to be theori�e thikness, and the ori�e veloity.The values obtained are quite onstant, between 0.2 and 0.3, onerning the �rst hydrodynamimode and a fully turbulent pipe �ow (pipe Reynolds number above 5 103). This range of valuesis in lose oherene with literature data from Anderson. The Strouhal number is shown toderease slightly with the Reynolds number, and to vary slightly with the ori�e thikness anddiameter. Higher order hydrodynami modes (up to mode three) are present in our data, buthave not been partiularly studied.



1.9 Conlusion 69Additionally, it has been observed that, for a �ow lose to the laminar-turbulent transition (pipeReynolds number under 5 103), Strouhal numbers inrease signi�antly. It is attributed to thefat that the �ow in this ase is of a di�erent kind;
• the study of other singularities (setion 1.6), that is, urved slits, has shown similar results:potentially whistling ranges of frequeny and similar Strouhal number values. This seems toon�rm that the whistling riterion an be applied on any kind of disontinuity;
• the in�uene of a bevel on an edge of the ori�e has been studied (setion 1.6.1). Partiularly, abevel on the upstream edge of the ori�e is shown to be ritial for whistling: it redues muh thepotentiality of whistling. This result is in aordane with literature data, and with our atualwhistling observations;
• the inident wave onditions allowing the instability have been lari�ed (setion 1.5.5). Themaximum of prodution of aousti energy orrespond to an exitation of the shear layer with amaximum of aousti veloity (a minimum aousti pressure). In other terms, whistling ourswhen the inident pressure waves from both sides of the ori�e are equal in magnitude and inphase opposition. Complementarily, no energy exhange ours between the aousti �eld and themain �ow when the inident waves are in phase (veloity node). Those results are in agreementwith qualitative desriptions in literature;
• a dimensionless representation of the amplitude of the eigenvalues from the whistling riterion,representing an aousti power ratio, has been proposed and is shown to be quite onstant withthe Mah number (setion 1.5.6), for a given ori�e. However, when varying the ori�e thiknessand diameter, strong disrepanies are found: hene more study is needed to �nd a satisfatorydimensionless representation.In atual whistling on�gurations, that is without any exterior soures and aousti re�etions fromboth sides of the ori�e, the following results are obtained:
• an understanding of the whistling on�gurations is obtained (setion 1.7.1). The whistling oursif there is enough aousti re�etion (upstream and/or downstream of the ori�e) in the test rig;
• a model is proposed (setion 1.7.4) to predit the whistling frequeny, given the satteringmatrix of the ori�e under the �ow, and the two (upstream and downstream) aousti re�etionoe�ients. The model gives satisfatory results but would need more data to be onsidered asvalidated.In perspetive, numerous studies would worth being made to omplement this �rst study on thiswhistling riterion:
• to on�rm this validation work, other singularities would be worth testing, suh as types ofori�es (multi-hole ori�es, thik ori�es), valves, and the assembly of suessive singularities.The di�ulty when using other geometries is that higher order aousti mode may propagate.In that ase, the riterion an be applied, but the mathematial formalism is more ompliated;



70 1 Experimental study of a whistling riterion for singularities in air pipe �ow
• more study is needed to understand the amplitudes obtained in the energy transfer ratio of theriterion. A omplete non-dimensional representation laks. This topi an be a very interestingone, as this amplitude is very related to the phenomenon of whistling, and no saturation is intoaount in this proess.
• it would be interesting to ompare the theoretial formulas from theory (Mihalke for instane) topredit the instability frequenies. If suh formulas are found, then the potentiality of whistlingof a on�guration is known without the need of determining experimentally its sattering matrixoe�ients. This would be very interesting from an experimental point of view.
• more study is needed to understand why the model inspired by Bode-Nyquist method fails(setion 1.7.5). New measurements should be made, taking a partiular are to the measureof the re�etion oe�ients of the test rig. They were only approximate in our measurement;
• to obtain a de�nitely dimensionless Strouhal number, measurements have to be made withdi�erent speed of sound and stati pressure in the pipe. For instane, measurements shouldbe made in water.Additionally, the dimensionless representation of the broadband noise spetra, when the ori�e is notwhistling, is not satisfatory, when following the simple Lighthill saling laws. The behaviour seemsto be adapted between a dipole sound and a quadrupole soure. This seems in fat not surprising, asturbulene and ampli�ed unstable frequenies are present, but further study would be needed on thistopi.Finally, this whistling riterion represents a useful tool to design nulear power plants duts andprevent from whistling. Its major advantage is its simpliity, both in its idea (for instane, we do notneed vortex sound theory, but only a simple energy balane) and in its appliation. It `only' needsthe measurement of the sattering matrix of the ori�e under �ow, whih an be done in any test rigbeause this matrix does not depend on the aousti onditions of the test rig.
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Chapter 2Aeroaoustial behaviour of a singleexpansion with the multimodal method
2.1 IntrodutionA numerial method, alled the multimodal method, is introdued in this hapter, and applied it tostudy of the aeroaoustial behaviour of a single expansion. The objetive is to obtain the aousti�elds and the aousti sattering matrix of the on�guration, and ompare them to literature data, inorder to estimate the validity of this alulation method on this on�guration.This method is a simple alulation method, already used at the LAUM for di�erent on�gurations(Bi et al., 2006; Leroux et al., 2003). It neglets visous-thermal e�ets and onsists of the resolutionof the linearized Euler equations under a sheared �ow pro�le in established harmoni regime, using a�nite di�erene sheme in the transverse diretion, whereas the evolution in the longitudinal diretionis simply obtained by propagating the solutions. The �ow pro�le imposed is inompressible, with ashape lose to the power �ow pro�le typial of turbulent pipe �ow. It is invariable in the longitudinaldiretion, so that we neglet the expansion of this main �ow in the sattering matrix oe�ient.With applying rigidity ondition of the wall pipe, the solutions obtained are alled modes. Thestudy of the wave numbers of those modes separate them into three types: aousti modes, propagating(approximately as there is the in�uene of the main �ow) at the speed of sound, hydrodynami modes,onveted approximately at the speed of the �ow, and evanesent modes, with varying wave numbers.Among the hydrodynami modes, one of them, onentrated near a virtual in�exion point of the �owpro�le, appears to be unstable for ertain onditions of the parameters (frequeny, �ow pro�le, Mahnumber): the real part of its wave number is non-vanishing and makes an exponential ampli�ation ofthe response of this mode.The onnetion of the modes using onditions of ontinuity of the aoustial variables at theloation of the single expansion gives the aousti sattering matrix of the single expansion. Theoe�ients obtained are ompared to experimental data from Ronneberger and some analytial modelsfor behaviour at limit. 75



76 2 Aeroaoustial behaviour of a single expansion with the multimodal method2.2 Analytial problem2.2.1 Problem to solveThe propagation of a sound wave, at a pulsation frequeny ω, enountering a single expansion in a2D-dut with a sheared mean �ow pro�le, is onsidered.The problem to solve is to �nd the aoustial re�etion and transmission oe�ients of thissingularity, and to obtain the aoustial �elds when applying an exitation wave.2.2.2 Geometry and �ow hypothesisThe single expansion is a disontinuity of dut ross-setion. It is made by a suession of two duts(see Fig. 2.1):
• dut I: radius a∗ (in meter), dimensionless radius 1;
• dut II: radius b∗ > a∗, dimensionless radius b.

Figure 2.1: Geometry of the problem (in dimensionless ylindrial variables)Duts studied are two-dimensional, and an have either a retangular or a irular setion:
• in 2D Cartesians (retangular dut): the oordinate system is (x, y), the x-axis being the diretionof the �ow, the y-axis the longitudinal dimension;
• in 2D axisymmetri (irular dut): the oordinate system is (z, r), the z-axis being the diretionof the �ow, the r-axis the longitudinal dimension.For reasons of symmetry, only half of the expansion is studied: r = 0 (y = 0) refers to the entre ofthe pipe.2.2.3 Assumption of non-expansion of the main �owAn inompressible sheared �ow pro�le is imposed in dut I, of Mah number M(r)ez, where M(r) =

U(r)/c0 (c0 is the speed of sound in the �uid; c0=343 m.s−1 at T=293 K in air). This �ow pro�le goes



2.2 Analytial problem 77into dut II unhanged: there is no expansion of the �ow in the downstream dut, hene the region
1 ≤ r ≤ b in dut II is without �ow.Thus we assume that the physis of the phenomenon is onentrated at the sudden enlargement:this is where aousti re�etions is supposed to mainly our, beause the aousti �eld is very sensitiveto disontinuities of setions, and not so muh to the evolution of the �ow in a pipe of onstant setion.Quantitatively, this assumption of non-expansion of the main �ow is evaluated in Boij and Nilsson(2005). It is shown that the expansion of the �ow does not in�uene signi�antly the sattering matrixoe�ients of the expansion, whih indiates a good validity of this assumption.Finally, the lose agreement between our alulations and experimental data, for whih the �owexpands in the downstream dut, shows a posteriori learly the good validity of suh an approximation.2.2.4 Equations of the problem2.2.4.1 Resolution in dimensionless variablesThe dimensional variables are denoted with a '*'. They are made dimensionless using the sale variablesof the speed of sound in the �uid c0 (c0=343 m s−1 at T=293 K in air), the density of the �uid ρ0(ρ0=1.1 kg m−3 at T=293 K in air) and the the radius of dut I a∗:

z =
z∗

a∗
, r =

r∗

a∗
, p′ =

p′∗

ρ0c20
, ρ′ =

ρ′∗

ρ0
, (2.1)

v′z =
v′∗z
c0
, v′r =

v′∗r
c0
, t =

t∗c0
a∗

, ω =
ω∗a∗

c0
. (2.2)The problem is solved in the dimensionless variables: z, r, t, p′, ρ′, v′r, v′z, ω.2.2.4.2 Resolution in established harmoni regimeEstablished harmoni regime is assumed: the alulation is done for a �xed dimensionless frequeny

ω. The onvention used for the temporal dependeny of the variables is in e+jωt.2.2.4.3 Equations of the problemSimple assumptions are used:
• the e�et of the visosity is negleted: the �uid is onsidered as a perfet �uid;
• entropy variations (that is, thermal and visous e�ets) are negleted: Hene the speed of soundin the �uid is: c20 = p′∗/ρ′∗;
• at initial time, all variables (�uid density, entropy) are uniform.The idea of these assumptions, together with the assumption of the inompressibility of the main�ow, is that they are onsistent with the Kelvin-Helmholtz type instabilities that we want to model,as those kinds of instabilities are produed in a non-visous and inompressible �ow.In this two-dimensional geometry, and under those assumptions, the problem has four variables: p′,

ρ′, v′r, v′z. They are determined by four equations: the equations of mass onservation, the equation of



78 2 Aeroaoustial behaviour of a single expansion with the multimodal methodmomentum onservation (here linearized Euler equations as visosity is ignored) in the two diretionsand the �uid onstitutive law. The dimensionless equations to be solved are (see details in appendixC with all equations in dimensional variables), in 2D axisymmetri oordinates:
• mass onservation equation:

Dp′

Dt
= −(

v′r
r

+
∂v′r
∂r

+
∂v′z
∂z

), (2.3)where the onvetive derivative is: D
Dt = jω +M(r) ∂

∂z ;
• momentum onservation equations, respetively, in longitudinal and transversal diretions:

Dv′z
Dt

+ v′r
dM(r)

dr
= −∂p

′

∂z
, (2.4)

Dv′r
Dt

= −∂p
′

∂r
; (2.5)

• the �uid onstitutive law:
c20 =

p′

ρ′
. (2.6)It should be noted that the 2D Cartesians and 2D axisymmetri ases are in fat very similar:they only di�er (see appendix C) from the expression of the Laplaian: in the ylindrial ase, theLaplaian gets one more term. As a onsequene, up to here the four previous equations are identialin Cartesians geometry.2.2.4.4 Aoustial boundary onditionsThe boundary onditions are hosen as the most simple ones:

• the upward wall is onsidered as in�nitely rigid. This gives the ondition v′r = 0, equivalent to
∂p′

∂r = 0 using Eq. 2.5;
• the entre line of the dut is onsidered as a line of symmetry. This gives also the ondition
v′r = 0.2.2.5 Method of resolution2.2.5.1 Resolution in p′ and v′rThe resolution of the previous four equations in the four variables an be redued to the resolution ofthe two following equations in variables p′ and v′r:
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, (2.7)
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∂r
+ ω2p′ = 2jωM(r)
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dr
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∂z

, (2.8)while the other variables ρ′ and v′z are determined from p′ and v′r:
ρ′ =

p′

c20
, (2.9)
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∂v′z
∂z

=
Dp′

Dt
− (

v′r
r

+
∂v′r
∂r

). (2.10)The numerial alulation onsists of the resolution of Eq. 2.7 and 2.8 assoiated with the aoustialboundary onditions.2.2.5.2 Resolution in a matrix formThe resolution is made simple using a trik of organisation of the equations, in order to redue theproblem to the resolution of di�erential equation of �rst-order with onstant oe�ient.If we put the variables in an appropriate olumn manner:
E =






p′

dp′/dz

v′r




 , (2.11)then it appears that the resolution of Eq. 2.7 and 2.8 omes to the resolution of a �rst order di�erentialequation in a matrix form:

dE

dz
= AE, (2.12)with:

A =







0 1 0

2 dM
dr

M
∂
∂r −

∂2

∂r2 + 1

r
∂
∂r

+ω2

1−M2

2jω
1−M2

2jω dM
dr

M

− 1
M

∂
∂r 0 −j ω

M






. (2.13)What is essential to note is that the matrix A is independent of z. Hene the solutions depend onlyon r and are thus known to be in the form:

E = Ê(r)e−jkωz, (2.14)where the dimensionless wave number k is a omplex salar (funtion of ω).As a onsequene, we have demonstrated that, assuming a frequeny dependeny in ejωt, thesolutions of our problem neessarily take the form ej(ωt−kz).2.2.6 Solutions: aousti, evanesent and hydrodynami modesSo as to understand the solutions obtained, we onsider the solution obtained for the pressure p′. Themerge of Eq. 2.7 and 2.8 gives the propagation equation in pressure (see appendix C). As demonstratedin the previous setion, the solution is in the form:
p′ = p̂(r) ej(ωt−kωz). (2.15)The unknowns p̂ and k satisfy the propagation equation, also known as the Pridmore-Brown equation(onveted equation of the modes in a dut with sheared �ow):

(1 − kM)
[
(1 − kM)2 + ∆

]
p̂+ 2k

dM

dr

dp̂

dr
= 0, (2.16)



80 2 Aeroaoustial behaviour of a single expansion with the multimodal methodand the boundary onditions (whih onstitutes the dispersion relation for k):
dp̂

dr
= 0 for r = 0 and r = 1. (2.17)There is no possible analytial resolution of unknowns p̂ and k with these two equations 2.16 and2.17. However, we known from similarity with other type of aousti equations (for instane, taking avanishing �ow), the solution in pressure is an in�nite sum of modes. Inidentally, it is worth noting thatthis denomination of `modes' is not the ommon one used in pipe systems: our modes are transverseones, and do not orrespond to any longitudinal onditions.Assuming that the solutions are known, the following mathematial analysis an give some insight inthe solutions obtained. The aim is to understand some properties of the solutions (we don't demonstratemathematially the existene of these solutions). When onsidering a solution of the problem, we andistinguish two ases (see Vilensky and Rienstra (2005); Félix (2002)):

• the solution is suh that 1 − kM(r) 6= 0, for any r ∈ [0, 1]:A denumerable (due to the boundary onditions) set of solutions may be obtained, satisfying thePridmore-Brown equation:
d2p̂

dr2
+

(

1

r
+

2k dM
dr

1 − kM

)

dp̂

dr
+ ω2

[
(1 − kM)2 − k2

]
p̂ = 0. (2.18)Solutions are understood without �ow, and we extend this understanding for the �ow ase:� in the partiular ase M(r) = 0:In the new variable r̃ = r/

√

ω2 (1 − k2), the previous equation redues to:
d2p

dr̃2
+

1

r̃

dp

dr̃
+ p = 0. (2.19)This is the well-known Bessel equation of order m = 0: y′′ + y′/r + (1 −m2/x2)y = 0, ofsolutions J i

0(r), i = 1, 2..., whih are alled aousti solutions as they propagate at the speedof sound (this omes from the hange of variable from r to r̃).� in the general ase M(r) 6= 0:As a onsequene of the non-�ow ase, solutions are supposed onstituted by Bessel solutionsslightly modi�ed by the presene of the �owM(r). Those solutions are alled aousti modesand evanesent modes, and we will see that we obtain them in our alulations. Below theut-o� frequeny of the dut, the wave numbers obtained are purely real: those solutionsare neither ampli�ed nor attenuated (i. e., plane wave mode and transverse modes), andthey are alled aousti modes. Beyond the ut-o� frequeny of the dut, the wave numbersobtained have an imaginary part and a varying real part: those solutions orrespond toexponentially attenuated waves (i. e., transverse modes, also alled evanesent modes), ata varying speed, and they are alled evanesent modes.
• the solution is suh that it exists r1 ∈ [0, 1] suh that 1− kM(r1) = 0:A ontinuous set of solutions may be obtained. Far away from r = r1, solutions satisfy Pridmore-Brown equation. Around r = r1, the Pridmore-Brown equation degenerates into:

k
dM

dr

dp̂

dr
= 0. (2.20)



2.2 Analytial problem 81Hene around r = r1, the pressure is extremum:
p̂(r) = onstant, (2.21)and, using Eq.2.7, the veloity takes the expression:

v̂r =
1
k − 2M − k(1 −M2)

dM
dr

ω

2j
p̂(r). (2.22)As k = 1/M , those waves propagate with the �ow and travel downstream. They are alledhydrodynami modes. In dut I, where the �ow pro�le has no in�exion point, it is observed thatthe wave numbers of those modes are purely real. In dut II, where there is a �ow and a non-�ow region, it is observed that either all wave numbers are purely real, either all wave numbersbut two are purely real, the two omplex wave numbers being omplex onjugate. These twomodes orrespond to an exponentially attenuated hydrodynami mode, and the other one toan exponentially ampli�ed hydrodynami mode. They suppose to appear as a onsequene ofthe presene of a virtual in�exion point in the �ow pro�le, at the separation between the �owand the non-�ow regions, between the last disretization point when in the �ow and the nextdisretization point when in no �ow.To sum up the preeding disussion and antiipating the results of the numerial resolution, theonveted wave equation Eq.2.16 assoiated with the aousti boundary onditions Eq.2.17 givesdi�erent modes:

• aousti modes propagating approximately at the speed of sound (slightly modi�ed by theonvetion of the main �ow): they have purely real wave numbers. They represent the two planewave modes (propagating upstream and downstream) and possibly the higher order transversemodes with frequenies below the ut-o� frequeny of the dut;
• evanesent modes: they have omplex wave numbers: they are attenuated exponentially in thediretion of their propagation;
• hydrodynami modes propagating approximately at the �ow veloity:� with purely real wave numbers: eah one propagating at a veloity M(r), r varying;� in ertain onditions, with omplex wave numbers: one is exponentially attenuated, theother one is exponentially ampli�ed.2.2.7 Determination of the sattering matrixOne the modes are alulated in eah dut segment, at z = 0 (the phase origin orresponding to theloation of the expansion), the sattering matrix is dedued by linking these modes between eah otherby de�ning onditions of rossing the disontinuity at the expansion.The onditions of rossing the disontinuity, for z = 0 and 0 ≤ r ≤ b, are de�ned as the following:
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• we demonstrate (see appendix D) that the linearized onservations of mass, momentum andenergy for the total variables, give the ontinuity of p′, ∂p′/∂zandv′r at the rossing of theexpansion. Hene, we apply:

p′dut I = p′dut II, (2.23)
∂p′ dut I

∂z
=
∂p′ dut II

∂z
, (2.24)

v′r dut I = v′r dut II, (2.25)for z = 0 and 0 ≤ r ≤ 1;
• for the upward vertial wall of dut II (at z = 0 and 1 ≤ r ≤ b ), a simple ondition of in�niterigidity is imposed: v′z = 0. In this region, there is no �ow, hene v′r = 0, so that this ondition,using Eq. 2.4, is equivalent to:

∂p′ dut II
∂z

= 0, (2.26)for z = 0 and 1 ≤ r ≤ b.2.3 The multimodal method2.3.1 Imposed �ow pro�leThe imposed �ow pro�le is represented in Fig. 2.2. It takes the form (r = 0 is the entre of the dut,
r = 1 is the upward wall):

M(r)

M0
= αm (1 − rm) m ≥ 1, (2.27)where the oe�ient αm is a onstant depending of m, de�ned so that the integral of the pro�le onthe dut setion gives the mean �ow M0:

• in 2D axisymmetri, αm = m+2
m so that ∫ r=1

r=0 M(r)rdr = M0;
• in 2D Cartesians, αm = m+1

m so that ∫ y=1
y=0 M(y)dy = M0.2.3.2 Shlihting turbulent pipe �ow pro�leWe ompare this �ow pro�le with the one proposed by Shlihting (1968) for fully turbulent pipe �owsin irular duts:

M(r)

M(r = 0)
= (1 − r)1/a , (2.28)where r is the dimensionless distane (the pipe radius is the saling length) to the axe. Its mean �owis given by:

M0 =

∫ r=1

r=0
M(r)rdr = M(r = 0)

a2

(1 + a)(1 + 2a)
. (2.29)The parameter a depends on the pipe Reynolds number, as shown by Shlihting with a �t ofexperimental values in Tab. 2.3.2. For pipe Reynolds number around 104, Shlihting indiates avalue of a = 7.
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Figure 2.2: E�et of exponent m on the main �ow pro�le in 2D axi-symmetri pipe.
Re 2.3 104 1.1 105 1.1 106

a 6.6 7.0 8.8Table 2.1: Shlihting parameter a for a power law �ow pro�le.2.3.3 Comparison of the two �ow pro�lesOur numerial pro�le and the Shlihting pro�le is illustrated in Fig. 2.3. The shape is similar, butthe slope of the two pro�les is quite di�erent.This seems however a sensible approximation to use this �ow pro�le, beause we do not know exatlythe �ow pro�le for the experimental data that we will ompare to. The essential fat seems that theshape of the two pro�les is similar.The hypothesis is that the sattering matrix oe�ients are not highly sensitive to the �ow pro�leimposed, whih seems physially reasonable.Indeed, we have tested it and obtained that the alulated sattering matrix oe�ients only displayrelative di�erenes of 10−2, when varying our �ow pro�le parameter m from 0.2 to 8.8 (for M0 = 0.1).Furthermore, as presented in the following, the satisfying omparison of our alulations using m = 7to experimental data gives an indiation a posteriori that the sattering matrix oe�ients are notsigni�antly dependent on our �ow pro�le parameter m, and that our �ow pro�le is a satisfying one.2.3.4 Disretization of the variablesFig. 2.4 illustrates the transverse disretization in the two duts. One should note that the advantageof this transverse disretization is that we get a disrete number of hydrodynami modes, and not ananalytially denumerable set of hydrodynami modes.The disretization of the r-oordinates is regular with a onstant step h = 1/N between eah point.
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Figure 2.3: Shape of the �ow pro�le and omparison with Shlihting �ow pro�le - dut I, axisym.,
N = 50, m = 7, ω = 0.1, M0 = 0.1.The number of points is N in dut I and M in dut II.

(a) Dut I: N points (b) Dut II: M pointsFigure 2.4: Disretization with a onstant step in the duts.The disretized variables are noted in vetor. For instane in dut I:
P =






P1...
PN




 , V =






Vr, 1...
Vr, N




 , M =






M1...
MN




 .2.3.5 Derivatives expressions in the �nite di�erene shemeThe disretization imposes to approximate the derivatives of the variables.



