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General Perception

As a part of static and dynamic optimization, machine
learning is also:

Model free
Facing at large amount and new types of data
Robustness fails and too sensitive to data

Simple algorithms, big data, together with large computing
facilities find wide applications in speech recognition and
image processing

Is mathematics still needed to be educated to young students?
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General Perception

As a part of static and dynamic optimization, machine
learning is also:

Model free
Facing at large amount and new types of data
Robustness fails and too sensitive to data

Simple algorithms, big data, together with large computing
facilities find wide applications in speech recognition and
image processing

Is mathematics still needed to be educated to young students?

Yes, particularly much to be explored in “Intelligent
dynamically controlled systems”.

Control-boosting Algorithm
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Supervised Learning

Supervised learning concerns approximating a function F (x) : Rd → R
such that ym = F (xm),m = 1, 2, . . . ,M.

Non-parametric, in particular the kernel method: find a functional
space H, to which the approximation f (x) of F (x) belongs where

γ||f ||2 +
M∑

m=1

(f (xm)− ym)2. (1)

Parametric method: fix a function f (x ; θ), where θ ∈ Rq and one
defines it to minimize

γ|θ|2 +
M∑

m=1

(f (xm; θ)− ym)2. (2)

Control-boosting Algorithm
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Example: Shadow Neural Network for Binary Classification

The approximating function f (x ; θ) is defined as follows:

Let W ∈ Rd×n, b ∈ Rn. (W , b) represents the parameter θ.

Let σ be a real-valued function, called the activation (transfer)
function.

For the hidden layer with n units, let Z := χ(x), where
χ : Rd → Rn such that χ(x) = W ∗x + b, then define the vector X
by Xi := σ(Zi ), i = 1, 2, ..., n.

For the output layer,

f (x ; θ) := σoutput(W
′∗X + b′), (3)

where σoutput : R→ Rnoutput .

The minimization in (2) is performed by a backward propagation via

stochastic steepest decent method.

Control-boosting Algorithm
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Deep Learning Example: AlexNet in Image Recognition (2012)

Five CNN (Convolutional Nueral Network) layers with ReLU
function

Three FC (fully-connected tradiontal ANN) layers with ReLU
function or softmax function

Figure: Architecture of AlexNet

It can be regarded as a regime switching dynamical systems.
Control-boosting Algorithm
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Deep Learning

Deep learning can be regarded as a generalization of the shadow
neural networks with a sequence of layers.

Generalize (3) up to K + 1 layers as follows: for any k = 0, · · ·K − 1,

Z k+1 = (W (k+1))∗X k + b(k+1), X k+1
i = σ(Z k+1

i ), i = 1, · · · n, (4)

and
X 0 = x , (5)

f (x , θ) = XK = σoutput(Z
K
. ). (6)

By setting f̄ := (f̄1, . . . , f̄n) as a multi-valued composed function such
that f̄i (x) := σ(χi (x ;W , b)), where χi (x ;W , b) denotes the i-th
component of χ(x ;W , b), the above can be simplified as follows:

X k+1 = f̄ (X k ;W (k+1), b(k+1)), k = 0, · · ·K − 1, (7)

The parameter θ is the collection of (W (k), b(k)).

Control-boosting Algorithm
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Seeing Machine Learning as a Control Problem

(LI, CHEN, TAI, E (2018, JMLR)) Recast the deep learning of supervised learning as

a control problem.

Discrete: seeing (7) as

X k+1 − X k = f (X k , θk , k),

where θk = (W k+1, bk+1), and f (x , θk , k) := f̄ (x ; θk )− x .

Continuous: for any x ∈ Rd , y ∈ Rnoutput , set X ∈ Rn satisfying the
dynamics

dX

dt
= f (Xt , θt , t), X0 = x . (8)

The approximation of F (x) is then XT (x).

The error Φ(XT ) :=
∑

Φm(XT ) with Φm(XT ) := (ym − XT (xm))2, recalling
that y = F (x) is given as they are labeled.

θt is now regarded as a control and wants to minimize the analogue of (1)
expressed as

J(θ) =
M∑

m=1

Φm(XT ) +

∫ T

0
L(θt)dt, (9)

where L(θ) is a loss function, for instance, γ|θ|2.

Control-boosting Algorithm
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Pontryagin Maximum Principle: LI, CHEN, TAI, E (2018, JMLR)

Give a necessary condition of the optimality:

The optimal state and the adjoint state, X̂t and p̂t solve the
following:

dX̂t

dt
= f (X̂t , θ̂t , t), X̂0 = x , (10)

and

− dp̂t
dt

= (Dx f )∗(X̂t , θ̂t , t)p̂t , p̂T = DxΦ(X̂T ). (11)

The optimal control θ̂ satisfies the optimality condition

θ̂t minimizes H(X̂t , p̂t , θ, t), a.e. t,

where
H(X̂t , p̂t , θ, t) = p̂∗t f (X̂t , θ, t) + L(θ).

Control-boosting Algorithm
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Approximation: LI, CHEN, TAI, E (2018, JMLR)

To solve (10) and (11), one may use the method of successive
approximations:

Given θkt , define X k
t , p

k
t by

dX̂t
k

dt
= f (X k

t , θ
k
t , t), X k

0 = x , (12)

and

−dpkt
dt

= (Dx f )∗(X k
t , θ

k
t , t)pkt , pkT = DxΦ(X k

T ). (13)

Then find θk+1
t to minimize

H(X̂t , p̂t , θ, t), a.e. t. (14)

This approximation may fail to converge. Some improvements have
been proposed in LI, CHEN, TAI, E (2018, JMLR).
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Generic Control Problem

The state equation is a controlled dynamical system:

dx = g(x , a)dt, x(0) = x (15)

The payoff is given by

Jx(a(.)) =

∫ +∞

0
exp(−αt) f (x(t), a(t))dt (16)

There are two approaches: Dynamic Programming and PMP. The
optimal control is described by a feedback. The value function is
defined by

u(x) = inf
a(·)

Jx(a(·)). (17)

Control-boosting Algorithm
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Standard Approaches

(Bensoussan (2018)) Using Bellman equation:

Value iteration:

αuk+1(x) = inf
a

[
g∗(x, a)Duk (x) + f (x, a)

]
.

Policy iteration:

αuk+1(x) = g∗(x, ak (x))Duk+1(x) + f (x, ak (x)),

ak+1 = arg inf
a

[
g∗(x, a)Duk+1(x) + f (x, a)

]
.

(Powell (2007)) Approximate dynamic programming for the discrete case with
noise, such as the Markov decision process problem, based on the Bellman
equation:

Vt (x) = max
at

[C(Xt , at ) + γE (Vt+1(Xt+1)|Xt = x)] ,

where Xt+1 = SM (Xt, at ,Wt+1) with SM ,W , C , and γ denoting the transition function
of the state, the information arriving between t and t + 1, the cost function, and
the discount factor respectively; approximate value iteration and approximate
policy iteration are developed correspondingly, on purpose.

(Li, Chen, Tai, and E (2018), Rao (2009), Chernousko and Lyubushin (1982))
Methods of successive approximations with Pontryagin Maximum Principle and
its variants.

Control-boosting Algorithm
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Where Does Machine Learning Come in?

3 functions of interest: the value function u(x), the optimal
feedback â(x), the gradient λ(x) = Du(x).

Numerically, approximating the gradient of u(x) by the gradient of
its approximation induces much error.

Interestingly, the gradient is a solution of a self-contained system of
equations.

The gradient has a very interesting interpretation: the shadow price
in economics.

We first introduce a control boosting algorithm, and then we may think

of parametric and non-parametric approximations for these functions. We

shall discuss a parametric approach for the optimal feedback, and a

non-parametric for the value function and its gradient.

Control-boosting Algorithm
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Dynamic Programming: Equations and Algorithm

The Hamilton-Bellman equation (HB equation for short) for
the control problem (17) can be derived as follows:

αu(x) = g∗(x , â(x))Du(x) + f (x , â(x)),

â(x) minimizes in a, g∗(x , a)Du(x) + f (x , a),

which links the value function u(x), its gradient λ(x) = Du(x)
and the optimal feedback â(x) together.