2.3 The multimodal method 85The derivative matries of �rst order D1 and seond order D2 are de�ned as (in ylindrial):
D1P =

dP

dr
, D2P =

d2P

dr2
. (2.30)The �nite di�erene sheme used is a very lassial one: entred sheme of the seond order, thatis giving an error of O(h2). Hene for 2 ≤ i ≤ N − 1, the derivatives get the expression:

D1P|i =
Pi+1 − Pi−1

2h
, (2.31)

D2P|i =
Pi+1 − 2Pi + Pi−1

h2
. (2.32)For i = 1 and i = N , that is at the upward wall and at the entre of the dut, the evaluation of thederivative needs the use of a virtual point:

• P0 is the image of P1 in the upward wall: the derivative at i = 1 is D1P|i=1 = P2−P0

2h . As thewall is rigid, dP
dr = 0, so that P0 = P1. Hene:

D1P|i=1 =
P2 − P1

2h
; (2.33)

• PN+1 is the image of PN in the entre of the dut: the derivative at i = N is D1P|i=N =
PN+1−PN−1

2h . As the entre of the dut is an axe of symmetry, dP
dr = 0, so that PN+1 = PN .Hene:

D1P|i=N =
PN − PN−1

2h
. (2.34)As a result, the derivative matries D1 and D2, inluding the boundary onditions on their �rstand last line, are tri-diagonal matries:

D1 =
1

2h











−1 1

−1 0 1. . . . . . . . .
−1 0 1

−1 1











, (2.35)
D2 =

1

h2











−1 1

1 −2 1. . . . . . . . .
1 −2 1

1 −1











. (2.36)
2.3.6 Disretized equationsThe alulation of the modes in dut I and dut II is made at z = 0 as origin of the phases.The equations to solve in unknowns P and V are put in vetor formalization:

jωV + M
dV

dz
= −D1,P (2.37)
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(1 − M2)

d2P

dz2
+ D2P + D

cyl
1 P + ω2P = 2jωM

dP

dz
− 2M′ dV

dz
. (2.38)where Dc

1 appears for ylindrial geometry:
D

cyl
1 X|i =

1

ri
D1X|i. (2.39)Putting onveniently the variables into a vetor:

X =






P

Q

V




 , (2.40)where Q = dP

dz , solving the previous equations omes to solve a �rst-order di�erential equation inmatrix form:
A
dX

dz
= BX. (2.41)with A and B being given in the following setion, for dut I and dut II.The resolution of the system is hene a diagonalization problem. As a result, eigenvalues andeigenvetors are found, in number equal to the dimension of the resolution vetor X.Solutions are of the form: Xn = X̂ne

λnz, where λn are the eigenvalues and X̂n the eigenvetorssuh that: λnAX̂n = BX̂n.From the alulated eigenvalues, the physial wave numbers Kn of the modes written in theonvention e−jKnωx are determined:
Kn = jλn/ω. (2.42)2.3.7 Modes determination in dut IIn dut I, the vetor of resolution has the form:

X =






P

Q

V






l N points
l N points
l N points . (2.43)The matries get the expression (in 2D ylindrial):

A =






IN,N 0N,N 0N,N

0N,N IN,N − M2 2dM
dr

0N,N 0N,N M




 , (2.44)

B =






0N,N IN,N 0N,N

−D2 − D
cyl
1 − ω2IN,N 2jωM 0N,N

−D1 0N,N −jωIN,N




 . (2.45)Those expressions are idential in 2D Cartesians, exept that the term D

cyl
1 is not present.



2.3 The multimodal method 87As X is a vetor of 3N lines, the resolution in dut I gives 3N eigenvalues Kn with 3N assoiatedeigenvetors of size 3N denoted Ψn:
ψn =






Pn

Qn

Vn






l N points
l N points
l N points . (2.46)Modes are sorted (see setion 2.3.9) in funtion of their wave numbers. We note, in respet to theirdiretion of propagation, upstream propagating modes by subsript 'u', and downstream propagatingmodes by subsript 'd'. As a result, we note the 3N eigenvalues in a olumn vetor:







...
KI

n... 





=

(

KI
d

KI
u

)

l 2N points
l N points . (2.47)Similarly, we note the 3N eigenvetors in a matrix:




 . . . ΨI

n . . .




 =

(

ΨI
d ΨI

u

)

=

(

ΨI
d,1 ΨI

u,1

ΨI
d,2 ΨI

u,2

)

l 2N points
l N points (2.48)where Ψd is 3Nx2N and Ψu is 3NxN .To obtain the resulting aousti �elds after imposing an exitation wave, and hene to visualize theaousti �elds, the solution obtained in dut I is a summation of these modes:

p′(r, z, t) = ejωtPI,
dp′

dz
(r, z, t) = ejωtQI, v′r(r, z, t) = ejωtVI, (2.49)with:






PI

QI

VI




 =




 ΨI

d ΨI
u












...
αI

ne
−jKI

nz... 




, (2.50)where the αI

n are the amplitudes of the modes determined by the multipliation of the alulatedsattering matrix of the on�guration (see in the following) by the imposed exitation wave.2.3.8 Modes determination in dut IIThe di�erene from dut II to dut I is that there is a non-�ow region in r ≥ 1, hene the vetor V iszero in this region: it is no more a variable in this region, hene the new variable to be onsidered is
V|, restrition of V to the �ow region (r = M −N + 1 to M).In dut II, the vetor of resolution has the form:

X =






P
dP
dx

V|






l M points
l M points
l N points (2.51)



88 2 Aeroaoustial behaviour of a single expansion with the multimodal methodThe matries get the expression (in 2D ylindrial):
A =






IM,M 0M,M 0M,N

0M,M IM,M − M2 2
dM|M,N

dr

0N,M 0N,M M|N,N




 , (2.52)

B =






0M,M IM,M 0M,M

−D2 − D
cyl
1 − ω2IM,M 2jωM 0M,N

−D1|N,M 0N,M −jωIN,N




 . (2.53)As X is a vetor of 2M + N lines, the resolution in dut II gives 2M + N eigenvalues Kn with

2M +N assoiated eigenvetors of size 2M +N denoted Ψn :
ψn =






Pn

Qn

Vn






l M points
l M points
l N points . (2.54)Modes are sorted, similarly than in dut I:







...
KII

n... 





=

(

KII
d

KII
u

)

l N+M points
l N points (2.55)




 . . . ΨII

n . . .




 =

(

ΨII
d ΨII

u

)

=

(

ΨII
d,1 ΨII

u,1

ΨII
d,2 ΨII

u,2

)

l N+M points
l N points , (2.56)where Ψd is (2M+N)x(M+N) and Ψu is (2M+N)xN .To visualize the solution after an exitation wave, the solution obtained in dut II is alulated from(similarly as in dut I):

p′(r, z, t) = ejωtPII,
dp′

dz
(r, z, t) = ejωtQII, v′r(r, z, t) = ejωtVII, (2.57)with:






PII

QII

VII




 =




 ΨII

d ΨII
u












...
αII

n e
−jKII

n z... 




, (2.58)where the αII

n are the amplitudes of the 2M + N modes given by the sattering matrix of the singleexpansion applied to the exitation wave.2.3.9 Numerial lassi�ation of the modesThe eigenvalues obtained by the resolution are sorted in order to di�erentiate the modes. The modesare lassi�ed as the following into hydrodynami, aousti and evanesent modes:



2.3 The multimodal method 892.3.9.1 Hydrodynami modesThose modes orresponds to 1 −KnM(rn) = 0. We get N modes in dut I, and also N in dut II (asthe �ow does not expand).They are alled hydrodynami modes, as they are onveted at the �ow veloity. Their wave numberis purely real, for all of them, exept 2. These two ones have a non-vanishing imaginary part, whihare omplex onjugates, and represent an exponential attenuation and an exponential ampli�ation.They are numerially identi�ed with two onditions:
• their wave number is suh that 1/Mmax ≤ ℜ(Kn) ≤ 1/Mmin. This is su�ient to give the stablehydrodynami modes, but not the two unstable ones that have an imaginary wave number;
• In pratie, we don't know the value of the imaginary part of the unstable hydrodynamimode, so that we use a purely arti�ial riterion, onsisting of a parabola, of expression

ℑ(Kn)2 = A
[
ℜ(Kn)2 − x2

0

], with �tting parameters x0 ≈ 0.8/max(M0) and A ≈ 5, that wehange if need be, that is, if the number of modes obtained with this algorithm is not N .This use of the parabola has given good satisfation in pratie, and little di�ulties (see setion2.4.4.1 when di�ulties appear). One should note that physial riterions exist (Crighton-Leppington or Briggs-Bers). They ould have been implemented in this alulation to makereally no ambiguity and di�ulty when identifying the unstable hydrodynami mode.2.3.9.2 Aousti and evanesent modesThe non-hydrodynami modes are distinguished into aousti and evanesent modes:
• propagating aousti modes, that is, plane wave modes and possibly higher order modespropagating for frequeny below the ut-o� frequeny of the dut. They propagate nearly atthe speed of sound (slightly modi�ed y the main �ow), and their wave numbers are purely real.They are numerially identi�ed with the ondition of having ℑ(Kn) = 0 and of not being anhydrodynami modes.
• what we all evanesent modes, as their wave number have a non-vanishing imaginary part.They are numerially identi�ed without ondition, that is, they represent the remaining modesnot lassi�ed as hydrodynami and aousti.2.3.9.3 Upstream or downstream propagationThe sense of propagation of the mode whether upstream or downstream is given by:
• for hydrodynami and aousti modes, the real part of their wave number, as they are propagat-ing;
• for evanesent modes, the imaginary part of their wave number, in order to attenuate thosemodes.As a result, we obtain in dut I N (N in dut II) hydrodynami modes onveted downstream, N (Min dut II) aousti and evanesent mode propagating downstream and N (M in dut II) aousti andevanesent mode propagating upstream.



90 2 Aeroaoustial behaviour of a single expansion with the multimodal method2.3.10 Sattering matrix determinationThe amplitudes αI of the 3N modes in dut I are linked with the amplitudes αII of the 2M +N modesin dut II applying the onditions of rossing the disontinuity of setion at the expansion. The matrixdetermining this link is alled the sattering matrix S of size (2N +M, 2N +M) de�ned as :
S =

(

T+ R−

R+ T−

)

, (2.59)with (

αII
d

αI
u

)

= S

(

αI
d

αII
u

)

, (2.60)with `u' referring to upstream propagating modes, `d' to downstream propagating modes, `I' to dut Iand `II' to dut II.The sattering matrix is determined with the 2N +M equations oming from the appliation of theonditions of rossing the disontinuity de�ned previously (setion 2.2.7):
• ontinuity of the variables at the interfae (3N equations):






PI

QI

VI




 =






PII|
QII|
VII




 , (2.61)where PII| and QII| (with Q = dP

dz ) are the restrition of PII and QII to the region with �ow,orresponding to the interfae between dut I and dut II.
• ondition of rigidity of the vertial upward wall of dut II (M −N equations):

QII|vertial wall = 0N−M,1 (2.62)The numerial implementation of these equations, Eq. 2.61 and 2.62, is given in the following.Equations are written in a matrix form with sub-matries:
(

ΨI
d,1 ΨI

u,1

χI
1 χI

2

)(

αI
d

αI
u

)

=

(

ΨII
d,1 ΨII

u,1

χII
1 χII

2

)(

αII
d

αII
u

)

, (2.63)where:
χI

1 =

(

ΨI
d,2

0M−N,2N

)

, χI
2 =

(

ΨI
u,2

0M−N,N

)

, (2.64)
χII

1 =

(

ΨII
d,2

K1

)

, χII
2 =

(

ΨII
u,2

K2

)

, (2.65)
K1 = ΨII

d :






0M,1

IdM−N,1

02N,1




 , K2 = ΨII

u :






0M,1

IdM−N,1

02N,1




 . (2.66)



2.3 The multimodal method 91Hene we �nd:
S = S−1

1 S2, (2.67)with:
S1

(

αII
d

αI
u

)

= S2

(

αI
d

αII
u

)

, (2.68)and:
S1 =

(

ΨII
d,1 −ΨI

u,1

χII
1 −χI

2

)

, S2 =

(

ΨI
d,1 −ΨII

u,1

χI
1 −χII

2

)

. (2.69)



92 2 Aeroaoustial behaviour of a single expansion with the multimodal method2.4 Single expansion alulationsWe present in this setion intermediate results obtained in the alulations, as a �rst step validationof the method before omparing results with experimental data. We present the shapes of the modesobtained, the onvergene of the alulations, the visualization of the aousti �elds and the di�ultiestypial of the alulations.2.4.1 Modes obtained in dut I and dut II2.4.1.1 Wavenumbers obtained in dut I and dut IIThe resolution of the system gives the eigenvalues in the notation exp[j(ωt− ωKnx]. The eigenvalues
Kn obtained are sorted in funtion of their real and imaginary part.Wavenumbers obtained in dut I are illustrated in Fig. 2.5, with a very low number N = 3 pointsof disretization to help understand the lassi�ation. One should note partiularly the position ofaousti modes on the x-axis: lose to 1 and -1, they orrespond to 2 plane waves aousti modespropagating upstream and downstream.Numerial investigations show that we obtain other aousti modes than plane wave modes in loseagreement with analytial formulae in the vanishing �ow ase: the �rst transverse modes appear forthe dimensionless ω = 3.83, 7.01, . . ., orresponding to the �rst analytial zeros of the derivative of theBessel funtion J0 of order 0.
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2.4 Single expansion alulations 93Wavenumbers obtained more typially in dut I, that is with a large number of modes, are illustratedin Fig. 2.6.
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96 2 Aeroaoustial behaviour of a single expansion with the multimodal method2.4.1.2 Mode shapes (eigenvetors)In this setion, we give visualizations of the shapes of the modes obtained. The shapes seem satisfyingthe boundary onditions imposed, and di�erentiate teh aousti and the hydrodynami modes.The shape of the modes is given by the eigenvetor assoiated with the eigenvalue (the wavenumber). This eigenvetor is onstituted by the pressure P , the derivative of the pressure dP/dzand the transversal veloity Vr. It is made dimensionless by dividing with the average of the pressure.The �rst aousti mode is a plane-wave mode, with a quasi-onstant pressure as illustrated inFig. 2.9. Higher order aousti modes have a Bessel shape satisfying the boundary onditions, asillustrated in Fig. 2.10 and 2.11.Hydrodynami modes are extremum at a varying given point r = r1, as illustrated in Fig. 2.12 and2.13. This is oherent with the mathematial disussion presented in setion 2.2.6, .
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2.4 Single expansion alulations 992.4.2 Convergene resultsConvergene of the 4 sattering matrix oe�ients is studied, in magnitude and in phase. In order toevaluate onvergene, an estimation of the error between a referene alulation (with a high numberof points N) and the urrent alulation is made:
E(X,N,Nref ) =

|X(N) −X(Nref )|
X(Nref |

, (2.70)where X is the quantity of interest (i.e. |R+| or phase(R+)).Illustration is given in Fig. 2.14 and 2.15. It is found a onvergene slope in log-log representationof 1.19 for the illustrated ase.Convergene results show that N = 150 orresponds to an approximate error of the order of 10−3between a alulation for N = 400 points. We have hosen to employ N = 150 to ompare thoseoe�ients with experimental data.
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2.4 Single expansion alulations 1012.4.3 Visualization of the exited �elds2.4.3.1 Exitation with a plane-waveThe response of the modes is determined by imposing an exitation vetor on the alulated satteringmatrix: (

αII
d

αI
u

)

=

(

T+ R−

R+ T−

)(

αI exc
d

αII exc
u

)

. (2.71)The exitation is made of a plane-wave in dut I, of amplitude α = 1, oming from upstream andpropagating downstream, so that the exitation vetor is:
αI exc

d =









1

0...
0









, αII exc
u =






0...
0




 . (2.72)The visualizations of the total �elds are given in the following, diserning from the presene or not ofan unstable hydrodynami mode.2.4.3.2 The resulting aousti �elds when the hydrodynami modes are all stableAn example of visualization of the aousti �elds is shown in this setion, when sending a plane-wave,in the ase where the hydrodynami modes are all stable.The exitation in downstream plane-wave and the mathing of the modes result in getting a responseomposed, mainly, by exitation of the other plane-waves: in dut I, mainly the other plane-wavemode (propagating upward) (see Fig.2.16), and in dut II, mainly the plane-wave mode propagatingdownward (see Fig.2.17). Thus, it appears that the higher order aousti modes, and the hydrodynamimodes, are not, or very negligibly exited.The orresponding visualizations are given, for the aousti pressure in Fig. 2.18. One observesthat the aousti pressure �eld is a superposition of the two plane-waves (the exitation one andthe re�eted one) in dut I, and the transmitted one in dut II. The aousti veloity �eld shows avanishing value, exept in the region between the two regions of �ow and non-�ow. A narrower x-axissale shows, for the aousti pressure in Fig. 2.19, and for the aousti transverse veloity in Fig. 2.20,that those �utuations orrespond to the exitation of the �rst hydrodynami mode, whih is stablein this alulation.In this ase where hydrodynami modes are all stable, we �nd that the resulting aousti �eld ismainly omposed of plane-waves (the exitation plane-wave, and the re�eted and transmitted ones).The exited hydrodynami modes seem negligible in the solution.2.4.3.3 The resulting aousti �elds when unstable hydrodynami modes are presentAn example of visualization of the aousti �elds is shown in this setion, when sending a plane-wave,in the ase where there is an unstable hydrodynami modes. We use the same parameters as for thestable ase, but hanging ω = 0.50 to ω = 0.45.
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Figure 2.18: Real part of the pressure p′ sending a plane wave exitation upstream P+
1 of amplitude

α = 1 when no unstable hydrodynami modes are present (N = 70, m = 7, ω = 0.5, M0 = 0.1, b = 2).

Figure 2.19: Zoom of the real part of the pressure p′ sending a plane wave exitation upstream P+
1of amplitude α = 1 when no unstable hydrodynami modes are exited (N = 70, m = 3.5, ω = 0.5,

M0 = 0.1, b = 2).
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Figure 2.20: Zoom of the real part of the transversal veloity v′r sending a plane wave exitationupstream P+
1 of amplitude α = 1 when no unstable hydrodynami modes are present (N = 70,

m = 3.5, ω = 0.5, M0 = 0.1, b = 2). We see learly the response of a stable hydrodynami modeexited at the edge of the expansion.



106 2 Aeroaoustial behaviour of a single expansion with the multimodal methodThe exitation results in getting a response omposed, as previously, by plane-waves re�eted in dutI (similar as for the previous stable ase), but above all here, by the transmitted unstable ampli�edhydrodynami mode in dut II. In fat, the ampli�ation is very similar to the previous ase (seeFig.2.22), as we have only hange ω from 0.50 to ω = 0.45. The di�erene is that the hydrodynamimode exited is the unstable one. His amplitude is small, but non-vanishing, and will beome verylarge rapidly, as it is ampli�ed exponentially by propagation.The aousti �eld is exponentially ampli�ed by this mode. Hene it is needed to saturate thein�uene of this mode, in order to make the visualization possible all the same. On the �gures, thevisualization is made using a saturation level of 10 (the exitation plane-wave has a value of 1) atwhih all quantities are put if they exeed this level.Visualizations are given, for the aousti pressure in Fig. 2.21. The in�uene of the unstablehydrodynami mode is lear: the saturation expands till all the region of propagation. The visualizationis very di�ult in this ase, as high auray is needed to loate very lose to the transition from stabilityto instability, in order that the imaginary part of the unstable wave number would not be too high.Close to the transition (at 10−4), we an see more learly, as shown in Fig. 2.22, the in�uene of theunstable hydrodynami mode on the response downstream of the expansion.

Figure 2.21: Zoom of the real part of the pressure p′ sending a plane wave exitation upstream P+
1of amplitude α = 1 when an unstable hydrodynami mode is exited (N = 70, m = 3.5, ω = 0.45,

M0 = 0.1, b = 2).
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Figure 2.22: Real part of the pressure p′ sending a plane wave exitation upstream P+
1 of amplitude

α = 1 when an unstable hydrodynami mode is exited (N = 70, m = 3.5, ω = 0.4911, M0 = 0.1,
b = 2).



108 2 Aeroaoustial behaviour of a single expansion with the multimodal method2.4.4 Di�ulties in the alulation2.4.4.1 Adjusting the oe�ients of the parabolaThe orret identi�ation of the hydrodynami modes is made by the knowing that N modes have tobe found and using the purely arti�ial parabola:
Im(K)2 = A(Real(K)2 − x2

0), (2.73)The parameters A and x0 have to be �tted. Evanesent modes an wrongly be identi�ed as unstablehydrodynami modes, as illustrated in Fig.2.23. In this ase, the alulation identi�es the mistake, asthe number of hydrodynami modes exeeds the theoretial number.The solution is to adjust the oe�ients of the parabola A and x0. Good determination is mostlyobtained for A between 1 and 15 and x0 between 0.6/max(M0) and 0.9/max(M0). In fat, suh problemin the parabola parameters ours rarely, taking for example A = 5 and x0 = 0.8.
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Figure 2.23: Adjustment of the parabola parameters to identify the right number of hydrodynamimodes - ylindrial oordinates, N = 70, m = 4, ω = 1, M0 = 0.4, b=1.2.The use of a ausality riterion (Crighton-Leppington or Briggs-Bers) is the most satisfying methodto disern aousti and hydrodynami modes. It has not been implemented in this work.2.4.4.2 In some low frequeny asesWhen the frequeny ω is very low, the �rst evanesent modes upstream and downstream goesnumerially on the X-axis, as illustrated in Fig.2.24. In this ase, four propagating aousti modesare found, with one travelling downstream and three upstream: the alulation is wrong (also, notransverse mode should propagate for ω < 3.83).



2.4 Single expansion alulations 109The reason for this problem is not identi�ed. However the solution is found: one should inreasesu�iently the number of points N . At some value the alulation will give good determination of themodes.
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110 2 Aeroaoustial behaviour of a single expansion with the multimodal method2.5 Single expansion results2.5.1 Results without �ow: omparison with a modelWithout �ow, and in the limit of vanishing frequeny, a quasi-stationary model is studied: the linearizedmass onservation and the linearized Bernoulli equation are applied to a single expansion (see Fig. 2.25).As in the limit of vanishing frequeny, the end orretion vanishes, one obtains:
S1ρ0u

′
1 = S2ρ0u

′
2, (2.74)

p′1 = p′2. (2.75)

Figure 2.25: Single expansion.The sattering matrix of the single expansion for this model is obtained:
R+ =

1 − α

1 + α
, R− =

−1 + α

1 + α
, (2.76)

T+ =
2

1 + α
, T− =

2α

1 + α
, (2.77)where α = S2/S1 is the ratio of the dut setion.The omparison to this model is very satisfying for very low frequenies and very low Mah numbers,as illustrated in Fig. 2.26 and 2.27.
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Figure 2.26: Comparison of single expansion alulations ℜ(R+) and ℜ(T−), as funtion of theexpansion ratio of setions, with an analytial model in the limit of no �ow and stationary regime(f = 0.1 Hz, M0 = 10−4, N = 30, m = 7).
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Figure 2.27: Comparison of single expansion alulations ℜ(R−) and ℜ(T+), as funtion of theexpansion ratio of setions, with an analytial model in the limit of no �ow and stationary regime(f = 0.1 Hz, M0 = 10−4, N = 30, m = 7).



112 2 Aeroaoustial behaviour of a single expansion with the multimodal method2.5.2 Results with �ow: omparison with experimental data2.5.2.1 Prinipal result: good orrelation with experimental dataCalulations with �ow are ompared with experimental data from Ronneberger (1989), for |R+| andphase(R+). The parameter m = 7 is used in alulations to ompare with a fully turbulent �ow as inthose experimental data.The e�et of the �ow pro�le is relatively weak, as illustrated in Fig. 2.28 and 2.29. For instane, adi�erene of around 10−2 is obtained between m = 7 and m = 9.In most of the ases, multimodal alulations are lose to experimental data, for the magnitude andphase of R+, as illustrated in Fig. 2.28, 2.29, 2.30, 2.31, 2.32.
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Figure 2.28: Comparison of single expansion alulation |R+|, as funtion of the mean Mah numberin the dut, with experimental literature data from Ronneberger (Bild 4.1, η = SI/SII = 0.419, f=900Hz, m = 7,N=150).
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m = 7,N=150.)
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Figure 2.31: Comparison of single expansion alulation phase(R+), as funtion of the mean Mahnumber in the dut, with experimental literature data from Ronneberger (Bild 4.1, η = 0.346, f=500Hz, m = 7,N=150.)
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Figure 2.32: Comparison of single expansion alulation |R+|, as funtion of the mean Mah numberin the dut, with experimental literature data from Ronneberger (Bild 4.1, η = 0.42, M0=0.3, m = 7,
N=150).



116 2 Aeroaoustial behaviour of a single expansion with the multimodal method2.5.2.2 Comparison with another numerial method and Kutta onditionThe works of Boij and Nilsson (2003 and 2005) represents another numerial method to determine theaoustial properties of a single expansion. The partiularity of this method is that a Kutta onditionan be implemented or not. It is employed exlusively on a retangular dut.We have tried to ompare our results with this numerial method. In order to do so, The variable
He∗ is proposed by Boij and Nilsson (2003) to sale ylindrial and retangular on�gurations. Theidea is to get a dimensionless frequeny orresponding to the same distane from the frequeny of studyto the ut-o� frequeny of the dut. This gives:

He∗ =
kb

kbcut−off
, (2.78)where kbcut−off = 3.832 for a irular dut, and kbcut−off = π for a square dut. Hene:

He∗ =
1

η

ωrect

π
=

1√
η

ωcyl

3.832
, (2.79)where η = S1/S2.An example of result is given in Fig. 2.33. As already observed, our alulations are lose toRonneberger's results. The limits are partiularly well obtained. Also, as already observed andindiated, the parameter of the �ow pro�le is not ritial for alulations, whih is very satisfying, asthe same results are obtained within a relative error of less than 2% when using the range m = 3 and

m = 15 of �ow pro�le parameter. The main di�erene of level is obtained at a hump, forHe∗/M0 ≈ 1.1.This di�erene is expeted to be due to the ampli�ation of the unstable hydrodynami mode, butshould be lari�ed in further study.Comparison with Boij's results indiates that the Kutta ondition is obtained for low He∗/M0.
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Figure 2.33: Comparison of single expansion alulation |R+|, as funtion of the dimensionlessHelmoltz number, with experimental literature data from Ronneberger and numerial method fromBoij (η = 0.346, f∗=500Hz).



118 2 Aeroaoustial behaviour of a single expansion with the multimodal method2.5.2.3 Problemati results: bad orrelation for ertain ases when ω > 0.7Strong di�erene is found for R+ between numerial and experimental data, for ω above 0.6-0.7 andfor a high Mah number. It is illustrated in Fig. 2.34. One should note that this range of parametersis quite extreme.This disrepany with experimental data has not been lari�ed. We have heked that the phaseof R+ is well alulated, as shown in Fig. 2.35. Also, the onvergene of the results has been hekedarefully. Finally, it would be quite surprising that our alulations abruptly give suh bad orrelationwith experiments. Consequently, it seems that the �rst question is to know the disrepanies in theexperimental data, as they orrespond to a quite deliate measure in this extreme range of frequeny.
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Figure 2.34: Comparison with literature (Ronneberger Bild 4.3) for the magnitude (η = 0.35, M0=0.3,
N=150).
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Figure 2.35: Comparison with literature (Ronneberger Bild 4.3) for the phase (η = 0.35, M0=0.3,
N=150).



120 2 Aeroaoustial behaviour of a single expansion with the multimodal method2.5.3 Transition to unstable hydrodynami modeThe transition from stable to unstable hydrodynami mode is illustrated in Fig. 2.36. We use themomentum thikness of the wall boundary layer δ:
δ =

∫ r=1

r=r1

M(r)(1 −M(r))dr, (2.80)where r1 is determined so that for r ≤ r1, M(r) ≥ 0.99M0. δ is dimensionless with the radius a ofdut I. We �nd a ritial value of ωθ/M0 = k∗θ∗/M0 ('*' denotes dimensional variables) around 0.25in the limit of in�nitely shear layers.
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Figure 2.36: Determination with the multimodal method of the Strouhal number for the hydrodynamiinstability transition, as funtion of the �ow pro�le parameter m linked with the momentum thikness
δ of the boundary layer.The Strouhal number for the transition is given in Mihalke (1965), indiating a value of k∗θ∗/M0 =

0.25 (also mentioned in Boij and Nilsson (2003); the value has to be divided by two, as it orrespondsto a pipe diameter) for in�nitely thin shear layers and dimensional variables. This is in good agreementwith our numerial values.



2.5 Single expansion results 1212.5.4 Comparison between irular and retangular dut2.5.4.1 A satisfying dimensionless frequenyThe omparison between a irular and a retangular dut gives di�erent results, see Fig. 2.37. Hene,to make the results dimensionless in frequeny, the proposition from Boij and Nilsson (2003) is studied.The idea is to use a frequeny made dimensionless with the distane to the ut-o� frequeny: thedimensionless Helmholtz number He∗ is de�ned, as presented in setion 2.5.2.2.Results for this dimensionless frequeny representation are given in Fig. 2.38. The ollapse issatisfying, espeially for low Helmholtz number He∗ . 0.25.
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Figure 2.37: Comparison on |R+| between a irular and a retangular dut, using a similar ratio ofsetions (M0 = 0.3, m = 7, η = 0.35, N = 150).2.5.4.2 Investigation of a hump form on sattering matrix oe�ientsA loal hump form is sometimes found, as the one visible in Fig. 2.30 around M0 = 0.11. It appearsin our alulations, and also learly on the previous works of Boij & Nilsson (without explanation).Moreover, on this �gure, it is lear that it exists also in experimental data, in a more smooth form.We have tried to investigate this phenomenon on our alulation in the ase presented in Fig. 2.30.First, it is lear that this phenomenon is not linked to the transition from stable to unstablehydrodynami modes, as this one in this ase appears around M0 = 0.045.It seems, as observed in Fig. 2.39, that this hump orresponds to a minimum distane betweenthe unstable hydrodynami mode and the smallest (or losest) evanesent mode. This is however notobvious. The in�uene of suh proximity on the sattering matrix oe�ient is not understood. A
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Figure 2.38: Dimensionless representation of |R+| for a irular and a retangular dut, using a similarratio of setions (M0 = 0.3, m = 7, η = 0.35, N = 150).physial explanation for the existene of this hump form laks also. Hene further study would beneeded on this subjet to understand what really happens.
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124 2 Aeroaoustial behaviour of a single expansion with the multimodal method2.6 ConlusionA numerial alulation has been used to determine the aoustial properties of a single expansion undera shear �ow pro�le. The sattering matrix and the resulting aoustial �elds when sending exitationwaves have been alulated. The multimodal method used is a simple �nite di�erene resolution inestablished harmoni regime of the linearized Euler equations under inompressible shear mean �ow.Only the transverse diretion is solved, then �elds are dedued on the longitudinal diretion simply bypropagation at the imposed frequeny. Viso-thermal e�ets are negleted and, the �ow is assumednot to expand after going through the expansion. The resolution gives aousti modes, propagating atthe speed of sound, hydrodynami modes, onveted by the mean �ow, and evanesent modes, withvarying speed between eah other. The alulation of these modes is made in the two duts, and thex-axis loation orresponding to the loation of the expansion, and the mathing of these modes at thatpoint by onditions of ontinuity of the aousti variables gives the aousti sattering matrix of theon�guration. In this hapter, the objetive was to validate this method, partiularly by omparingwith experimental results.As a result, the alulations give good satisfation. A large number of omparisons has been madeon a large range of the parameters (frequeny, Mah number, height of the expansion), both with avanishing shear �ow, and with a shear �ow, and a large number of omparisons have been made withtheory and experimental data:
• an unstable hydrodynami mode is sometimes present in the dut II. Its existene is supposedto be linked with the virtual in�exion point of the �ow pro�le at the separation between the�ow and the non-�ow region. The transition from stable to unstable hydrodynami modes is inlose agreement with literature (setion 2.5.3). This result has been on�rmed by the study ofG. Koojman on the same method (PhD, TU/e Eindhoven);
• the method alulates very satisfyingly the sattering matrix oe�ients of the single expansion.Comparison with simple models is very good for limit ases (no �ow, quasi-stationary), and aboveall omparisons are in general very satisfying with all experimental data found in Ronnebergeronerning the magnitude and the phase of the re�etion oe�ient R+ (setions 2.5.1 and2.5.2.1);
• the method, as it allows both retangular and ylindrial alulations, has on�rmed a satisfyingdimensionless Helmholtz number, proposed in literature (Boij and Nilsson, 2005) to plot data forthese two geometries (setion 2.5.4). This on�rms that the ratio of the frequeny ompared tothe ut-o� frequeny of the pipe is a good dimensionless frequeny in those problems.However, some problems have been pointed out and would need more study:
• for some extreme range of parameters (high frequeny and high Mah number), omparison withexperimental data is bad (setion 2.5.2.3). We have no lear understanding of this phenomenon.This is not a problem of onvergene of our alulations, as it has been heked. But one shouldnote that it may be due to inauraies in the experimental data, as for this extreme range ofparameter, measurements are di�ult to handle;
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• a loal hump form, in the evolution of the magnitude of a re�etion oe�ient, is sometimesfound, but its signi�ation is not understood (setion 2.5.4.2). This phenomenon appears in theexperimental data. We have understood that it orresponds approximately to a lose distane,in the real part and imaginary part of the wave numbers representation, between an evanesentmode and the unstable hydrodynami mode. However, the physis of the phenomenon is notunderstood, and this study would need further study.As a onlusion, we have onsidered this method as been validated by this single expansionon�guration, and we have deided to apply it to a more omplex, potentially whistling, on�guration:a double expansion, that is, two suessive single expansions (hapter 3).In perspetive, more study should be however be made to larify the unsolved problems, and alsoto use more e�iently its advantages:
• the omparison between ylindrial and retangular duts is possible with this method. Wehave begun this study, but not deepened it partiularly in terms of understanding. It would beinteresting to do more study on this topi, as it is hardly overed in literature;
• a larger understanding of this method would be given by a deeper understanding of the evanesentmodes found in our alulations. As the wave numbers of those modes do not larify if they arepropagated or onveted, we do not know in this study whether they are ompressible modes(that is, aousti modes) or inompressible modes (that is, inompressible-type modes, meaningthat we would obtain them in an inompressible modelling). To this purpose, an inompressiblealulation should be done in the same manner of this method to larify whether the evanesentmodes are inompressible or ompressible.One should note �nally that this method ould not be applied to any �ow on�guration, and toany geometry: the prie of its simpliity is that it has a quite restrained �eld of appliation: the �owentering the expansion must be horizontal, and non-expanding.
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Chapter 3Aeroaoustial behaviour of a whistlingexpansion
3.1 IntrodutionThis hapter is an experimental and numerial study of the aeroaoustial behaviour of a whistlingexpansion. The objetive is to study the potentially whistling frequeny of this on�guration, byapplying the whistling riterion (introdued in hapter 1), and then, to obtain some loal understandingof the behaviour of the aousti �elds in this on�guration.The multimodal method (introdued in hapter 2) is used to alulate the sattering matrix of thison�guration. Numerial results are ompared to our experimental data.3.2 Con�guration studiedThe geometry onsidered is an ori�e with a double expansion (see Fig. 3.1) onstituted by:

• upstream, a onstrition, omposed by an ori�e with a bevel upstream. The idea to use a bevelupstream is that the jet formed at the exit of this onstrition will be horizontal, hene allowingnumerial alulations on this on�guration;
• downstream, a double expansion, omposed by an ori�e with no bevel and a larger diameter.The idea is that this seond ori�e of length L will reate a feedbak and make this on�gurationpotentially whistling, ompared to an ori�e with a single expansion (as presented in hapter 1).This on�guration is the simplest whistling one on whih we an apply the multimodal method.Indeed, in order to use the multimodal method, the �ow has to be stabilized so that it forms a jet atthe entrane of the expansion. Consequently, the alulation of a simple irular entred ori�e wasnot possible, and the on�guration of an ori�e with only a bevel upstream is not interesting, as it isnot a potentially whistling on�guration. 129



130 3 Aeroaoustial behaviour of a whistling expansion

Figure 3.1: Geometry of the on�guration studied: a onstrition, forming a jet at x = 0, followed bya double expansion. The lengths are made non-dimensional with the height of the onstrition a∗ (`1'on the �gure). Md is the Mah number at the onstrition (z = 0−).3.3 Experimental results: the on�guration is potentially whistlingExperiments show that this on�guration is a potentially whistling one, applying the whistling riterionpresented in hapter 1, as illustrated in Fig. 3.2 (the other results on this on�guration are reportedin appendix B).The potentially whistling frequenies are made non-dimensional in a similar manner as for singleori�es (see hapter one). The Strouhal number is based on the length L of the expansion, and theveloity Ud at the entrane of the expansion (z = 0−):
St =

fL

Ud
. (3.1)The �rst mode (�rst peak of the potentially whistling frequenies) is obtained around 0.2-0.3, asvisible in Fig. 3.3 and in appendix B. This is oherent with the values obtained for the single ori�espresented in hapter 1.One exeption is onstituted by the aseM0 = 0.56x10−2, beause the Strouhal number is quite highompared to 0.2-03. This orresponds to a known phenomenon. This measurement orresponds to alow Reynolds number ReD = U0D/ν = 3.8x103 (using νair = 1.51x10−5 m2 s−1, c0 = 343 ms−1), nearthe laminar-turbulent transition. We have already reported this behaviour in hapter 1 of signi�antinrease of the Strouhal number at pipe Reynolds number under 5x103.3.4 Desription of the numerial alulation methodThe numerial alulation of the sattering matrix of this on�guration is made as the following. Thetotal sattering matrix is seen as a ombination of the sattering matrix of the onstrition with thesattering matrix of the double expansion.The sattering matrix of the onstrition is obtained at one by using a simple and lassi aoustimodel, whih is presented in the following setion.
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Figure 3.2: Eigenvalues of the aousti power ratio from the whistling riterion for on�guration:
b = 1.5, c = 3, L = 2 (CCb6+CC19) for three Mah numbers: it appears that this on�guration ispotentially whistling.
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Figure 3.3: Strouhal number of the potentially whistling eigenvalues from the whistling riterion foron�guration: b = 1.5, c = 3, L = 2 (CCb6+CC19) for three Mah numbers: the on�guration ispotentially whistling, exhibiting two suessive modes here.



132 3 Aeroaoustial behaviour of a whistling expansionThe di�ulty of the alulation is represented by the alulation of the sattering matrix oe�ientsof the double expansion. This alulation is done using the multimodal method introdued in hapter2, and is detailed in the following.The ombination of the two sattering matries gives the sattering matrix of the whole on�guration(presented in the following).3.4.1 Sattering matrix of the onstritionThe geometry of the onstrition is shown in Fig. 3.4. A simple inompressible model is used todetermine the sattering matrix of this onstrition. We disern the ases with �ow and without �ow,as it appears that the e�etive length is ritial to well model the non-�ow ase.

Figure 3.4: The onstrition: notations used in models to determine the sattering matrix of theonstrition, in the plane-wave and inompressible approximations.3.4.1.1 Sattering matrix of the onstrition with �owAssuming the �ow to be inompressible, without visosity and stationary, Bernoulli equation indiatesthat the following quantity is onstant on a streamline:
h+

1

2
u2 +

∂φ

∂t
= ste, (3.2)where h = p/ρ is the enthalpy and φ the veloity potential suh that u = ∇φ.We linearize at �rst order this expression to obtain aoustial quantities. As the �ow is onsideredinompressible, h′ = p′/ρ0 (where ρ0 is the volume density of air). We obtain:

p′

ρ0
+ u′U0 = ste, (3.3)negleting the e�et of φ′ (whih leads to an end orretion purely imaginary).



3.4 Desription of the numerial alulation method 133This general expression is applied from far upstream of the onstrition (denoted by 1, of setion
Sp) to the onstrition (denoted by 2, of setion Sd), whih gives the �rst equation:

p′1
ρ0

+ u′1U0 =
p′2
ρ0

+ u′2U0. (3.4)The seond equation of the model is the mass onservation equation linearized at the �rst order:
Sp(ρ1u

′
1 + ρ′1U1) = Sdu

′
2(ρ2u

′
2 + ρ′2U2). (3.5)To obtain the sattering matrix oe�ients orresponding to this model, we use the relations(negleting the e�et of the �ow in the propagating upstream and downstream wave numbers):

p′ = P+ + P−, u′ =
P+ − P−

ρ0c0
, ρ′ =

p′

c20
, (3.6)where c0 is the speed of sound in air (c0 = 343 m.s−1 at T=293 K.)The sattering matrix oe�ients of this simple model of onstrition with �ow are, using η = Sd/Sp:

R+ =
1 − η

1 + η
.
1 +M0

1 −M0
, T+ =

2

1 + η
.
1 +M0

1 + M0

η

, (3.7)
R− =

−1 + η

1 + η
.
1 − M0

η

1 + M0

η

, T− =
2η

1 + η
.
1 − M0

η

1 −M0
. (3.8)They are illustrated as funtion of the Mah number M0 in Fig. 3.5.3.4.1.2 Sattering matrix of the onstrition without �owWithout �ow, the same previous model is onsidered, exept that we take into aount the endorretion term, so that:

p′1
ρ0

=
p′2
ρ0

+ jωαLeffu
′
2, (3.9)where η = Sd/Sp and Leff is an e�etive length.The sattering matrix oe�ients of this model of onstrition without �ow are:

R+ =
1 − η + jA

1 + η + jA
, T+ =

2

1 + η + jA
, (3.10)

R− =
−1 + η + jA

1 + η + jA
, T− =

2η

1 + η + jA
, (3.11)where A = ω η Leff/c0.The sattering matrix oe�ients obtained with this model are illustrated in Fig. 3.6.
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Figure 3.5: Sattering matrix of the onstrition with �ow: appliation of the inompressible plane-wave model, for η = 1/9 (η = Sd/Sp), c0 = 343 m.s−1, ρ0 = 1.1 kg.m−3.
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3.4 Desription of the numerial alulation method 1353.4.2 Sattering matrix of the double expansion with the multimodal methodThe multimodal method is used to obtain the sattering matrix and the aousti �elds of the doubleexpansion.The geometry of the double expansion is shown in Fig. 3.7. The number of disretization points is
N in dut I, M in dut II and P in dut III (see hapter 2 for more details about the method).

Figure 3.7: Double expansion alulation with the multimodal method: the injeted �ow in dut Idoes not expand at its rossing in dut II and dut III. There is no �ow in the regions of dut II andIII orresponding to r > 1. The length of dut II is noted L.Modes are alulated in dut I, dut II and dut III in the same manner as for the single expansionase presented in hapter 2.The sattering matrix of the double expansion is then determined: the amplitudes αI of the 3Nmodes in dut I are linked with the amplitudes αIII of the 2P +N modes in dut III. The satteringmatrix S of the double expansion is then:
(

αII
d

αI
u

)

= S

(

αI
d

αII
u

)

. (3.12)It is a squared matrix of size (2N +M, 2N +M).Two methods an be used to alulate this sattering matrix of the double expansion, and arepresented in the following. Both have been implemented, so as to validate alulations.3.4.3 Sattering matrix of the double expansion: method by assemblage ofsuessive matriesThe sattering matries of the single expansions between dut I / dut II and dut II / dut III arealulated, in the same manner as for a single expansion. Then, the assemblage of these two suessivematries gives the sattering matrix of the double expansion.



136 3 Aeroaoustial behaviour of a whistling expansionThe sattering matrix A of the single expansion between dut I / dut II gives the followingoe�ients, orresponding at the loation z = 0:A =

(

R+
A(0) T−

A (0)

T+
A (0) R−

A(0)

)

. (3.13)The sattering matrix B of the single expansion between dut II / dut III gives the followingoe�ients, orresponding at the loation z = L:B =

(

R+
B(L) T−

B (L)

T+
B (L) R−

B(L)

)

. (3.14)Before assembling the two matries, one should inlude the propagation in the dut II of length L.In other terms, the oe�ients in the two matries should be expressed at the same loation point.The hoie of the loation point should be done numerially with are, as exponentials terms appearand may lead to divergene problems. In this prospet, a good hoie of variables is the following:
R+(0), T−(L), T+(0), R−(L). Thus sattering matries are arranged in the following manner

Aarranged =

(

R+
A(0) T−

A (0) exp(jKII
u ω)

T+
A (0) R−

A(0) exp(jKII
u ω)

)

. (3.15)and:
Barranged =

(

R+
B(L) exp(−jKII

d ω) T−
B (L)

T+
B (L) exp(−jKII

d ω) R−
B(L)

)

, (3.16)where KII
u are the wave numbers orresponding to upstream propagating mode in dut II, and KII

d hewave numbers orresponding to downstream propagating modes in dut II. One should note that thelength L is ritial but is not visible in these expression of exponentials as the pulsation frequeny ωis made dimensionless with respet with L.From now on, the assemblage of the two matries an be done, beause they express the fouroe�ients at the same points. The formula of assemblage is given for a general expression in thefollowing.Let A be the �rst sattering matrix and B the seond sattering matrix (see illustration in Fig. 3.8),and C he sattering matrix of the whole:
Figure 3.8: Assemblage of two sattering matries: notations used, in plane-wave propagation.
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A =

(

A11 A12

A21 A22

)

, B =

(

B11 B12

B21 B22

)

, C =

(

C11 C12

C21 C22

)

, (3.17)written in our formalism (`11' for R+, `12' for T−, `21' for T+, `22' for R−). After alulations, C isgiven by the following expressions (Furnell and Bies, 1989; Bi et al., 2006):
C11 =

A11 +B11(A21A12 −A11A22)

1 −A22B11
, C12 =

A12B12

1 −A22B11
, (3.18)

C21 =
A21B21

1 −A22B11
, C22 =

B22 +A22(A21A12 −B11B22)

1 −A22B11
. (3.19)This assemblage is applied, taking A as matrix Aarranged and B as matrix Barranged. The obtainedsattering matrix of the whole C is noted Carranged:

Carranged =

(

R+
C(0) T−

C (L)

T+
C (0) R−

C(L)

)

. (3.20)The sattering matrix of the double on�guration Cfinal, expressed at x = 0, is given by:
Cfinal =

(

R+
C(0) T−

C (L) exp(−jKII
u ω)

T+
C (0) exp(jKII

d ω) R−
C(L) exp(j(KII

d − KII
u )ω)

)

. (3.21)3.4.4 Sattering matrix of the double expansion: method by diret alulationAnother method is to alulate diretly the sattering matrix of the whole on�guration (the interme-diate single expansion matries are not alulated), by alulating the modes in the three duts andapplying the relations of passage at the two expansions.
(

αIII
d

αI
u

)

= S

(

αI
d

αIII
u

) with S =

(

T+ R−

R+ T−

)

. (3.22)Denoting S∗ = S1
−1.S2 the whole sattering matrix, we obtain the oe�ients of the satteringmatrix S:

R+ = S∗
|(1:N,1:2N), (3.23)

R− = exp(jKIII
d ω).S∗

|(N+1:2N+P,2N+1:2N+P ). exp(−jKIII
u ω), (3.24)

T+ = exp(jKIII
d ω).S∗

|(N+1:2N+P,1:2N), (3.25)
T− = S∗

|(1:N,2N+1:2N+P ). exp(−jKIII
u ω). (3.26)and denoting XN1,N2

a matrix of N1 lines and N2 olumns, X|N1:N2
the onstrition of the vetor

X from the line N1 to the line N2, the intermediate matries are alulated from:
S1








αI
u

αIII,L
d

αII
d

αII,L
u








= S2

(

αI
d

αIII,L
u

)

. (3.27)



138 3 Aeroaoustial behaviour of a whistling expansionIt is important to use those intermediate phase referenes: αII,L
u and αIII,L

d , so that the exponentialsoming from the propagation aross the expansion exp(jKII
u L) and exp(−jKII

d L) are attenuated(exept for the unstable hydrodynami mode in exp(−jKII
d L)):

S1 =










ψI
u 03N,N+P −ψII

d,rest1 −ψII
u,rest1. exp(jKII

u L)

0M−N,N 0M−N,N+P ψII
d,rest2 ψII

u,rest2. exp(jKII
u L)

03N,N −ψIII
d,rest1 ψII

d,rest1. exp(−jKII
d L) ψII

u,rest1

0P−M,N ψIII
d,rest2 0P−M,M+N 0P−M,M

02M−2N,N ψIII
d,rest3 −ψII

d,rest3. exp(−jKII
d L) −ψII

u,rest3










(3.28)
S2 =










−ψI
d 03N,P

0M−N,2N 0M−N,N+P

03N,2N ψIII
u,rest1

0P−M,2N −ψIII
u,rest2

02M−2N,2N −ψIII
u,rest3










, (3.29)with:
ψII

d,rest1 =

(

ψII
d |M−N+1:M

ψII
d |2M−N+1:2M+N

)

, ψII
u,rest1 =

(

ψII
u |M−N+1:M

ψII
u |2M−N+1:2M+N

)

, (3.30)
ψII

d,rest2 = ψII
d |P+1:2P−M , ψII

u,rest2 = ψII
u |P+1:2P−M , (3.31)

ψIII
d,rest3 = ψIII

d |1:M−Nψ
III
d |M+1:2M−N , ψIII

u,rest3 = ψIII
u |1:M−Nψ

III
u |M+1:2M−N . (3.32)3.5 Validation of the alulations3.5.1 Comparison with experimental data - without �owWe ompare the numerial estimation of the sattering matrix of the whole on�guration to ourexperimental data without �ow. This is a �rst validation step, in order to apply next the methodwith a �ow.The sattering matrix oe�ient are given in Figs. 3.9 and 3.10. It appears that the e�etive lengthis a very important parameter for the model without �ow and has to be taken into aount. Hene,there are strong e�ets of transverse aousti modes in this ase, and a model without aousti lengthorretion is quite bad.Calulations �t well experimental data using the e�etive length of Leff = 0.07 as a �t variable. Thequalitative and quantitative evolution of the sattering matrix oe�ients are very well representedwhen taking this value.
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Figure 3.9: Re�etion oe�ient |R+| for the on�guration studied (onstrition and double expansion)in the ase of no �ow: the alulations are losed to the experimental data, when using a well �ttede�etive length Leff . The numerial alulations are made with a∗=5 mm, b = 2, c = 3, L = 3.6,
N=20, Md = 0; the reported experimental data onern the on�guration CCb6+CC18+CC9 without�ow.
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Figure 3.10: Transmission oe�ient |T+| for the on�guration studied (onstrition and doubleexpansion) in the ase of no �ow: the alulations are losed to the experimental data, when using awell �tted e�etive length Leff . The numerial alulations are made with a∗=5 mm, b = 2, c = 3,
L = 3.6, N=20,Md = 0; the reported experimental data onern the on�guration CCb6+CC18+CC9without �ow.



140 3 Aeroaoustial behaviour of a whistling expansion3.5.2 Comparison with experimental data - with �owWe ompare the numerial estimation of the sattering matrix to our experimental data with �ow.The sattering matrix oe�ients are given in Fig. 3.11 for |R+|, Fig.3.12 for |R−|, Fig.3.13 for |T+|and Fig.3.14 for |T−| and are disussed in the following.
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Figure 3.11: Re�etion oe�ient |R+| for the on�guration studied (onstrition and double expan-sion) in the ase of �ow: a good onvergene is obtained for N ≥ 100. The numerial alulations aremade with a∗=5 mm, b = 1.5, c = 3, L = 2, Md = 8.67 10−2; the reported experimental data onernthe on�guration CCb6+CC19 with M0 = 9.6 10−3.Firstly, onvergene is reahed for N ≥ 100 with a relative disrepany of 10−2. We use then in thefollowing setions N = 100 as a satisfatory number of points for the alulations.The qualitative evolution of the sattering matrix oe�ients is satisfatory, exhibiting several peaks(modes), as in experiments. The position of the Strouhal modes is lose to the experimental values(see the following setion for more details).The levels obtained at the limits of the sattering matrix oe�ients are well obtained: the lowfrequeny limit of the four sattering matrix oe�ients is very well obtained; the high frequeny limitof the four sattering matrix oe�ients is very well obtained, exept for T+ for whih the alulatedlimit is bad: it goes to zero, whereas the experimental limit is around 0.3.But the quantitative level of the sattering matrix oe�ients is entirely satisfatory. The level ofthe oe�ients is globally under-estimated for the re�etion oe�ients, and over-estimated for thetransmission oe�ients. More study of this phenomenon is made in setion 3.5.3.One should note however that those results seem quite su�ient to obtain orret whistlingfrequenies, as will be presented in the following, and whih represents our objetive. The problemof determination of the magnitudes of the sattering matrix oe�ients is not ritial to our needs,
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Figure 3.12: Re�etion oe�ient |R−| for the on�guration studied (onstrition and double expan-sion) in the ase of �ow: a good onvergene is obtained for N ≥ 100. The numerial alulations aremade with a∗=5 mm, b = 1.5, c = 3, L = 2, Md = 8.67 10−2; the reported experimental data onernthe on�guration CCb6+CC19 with M0 = 9.6 10−3.
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Figure 3.13: Transmission oe�ient |T+| for the on�guration studied (onstrition and doubleexpansion) in the ase of �ow: a good onvergene is obtained for N ≥ 100. The numerial alulationsare made with a∗=5 mm, b = 1.5, c = 3, L = 2, Md = 8.67 10−2; the reported experimental dataonern the on�guration CCb6+CC19 with M0 = 9.6 10−3.
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Figure 3.14: Transmission oe�ient |T−| for the on�guration studied (onstrition and doubleexpansion) in the ase of �ow: a good onvergene is obtained for N ≥ 100, but the limit for thehigh frequeny is not well obtained. The numerial alulations are made with a∗=5 mm, b = 1.5,
c = 3, L = 2, Md = 8.67 10−2; the reported experimental data onern the on�guration CCb6+CC19with M0 = 9.6 10−3.



144 3 Aeroaoustial behaviour of a whistling expansionand the disrepany we obtained is aeptable, onsidering the simpliity of the approah used: simplemodel for the behaviour of the onstrition, and simple assumptions for the multimodal method. Themain objetive is then presented in setion 3.6, while a loser look at the meaning of this disrepanyis given in the following setion.3.5.3 E�et of the saturation of the unstable hydrodynami modeA problem in the alulations is that the peak values of the potentially whistling eigenvalues arenot well orrelated with experimental data. We assume this is due to the in�uene of the unstablehydrodynami mode in our alulations.In the alulation of the sattering matrix of the double expansion, exponentials terms are present(see Eq. 3.28). The term in the exponential exp(−jKII
d ω) for the unstable hydrodynami mode isexponentially ampli�ed, whereas the other terms of this exponential are in magnitude below the unity.In the illustration ase of previous setion (Fig. 3.17), the value of the exponential for this unstablemode is 5.6.In order to test the in�uene of this term, we have saturated it in the alulation (this is not aimedto represent any physial phenomenon). The exponential term in exp(−jKII

d ω) for this unstablehydrodynami is put to an arbitrary saturation value. A weak saturation is a saturation level of 5 (inmagnitude), as it is lose to the value 5.6 of the exponential. A strong saturation is a saturation levelof 2, whih is lose to the value of the other terms of the exponentials (near and below the unity).Results are illustrated in Fig. 3.15 and 3.16. The hypothesis is validated: it appears that themagnitude of the sattering matrix oe�ients, and also the potentially whistling eigenvalues, dependstrongly on the saturation used, at least for potentially whistling frequenies. Hene the ampli�ationdue to the unstable hydrodynami mode is ritial to determine the amplitudes of the sattering matrixoe�ients and the potentially whistling eigenvalues. In this ase, a saturation at 2 would give thebest omparison with experimental results.The improvement of the determination of this ampli�ation is problemati. In our alulations, thisampli�ation is obtained by the multipliation of the imaginary part of the wave number of the unstablehydrodynami mode with the length L of the double expansion. The value of the imaginary part of thewave number depends on the �ow pro�le imposed, and the exponential ampli�ation is hene ritiallydependent on this value. For instane, using a �ow parameter m = 3, m = 7 and m = 15 respetively,the imaginary part of the unstable wave number equals 1.9, 4.4 and 5.3 respetively (made in dutII with M0 = 0.1, b = 2, ω = 0.1, N = 50). Hene it is problemati to �nd a more preise preditionof this ampli�ation in our model, unless knowing very preisely the experimental �ow pro�le. Thisresult is rather oherent physially. It is not a surprise that the shape of the boundary layer of the �owpro�le is important to determine the aeroaoustial response of the system, as this is in this regionthat the main phenomenon, the presene of an unstable hydrodynami mode, ours.
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Figure 3.15: Variations of |R+| when saturating numerially to a trunated value the unstable ampli�edhydrodynami mode in the sattering matrix alulation of the double expansion. The numerialalulations are made with a∗=5 mm, b = 1.5, c = 3, L = 2, N=20, Md = 8.67 10−2; the reportedexperimental data onern the on�guration CCb6+CC19 with M0 = 9.6 10−3.
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Figure 3.16: Variations of the potentially whistling eigenvalues when saturating numerially to atrunated value the unstable ampli�ed hydrodynami mode in the sattering matrix alulation ofthe double expansion. The numerial alulations are made with a∗=5 mm, b = 1.5, c = 3, L = 2,
N=30, Md = 8.67 10−2; the reported experimental data onern the on�guration CCb6+CC19 with
M0 = 9.6 10−3.



3.6 Whistling ability of the on�guration 1473.6 Whistling ability of the on�gurationIn this setion, we apply the whistling riterion presented in hapter 1 to the numerial results with�ow presented in the previous setion and ompare them tour experimental data.3.6.1 Whistling ability of the on�gurationThe potentially whistling eigenvalues dedued from the sattering matrix oe�ients previouslypresented are illustrated in Fig. 3.17. The same onlusions ome, than those obtain on the satteringmatrix oe�ients: a good qualitative evolution is found, the limit behaviour at very low and veryhigh frequeny is orret, There is however a slight shift in frequeny: the experimental Strouhalnumber, orresponding to the �rst peak, is fpeak 1L/Ud = 0.34 (with f =peak 1= 1000Hz), while thenumerial Strouhal number is fpeak 1L/Ud = 0.37 (with f =peak 1= 1100Hz). As the model used forthe onstrition is a simple one, this shift does not seem ritial;The potentially whistling eigenvalues dedued from those oe�ients are illustrated in Fig. 3.17.
• it appears that the qualitative evolution of the eigenvalues is satisfatory, exhibiting two peaks(modes), and potentially whistling frequenies, as in experiments. The orresponding Strouhalnumber is lose to experiments: this alulation provides satisfatory Strouhal number forpotentially whistling frequenies.We note however a slight shift in frequeny: for example for the �rst peak, in experiments
fpeak 1L/Ud = 0.34 (fpeak 1 = 1000Hz), while in alulations fpeak 1L/Ud = 0.37 (fpeak 1 =

1100Hz), whih orresponds to a 8% relative disrepany. As the model used for the onstritionis a simple one, this shift does not seem ritial (no study has been made to redue it);
• the amplitudes of the peaks are wrong. For example, the peak of the �rst mode is over-estimatedwith a ratio of three. . . This issue is under study in the following setion.
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Figure 3.17: Whistling riterion applied numerially for the on�guration studied (onstrition anddouble expansion) in the ase of �ow: a good onvergene is obtained for N ≥ 100, and thepotentially whistling frequenies are obtained satisfatorily, for the two whistling modes, but not theamplitude of the eigenvalues. The numerial alulations are made with a∗=5 mm, b = 1.5, c = 3,
L = 2, Md = 8.67 10−2; the reported experimental data onern the on�guration CCb6+CC19 with
M0 = 9.6 10−3.



3.6 Whistling ability of the on�guration 1493.6.2 Comparison with the whistling ability of a single expansion on�gurationIt is partiularly interesting to ompare the whistling ability of the on�guration with a similaron�guration without the seond expansion zone of length L (see Fig.3.18). In fat, this orrespondsto an ori�e with a bevel upstream, on�guration that has already been studied in hapter 1 as atypial non-whistling one. We ompare these experimental data with numerial alulations, using thesattering matrix of the onstrition as presented in this hapter and the sattering matrix of a singleexpansion. Results are given in Fig.3.19. The alulations give a good estimation fo the magnitude,with a disrepany whih is not ritial: the main result is that numerial alulations predit theorret behaviour of the on�guration, that is a non-whistling ability.
Figure 3.18: Con�guration studied without a double expansion.This non-whistling ability shows learly, with experimental and numerial results, that the preseneof the seond expansion is a neessary ondition to allow whistling. In fat, there is a length ofsynhronisation on this seond expansion, orresponding to an aousti and/or hydrodynami feedbak(immediate as the main �ow is inompressible) toward the separation point of the jet.
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Figure 3.19: Whistling ability of the on�guration without a double expansion, from experimentaland numerial alulations. The alulations give a satisfatory result that this on�guration is not apotentially whistling one. (The numerial alulations are made with a∗=5 mm, b = 3,Md = 8.67 10−2;the reported experimental data onern the on�guration CCb2 with a bevel rbevel/t = 0.2 downstreamwith �ow Md = 8.67 10−2).



3.6 Whistling ability of the on�guration 1513.6.3 Parametri study on the Strouhal numberA parametri study is done on the whistling on�guration, in order to estimate the variations ofthe Strouhal number of the potentially whistling frequeny peak with the variations of the geometrialparameters of the on�guration. The aim is to get better understanding of the aeroaoustial behaviourof the on�guration in funtion of the parameters of the problem, and partiularly the seond expansion.3.6.3.1 The �ow parameters in�uene weakly the Strouhal numberWeak variations of the Strouhal number are found on the Strouhal number, when varying the �owparameters:
• the �ow pro�le parameter m, as shown in Fig. 3.20. This is oherent with the single expansionresults, where we showed that alulations are weakly sensitive on the �ow pro�le we impose.Also, it seems a oherent result: as far as the �ow pro�le is typial of a turbulent �ow (that is,the �ow is not laminar), small variations of its shape are not expeted to in�uene greatly theinstability frequeny;
• the radius of the jet a, as illustrated in Fig. 3.21. In this illustration, L has values superior tounity. The same result is obtained for values of L inferior to unity. The weak variation obtainedseems oherent with the fat the the diameter of the jet is not representative of any harateristilength for the instability;
• the Mah number Md, as illustrated in Fig. 3.22. This result is oherent with experimentaldata presented in hapter 1 (see Fig1.23), where we found a derease of the Strouhal numberas funtion of the �ow veloity. Of ourse, the weak variation obtained is oherent with thede�nition of the Strouhal number as a number made dimensionless using the Mah number ofthe �ow.
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Figure 3.20: Very weak variations with the �ow pro�le parameter m of the numerial Strouhalnumber fpeakL/Ua, orresponding to the most potentially whistling frequeny of the �rst modeof the on�guration studied (onstrition with double expansion). The alulations made with
Md = 8.67 10−2, L/a = 2, b/a = 1.5, c/a = 3 (length variables on the �gure are in meters).
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Figure 3.21: Weak variations with the jet radius a on the numerial Strouhal number fpeakL/Ua,orresponding to the most potentially whistling frequeny of the �rst mode of the on�guration studied(onstrition with double expansion). The alulations are made with Md = 0.1,m = 10, L/a =

2, b/a = 1.5, c/a = 3 (length variables on the �gure are in meters).
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Figure 3.22: Moderate variations with the Mah number at the onstrition Md on the numerialStrouhal number fpeakL/Ua, orresponding to the most potentially whistling frequeny of the �rstmode of the on�guration studied (onstrition with double expansion). The alulations are madewith m = 10, L/a = 2, b/a = 1.5, c/a = 3, a = 510−3m (length variables on the �gure are in meters).



154 3 Aeroaoustial behaviour of a whistling expansion3.6.3.2 The geometry of the seond expansion in�uenes strongly the Strouhal numberStrong variations of the Strouhal number are found when varying the harateristis of the zoneonstituted by the seond expansion. Typially, values for the Strouhal number are obtained between0.2 and 0.5, when varying:
• the height b of the �rst expansion, as illustrated in Fig. 3.23. This result points out the signi�antin�uene of the distane of the hydrodynami mode to the walls in the ampli�ation zone. Thisis a well-known result in literature. However, this is di�ult to take into aount in a very simplemodel, that is, the Strouhal number dimensionless frequeny proves not to be onstant, whenvarying the height of the ampli�ation zone;
• the length L of the double expansion, as illustrated in Fig. 3.24. This parameter is partiularlysensitive. A doubling of it an orrespond to a doubling of the Strouhal number. Comparableresult in tendeny has been obtained with the experiments on the right-angle edged ori�es:in Fig. 3.26, we have obtained a strong experimental variation of the Strouhal number whenvarying the thikness of the ori�e, the diameter and the Reynolds number being onstant(approximately).Another spetaular illustration of the strong dependeny with the length of the seond expansionis given in Fig. 3.25.
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Figure 3.23: Strong variations with the intermediate expansion radius b on the numerial Strouhalnumber fpeakL/Ua, orresponding to the most potentially whistling frequeny of the �rst mode ofthe on�guration studied (onstrition with double expansion). The alulations are made with
M0 = 0.1,m = 10, L/a = 2, c/a = 3, a = 5.10−3m (length variables on the �gure are in meters).Hene the instability frequeny varies muh with the geometry of the seond expansion. This resultis in agreement with the previous observation that this on�guration is whistling, as there exists this
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Figure 3.24: Strong variations with the length L of the double expansion on the numerial Strouhalnumber fpeakL/Ua, orresponding to the most potentially whistling frequeny of the �rst mode ofthe on�guration studied (onstrition with double expansion). The alulations are made with
m = 10, L/a = 2, b/a = 1.5, c/a = 3, a = 5.10−3m (length variables on the �gure are in meters).
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Figure 3.25: Example of strong variations when varying the length L of the double expansion on thenumerial Strouhal number fpeakL/Ua. The alulations are made with m = 10, c/a = 3, a = 5.10−3m(length variables on the �gure are in meters).
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Figure 3.26: Experimental variations of the Strouhal number with the variation of the thikness of right-angled ori�e, the diameter and the Reynolds number being approximately onstant. Data orrespondto the one reported in hapter 1 for irular entred ori�es without bevels.seond expansion. Also, this result has already been pointed out in Aurégan and Testud (2006),using a similar multimodal method, but a simpli�ed one with six modes, and applied on the sameon�guration. Moreover, one should note that, in hapter 1, we showed that the Strouhal numberobtained for irular entred ori�es depends on the thikness of the ori�e. This thikness is a kindof seond expansion zone, and is omparable to the model investigated in this hapter. This on�rmsour results on this simple on�guration.As a result, the Strouhal number an not be onsidered as a onstant for suh a on�guration,and onsequently no simple model an be found to desribe the phenomenon of whistling on thison�guration.3.7 ConlusionA potentially whistling on�guration has been studied in this hapter, onstituted by a onstritionfollowed by a double expansion. The multimodal method has been used to alulate the satteringmatrix of the double expansion, and simple inompressible aousti models have been used to obtainthe sattering matrix of a onstrition. The potential whistling ability of this on�guration has beeninvestigated, using the whistling riterion presented in hapter 1.The objetive of the work has been reahed: the potentially whistling frequenies are numeriallypredited, in good agreement with experimental data, both without �ow (setion 3.5.1) and with amean shear �ow (setion 3.5.2). In this latter ase, the disrepany is of the order of about 8%,and should be improvable, by using more elaborated models for the onstrition, and by re�ning themeasurements. It has not been looked for partiularly.



3.7 Conlusion 157The omparison with a single expansion on�guration then gives the strong result that the preseneof the seond expansion is essential to reate whistling potentiality. Parametri studies on thepotentially whistling frequeny on�rm that this zone is ritial to determine the Strouhal number. Weshow also that the parameters of the �ow do not in�uene strongly the Strouhal number, whih seemsin agreement with the physis of the phenomena. Those results are in agreement with the experimentalresults obtained in hapter 1 for right ori�es, where the instability frequeny depends on the thiknessof the ori�e, whih orresponds to a kind of seond expansion.
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Chapter 4Noise generated by avitating single-holeand multi-hole ori�es in a water pipeP. Testud, P. Moussou, A. Hirshberg, Y. Auréganpublished in Journal of Fluid and Strutures (2006)4.1 Introdution4.1.1 MotivationsIn industrial proesses, avitating �ows are known to sometimes generate signi�ant levels of noiseand high vibrations of strutures. Some papers have been published in the last years on this topi:Au-Yang (2001); Weaver et al. (2000); Moussou et al. (2004).In partiular, fatigue issues have been reported reently for the on�gurations of a avitating valve(Moussou et al., 2001) and a avitating ori�e (Moussou et al., 2003). The examination of the noisegenerated by a avitating devie, in this study a avitating ori�e, is typially an industrial issue. Itprovides information whih is a basis for a safer design in terms of pipe vibrations.4.1.2 LiteratureIn single-phase �ow, an ori�e generates a free jet surrounded by a dead water pressure region ofuniform pressure, f. Fig. 4.1. The stati pressure reahes its minimum value Pj in the jet region, alsoalled the vena ontrata, and large eddies are generated in the shear layer separating the jet from thedead water region.Two-phase �ow transition ours when the lowest stati pressure in the �uid falls below the vaporpressure (Brennen, 1995). The level of avitation is usually orrelated with the help of a so-alledavitation number. Di�erent de�nitions exist of the avitation number for avitation in a �owingstream (also alled hydrodynami avitation). They orrespond to di�erent avitation on�gurations,and are usually hosen for onveniene, so that they an easily be determined in pratie:
• for wake avitation, that is avitation round a body (i. e. an hydrofoil) or generated by a slit,the avitation number is ommonly de�ned as funtion of the upstream onditions (Young, 1999;161
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Figure 4.1: Flow through an ori�e and orresponding evolution of the stati pressure.Brennen, 1995; Fran et al., 1995; Leo�re, 1994):
σ =

P0 − Pv
1
2ρLU

2
0

, (4.1)where U0 is the in�nite upstream �ow veloity, P0 the ambient stati pressure, Pv the vaporpressure of the liquid and ρL the density of the liquid.
• for mixing avitation, that is avitation formed in a jet (i. e. in pumps, valves, ori�es), a similaravitation number, as in the wake avitation, an be used (Young, 1999; Brennen, 1995):

σ =
Pref − Pv

1
2ρLU2

0

, (4.2)where Pref is very often de�ned as the downstream stati pressure.We prefer to use the avitation number, based on the pressure drop aross the singularitygenerating the jet:
σ =

P2 − Pv

∆P
, (4.3)where ∆P = P1 −P2 is the pressure drop aross the ori�e, with P1 the stati pressure upstreamof the ori�e and P2 the downstream stati pressure far away from the ori�e. In this hoie, wefollow ommon pratie in industry (Tullis, 1989; Fran et al., 1995; Leo�re, 1994).One should note that both those avitation numbers lead to very similar lassi�ations as theyare related to eah other by the pressure drop oe�ient of the singularity.



4.1 Introdution 163When the pressure Pj has a su�iently low value, intermittent tiny avitation bubbles are produedin the heart of the turbulent eddies along the shear layer of the jet. This �ow regime transition isalled avitation ineption, and it appears at a avitation number of the order of 1 (when d/D = 0.30)aording to the data of Tullis (1989). Other referenes (Numahi et al., 1960; Tullis et al., 1973; Ballet al., 1989; Yan and Thorpe, 1990; Kugou et al., 1996; Sato and Saito, 2001; Pan et al., 2001) are ingood agreement with the values and sale e�ets given by Tullis (1989). Some di�erenes result fromthe in�uene of the variation in the dissolved gas ontent and in the visosity (Keller, 1994).
As the jet pressure dereases further, more bubbles with larger radii are generated, forming a whiteloud. The pressure �utuations inrease and a harateristi shot noise an be heard. A furtherderease in jet pressure indues the formation of a large vapor poket just downstream of the ori�e,surrounding the liquid jet. The regime ourring after this transition is alled super avitation and itexhibits the largest noise and vibration levels. In the super avitation regime, noise is known, see, forexample, VanWijngaarden (1972), to be mainly generated in a shok transition between the avitationregion and the pipe �ow, at some distane downstream of the ori�e. Downstream of the shok, someresidual gas (air) bubbles an persist but pure vapor bubbles have disappeared.
Cavitation indiators are used to predit the ourrene of avitation regimes. The use of two ofthem has seemed relevant, in view of our experimental results. First, a so-alled inipient avitationindiator, noted σi, whih predits the transition from a nonavitating �ow to a moderately avitating�ow, that is alled developed avitation regime. Seond, a so-alled hoked avitation indiator, noted

σch, whih predits the transition from a moderately avitating �ow to a super avitating �ow, withthe formation and ontinuous presene of a vapor poket downstream of the ori�e around the liquidjet. To alulate both those inipient and the hoked avitation indiators, saling laws are given byTullis (1989). They take into aount the various pressure e�ets and size sale e�ets, by means ofextensive experiments on single-hole ori�es in water pipe-�ow. For multi-hole ori�es, as mentionedin the same work, less data are available but idential values are expeted to hold.
Only a few studies provide downstream noise spetra generated by avitating ori�es (Yan et al.,1988; Bistafa et al., 1989; Kim et al., 1997; Pan et al., 2001). A few omplementary studies give thenoise spetra reated by avitating valves (Hassis, 1999; Martin et al., 1981). In fat, it appears that farmore researh has been developed on submerged water jets (Jorgensen, 1961; Esipov and Naugol'nykh,1975; Franklin and MMillan, 1984; Brennen, 1995; Latorre, 1997). A omprehensive overview of thestate of the art in this domain is given in Brennen (1995).



164 4 Noise generated by avitating single-hole and multi-hole ori�es in a water pipeNomenlature
c speed of sound measured down-stream of the ori�e (in m.s−1 ) Sj ross setion of the jet (in m2)
cw speed of sound in pure water (inm.s−1 ) St Strouhal number for thewhistling frequeny
cmin minimum speed of sound (inm.s−1 ) t ori�e thikness (t = 14x10−3 m)
d diameter of the single-hole ori�e(d = 2.2x10−2 m) tp pipe wall thikness (tp = 8x10−3m)
deq single-hole equivalent diameterof the multi-hole ori�e (deq =2.1x10−2 m) U volume �ux divided by pipeross-setional area (in m.s−1 )
dmulti diameter of the holes of the multi-hole ori�e (dmulti = 3x10−3 m) Ud volume �ux divided by ori�eross-setional area (in m.s−1 )
f0 whistling frequeny (in Hz) Uj volume �ux divided by ori�e jetross-setional area (in m.s−1 )
D pipe diameter (D = 7.4x10−2 m) β volume fration of gas in the wa-ter
Gpp Power Spetrum Density of thepressure (in Pa2/Hz) ∆P stati pressure di�erene arossthe ori�e (in Pa)
Nholes number of holes for the multi-hole ori�e (Nholes = 47) νwaterkinemati visosity of water[νwater(310 K) = 7.2x10−7m2 s−1 (Idel'ik, 1969)℄
p+,
p−

forward, bakward propagatingplane wave spetra (in Pa/√Hz) ρw density of water (ρw(310 K) =

994 kgm−3)
P1,
P2

stati pressure respetively up-stream and far downstream of theori�e σ avitation number
Pj stati pressure at the jet (venaontrata) σi inipient avitation number
Pv vapor pressure(Pv(310 K) =5.65x103 Pa(Tullis, 1989)) σch hoked avitation number
S ross-setion of the pipe (in m2)4.2 Experimental set-up4.2.1 Tested ori�esIn the piping system of Frenh nulear power plants, a basi on�guration to obtain a pressure dishargean be realized with a single-hole ori�e. The maximum �ow veloity an reah about 10 m.s−1 andthe pressure drop 100 bar aross the ori�e. This an indue high vibration levels. The ori�es usedare hosen in order to redue the pipe vibration to aeptable levels (Caillaud et al., 2006).



4.2 Experimental set-up 165In our study, two ori�es have been tested (see Fig. 4.2), as follows.
• A single-hole ori�e, irular, entered, with right angles and sharp edges. It has a thikness of
t = 14 mm (t/d = 0.64) and a diameter of d = 22 mm (d/D = 0.30), for a pipe diameterof D = 74 mm. It is onsidered as a 'thin' ori�e as t/d . 2 (Idel'ik, 1969). In a sharpedged ori�e �ow, separation ours at the upstream inlet edge. In a thin ori�e, there is noreattahment of the �ow within the ori�e.

• A multi-hole ori�e, with Nholes = 47 irular right-angled and sharp-edged perforations ofdiameter dmulti = 3 mm. Its total open surfae is pratially idential to the single-holeori�e one, as it has an equivalent deq/D = 0.28 ratio. This multi-hole ori�e also has the samethikness of t = 14 mm (t/dmulti = 4.67). It behaves as a thik ori�e t/d & 2. The �owreattahes to the wall within the ori�e.

(a) Single-hole ori�e (b) Multi-hole ori�eFigure 4.2: Front views of the tested ori�es.4.2.2 Test rigThe test-setion, as shown in Fig. 4.3, onsists out of an open loop with a hydraulially smooth steelpipe of inner diameter D = 74 mm and wall thikness tp = 8 mm. The ori�es are plaed betweenstraight pipe setions with lengths respetively equal to 42 diameters upstream and 70 diametersdownstream.The water is injeted from a tank loated 17 m upstream from the ori�e. The nitrogen pressure inthe tank above the water is ontrolled by a feedbak system to maintain a onstant main �ow veloity.The water is released at atmospheri pressure 20 m downstream of the ori�e. The temperature is keptequal to 310 K (±1 K) during all experiments.The �ow veloity U is measured 26D upstream of the ori�e, and the stati pressures P1 and P2 aredetermined respetively by a transduer 11D upstream and another 40D downstream of the ori�e.The �utuating pressures are monitored by means of a ombination of Kistler 701A piezo-eletrialtransduers and Kistler harge ampli�ers. The loation of the dynamial pressure transduers is givenin Fig. 4.4. Upstream, the transduers 1 to 3 are positioned, at respetively 11D, 8D and 5D from the
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Figure 4.3: Sale sheme of the test rig.ori�e (0.25 m between onseutive transduers). Downstream, the transduers 4 to 10 are regularlypositioned, from 7D to 39D (0.4 m between onseutive transduers).
Figure 4.4: Loation of the dynamial pressure transduers upstream and downstream of the ori�e.4.2.3 Experimental onditions4.2.3.1 Water qualityThe water used is tap water, demineralized, with pH 9 and weak ondutivity. It is not degassed,hene it is expeted to be saturated with dissolved air. The volume fration of dissolved gas (denotedby β) is high ompared to other avitation studies. This gas ontent has not been measured, but anestimation, assuming saturation ondition under a temperature of T = 310 K or T = 273 K, gives forthe volume fration an order of magnitude around, respetively, 10−2 or 10−3.It should be pointed out that the presene of dissolved gas in the water does not mean a presene of



4.2 Experimental set-up 167gas bubbles in the water. Thus, the measured upstream speed of sound does not reveal any preseneof gas bubbles as it is lose to the one in pure water �ow.Correting the ompressibility of the water for the in�uene of the elastiity of the pipe (diameter
D= 7.4x10−2 m, wall thikness e= 8x10−3 m, Young's modulus E= 2x1011 N m−2, Poisson ratio ζ=0.3), the speed of sound cth in pure water in the pipe is given in funtion of the speed of sound inpure water cw (Lighthill, 1978):

cth = cw

(

1 + ρwc
2
w

D(1 − ζ2)

eE

)−0.5

. (4.4)This predits a speed of sound of cth=1454 m.s−1 using cw=1523 m.s−1 . The measured speed of soundupstream of the ori�e is 1420 ± 10 m.s−1 .4.2.3.2 Experimental �ow onditionsExperiments are arried out at a onstant �ow by ontrolling the stati pressure upstream of the ori�e.The downstream pressure P2 is imposed by the hydrauli stati head of the 17.2 m high vertial pipedownstream of the ori�e. Eah experiment lasts about 90 seonds. Pressures and volume �ows areprovided in Table 4.1 for the six experiments on the single-hole ori�e, and in Table 4.2 for the sixexperiments on the multi-hole ori�e.The Reynolds number Re = UD/νwater based on the pipe diameter and the water visosity variesfrom 2x105 to 5x105; turbulene is fully developed, as usual in industrial pipes.Table 4.1: Flow onditions for the single-hole ori�e experiments (with standard deviations).Developed avitation
︷ ︸︸ ︷

Super avitation
︷ ︸︸ ︷

U (m.s−1 ) 1.91 2.38 2.90 3.75 4.08 4.42st. deviation (m.s−1 ) 0.06 0.04 0.04 0.03 0.03 0.05
P1 (105 Pa) 6.3 9.2 13.3 21.4 25.0 29.5st. deviation (105 Pa) 0.3 0.3 0.6 1.4 0.7 0.8
P2 (105 Pa) 2.7 2.7 2.7 2.8 2.8 2.8st. deviation (105 Pa) 0.0 0.0 0.0 2.0 0.2 1.5

σ 0.74 0.41 0.25 0.15 0.12 0.10Higher �ow regimes have been tested, but the pressure transduers downstream delivered no signal,as they were loated in a vapor poket harateristi of the super avitation regime. As a onsequene,no aousti data are available in these onditions, and the orresponding hydrauli onditions are notreported in Tables 4.1 and 4.2.4.2.4 Distintion of two avitation regimesThe appliation of Tullis' formulas to our experiments gives the avitation indiators: σi for thedeveloped avitation and σch for the super avitation. Compared to our observations, those avitation



168 4 Noise generated by avitating single-hole and multi-hole ori�es in a water pipeTable 4.2: Flow onditions for the multi-hole ori�e experiments (with standard deviations).Developed avitation
︷ ︸︸ ︷

Super avitation
︷ ︸︸ ︷

U (m.s−1 ) 2.08 2.45 2.94 3.65 4.18 4.43st. deviation (m.s−1 ) 0.02 0.04 0.04 0.02 0.02 0.04
P1 (105 Pa) 6.5 6.9 12.9 19.8 26.0 28.3st. deviation (105 Pa) 0.1 0.3 0.4 1.2 0.3 0.6
P2 (105 Pa) 2.7 2.8 2.8 2.9 3.0 0.9st. deviation (105 Pa) 0.0 0.1 0.1 0.3 1.2 2.1

σ 0.74 0.45 0.28 0.17 0.13 0.03regime indiators are in good agreement.
• For the single-hole ori�e: σi ≥ 0.93, σch = 0.25. The observations, based on listening andon the measured downstream speed of sound, indiate that all experiments (i.e., σ < 0.74) areavitating. Furthermore, the downstream aousti properties and partiularly the shape of thedownstream noise spetra indiate that the last three experiments (i.e., σ < 0.25) are in superavitation regime.
• For the multi-hole ori�e: σi ≥ 0.87, σch = 0.20. The observations in this ase indiate that allexperiments (i.e., σ < 0.74) are avitating. The super avitation regime is observed for the lasttwo experiments (i.e., σ < 0.17).4.2.5 Aousti analysis methodIn the frequeny range of the study, only aousti plane waves propagate. The issue is to determinethe spetra p+ and p− representing, respetively, the upstream and downstream traveling plane wavesand for whih Fourier-like analysis holds.From eah experiment, time �utuating-pressure signals are obtained. These data are trunated toa time interval where the aousti properties do not evolve signi�antly, i.e., on a duration of about 10s. With the help of a referene pressure pref, we ompute the ross-spetral densities Gppref(f), whihare de�ned as the Fourier Transform of the time orrelation (Bendat and Piersol, 1986). It is worthrealling that, for a small frequeny bandwidth ∆f , the mean- square value of the pressure in thefrequeny range [f, f + ∆f ] is given by Gpp (f)∆f . These ross-spetra are expressed in Pa2/Hz. Inorder to get a spetral expression linear with the pressure, we hoose to use the following expression,in Pa/Hz1/2 (see Appendix E for more details):

pn(f) =
Gpn(t)pref (t)(f)

√

Gpref (t)pref (t)(f)
, (1 ≤ n ≤ 10). (4.5)



4.2 Experimental set-up 169For upstream observations, transduer 1 is hosen as referene and for downstream observations,transduer 10 is hosen as referene.As plane waves propagate, the aousti pressure at one point is the summation of the forward (inthe diretion of the �ow) traveling wave p+ and of the bakward traveling wave p−. We assume thespeed of sound to be idential in the forward and in the bakward diretions, beause the Mah numberis low (of the order of 10−3). The identi�ation at eah transduer of the loal speed of sound and ofthe aousti plane waves is arried out aording to standard intensimetry tehniques (Davies et al.,1980; Bodén and Abom, 1986; Hassis, 1999).The �nal spetra represent an average of about 20 spetra, determined with a time signal of 10 sduration. Eah intermediate spetrum is determined with a window of 1 s duration, and the suessivewindows have an overlapping ratio of 0.5 (between 0 and 1). This average is made in order to reduethe random errors.The use of a single referene mirophone may give unertainties for determining standing waves ifthere is a pressure node at a mirophone. This happens when the re�etion oe�ient is lose to unity.At low frequenies (below 500 Hz), this is the ase for developed avitation (see Fig. 4.6). However, asshown in Fig. 4.19, the mirophones are not lose to the pressure nodes of the standing wave patterns.At higher frequenies, and for super avitation, the re�etion oe�ient is so low that we do not expeta problem (see Figs. 4.6 and 4.7).4.2.6 Aousti boundary onditions on both sides of the ori�e4.2.6.1 Aousti boundary onditions upstream of the ori�eThe aousti onditions imposed by the test rig upstream of the ori�e are quite re�eting, as illustratedin Fig. 4.5 by the upstream re�etion oe�ient R = p−/p+, de�ned as the ratio between the forwardand the bakward propagating plane waves. These re�eting harateristis are due to multiple partialre�etions of the aousti waves on various elements present on the upstream part of the test rig as anopen valve, a few bends and setion restritions. Those elements have not been modi�ed in the ourseof the experiments, so that these re�eting onditions not vary muh from one experiment to another.4.2.6.2 Aousti boundary onditions downstream of the ori�eThe downstream aousti boundary ondition depends on the avitation regime, developed avitationregime or super avitation regime.In developed avitation regime (see Fig. 4.6), the downstream re�etion oe�ient has a magnitudelose to 1 up to 600 Hz, whih indiates a strong re�eting ondition. As the phase is a linear funtionof the frequeny, the re�etion point is determined: it orresponds to the loation of an open valve (at53D downstream of the ori�e). The avity of this valve is hene �lled with a very ompressible �uid,i. e. air, imposing an aousti pressure node p′ = 0.The re�etion oe�ient shows values above unity in Figs. 4.5 and 4.6. This may be due tomeasurement inauraies. Also the presene of a noise soure outside the main soure region ispossible and would give values above unity.
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Figure 4.5: Typial aousti re�etion oe�ient R = p+
p− upstream of the ori�e (alulated attransduer 1).In super avitation regime (see Fig. 4.7), the downstream re�etion oe�ient falls down below thevalue of 0.5. As a �rst approximation, the pipe termination is then almost anehoi. This di�ereneof behavior between the developed avitation regime and the super avitation regime is not analysedin the framework of the present study.This variation of the downstream aousti boundary onditions is spei� of the test rig. It hassome impat on the levels of the downstream spetra. This will be taken into aount further in thestudy of the downstream noise spetra.It should be pointed out that, for some frequenies, the determination of the aoustial spetra isinaurate. But oherene values are still good enough, as illustrated in Fig 4.8, to allow a satisfatory�t of the spetra to determine the speed of sound, as illustrated in Fig 4.9.4.3 Cavitation regimes4.3.1 Hydrauli model for the pressure drop ∆P aross the single-hole ori�eA simple model of the hydraulis of the single-hole ori�e is proposed. The hydrauli onditions(pressure and Mah number) at the jet of the ori�e are estimated, hene giving some insight for aphysial interpretation of the di�erent avitation regimes.This hydrauli model is a simple lassial Borda-Carnot model, see, for example Durrieu et al.(2001). It assumes an inompressible stationary single-phase �ow, that is, no e�et of avitation onthe hydraulis. Also, the ratio Sj/S between the free jet ross-setion and the pipe ross-setion S isonsidered as �xed.
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Figure 4.6: Typial aousti re�etion oe�ient R = p−
p+ downstream of the ori�e (alulated attransduer 8) in developed avitation regime.
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Figure 4.7: Typial aousti re�etion oe�ient R = p−
p+ downstream of the ori�e (alulated attransduer 8) in super avitation regime.
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Figure 4.8: Example of the oherene funtion between 2 suessive transduers (single-hole ori�e,
U=2.38 m.s−1 , between transduers 7 and 8).
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Figure 4.9: Example of the determination of the speed of sound using a �t on the spetra for 3 suessivetransduers (single-hole ori�e, U=2.38 m.s−1 , middle transduer: 7).



4.3 Cavitation regimes 173Firstly, mass onservation demands
Sj Uj = S U. (4.6)Seondly, the �ow upstream of the jet is assumed to be an invisid steady potential �ow, so that

P1 +
1

2
ρw U2 = Pj +

1

2
ρw U2

j . (4.7)Downstream of the jet, a turbulent mixing region is followed by a uniform �ow of veloity U . Negletingfrition at the walls, and assuming a thin (t/d . 2) ori�e (with no re-attahment of the �ow insidethe hole of the ori�e), one obtains (Sd is the ross-setion of the ori�e)
S Pj + ρw U2

j Sj = S P2 + ρw U2S. (4.8)The pressure Pj and the veloity Uj at the jet are dedued from Eqs. (4.6)-(4.8). The measuredpressure drop, denoted by ∆Pmeasured, is in this ase equal to the pressure drop aross the ori�e:
∆Pmeasured = P1 − P2. Hene, denoting by α the ontration oe�ient (α = Sj/Sd), this developedavitation model gives

∆Pmeasured
1
2ρwU2

=

[(
S

Sj

)2

− 1

]

+

[

2 − 2
S

Sj

]

, (4.9)the �rst part representing the enthalpy variation from upstream to the jet, and the seond part thedissipation from the jet to downstream.Finally, after simpli�ations, we �nd
∆Pmeasured

1
2ρwU2

=

[(
D

d

)2 1

α
− 1

]2

. (4.10)In super avitation, the downstream stati sensor is in the jet region, measuring Pj . The pressuredrop measured represents the dissipation from upstream to the jet (the �rst part of the preedingexpression):
∆Pmeasured

1
2ρwU2

=
1

α2

(
D

d

)4

− 1. (4.11)Figure 4.10 ompares the two models using a ontration oe�ient α = 0.65 with experimentalresults (additional experimental results in super avitation, not shown in Table 4.1, are plotted), asfollows.
• In the developed avitation regime (U < 3.5 m.s−1 ), theory agrees qualitatively well withexperiments, prediting ∆P within 15 %.
• In the super avitation regime (U > 3.5 m.s−1 ), experimental data agree remarkably well withthe model, prediting ∆P within 1 %. Inidentally, we observe that super avitation does notindue a strong slope variation in the ∆P versus U urve. This is mentioned in Tullis (1989) forori�es of low d/D ratio (approximately under 0.5, whih is the ase here).As a result, the model is validated as a satisfying broad estimation of the hydraulis, taking aontration oe�ient of 0.65. This value is reasonable, as it is lose to 0.61 whih is the theoretialvalue for sharp-edged ori�es with a jet from a gas to a free spae exit (Gilbarg, 1960) and it is less
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Figure 4.10: Comparison between the Borda-Carnot model with di�erent ontration oe�ients αand the single-hole ori�e measurements.than 0.70, whih indiates (Blevins, 1984) that the real radius of urvature of the upstream edge of theori�e is less than 1% of the pipe diameter (this on�rms that this edge is a neat sharp angle edge).Using this model, the pressure and the veloity at the jet are estimated, see Table 4.3, as follows.
• The pressure in the jet Pj is very lose to the vapor pressure of the liquid (Pv=5.65x103 Pa) insuper avitation regime. This is oherent with the stationary presene of a vapor poket in thisregion. Hene, it may be an indiator of the transition to super avitation regime.
• The veloity Uj is ompared to cmin, an evaluation of the lowest speed of sound in the two-phase region of the jet. An estimation of it an be obtained, see VanWijngaarden (1972): theminimum speed of sound is obtained for a vapor volume fration in the jet of β = 0.5, giving
cmin =

√

4γPj/ρw. We �nd (see Table 4.3) very low values: this is oherent, as there is muhvapor in this region. Comparing those values with the veloity of the jet �ow Uj , it appearsfrom this rude model that the �ow an be 'supersoni' in the jet region. This seems relevantin all avitation regimes, hene this supersoni transition may be harateristi of the transitionbetween a non-avitating and a avitating �ow: it ould an indiator of inipient avitation.Further researh is needed to on�rm this idea.4.3.2 Hydrauli model for the pressure drop ∆P aross the multi-hole ori�eSimilarly to the single-hole ori�e, a simple model of the hydraulis of the multi-hole ori�e is proposed.Contrary to the single-hole ori�e, the multi-hole ori�e has a ratio t/deq over 2 (t/deq = 4.7), sothat eah ori�e is onsidered as thik. In that ase, for nonavitating �ows, there is re-attahment of



4.3 Cavitation regimes 175Table 4.3: Conditions at the jet using the Borda-Carnot model for the single-hole ori�e.Developed avitation
︷ ︸︸ ︷

Super avitation
︷ ︸︸ ︷

U (m.s−1 ) 1.91 2.38 2.90 3.75 4.08 4.42
Uj (m.s−1 ) 33 41 50 65 71 76
cmin (m.s−1 ) 28 30 34 13 _ _
Pj (105 Pa) 1.4 1.6 2.0 0.3 _ _the �ow within the ori�es, followed by a turbulent mixing region, whih orresponds to a �rst energyloss. A seond energy loss is imposed by the sudden enlargement at the exit of the hole.Following this desription, and using similar equations as for the single-hole ase, the pressure dropmeasured aross the ori�e ∆Pmeasured = P1 −P2 for the developed avitation regime is omposed of a�rst part representing the dissipation from upstream to the jet (within the ori�e), and a seond partrepresenting the dissipation after the jet (Sd is the ross-setion of the ori�e):

∆Pmeasured
1
2ρwU2
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. (4.12)The total expression is hene the following:
∆Pmeasured

1
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= 1 − 2
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d
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+ 2

(
D

d

)4(

1 − 1

α
+

1

2α2

)

. (4.13)In the super avitation regime, we assume that there is no reattahment within the ori�e. Thedownstream stati pressure transduer is loated intermediately between the two pressure losses, sothat the measured pressure loss is given by ∆Pmeasured = P1 − Pj . We should again apply Eq. (4.11)to determine it. As the two ori�es have the same open surfae, we �nd the same expression as thedeveloped avitation model for the single-hole ori�e.Figure 4.11 shows omparison of this hydrauli model with experiments, as follows.
• In the developed avitation regime, the orrelation is not good for α = 0.65. The pressure drop

∆P is underestimated by about 30 %. The thin ori�e equation (Eq. (4.10)), however, performsbetter, indiating that there is not a full reattahment within the ori�e. We observe a redutionof losses for the multi-hole measurements, whih is oherent as a two-step dissipation induesless pressure losses than a single step.
• In the super avitation regime, the orrelation is again exellent, with a predition of ∆P within1 %.Conditions at the jet are estimated. We use Eq. (4.10) with α = 0.65 as the most satisfatory forthis estimation in developed avitation. Results are given in Table 4.4: in the developed avitationregime, we get the same results as in the single-hole ase: the �ow is 'supersoni' in the sense that
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Figure 4.11: Evaluation of the multi-hole ori�e model and omparison between the single-hole ori�emeasurements.the jet �ow veloity is higher than the minimum speed of sound in the region; in the super avitationregime, the estimated pressure at the jet is at the vapor pressure. This also on�rms the result obtainedfor the single-hole ase.Table 4.4: Conditions at the jet using the Borda-Carnot model for the multi-hole ori�e.Developed avitation
︷ ︸︸ ︷

Super avitation
︷ ︸︸ ︷

U (m.s−1 ) 2.08 2.45 2.94 3.65 4.18 4.43
Uj (m.s−1 ) 36 43 51 63 73 77
cmin (m.s−1 ) 20 _ 27 _ _ _
Pj (105 Pa) 0.7 _ 1.3 _ _ _

4.3.3 Developed avitation visualization and time signalIn the developed avitation regime, bubbles are reated intermittently, as illustrated in Fig. 4.12.The typial time �utuating pressure signals obtained are di�ult to distinguish from a nonav-itating �ow (see Fig. 4.13). The �utuations display a symmetri signal around the mean pressure,with hardly any distinguishable bursts oming from the implosion of the bubbles. Those bursts aredisussed later for super avitation.
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Figure 4.12: From other experiments at EDF (Arher et al., 2002), visualization of the developedavitation regime for a single-hole ori�e (d/D = 0.30, t/d = 0.10, D =2.66x10−1 m) with σ = 0.49and U = 1.50 m.s−1 (∆P =3.1x105 Pa, P1 =4.6x105 Pa). White bubble louds are observed aroundthe jet formed at the ori�e.
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Figure 4.13: Typial dynamial time pressure signal from a downstream transduer for the developedavitation regime (here for the single-hole ori�e at σ= 0.41).



178 4 Noise generated by avitating single-hole and multi-hole ori�es in a water pipe4.3.4 Whistling phenomenon in developed avitationWhistling is present in every developed avitation regime of single-hole ori�e experiments (it is neverobserved for multi-hole ori�e experiments). Evidene of whistling is partiularly given on the upstreamaoustial spetra, by the sharpness of the fundamental frequeny peak f0 and the existene of severalharmonis at exat multiples of f0 (see an example in Fig. 4.14). The higher harmonis are typial ofsteady whistling stabilized by a nonlinear feedbak e�et as for all self-sustained osillations (Flether,1979; Rokwell and Naudasher, 1979).
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Figure 4.14: Detetion of whistling frequeny f0 with harmonis on upstream plane wave spetra p−(here for the single-hole ori�e at U = 1.91 m s−1, f0 = 359 Hz and the �rst harmonis at 718 Hz).Sant literature has been found on whistling of avitating ori�es in pipes. A vortex sheddingphenomenon in presene of avitation has been investigated by Sato and Saito (2001), but in thepartiular ase of thik ori�es (t/d & 2). On thin ori�es, some visualizations (Moussou et al., 2003)made on other EDF experiments have shown the possibility of the presene of vortex-shedding inavitation regime, as an be seen in Fig. 4.15, from Arher et al. (2002).The whistling frequenies are given in Table 4.5. They do not inrease ontinuously with the�ow veloity, as one would expet for a hydrodynami osillation edge-tone like (Blake and Powell,1983). The stable frequeny is typial of an aousti feedbak whih reates and maintains the aoustiosillation lose to a resonane frequeny. This is also revealed by the loking of the phase of the timepressure signals on suessive sensors, whih indiates a standing wave pattern.Upstream of the ori�e, the level of whistling is higher than downstream: hene the aousti feedbakis suspeted to happen predominantly upstream. The upstream re�etion oe�ient, see Fig. 4.5, ishigh but irregular: no lear aousti re�etion point an be identi�ed (as it an be for the avity of avalve downstream, see Setion 4.2.6.2). This irregular shape is due to the intriay of the upstreamrig design, with a suession of elbows, slight restritions of setions and some open valves.
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Figure 4.15: From other experiments at EDF (Arher et al., 2002), visualization of a avitating andwhistling single-hole ori�e (d/D = 0.30, t/d = 0.10, D =2.6x10−1 m) with σ = 0.35 and U = 1.97m.s−1 (∆P =5.3x105 Pa, P1 =7.2x105 Pa).It is also worth mentioning that the whistling frequeny does not oinide with any downstreamnatural aousti frequeny. This is oherent with the aousti unoupling observed from both sides ofthe ori�e.The single-hole ori�e has a ratio t/d = 0.6, inferior to 2, so that it is onsidered as a thin ori�e.We assume that the whistling phenomenon is in�uened by the thikness of the ori�e t, rather thanits diameter. It is also natural to use the veloity at the ori�e Ud as a relevant saling veloity. Henethe Strouhal number is de�ned as St =
f0 t

Ud
, (4.14)and values are reported in Table 4.5.Table 4.5: Strouhal number St=f0 t

Ud
of the whistling frequeny f0 (only observed in the single-holeori�e ase).

U (m s−1) 1.91 1.91 2.38 2.38 2.90 2.90
c (m s−1) 1390 1200 660 1420 1130 1420
f0 (Hz) 359 397 421 436 427 434St 0.23 0.26 0.22 0.23 0.18 0.19The Strouhal number is obtained in the range 0.18-0.26. These values are lose to data on ori�es:Anderson (1953) �nds a Strouhal number around 0.2 for whistling ori�es in air with a free air exit.



180 4 Noise generated by avitating single-hole and multi-hole ori�es in a water pipeIn Anderson's experiments, the ori�es were a bit thinner (with 0.2 ≤ t/D ≤ 0.5, whereas here
t/D = 0.19) and the Reynolds numbers smaller (Ud t/νair ∽ 103 with νair the kinemati visosity ofair, whereas here Ud t/νwater ∽ 105).The multi-hole ori�e is a thik one, as t/dmulti = 4.7. Hene it is no surprise that it does notwhistle. The �ow re-attahes itself inside eah hole, whih stabilizes the shear layers of the jet andhene prevents whistling in the same manner as observed for the single-hole ori�e.4.3.5 Super avitation visualization and typial time signalIn the super avitation regime, a vapor poket is reated in the jet region, as illustrated in Fig. 4.16.

Figure 4.16: From other experiments at EDF, visualization of the super avitation regime for a single-hole ori�e.When the vapor poket expands and reahes the downstream transduers, those transduers nolonger deliver any aoustial signal. This onstitues an evidene for the existene of the vapor poket.It appears that the length of the vapor poket inreases quikly with �ow veloity. The length ofthe vapor poket inreases from about 7D at U0 = 3.8 m.s−1 to 18D at U0 = 4.4 m.s−1 and is largerthan 38D at U0 = 4.7 m.s−1 for the single-hole ori�e. For the multi-hole ori�e, the length of thevapor poket inreases from around 7D at U0 = 4.2 m.s−1 to larger than 38D at U0 = 4.5 m.s−1 .The typial time-�utuating pressure signals obtained are very di�erent from those in the developedavitation regime (see Fig. 4.17). They are asymmetri around the mean pressure, exhibiting very largepositive spikes, up to 20 bars, linked to the ollapse of bubbles.Fousing on time signals (see an illustration in Fig. 4.18), it is seen that the phenomenon of bubble



4.4 Results in the developed avitation regime 181implosion is haraterized �rst by a derease in negative values of the �utuating pressure with aharateristi duration of a tens of milliseonds, followed by an abrupt inrease of the pressure, a'spike', with a harateristi duration of one milliseond. By modeling this bubble volume evolutionwith a monopole soure, whih is a ommon and satisfatory simple model; see, for instane, Brennen(1995), the �rst derease is linked with a derease of the bubble size from its initial size to a value loseto zero; the seond part of the signal is linked with a pressure shok wave originating from the abruptollision of the water partiles. However, extremely high amplitudes are observed in omparison toBrennen (1995) (f. his Fig 3.19). This an be due either to the large size of our bubbles, either to thee�et of on�nement.
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Figure 4.17: Spurious pressure pulses (spikes) from ollapsing bubbles on dynamial time pressuresignal from a downstream transduer in super avitation regime (here for the single-hole ori�e at
σ= 0.10).
4.4 Results in the developed avitation regimeThe single-hole and the multi-hole ori�e developed avitation regimes are presented together, as theyshow similar aoustial behavior. Firstly, results on the aousti features of this avitation regime areintrodued: the observed variations of the downstream speed of sound and the presene of resonanefrequenies in downstream spetra. Then the downstream spetra, depending on those aoustialfeatures, are presented and disussed.
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Figure 4.18: Cavitation peak in super avitation regime (single-hole ori�e at σ=0.10)4.4.1 Aousti features4.4.1.1 Spontaneous variations of the downstream speed of soundFor a �xed set of hydrauli onditions in the developed avitation regime, the downstream speedof sound may spontaneously evolve. For instane, the single-hole ori�e experiment at U =

2.38 m.s−1 shows the downstream speed of sound evolving from 660 m.s−1 (during the �rst 20 s)to 1420 m.s−1 (till the end of the experiment: 90 s).This variation of the speed of sound indiates that air bubbles are present, in varying quantity,in the water far downstream of the ori�e. For instane, a value of 660 m.s−1 indiates a volumegas fration in the water between 10−3 and 10−4, assuming the stati pressure being between Pj and
P2 [we use a lassi formula; see, for example, VanWijngaarden (1972)℄. On the ontrary, a value of1420 m.s−1 indiates a negligible ontent of air in the water, as it is lose to the speed of sound in purewater (whih equals to 1454 m.s−1 when orreting for pipe elastiity, as presented in setion 4.2.3.1).Cavitation bubbles, when they are formed, are originally mainly onstituted of vapor. During theirlifetime, they are gradually �lled with air, due to the di�usion of the dissolved gas present in thewater surrounding them. As they drift downstream, moving away from their region of reation, theyreah regions where the pressure reovers higher levels. Pure vapor bubbles annot persist, thosebubbles remaining far downstream of the ori�e are mainly �lled with air (see for example Fig. 4.12).Consequently, the observed variation of the quantity of air bubbles is suspeted to be due to aninhomogeneity of the dissolved gas ontent in the injeted water. This inhomogeneity may be relatedto temperature variations in the experimental installations. This hypothesis is all the more plausible asthe water used has not reeived any degassing treatment, hene having a �utuating and high dissolvedgas ontent, not measured but estimated around 10−2 or 10−3 (values at saturation onditions for T= 273 K and T = 310 K respetively). In some experiments, the hange in residual air bubble ontent



4.4 Results in the developed avitation regime 183ours after the water from the pipe segment between the ori�e and the tank has been evauated and'fresh' tank water has started to �ow through the ori�e.These variations of the downstream speed of sound during eah experiment have some in�ueneon the aoustial behavior downstream of the ori�e: the values of the natural frequenies, appearingdownstream, are altered proportionally with the speed of sound.The propagating waves are subjeted to two-phase �ow damping, as already mentioned by Hassis(1999). As regards this last e�et, no signi�ant variation of the propagating wave amplitude ould bemeasured along the downstream sensors, but the downstream aoustial re�etion oe�ient appearsto vary signi�antly with the downstream speed of sound.4.4.1.2 Aoustial unoupling from both sides of the ori�eAn aoustial unoupling is observed between aoustial spetra upstream and downstream of theori�e: the natural frequenies present downstream are strongly attenuated on upstream spetra; thewhistling, when present, is visible on upstream spetra, but hardly on downstream spetra; and,furthermore, the bakground noise on downstream spetra is higher than the one on upstream spetra,approximately from a fator 2 (for U = 1.91 m.s−1 ) up to 7 (for U = 2.90 m.s−1 ) for the single-holeori�e, and muh more signi�antly for the multi-hole ori�e, with an approximately onstant fatorof about 10.This aoustial unoupling is an e�et of avitation as there is hoking (indiated in Table 4.3).4.4.1.3 Presene of natural modes downstreamIn this developed avitation regime, resonane frequenies are systematially observed in aoustialspetra downstream of the ori�e (both for the single-hole and the multi-hole).The aousti boundary onditions are of a similar type, as the frequenies are of the form:
fn = nf1, f1 being the �rst resonane frequeny. More preisely, these aousti boundary onditionsan be identi�ed by extrapolating the standing wave patterns at those resonane frequenies. Thisextrapolation is made possible as a series of transduers (7 in number) is present downstream of theori�e. As a result, we �nd two aousti pressure nodes p′ = 0 (see Fig. 4.19), disussed above.

• One aousti pressure node is found far downstream of the ori�e, at 52D (±1D). It is the resultof the in�uene of a avity of an open valve �lled with air. The re�etion oe�ient imposed bysuh a avity has been presented in Fig 4.6. The magnitude of the re�etion oe�ient |R| islose to 1 , whih on�rms the aousti in�uene of this avity;
• Another is found just downstream of the ori�e, at 4D (±1D). It is likely to be aused by aavitation loud.4.4.2 Noise spetra generated downstreamNoise spetra generated in the pipe downstream of the ori�e for the developed avitation regime arepresented in this setion.The downstream transduers give a far-�eld measurement, as they are not loated in the soureregion mainly onstituted of bubble implosions loated just downstream of the ori�e. The aoustial
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Figure 4.19: In the developed avitation regime, two aousti boundary onditions p′ ≃ 0 are founddownstream of the ori�e, hene natural frequenies appear, pointed out by the interpolation ofthe values of the ross-spetra at those �rst natural frequenies (here for the single-hole ori�e at
U = 2.38 m.s−1 , c=1420 m.s−1 and 5 natural frequenies: • 188 Hz, N 386 Hz, H 574 Hz, � 770 Hz,
� 957 Hz).



4.4 Results in the developed avitation regime 185power measured at downstream transduers represents the noise generated in the pipe. Under theassumptions of plane-wave propagation and no in�uene of the �ow (the Mah number is around
10−3), the aoustial power takes the expression: S (p+2 − p−2

)
/(ρwcw) (Morfey, 1971).It is furthermore assumed that the bakward propagating wave spetrum of p− is small enoughto be negleted. Even if aoustial re�etion is observed to our downstream, this estimation of thesoure of noise is onsidered satisfatory enough as an order of magnitude (this is all the more relevantas logarithmi representation is used). Thus it omes to the soure power being represented by thequantity Sp+2/(ρwcw).
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Figure 4.20: Aoustial power spetra in developed avitation (single-hole ori�e).Of ourse, this representation is no more valid for the disrete frequenies whih are whistlingharmonis and resonane frequenies, as the bakward propagating wave has great in�uene in thoseases.The aoustial power spetra obtained downstream of the ori�e for the developed avitation regimeare given in Fig. 4.20 for the single-hole ori�e and in Fig. 4.21 for the multi-hole ori�e. The rejetionfrequeny orresponding to a wavelength of half of the distane between two suessive transduersand depending on the measured speed of sound has been exluded from those results. The followingobservations are made on those spetra:
• spetra exhibit a hump form in the upper frequeny range (above 200 Hz); this hump form istypial of avitational noise (Martin et al., 1981; Brennen, 1995);
• the single-hole ori�e generates remarkably muh more noise (by a fator of about 102 in the
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Figure 4.21: Aoustial power spetra in developed avitation (multi-hole ori�e).aoustial power) than the multi-hole ori�e.4.4.3 Nondimensional analysis and representation4.4.3.1 Choie of the saling variables for the noise spetraSaling is proposed in order to obtain a dimensionless representation of the aoustial soure power.Cavitation noise from the implosions of bubbles is assumed to be predominant in order to sale thenoise spetra. Hene, broadband turbulene noise from the mixing region downstream, whistling andresonane frequenies are not taken into aount to hoose the saling variables. This assumption ofpredominane of avitation noise is globally valid, but seems to fail at low frequenies (in this work,below 200-300 Hz approximately). Also, it is assumed that whistling does not alter avitation noise,generalizing the hypothesis that broadband noise is not a�eted by whistling [as shown in Verge (1995)for a �ue organ pipe℄.Following Blake (1986), the amplitude of noise produed by avitation should be made dimensionlessby dividing with the downstream pressure, and not the pressure drop, when using a Rayleigh-Plessetbubble dynami model for a spherial isolated free bubble. However, ring vorties generated by anori�e are not isolated bubbles in free spae, so that this saling should not hold in the ase of thepresent study, as it also does not for sheet avitation on airfoils (Keller, 1994).As we lak a preise model, the saling data are hosen for the sake of simpliity: the basi idea, asshown in Fig. 4.22, relies on the fat that, in the developed avitation regime, the bubbles are reated
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Figure 4.22: Choie of the variables d and Ud for the saling of the noise spetra in the developedavitation regime for the single-hole ori�e.in the mixing high-shear region of the jet.For the single-hole ori�e experiments, the veloity Ud and the ori�e diameter d are representativeof the onditions in this region, hene those quantities are used in order to sale the noise spetrain this regime. Furthermore, the saling pressure is de�ned as the pressure drop ∆P aross theori�e, whih is a measure of the kineti energy density in the jet. Hene for the single-holeori�e in developed avitation, fd/Ud is the nondimensional frequeny and p+2 Ud/(∆P
2 d) is thenondimensional magnitude.For the multi-hole ori�e experiments, we assume the noise issuing from inoherent Nholes soures.Eah soure represents the radiation of one hole. It radiates on a harateristi surfae of S/Nholes.The strength of eah soure is assumed to be independent of the environment of the soure. Thisassumption is natural, as we have previously supposed (see previous setion) that the noise generatedby the single-hole ori�e does not depend on the diameter of the pipe. However, it should be pointedout that this assumption is wrong when whistling ours.In this model, the total aousti power P measured downstream is a summation of the aoustipower Peah soure emitted by eah soure [the key element is that soures are supposed to be inoherentbetween eah other, see Piere (1981)℄:

P = Nholes Peah soure. (4.15)The aousti power of eah soure Peah soure is, by de�nition, the total aousti intensity �ux Imultiplied the surfae of this soure:
Peah soure = I S/Nholes. (4.16)Hene the total aousti power is

P = S I. (4.17)The total aousti power is onsequently independent of the number of holes. As previously, we ignoreany downstream re�etions, so that I = p+2/(ρc).This argumentation based on energy onsiderations an also be onduted in terms of fores: if thesoure is represented as a fore ating on the ori�e, taking the form Sp+, the total fore imposed onthe multi-hole ori�e is due to the ontribution of the fores imposed by Nholes equivalent single-holeori�es with open surfae S/Nholes. Those fores are supposed to be unorrelated with eah other.Thus the total fore squared equals Nholes times the fore squared due to one hole. As the fore



188 4 Noise generated by avitating single-hole and multi-hole ori�es in a water pipesquared of one hole is (p+S/Nholes)2, the total fore squared is expressed as: Nholes(p+S/Nholes)2, orby simplifying: (p+S)2/Nholes.The saling of the aousti power is based on eah soure of surfae S/Nholes. The saling veloityis the veloity at the ori�e, whih is taken equal to the veloity of the single-hole ori�e Ud, as theopen surfae of the two ori�es are very similar, and the saling length is the diameter of one hole
dmulti. In onlusion for the multi-hole ori�e in developed avitation: fdmulti/Ud is the nondimensionalfrequeny, and p+2 Ud/(∆P

2 dmulti) is the nondimensional magnitude.4.4.3.2 Nondimensional noise spetra generated downstreamThe dimensionless aoustial power spetra obtained downstream of the ori�e for the developedavitation regime are given in Fig. 4.23 for the single-hole ori�e and in Fig. 4.24 for the multi-holeori�e. The following observations are worth noting.
• The saling for the single-hole ori�e and the multi-hole ori�e is e�ient as the nondimensionalnoise spetra ollapse for eah ori�e. This is illustrated in Fig. 4.23 for the single-hole ori�e andFig. 4.24 for the multi-hole ori�e. Hene it is found that these spetra do not depend signi�antlyon the avitation number or on the downstream speed of sound. However, the dispersion of thesaling variables is weak, so that additional data should be added to on�rm this result.
• The di�erent saling used for the single-hole and the multi-hole ori�e is rather e�ient as itmakes the levels of the two types of ori�es loser to eah other. However, the nondimensionallevel of noise of the single-hole ori�e is still higher, with a ratio of 10, than the one of themulti-hole ori�e experiments; see Figs. 4.23 and 4.24.
• We ompare the avitation noise with a standard turbulene noise from a nonavitating ori�ein the low frequeny range. Indeed, in this range of frequeny, the level of noise is expeted to bemainly determined by turbulene noise (Martin et al., 1981). We use a nondimensional turbulenenoise level proposed by Moussou (2005). In this model, the saling is based on empirial dataobtained with simple singularities (single-hole ori�e, valve) in water-pipe �ow: the level of noiseis assumed to depend only on a Strouhal number based on the pipe diameter and the pipe �owveloity. We apply this model with the values of the pipe diameter D and a pipe �ow veloityof 2.20 m.s−1 and ompare it to the single-hole ori�e nondimensional noise, see Fig. 4.23. Asexpeted, the turbulene level �ts rather well the avitation noise at low frequenies, with a goodestimation of the slope; the avitation noise is muh stronger than the turbulene noise abovethe low-frequeny range, whih is a well-known result (Brennen, 1995).4.5 Results in the super avitation regime4.5.1 Aousti featuresThe super avitation experiments exhibit two main di�erenes ompared to the developed avitationexperiments, as follows.
• The downstream speed of sound appears to be quite onstant during eah experiment.
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Figure 4.25: Aoustial power spetra in super avitation (single-hole ori�e).
• No resonane frequenies are found on downstream spetra. The downstream re�etion oe�ientis muh lower than in the developed avitation ase (as previously shown in Fig. 4.7). In thisase, the avity of the downstream valve does not re�et the aousti waves.As for the developed avitation ase, strong aousti unoupling is observed from both sides of theori�e. The e�et is muh more obvious here, with an average ratio between downstream and upstreampower spetra of about 2 to 30 for the single-hole ori�e ase, and about 10 to 50 for the multi-holeori�e ase.4.5.2 Noise spetra generated downstreamNoise spetra obtained downstream are given in Fig. 4.25 for the single-hole ori�e and in Fig. 4.26 forthe multi-hole ori�e (as previously, the rejetion frequenies being exluded). We note the followingpoints.
• The typial avitational hump form is observed, as in the developed avitation ase, but withmuh more evidene. The level of the hump is higher than for the developed avitation regime;also, the frequeny peak is smaller: those tendenies when the avitation number inreaseson�rm literature data (Brennen, 1995).
• Also, as in the developed avitation ase, the single-hole ori�e is learly more noisy (with anapproximate fator of 10 on aoustial power spetra) than the multi-hole ori�e.
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Chapter 5End orretion of single expansions andori�es
5.1 IntrodutionThis hapter is a preliminary investigation of the model of aousti end orretion, for single expansionsan irular entred ori�es.Simple singularities (like expansions, restritions and ori�es) in dut without �ow an be featuredfor their inertial aoustial e�ets at low frequeny by a so-alled end orretion, using an inompressibleand no dissipative model. The end orretion represents the aousti inertane of the ori�e, that is,the real part of the aousti indutane (the imaginary part, the aousti reatane, represents thedissipation by visosity, and is not studied in the model). We assume in this study that there is nore�etion from both sides of the singularity onsidered. This represents a seondary orretion to betaken into aount, for example in industrial onditions.Without �ow, formulas exist in literature to estimate the end orretion of single expansions, in a lowfrequeny approximation. It is interesting to ompare those formulas with our multimodal alulationsfor single expansions, and to ompare them with our experimental results on ori�es without �ow.With �ow, very few results exist in literature. We present results obtained and try to understandthem by use of the preeding non-�ow models.No lear understanding of the phenomena observed has been obtained in presene of �ow, due tothe omplexity of the behaviour of the end orretion. However, we have found interesting to reportthe most signi�ant behaviours enountered. Consequently, this setion of end orretion with �owbrings experimental observations.5.2 End orretion: single expansion without �ow5.2.1 Model of end orretion: single expansion without �owA single expansion is onsidered (illustrated in Fig 5.1). It is onstituted by a �rst dut of radius
a (setion S1), followed by a dut of radius b > a (setion S2). We introdue the model of endorretion for this single expansion, following Piere (1981); Kergomard and Garia (1986); Rienstra197
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Figure 5.1: Single expansion in dut without �ow.The �ow is assumed to be inompressible. Hene the equation of onservation of mass, at �rstorder, is written:
S1u

′
1 = S2u

′
2 = Q. (5.1)As a simple model, the momentum onservation equation is written:

p′1 = p′2 + jωLQ, (5.2)where L is the aousti inertane (real number) of the ori�e, expressed in kgm−2 (the quantity La/ρis non-dimensional). The aousti inertane represents the e�ets due to inertia (that is, the nonuniformity of the streamlines). The end orretion ∆l (real number expressed in m) is linked to theaousti inertane with:
∆l = S1

L

ρ0
(5.3)This model an be physially interpreted as the following (see illustration in Fig. 5.2): the aoustialair mass m′ = LS1 vibrates due to the pressure di�erene p′1 − p′2 aross the ori�e, while the �uiddensity and the aoustial �ow rate are onstant from both sides of the ori�e. This aoustial airmass is loalized at the disontinuity of setions: no phase shift is taken into aount in this model,hene the singularity is onsidered as aoustially ompat: this is a low frequeny model.5.2.2 Determination of the end orretion from multimodal alulation: singleexpansion without �owThe end orretion is alulated with the multimodal method on single expansion. The method toobtain the end orretion from the alulations is explained in the following.Plane-wave propagation in both duts is assumed, so that:

p′1 = P+
1 + P−

1 , p′2 = P+
2 + P−

2 , (5.4)
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Figure 5.2: Model of end orretion for a single expansion in dut.
u′1 =

P+
1 − P−

1

ρ0c0
, u′2 =

P+
2 − P−

2

ρ0c0
, (5.5)with ρ0 = 1.1 kgm−3 and c0 = 343 ms−1 in air at T = 293K.The end orretion is determined from the sattering matrix oe�ients using the following relations(the equations of the model, Eqs. 5.1 and 5.2, are ombined with the previous equations, Eqs. 5.4 and5.5):

∆l =
−2c0
γω

ℜ
(
j

T+

)

=
−2c0
ω

ℜ
(
j

T−

)

, (5.6)
=

−2c0
ω

ℜ
(

j

1 −R+

)

=
−2c0
γω

ℜ
(

j

1 −R−

)

, (5.7)where ℜ(X) is the real part of X, and γ = S2

S1
is the ratio of setions. These four equations are fourdi�erent means to determine the end orretion. The model assumes them to be idential.5.2.3 Literature data: single expansion without �owAnalytial formulas are known from literature, in the vanishing Helmholtz number limit:

• single expansion: α = a/bA modal deomposition method an be used to estimate the end orretion analytially. Asimpli�ed deomposition method (with six modes) is presented in Aurégan et al. (2001), givingthe formula:
∆lAuregan

a
=

√

(1 − α)2(1 − α2)(15 − 2α− α2)

24
when ka→ 0. (5.8)This formula gives results lose to those obtained from an exat deomposition method Kergo-mard and Garia (1986);
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• in�nite downstream setion: α→ 0This is alled in literature dut with in�nite ba�e, or dut with a �anged opening. The modelof Rayleigh gives an analytial formula for the end orretion (Rayleigh, 1896; Piere, 1981):

∆lRayleigh

a
= 0.8282, when ka→ 0. (5.9)5.2.4 Numerial results: single expansion without �owIn this setion, we ompare the alulations with these formulas.Results are presented in Fig. 5.3 for very low frequeny. Our alulations are onverged with 20modes, as the Mah number and the frequeny are very low. Also, the determination from the foursattering matrix oe�ients gives very similar results. Values obtained are in good agreement withthe analytial formulas, with a slight under-estimation of the end orretion ompared to the exatand simpli�ed deomposition method. The limit for α→ 0 is well obtained in alulations.
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Figure 5.3: End orretion for single expansion without �ow, in the low frequeny limit k a → 0 -numerial alulations with M0 = 10−4, k a = 10−4, N = 20.Results are illustrated in Fig. 5.4 when varying the frequeny. It appears that the end orretioninreases signi�antly, up to reah a maximum at the �rst ut-o� frequeny of the seond dut.
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202 5 End orretion of single expansions and ori�es5.3 End orretion: ori�e without �ow5.3.1 Determination of the end orretion from measurements: ori�e without�owThe end orretion model is applied to ori�es. Our experimental data on irular entred ori�es areused. We reall that those results of the sattering matrix oe�ients have been presented in hapter1 and have been obtained with a su�iently low exitation frequeny so as it orresponds to a linearresponse of the ori�e.The ori�e is seen as a suession of a restrition and an expansion. The model of end orretion anbe applied to a restrition without hange, exept the setion ratio is inverse. Hene the end orretionis determined using the equations used for a single expansion (Eqs. 5.6 and 5.7), taking γ = 1. The endorretion hene obtained orresponds to an osillating mass in the pipe setion. To get an osillatingmass in the ori�e setion, we have to multiply the result by the ratio of the setions Sd/Sp (Sp is thepipe ross-setion, Sd the ori�e ross-setion), so that:
∆l = =
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. (5.11)5.3.2 Literature data and models: ori�e without �owModels have been proposed in literature, diserning if the ori�e is thin or thik (using t/a as thethikness-to-radius ratio of the ori�e):
• thin ori�e: t/a≪ 1In this on�guration, Rayleigh has alulated the veloity potential and obtained the endorretion using the priniple of minimum kineti energy to obtain the aousti inertane andthe end orretion (Rayleigh, 1896; Piere, 1981):

∆lthin

a
= π/2, when ka→ 0. (5.12)

• thik ori�e: t/a≫ 1In this on�guration, the ori�e an be seen (following Piere (1981)) as a suession of arestrition, followed by a length, about the thikness t of the ori�e, on whih the veloitypotential is uniform and an expansion. The end orretion is the sum of three omponents. Theomponents of the restrition and the expansion are taken as the same, and we use the formula ofAurégan et al. (2001). The end orretion of the uniform veloity potential zone is approximatelythe thikness of the ori�e t, hene we obtain:
∆lthick

a
=
t+ 2∆lAuregan

a
, when ka→ 0. (5.13)



5.3 End orretion: ori�e without �ow 2035.3.3 Experimental results: ori�e without �owResults are presented for irular-entred right-angled ori�es (with t = 5 mm in Figs. 5.5, 5.6, 5.7,and with t = 10 mm in Figs. 5.8, 5.9, 5.10) and for an ori�e with a bevel (Fig. 5.11). They are plottedin funtion of the Helmholtz number at the ori�e f a/c0.Firstly, it is observed that end orretions are quite small, of the order of the millimetre. Henevariations due to measurement inauraies are visible (whereas those measurements are preise, anddi�ult to improve signi�antly). Also, the determination with the four oe�ients does not givesimilar values. Both observations are ertainly related, indiating a high sensitivity of the model tomeasurements inauraies.Seondly, the orrelation with the model for thik ori�es is good. It systematially gives a betteragreement than the Rayleigh formula for a thin ori�e, for ori�es suh that 0.4 ≤ t/a ≤ 1.33. Also,data are all the more lose to the thik ori�e model as the ori�e is thik in experiments.The end orretion obtained for an ori�e with a small rounded bevel upstream is presented inFig. 5.11. Surprisingly, the behaviour seems idential to the one obtained for an ori�e without bevel:no di�erene an be made. This observation would need more data to be validated.
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Figure 5.5: End orretion for ori�e without �ow - experimental results with ori�e t = 5 mm, a = 12.5mm (t/a = 0.40).
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Figure 5.6: End orretion for ori�e without �ow - experimental results with ori�e t = 5 mm, a = 7.5mm (t/a = 0.66).
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Figure 5.7: End orretion for ori�e without �ow - experimental results with ori�e t = 5 mm, a = 5mm (t/a = 1.00).
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Figure 5.8: End orretion for ori�e without �ow - experimental results with ori�e t = 10 mm, a = 12mm (t/a = 0.84).
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Figure 5.9: End orretion for ori�e without �ow - experimental results with ori�e t = 10 mm, a = 10mm (t/a = 1.00).
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Figure 5.10: End orretion for ori�e without �ow - experimental results with ori�e t = 10 mm,
a = 7.5 mm (t/a = 1.33).
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Figure 5.11: End orretion for ori�e without �ow - experimental results with ori�e with a small(r = 1mm) rounded bevel upstream t = 5 mm, a = 5 mm (t/a = 1) .



5.4 End orretion: single expansion with �ow 2075.4 End orretion: single expansion with �ow5.4.1 Model of end orretion: single expansion with �owThe model of end orretion is extended to a on�guration with a onstant mean �ow M0. In thispurpose, we use the ideas presented by Ajello (1997).In presene of a mean �ow, it is onvenient to use the variables of the aoustial mass veloity m′and total aoustial enthalpy Π′ (for more details, see setion 1.3.2 in hapter one). One should notefor example that, without �ow, Π′ orresponds to p′/ρ0 and m′ to ρ0v
′. The extension of the model ofend orretion under onstant mean �ow is made with these new variables, as we de�ne the equationsto be:

m′
1 = m′

2, (5.14)
Π′

1 = Π′
2 + jωLS1m

′
1/ρ

2
0, (5.15)where m′ = (Π+ − Π−)/c0 and Π′ = (Π+ + Π−)/ρ0 (with Π+ = (1 + M0)P

+, Π− = (1 −M0)P
−).These equations are idential to Eqs.5.1 and 5.2 when no �ow is present. The end orretion is de�nedas:

∆l = S1
L

ρ0
. (5.16)5.4.2 Determination of the end orretion from measurements: single expansionwith �owUsing the above relations, the end orretion ∆l is determined from the four alulated satteringmatrix oe�ients. The expressions obtained are similar as for the non-�ow ase, exept that thesattering matrix oe�ients under mean �ow are into aount, so that:
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, (5.18)where the sattering matrix oe�ients under onstant mean �ow M0 are de�ned as:
R+

e =
1 +M0

1 −M0
R+, R−

e =
1 −M0

1 +M0
R−, (5.19)

T+
e = T+, T−

e = T−. (5.20)5.4.3 Literature data: single expansion with �owFor single expansion with �ow, no literature theory has been found. We an only assume that in thehigh frequeny limit ka→ ∞, the behaviour will follow the non-�ow behaviour.It should be pointed out however that for a di�erent on�guration, that is an exit of a dut withthin walls (�anged pipe termination), Rienstra (1983) has obtained a formula for the end orretion inpresene of �ow, for small Mah numbers M0:
∆lRienstra

a
= 0.2551

√

1 −M2
0 when ka→ 0 and ka/M0 → 0 . (5.21)



208 5 End orretion of single expansions and ori�es5.4.4 Numerial results: single expansion with �owResults obtained show a large dissimilarity of the four end orretions determined with the foursattering matrix oe�ient, in the limit ka/M0 → 0. This work is in progress.5.5 End orretion: ori�e with �ow5.5.1 Determination of the end orretion from measurements: ori�e with �owThe model of ori�e end orretion under onstant mean �ow is similar, in its ideas, to the model ofthe single expansion with �ow.The end orretion for ori�e under onstant mean �ow is obtained from measurements using:
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. (5.23)5.5.2 Models using literature data: ori�e with �owNo formulas are present in literature for end orretion of ori�e under onstant �ow. The di�erenewith the non-�ow ase is that the �ow forms a jet, whih hene ould hange muh the end orretionompared to the non-�ow ase.Even if no literature data are available on the subjet, a physial analysis is proposed here to getsimple formulas in the high and low Strouhal number limits. We separate the several ontributionsof the end orretion: ∆lup is the end orretion of the upstream part of the ori�e, ∆ldown of thedownstream part. We use the variable of the Strouhal number at the ori�e, fa/Ud (Ud is the ori�eveloity), as it is demonstrated that, in presene of low, this variable should be preferred to theHelmholtz number ka (Rienstra, 1983):
• in the high Strouhal number limit: ka/Md → ∞A behaviour similar to the non-�ow ase is expeted: we use the formula orresponding to thelimit ka→ 0, whih gives ∆lup = ∆ldown = ∆lAuregan, while the end orretion within the ori�eis approximately its thikness t, so that we assume:

∆l

a
=

∆lAuregan + t+ ∆lAuregan

a
. (5.24)

• in the low Strouhal number limit: ka/Md → 0The e�et of the upstream edge on the �ow separation, and so on the end orretion, is ritial(Rienstra, 1983). Hene we di�erentiate the ases with the kind of the upstream edge of theori�e:� the upstream edge is a right angleThe �ow separates at the upstream edge. The end orretion is assumed to be mainly dueto the jet, hene ∆lup = 0, and the end orretion due to the jet is assumed to followRienstra formula ∆ldown = ∆lRienstra (whih however does not orrespond exatly to the



5.5 End orretion: ori�e with �ow 209on�guration). The thikness of the ori�e has no e�et on the end orretion, as the �ow isseparated, and while there is no reattahment of the �ow within the ori�e. This is the asewhen the ori�e is thin. When the ori�e is thik, the reattahment of the �ow is assumedto add an end orretion approximately of the thikness of the ori�e. Hene we assume:
∆l

a
=

∆lRienstra

a
, thin ori�e (5.25)

∆l

a
=
t+ ∆lRienstra

a
, thik ori�e (5.26)� the upstream edge is a bevelThere is no �ow separation at the upstream edge. The end orretion upstream ould bethe same as a restrition without �ow ∆lup = ∆lAuregan. The end orretion downstream,where there is a jet, follows Rienstra formula ∆ldown = ∆lRienstra, and the end orretiondue to the ori�e thikness is taken into aount. Hene we assume:

∆l

a
=

∆lAuregan + t+ ∆lRienstra

a
. (5.27)5.5.3 Experimental results: ori�e with �owComparison with our experimental data for irular-entred right-angled ori�es with �ow gives thefollowing observations.From data, we �nd that the evolution of the end orretion is qualitatively the same for all ori�es(Fig. 5.12 gives a typial example): in the low frequeny limit, there is a threshold, followed by aninrease of the end orretion to attain a maximum, followed then by a derease of the end orretionto reah apparently a threshold limit.For thin ori�es (Fig. 5.12), the two limits proposed are satisfying. The high Strouhal numberlimit seems well obtained, but we lak higher frequeny data to evaluate if the limit is really attainedand draw de�nite onlusions. What is spetaular is how muh the low Strouhal number limit iswell obtained. This is spetaular, as the model proposed uses formula not orresponding to ouron�guration.The e�et of the thikness of the ori�e is spetaular. It is illustrated in Fig. 5.13. When theori�e is thik, the end orretion is muh higher than for a thin ori�e. Our model for thik ori�e issystematially satisfying to �t well the data of thik ori�es. As the di�erene is lear from the endorretion value between a thin and a thik ori�e, we an de�ne experimentally thik ori�es: theyare found in the range t/d ≥ 2, whih is in agreement with literature (the �ow re-attahment oursfor t/d ≥ 2).Similarly as in the non-�ow ase, results for ori�es with a large diameter d ≥ 20 mm give a disrepanyof the four values of the end orretion determined by the four sattering matrix oe�ients.It is observed that for low Mah numbers, underM0 = 0.03, the end orretion shows systematiallystrong variations in the low Strouhal limit, as illustrated in Fig. 5.14.Results for ori�es with a bevel upstream show that our model in the low Strouhal limit is not wellsatis�ed (Fig. 5.15). The orrelation seems good when anelling the upstream ontribution of theend orretion, that is with the end orretion ∆l/a = (t+ ∆lRienstra)/a. However, this result needsfurther study, as few data are available (two ori�es).
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Figure 5.12: End orretion with �ow - thin ori�e t = 5 mm, a = 8.5 mm (t/a = 0.58),M0 = 2.55 10−2.
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Figure 5.14: End orretion with �ow - thin ori�e t = 5 mm, a = 8.5 mm (t/a = 0.58),M0 = 5.71 10−2.
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212 5 End orretion of single expansions and ori�esAs a result, we have reported those experimental observations on the end orretion of ori�es with�ow. This is a di�ult task, as the quantity of our data (around 60) showed that it is quite di�ultto draw a ommon behaviour for all ori�es, or to observe ommon behaviours between some of them.Indeed, the end orretion with �ow has a very omplex behaviour, and it is di�ult to understand thesubtleties of suh a model. Moreover, it is a simple model, developed without �ow, so it is questionablewhether it is sensible to understand it thoroughly in the ase with �ow.5.6 ConlusionThe aousti model of end orretion is investigated for single expansions, using our numerialalulations, and for ori�es, using our experimental data. We studied the non-�ow ase and the�ow ase.Without �ow, results are in good agreement with literature models both for ori�es (experimentaldata) and single expansions (numerial alulations using the multimodal method).In presene of a onstant mean �ow, experimental observations are reported for the end orretionof irular entred ori�es. In partiular, good agreement is obtained with the literature modelsintrodued, in the low and high Strouhal number limits, when di�erentiating the ori�es into thinand thik ones. But for ommon frequenies, the behaviour of the end orretion appears to be quitedi�ult to desribe. It varies muh from an ori�e to another, and with the Mah number of the �ow.Even if no lear understanding has been obtained, these experimental observations seem useful, as verysare literature exist in this ase with �ow.
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Conlusion généraleCe travail avait pour objetif de mieux omprendre les méanismes de génération de bruit par lessingularités d'éoulement en onduit, en régime fortement turbulent.Nous nous sommes essentiellement intéressés au phénomène de si�ement, et partiellement au bruitde avitation.Résultats majeursLe résultat majeur de ette étude est onstitué par la validation expérimentale d'un ritère desi�ement de singularité en onduit sous éoulement. Ce ritère utilise la mesure de la matrie dedi�usion aoustique d'une singularité sous éoulement pour déteter les fréquenes d'instabilité de etteon�guration, dans l'hypothèse de propagation d'ondes planes dans les onduits. Nous avons testé enair sur la boule du LAUM une large gamme (19) de diaphragmes irulaires entrés �ns (ave unratio d'épaisseur sur diamètre inférieur à 1.5). On montre qu'en onditions aoustiques réverbérantesdans le onduit, les fréquenes de si�ement apparaissant sont es fréquenes d'instabilité prédites parle ritère. Le grand intérêt de e ritère est sa simpliité théorique et sa relative failité de mise enoeuvre industrielle.Deux résultats importants ont été obtenus onernant la méthode numérique, appelée méthodemultimodale, utilisée pour prédire le omportement aéroaoustique d'une on�guration si�ante:
• le oe�ient de ré�exion R+ d'un élargissement brusque sous éoulement est très bien prédit,en amplitude et en phase, par la méthode multimodale, par omparaison ave les donnéesexpérimentales existantes (Ronneberger). Comme les autres oe�ients de la matrie de di�usionobtenus par ette méthode sont très prohes de modèles analytiques simples dans la limite quasi-stationnaire, et dans la limite sans éoulement, on en déduit que ette méthode donne de façonsatisfaisante la matrie de di�usion aoustique d'un élargissement brusque;
• les fréquenes d'instabilité, obtenues par appliation du ritère d'instabilité sur une on�gurationsi�ante, onstituée par une restrition ontinue de setion suivie de deux élargissements brusquesde setion, sont bien prédites (<10% en erreur relative) par la méthode multimodale. La grandesimpliité des modèles utilisés rend e résultat intéressant. Les niveaux de ratio de puissaneaoustique dissipée sont bien prédits dans les limites hautes et basses fréquenes, et dans leurévolution qualitative.Les analyses d'essais e�etuées en eau, sur un diaphragme droit monotrou et un diaphragme droitmultitrou, ont apporté un résultat important, du fait de la présene de si�ement détetée en régime de215



216 Conlusion généralefaible avitation pour le diaphragme droit monotrou. Les nombres Strouhal de si�ement observés surette boule (en eau, diamètre du tuyau de 7.4 m, pression statique aval de 2.7 bar) ave eux obtenussur la boule du LAUM (en air, diamètre du tuyau 3 m, pression statique aval 1 bar) sont similaires,entre 0.2 et 0.3 pour un nombre de Reynolds dans le tuyau supérieur à 104. Cette omparaison indiqueque le nombre Strouhal ne varie pas sensiblement ave le diamètre du tuyau, la pression statique dansle tuyau et surtout la ompressibilité du �uide. Ce sont es paramètres qui n'on pas été variés sur laboule du LAUM.Autres résultatsNous détaillons dans la suite les résultats majeurs et nous présentons les autres résultats de e travail.Validation d'un ritère de si�ement des singularités en onduitDans le premier hapitre, nous avons présenté l'étude expérimentale d'un ritère de si�ementproposé par Aurégan and Starobinsky (1999) pour des singularités d'éoulement en onduit droit,en propagation d'ondes planes dans les tuyaux. Ce ritère utilise la mesure de la matrie de di�usionaoustique de la singularité sous éoulement et onsiste en un bilan aoustique de part et d'autre de lasingularité, pour mettre en évidene les fréquenes de prodution de puissane aoustique, nomméesalors fréquenes potentielles de si�ement ou fréquenes d'instabilité. Cette étude a validé e ritèresur des diaphragmes droits irulaires entrés sans biseau, et aussi des diaphragmes ave biseau etquelques fentes déentrées.Ce travail expérimental a mis en évidene, pour la première fois, des gammes de fréquene potentiellede si�ement (setion 1.5.3). Ces fréquenes potentielles de si�ement ont été systématiquementtrouvées sur les diaphragmes droits, sauf à très faible éoulement et exepté les singularités onnuespour être très peu si�antes (diaphragmes ave biseaux à l'amont).Des mesures de si�ement (setion 1.7) ont permis de montrer que les fréquenes de si�ementobservées en on�guration de type industrielle, 'est à dire sans soure extérieure et ave des ré�exionsaoustiques de part et d'autre de la singularité, orrespondent à es fréquenes d'instabilité. Dansune telle on�guration, un modèle a été proposé (1.7.4), utilisant la mesure de la matrie de di�usionet la mesure des oe�ients de ré�exion amont et aval, permettant de prédire de façon satisfaisantel'existene de si�ement et la valeur de la fréquene de si�ement. Ce modèle néessiterait toutefoisune validation sur plus de données. Un autre modèle, inspirée du ritère de Bode-Nyquist, ne donnepas de bons résultats, sans que nous en ayons bien ompris la raison.Nous avons montré que le nombre de Strouhal le plus satisfaisant pour adimensionnaliser lesfréquenes potentielles de si�ement est basé sur l'épaisseur du diaphragme et la vitesse d'éoulementau niveau de du diaphragme (setion 1.5.3). Les valeurs obtenues sont remarquablement onstantespour les 19 diaphragmes �ns testés (en variant l'épaisseur du diaphragme, son diamètre, et le nombrede Mah), lorsque l'éoulement est à turbulene pleinement développée (nombre de Reynolds supérieurà 5 103). Les nombres Strouhal de si�ement potentiel sont obtenus entre 0.2 et 0.3, e qui est en trèsbon aord ave la littérature (mesures d'Anderson (1953)).Nous montrons que la on�guration géométrique du bord amont du diaphragme est très importantepour déterminer ou non son potentiel si�ant: si e bord est biseauté, le diaphragme n'est plus si�ant.



Conlusion générale 217Ce résultat est un aord ave la littérature existante sur e sujet.Nous montrons (setion 1.5.5) que, pour réer l'instabilité, les ondes planes de pression inidentessur la singularités doivent être de même amplitude et en opposition de phase. Cela orrespond à uneexitation en vitesse aoustique de la ouhe de isaillement instable. Inversement, nous montrons qu'unexitation en ondes de pression en phase, orrespondant à une exitation en pression aoustique auniveau de la ouhe de isaillement du diaphragme, ne provoque ni prodution ni dissipation d'énergieaoustique. Ces résultats sont ohérents ave la littérature existante.En onlusion de ette étude, une nouvelle méthodologie est appliable à EDF pour prédire lesgammes de si�ement potentielles de singularité en onduit. Elle onsiste à mesurer la matrie dedi�usion de la singularité sous l'éoulement onsidéré, et à appliquer le ritère de si�ement sur ettemesure (diagonalisation d'une matrie 2x2). L'avantage d'une telle méthode est sa simpliité, et lefait que la mesure de la matrie de di�usion soit indépendante des onditions aux limites de la boule.Le résultat majeur est l'obtention de gammes de fréquenes non-si�antes, 'est à dire pour lesquellesla singularité ne si�era jamais, quelles que soient les ré�exions aoustiques dans le onduit. Si lesonditions aoustiques dans le onduit sont onnues, l'utilisation du modèle élémentaire de si�ementpermet de prédire le si�ement ou le non-si�ement sur les gammes de fréquenes de si�ement potentiel.Validation d'une méthode de alul pour prédire les fréquenes potentielles desi�ement d'une expansion si�anteLes hapitres 2 et 3 onernent la modélisation aéroaoustique d'élargissements brusques de setion,par une méthode numérique appelée méthode multimodale.Cette méthode de alul numérique est une résolution modale des équations d'Euler linéariséesen régime harmonique établi, par un shéma aux di�érenes �nies (le plus simple). Les onditions deraord des hamps aoustiques permettent d'obtenir la matrie de di�usion de l'ensemble. La méthodedonne les hamps aoustiques en tous points et la matrie de di�usion aoustique de la on�gurationétudiée. On utilise des hypothèses simples: les pertes visqueuses et thermiques sont négligées, lesparois du tuyau sont rigides. L'éoulement imposé est un jet isaillé inompressible, indépendant de ladiretion de propagation: il est supposé invariable dans sa propagation (il ne se reolle pas aux parois).La méthode est validée sur un élargissement brusque (hapitre 2) et appliquée (hapitre 3) surune expansion si�ante (biseau amont suivi d'un double élargissement brusque de setion). L'objetifreherhé de ette étude numérique a été atteint: les fréquenes potentielles de si�ement de la on�g-uration si�ante sont bien alulées, en omparaison ave les fréquenes mesurées expérimentalementsur ette on�guration.Le hapitre 2 est la validation de la méthode multimodale sur un élargissement brusque. Nousmontrons que la méthode donne des résultats très satisfaisants, omparés aux résultats expérimentaux(setion 2.5.2.1), pour le oe�ient de ré�exion R+. Les modèles analytiques dans ertaines limitesde paramètres de fréquene et d'éoulement sont bien retrouvés également, pour tous les oe�ientsde la matrie de di�usion. Des points néessiteraient des élairissements: la présene d'une forme debosse sur ertains résultats de oe�ients de ré�exion, la di�érene entre le alul et la mesure pourdes valeurs extrêmes des paramètres (haute fréquene et for nombre de Mah), et la di�érene entreun tuyau retangulaire et un tuyau irulaire.Le hapitre 3 est l'appliation de la méthode multimodale sur une expansion si�ante. Les



218 Conlusion généraleomparaisons ave les expérienes e�etuées montrent une prédition satisfaisante des fréquenespotentielles de si�ement de la on�guration. Nous avons alors mené des études paramétriques surl'in�uene des paramètres de l'éoulement et de la géométrie que le nombre de Strouhal instable.Nous montrons que le nombre de Strouhal de la on�guration est peu variable ave les paramètresd'éoulement: le paramètre numérique imposé pour la forme du pro�l, le nombre de Mah del'éoulement et le diamètre du jet. Par ontre, le nombre Strouhal varie de façon importante aveles paramètres de la zone d'ampli�ation de l'instabilité: la hauteur et la longueur du premierélargissement. Dans une telle on�guration don, nous montrons l'importane ritique de ette zone,et en onséquene un modèle simple de desription du phénomène de si�ement semble impossible, tantle nombre Strouhal varie ave es paramètres géométriques.En omplément à ette étude sur la méthode multimodale, le travail e�etué dans la thèse de GerbenKoojman à l'Université tehnique d'Eindhoven (Pays-Bas) devrait apporter des élairissements: étudesur un éoulement uniforme, et dans d'autres on�gurations.Analyses de spetres de bruit de diaphragme monotrou et multitrou, en régime deavitation et de si�ementLe hapitre 4 présente une étude expérimentale de spetres de bruit typiques obtenus sur desdiaphragmes monotrou et multitrou, en régime de avitation et parfois de si�ement.Une adimensionnalisation des spetres de avitation est proposée, en distinguant deux régimes deavitation (avitation faible dite 'avitation développée' et avitation forte site 'super avitation'):
• en régime de faible avitation, une bonne adimensionnalisation est obtenue. Une forme en bossedu spetre est mise en évidene, typique du régime de avitation. Il s'agit d'un résultat ohérentave la littérature, mais non quanti�é jusque là en terme de bruit émis par un diaphragmemonotrou. De plus, les si�ements observés orrespondent à des nombres de Strouhal prohesde eux obtenus en air (nombre Strouhal autour de 0.2-0.3). L'observation de si�ement enonomitane ave de la avitation est un résultat jamais reporté dans la littérature à notreonnaissane;
• en régime de forte avitation, il apparaît que la quantité d'air résiduelle dans l'eau en aval dudiaphragme, après di�usion dans les bulles de avitation de vapeur, a�ete de façon spetaulaireles spetres, e qui représente un résultat nouveau.Ces résultat sont à véri�er en testant la répétabilité des essais analysés, et l'in�uene de la quantitéde gaz dissous dans l'eau utilisée. En e�et, e paramètre pourrait être important, surtout pour lerégime de faible avitation, et il n'a pas été mesuré ni ontr�lé pendant es essais.Résultats pour le modèle de orretion de bout de diaphragme sous éoulementLe hapitre 5 est l'étude expérimentale et numérique du modèle aoustique de orretion de boutappliqué à des élargissements brusques et les diaphragmes:
• sans éoulement, les modèles analytiques simples proposés dans la littérature, pour la orretionde longueur de diaphragme très �ns et très épais, sont très satisfaisants en omparaison ave les



Conlusion générale 219orretions de longueur expérimentales que nous avons obtenues expérimentalement au LAUM.De même, les orretions de longueur obtenues par la méthode multimodale sur un élargissementbrusque donnent de bons résultats par omparaison ave la littérature.
• ave éoulement, très peu de littérature existe, 'est pourquoi les résultats expérimentauxprésentés sur les diaphragmes sont intéressants. Cependant, il apparaît que le omportementde la orretion de longueur est omplexe, ave des variations en fontion de la fréquene, dunombre de Mah, et ei d'un diaphragme à l'autre. Ces omportements sont partiulièrementdi�iles à synthétiser et à omprendre.PerspetivesCritère de si�ementEn perspetive, la ontinuation de l'étude du ritère de si�ement est envisageable. Il serait intéressantde tester les autres singularités que l'on peut renontrer en tuyau de entrale nuléaire: vannes, robinets,diaphragmes multitrou. A priori, le ritère de si�ement devrait s'appliquer sur es organes. L'intérêtserait de valider l'appliation industrielle un tel ritère. Dans ette optique, il serait intéressant devéri�er les résultats trouvés en eau (reportés au hapitre 4), 'est à dire que le nombre de Strouhal nevarie pas sensiblement en hangeant de ompressibilité de �uide. L'intérêt serait alors que la mesurede la matrie de di�usion serait su�sante en air, e qui évite d'utiliser une boule en eau pour ettemesure.Dans ette optique d'appliation industrielle, il serait intéressant de valider le modèle élémentairede prédition des fréquenes de si�ement en onditions aoustiques réverbérantes sur de plus ampleson�gurations (nous avons obtenu de bons résultats ave e modèle, mais sur peu de mesures). Deplus, il serait très intéressant de omprendre pourquoi le modèle de type Bode-Nyquist que nous avonstenté éhoue. Il est surprenant qu'un tel modèle donne de mauvais résultats, alors qu'il nous sembleplus adapté que le modèle élémentaire.Sur e ritère d'instabilité, une perspetive importante et intéressante nous semble aussi de mieuxomprendre le ratio de puissane aoustique dissipé par l'organe, 'est à dire les amplitudes quenous avons obtenues sur la représentation des valeurs propres de la matrie énergétique. Nousavons ommené une adimensionnalisation très satisfaisante ave le nombre de Mah pour un ori�edonné, mais nous avons montré que ette adimensionnalisation doit enore prendre en ompte lesaratéristiques géométriques des diaphragmes. L'intérêt serait d'obtenir une ompréhension plus �nedes phénomènes d'interation aoustique-éoulement loaux. Un moyen envisageable serait d'utiliserune analogie aéroaoustique, par exemple l'analogie de Howe.Approfondissement de la méthode multimodaleL'obtention d'un mode hydrodynamique instable par la méthode multimodale est satisfaisante, mais saprésene ne nous semble pas tout à fait omprise. La présene de ette instabilité semble due au ritèrede Rayleigh, 'est à dire la présene d'un point d'in�exion virtuel sur le pro�l d'éoulement. Cependant,nous avons du mal à omprendre l'appliation de e ritère sur un pro�l disrétisé d'éoulement.



220 Conlusion généraleLes problèmes seondaires renontrés et que nous avons rapportés sur la méthode multimodale sontles autres perspetives d'approfondissement de la méthode.Étude d'un élargissement brusqueEn�n, il faut noter que la omparaison des géométries artésiennes et ylindriques est appropriée aveette méthode multimodale. Comme e genre d'étude est rare dans la littérature, il semble intéressantd'utiliser ette méthode pour mieux omprendre la di�érene entre es 2 géométries.



Appendix AMeasurements on ori�es: potentiallywhistling frequeniesIn this appendix, all the measurements made are presented in the potentially whistling eigenvalue form.
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Figure A.1: The eigenvalues of the aousti power ratio, obtained for ori�e t = 3 mm, d = 20 mm(CC1).
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Figure A.2: The eigenvalues of the aousti power ratio, obtained for ori�e t = 5 mm, d = 23 mm(CC2).
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Figure A.3: The eigenvalues of the aousti power ratio, obtained for ori�e t = 5 mm, d = 21 mm(CC3).
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Figure A.4: The eigenvalues of the aousti power ratio, obtained for ori�e t = 5 mm, d = 19 mm(CC4).
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Figure A.5: The eigenvalues of the aousti power ratio, obtained for ori�e t = 7 mm, d = 24 mm(CC5).
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Figure A.6: The eigenvalues of the aousti power ratio, obtained for ori�e t = 3 mm, d = 10 mm(CC6).
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Figure A.7: The eigenvalues of the aousti power ratio, obtained for ori�e t = 5 mm, d = 17 mm(CC7).
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Figure A.8: The eigenvalues of the aousti power ratio, obtained for ori�e t = 5 mm, d = 15 mm(CC8).
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Figure A.9: The eigenvalues of the aousti power ratio, obtained for ori�e t = 8 mm, d = 20 mm(CC9).
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Figure A.10: The eigenvalues of the aousti power ratio, obtained for ori�e t = 5 mm, d = 10 mm(CC10).
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Figure A.11: The eigenvalues of the aousti power ratio, obtained for ori�e t = 5 mm, d = 8 mm(CC11).
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Figure A.12: The eigenvalues of the aousti power ratio, obtained for ori�e t = 6 mm, d = 9 mm(CC12).
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Figure A.13: The eigenvalues of the aousti power ratio, obtained for ori�e t = 5 mm, d = 7 mm(CC13).
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Figure A.14: The eigenvalues of the aousti power ratio, obtained for ori�e t = 10 mm, d = 10 mm(CC14).
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Figure A.15: The eigenvalues of the aousti power ratio, obtained for ori�e t = 15 mm, d = 10 mm(CC15).
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Figure A.16: The eigenvalues of the aousti power ratio, obtained for ori�e t = 5 mm, d = 25 mm(CC16).
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Figure A.17: The eigenvalues of the aousti power ratio, obtained for ori�e t = 10 mm, d = 24 mm(CC17).
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Figure A.18: The eigenvalues of the aousti power ratio, obtained for ori�e t = 10 mm, d = 20 mm(CC18).
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Figure A.19: The eigenvalues of the aousti power ratio, obtained for ori�e t = 10 mm, d = 15 mm(CC19).
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Figure A.20: The eigenvalues of the aousti power ratio, obtained for ori�e t = 5 mm, d = 10 mm(CCb2) with the bevel downstream.
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Figure A.21: The eigenvalues of the aousti power ratio, obtained for ori�e t = 5 mm, d = 10 mm(CCb2) with the large bevel upstream.
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Figure A.22: The eigenvalues of the aousti power ratio, obtained for ori�e t = 5 mm, d = 10 mm(CCb4) with the small bevel downstream.
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Figure A.23: The eigenvalues of the aousti power ratio, obtained for ori�e t = 5 mm, d = 10 mm(CCb4) with the small bevel upstream.
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Figure A.24: The eigenvalues of the aousti power ratio, obtained for ori�e t = 5 mm, d = 10 mm(CCb5: 2 beavels).
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Figure A.25: Potentially whistling eigenvalues of smile shaped slit F1: t = 5 mm, Sd = 63 mm2.
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Figure A.26: Potentially whistling eigenvalues of smile shaped slit F2: t = 5 mm, Sd = 63 mm2.



Appendix BMeasurements on double ori�e:potentially whistling frequenies
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Figure B.1: Eigenvalues of the aousti power ratio from the whistling riterion for on�guration:
b = 1.2, c = 3, L = 2 (CCb6+CC22) - various Mah numbers.
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Figure B.2: Strouhal number of the potentially whistling eigenvalues from the whistling riterion foron�guration: b = 1.2, c = 3, L = 2 (CCb6+CC22) - various Mah numbers.
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Figure B.3: Eigenvalues of the aousti power ratio from the whistling riterion for on�guration:
b = 1.5, c = 3, L = 1 (CCb6+CC8) - various Mah numbers.
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Figure B.4: Strouhal number of the potentially whistling eigenvalues from the whistling riterion foron�guration: b = 1.5, c = 3, L = 1 - various Mah numbers (CCb6+CC8).
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Figure B.5: Eigenvalues of the aousti power ratio from the whistling riterion for on�guration:
b = 2, c = 3, L = 2 (CCb6+CC18) - various Mah numbers.
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Figure B.6: Strouhal number of the potentially whistling eigenvalues from the whistling riterion foron�guration b = 2, c = 3, L = 2 (CCb6+CC18) - various Mah numbers.
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Figure B.7: Eigenvalues of the aousti power ratio from the whistling riterion for on�gurationCCb6+CC18+CC9: b = 2, c = 3, L = 3.6.
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Figure B.8: Strouhal number of the potentially whistling eigenvalues from the whistling riterion foron�guration b = 2, c = 3, L = 3.6 (CCb6+CC18+CC9) - various Mah numbers.
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Appendix CAoustial propagation equations undersheared mean �owThis setion presents the demonstration of the aoustial propagation equation under sheared mean�ow M0(y)ex (that is inompresssible mean �ow). Visosity and entropy variations are also negleted.Fluid mehanis equationsThe equations of �uid mehanis are applied to the general quantities (dimensional): the pressure
p , the veloity v and the �uid density ρ. The visosity is negleted:

• Mass onservation equation:
∂ρ

∂t
+ (v.∇)ρ = −ρdiv(v). (C.1)

• Momentum onservation equation:The �uid is onsidered as perfet: Euler equations are onsidered:
ρ
∂v

∂t
+ ρ(v.∇).v = −∇p (C.2)Linearization of Navier Stokes equationsThe previous �uid mehanis equations are linearized at �rst order, giving aousti equations. Weintrodue: v = U0(y) + v′, ρ = ρ0 + ρ′, p = p0 + p′.The mean �ow is supposed of the form: U0(y) = U0(y)ex. It is inompressible.At inital state, the �uid is onsidered as uniform, so that ρ0 is a onstant of spae and time.The �ow is assumed isentropi, and at uniform entropy at the initial state, so that: c20 = p′

ρ′ .
• Mass onservation equation:

∂ρ′

∂t
+ (U0(y).∇)ρ′ + (v′.∇)ρ0 = −ρ0div(v

′) − ρ′div(U0(y)) (C.3)241



242 AppendiesFrom the assumptions, div(U0(y)) = 0, (v′.∇)ρ0 = 0 and c20 = p′

ρ′ . The previous equation reduesto:
∂p′

∂t
+ (U0(y).∇)p′ = −ρ0c

2
0div(v

′) (C.4)In 2D Cartesians, one has: (U0(y).∇)ρ′ = U0(y)
∂ρ′

∂x and div(v′) = ∂v′

∂x + ∂v′

∂y , hene:
∂p′

∂t
+ U0(y)

∂p′

∂x
= −ρ0c

2
0(
∂v′x
∂x

+
∂v′y
∂y

). (C.5)In 2D ylindrial, one has: (U0(r).∇)ρ′ = U0(r)
∂ρ′

∂z and div(v′) = v′r
r + ∂v′r

∂r + ∂v′z
∂z , hene:

∂p′

∂t
+ U0(r)

∂p′

∂z
= −ρ0c

2
0(
v′r
r

+
∂v′r
∂r

+
∂v′z
∂z

). (C.6)
• Momentum onservation equation:The linearization gives:

ρ0
∂v′

∂t
+ ρ′

∂U0

∂t
+ ρ′(U0.∇)U0 + ρ0(v

′.∇)U0 + ρ0(U0.∇)v′ = −∇p′ (C.7)In 2D Cartesians: ∂U0

∂t = 0, (U0(y).∇)U0(y) = 0, (v′.∇)U0(y) = v′y
dU(y)

dy ex, U0(y).∇ =

U(y) ∂
∂x , ∇p′ = ∂p′

∂x ex + ∂p′

∂y ey. Hene in the longitudinal and transversal diretion, one gets:
ρ0
∂v′x
∂t

+ ρ0U(y)
∂v′x
∂x

+ ρ0v
′
y

dU(y)

dy
= −∂p

′

∂x
, (C.8)

ρ0

∂v′y
∂t

+ ρ0U0(y)
∂v′y
∂x

= −∂p
′

∂y
. (C.9)In 2D ylindrial: ∇p′ = ∂p′

∂r er + ∂p′

∂z ez. Hene in the longitudinal and transversal diretion, onegets:
ρ0
∂v′r
∂t

+ ρ0U0(r)
∂v′r
∂r

= −∂p
′

∂r
, (C.10)

ρ0
∂v′z
∂t

+ ρ0U0(r)
∂v′z
∂z

+ ρ0v
′
r

dU0(r)

dr
= −∂p

′

∂z
. (C.11)Propagation equation: Lilley equationThe propagation equation in pressure is obtained by multiplying D

Dt with the mass onservation equa-tion (Eq. C.8 in Cartesians, Eq. C.9 in ylindrial).In 2D Cartesians, as D
Dt(

∂
∂y ) = ∂

∂y ( D
Dt) − dM

dy
∂
∂x , one gets:

D2p′

Dt2
− c20∆p

′ = 2ρ0c
2
0

dU(y)

dy

∂v′y
∂x

, (C.12)with ∆p′ = ∂2p′

∂x2 + ∂2p′

∂y2 and D
Dt = ∂

∂t + U(y) ∂
∂x .



Appendies 243The propagation equation in the variable p′ is (known as Lilley equation, see Bailly (1994)):
D

Dt

(
D2

Dt2
− c20∆

)

p′ + 2c20
dU(y)

dy

∂2p′

∂x∂y
= 0 (C.13)If the �ow is uniform: dU/dy = 0, the lassial propagation equation of order 2 in derivative is obtained.In the ase of a sheared �ow: dU/dy 6= 0, it is of order 3 in derivative.In 2D axisymmetri, it takes a similar form, only the expression of the Laplaian di�ers from theCartesians ase:

D

Dt

(
D2

Dt2
− c20∆

)

p′ + 2c20
dU(r)

dr

∂2p′

∂z∂r
= 0 (C.14)where ∆p′ = 1

r
∂p′

∂r + ∂2p′

∂r2 + ∂2p′

∂z2 and D
Dt = ∂

∂t + U(r) ∂
∂z .C.0.0.1 Equation of the modes: Pridmore-Brown equationA time-frequeny dependene of the variables in ejωt is assumed. Solutions are demonstrated (seesetion 2.2.5.2) to take the form: ej(ωt−kx). Lilley equation beomes then what is known as Pridmore-Brown equation, that is the equation of the modes in a dut with a sheared �ow:

(ω − kU)
[
(ω − kU)2 + c20∆

]
p′ + 2c20k

dU(y)

dy

∂p′

∂y
= 0. (C.15)That is, if ω − kU 6= 0:

∆p′ +
2k dU(y)

dy

ω − kU

∂p′

∂y
−
(
ω − kU

c0

)2

p′ = 0. (C.16)In 2D Cartesians:
∂2p′

∂y2
+

2k dU(y)
dy

ω − kU

∂p′

∂y
+

[(
ω − kU

c0

)2

− k2

]

p′ = 0. (C.17)In 2D axisymmetri:
∂2p′

∂r2
+




1

r
+

2k dU(y)
dy

ω − kU




∂p′

∂r
+

[(
ω − kU

c0

)2

− k2

]

p′ = 0. (C.18)
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Appendix DDemonstration of the ontinuity of theaousti variables at the expansionThis setion presents the demonstration of the ontinuity of the aousti variables p′, ρ′, v′x, v′y and oftheir derivative ∂d/∂dx at the rossing of the expansion. The geometry is given in Fig. 2.1). The �owis assumed non-visous, isentropi, and the mean �ow is assumed inompressible.D.1 Continuity of the aousti variablesLaws of mass onservation, momentum onservation in the x-diretion and in the y-diretion, andenergy onservation, give the �uid mehanis equations, at the expansion:
ρIvx,I = ρIIvx,II , (D.1)

ρIv
2
x,I + PI = ρIIv

2
x,II + PII , (D.2)

(ρIvx,I).vy,I = (ρIIvx,II).vy,II , (D.3)
hI +

v2
x,I + v2

y,I

2
= hII +

v2
x,II + v2

y,II

2
, (D.4)where h is the enthalpy: dh = dp/ρ for isentropi �ow.Eq. D.3 is simpli�ed using Eq. D.1:

vy,I = vy,II . (D.5)Linearized at �rst order, those equations give the aousti equations:
ρ′Ivx,I + ρIv

′
x,I = ρ′IIvx,II + ρ′IIv

′
x,II , (D.6)

ρ′Iv
2
x,I + 2ρIvx,Iv

′
x,I + P ′

I = ρ′IIv
2
x,II + 2ρIIvx,IIv

′
x,II + P ′

II , (D.7)
v′y,I = v′y,II , (D.8)

p′I
ρI

+ vx,Iv
′
x,I =

p′II

ρII
+ vx,IIv

′
x,II , (D.9)245



246 AppendiesAs the �ow is isentropi, p′ = c20ρ
′. The assumption of inompressiblity imposes ρ′I = ρII = ρ0. Thepattern of the �ow gives also: vx,I = vx,II = U0(y). After some alulations, Eq. D.6 and D.9 give theontinuity of v′x, p′, ρ′:

v′x,I = v′x,II , p′I = p′II , ρ′I = ρ′II . (D.10)Eq. D.8 gives the ontinuity of v′y:
v′y,I = v′y,II , (D.11)and Eq. D.9 is automatially satis�ed by those onditions.D.2 Continuity of the derivatives of the aousti variablesAs there is no disontinuity in the y-diretion, the derivatives of the aousti variables in the y-diretionare ontinuous.The ontinuity for the derivative in the x-diretion an be demonstrated. Mass onservation,momentum onservation in hte x-diretion and y-diretion, linearized at �rst order give:

∂ρ′

∂t
+ ρ0

∂ρv′x
∂x

+ U0
∂ρ′

∂x
+ ρ0

∂v′y
∂y

= 0, (D.12)
ρ0

(
∂v′x
∂t

+ U0
∂v′x
∂x

+ v′y
dU0

dy

)

= −∂p
′

∂x
, (D.13)

ρ0

(
∂v′y
∂t

+ U0

∂v′y
∂x

)

= −∂p
′

∂y
. (D.14)Eq. D.14 gives the ontinuity of the derivative of v′y:

∂v′y I

∂x
=
∂v′y II

∂x
. (D.15)Eq. D.12 and D.13 give the ontinuity of the derivative of v′x and p′:

∂v′y I

∂x
=
∂v′y II

∂x
,

∂p′I
∂x

=
∂p′II

∂x
. (D.16)



Appendix EAousti analysis methodWe assume that only plane waves propagate in the pipe. First, ross-spetral density funtions Gpprefare used. They are well suited to aousti analysis, beause they eliminate non-propagating noisepresent in time measurements. Indeed, if we deompose time pressure measurements p(t) into a non-propagating signal pnon prop(t) and a propagating one, we have:
p(t) = p+(t) + p−(t) + pnon prop(t). (E.1)Having de�ned and �xed a referene sensor and applying the ross-spetral density funtions, weget an expression where the non-propagating pressure is removed beause it is not orrelated to thepropagating pressure:

Gp(t)pref(t)(ω) = Gp+(t)pref(t)(ω) +Gp−(t)pref(t)(ω). (E.2)Seond, we de�ne quantities Gppref/√Gprefpref whih an be handled like Fourier Transforms, andwhih are almost independent of the referene pressure. Indeed, if we assume a perfet oherenebetween the point of observation and the referene sensor, we have
|Gppref |2

GppGprefpref = 1. (E.3)In this ase the quantity Gppref/√Gprefpref does not depend on the referene sensor. In pratie, thereferene sensor is taken losest to the points of observation.Finally, we alulate plane waves. Considering two onseutive sensors, denoted n and n+ 1, planewaves propagation and the linearity harateristis of the ross-spetral density funtion give
Gp+

n+1
pref(ω) = Gp+

n pref(ω) e−jωτ , (E.4)
Gp−n+1

pref(ω) = Gp−n pref(ω) e+jωτ , (E.5)with τ being the time of �ight of the wave between the two sensors. For the sake of ease, we note pnfor Gpnpref/√Gprefpref . By means of Eqs. (E.2), (E.4) and (E.5), we get the plane wave spetra:
p+

n (ω) =
pn(ω) e+iωτ + pn+1(ω)

2 j sin(ωτ)
, (E.6)247
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p−n (ω) =

pn(ω) e−iωτ + pn+1(ω)

−2 j sin(ωτ)
, (E.7)for upstream measurements (1 ≤ n ≤ 2) and downstream measurements (4 ≤ n ≤ 9). These spetraare expressed in Pa/√Hz.The re�etion oe�ient is de�ned as p− /p+ downstream of the ori�e, and by p+ /p− upstream,beause we assume the soure of sound to be loated in the region of the ori�e. For example, if a zeropressure ondition is loated far downstream of the ori�e, and if T is the time of �ight toward thispressure node, the re�etion oe�ient at this urrent point is −e−2jωT .