Control-boosting Algorithm
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Dynamic Programming: Equations and Algorithm

Substitute Du and D2u by λ and Dλ respectively,

αu(x) = g∗(x , â(x))λ(x) + f (x , â(x)),

â(x) minimizes in a, g∗(x , a)λ(x) + f (x , a).

Differentiating in x on both sides yields a new problem:

αλ(x) = Dλ(x)g(x , â(x)) + D∗x g(x , â(x))λ(x) + Dx f (x , â(x)), (18)

with
â(x) minimizes in a, g∗(x , a)λ(x)+f (x , a). (19)

The error arising from the gradient of the approximation of u
is avoided in the optimization step (19), as we can now
directly deal with λ(x) = DΦ(x).

Control-boosting Algorithm



22/36

General Perception
Inter-play between Control Theory and Deep Learning

Machine Learning Approach of Control Problems

General Theory
Dynamic Programming Approach
Convergence in Functional Sense

Dynamic Programming: Equations and Algorithm

Define the following iteration:

Given ak ,λk , find λk+1 and ak+1 by solving

αλk+1(x)− Dλk+1(x)g(x , ak (x)) = D∗x g(x , ak (x))λk (x) + Dx f (x , ak (x)),

(20)

and
ak+1(x) minimizes in a, g∗(x , a)λk+1(x) + f (x , a) (21)

The equations for the components of λk+1(x) are completely
decoupled, and can be solved in parallel.

Specifically, for each i = 1, 2, . . . . , d , the PDE of λk+1
i is totally

independent of other components of λk+1, λk+1
j , j = 1, 2, . . . , d , j 6= i ,

even though it still depends on all the components of λk .

One possibility is to use simulation to define λk+1(x) in a finite
number of points and to use an extrapolation by using kernels from
a Hilbert space.

Control-boosting Algorithm



23/36

General Perception
Inter-play between Control Theory and Deep Learning

Machine Learning Approach of Control Problems

General Theory
Dynamic Programming Approach
Convergence in Functional Sense

Dynamic Programming: Equations and Algorithm

To avoid the optimization step in (21), we update the control by the
following approximation, with the idea of boosting:

ak+1(x) = ak(x)− ρk(x)
(

(Dag)∗(x , ak(x))λk+1(x) + Daf (x , ak(x))
)
, (22)

where ideally, ρk(x) could be selected by the line search

ρk(x) := arg min
ρ

{
g∗(x ,w k(x ; ρ))λk+1(x) + f (x ,w k(x ; ρ))

}
,

w k(x ; ρ) := ak(x)− ρ
(

(Dag)∗(x , ak(x))λk+1(x) + Daf (x , ak(x))
)
.

(23)

But is it workable?

Control-boosting Algorithm
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Dynamic Programming: Equations and Algorithm

To avoid the optimization step in (21), we update the control by the
following approximation, with the idea of boosting:

ak+1(x) = ak(x)− ρk(x)
(

(Dag)∗(x , ak)λk+1(x) + Daf (x , ak)
)
,

where ideally, ρk(x) could be selected by the line search

ρk(x) := arg min
ρ

{
g∗(x ,w k(x ; ρ))λk+1(x) + f (x ,w k(x ; ρ))

}
,

w k(x ; ρ) := ak(x)− ρ
(

(Dag)∗(x , ak)λk+1(x) + Daf (x , ak)
)
.

But is it workable?

Generally, NO!

So we choose ρk(x) so as to ensure the convergence.

Control-boosting Algorithm
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Assumptions

Suppose that g(·, ·) : Rd × Rp → Rd and f (·, ·) : Rd × Rp → R
are continuously differentiable up to the second order w.r.t. both
variables, and they satisfy that:

A1. There exist constants ḡ , ḡ ′ > 0 such that

|g(x , a)| ≤ ḡ(1 + |x |+ |a|),
0 ≤ gx , |ga|, |gxx |, |gxa| ≤ ḡ , and 0 ≤ gaa ≤ ḡ ′;

(24)

A2. There exist constants f̄ , f̄ ′ > 0 such that

0 ≤ fx(x , a), |fa(x , a)| ≤ f̄ (1 + |x |+ |a|),
|fxx |, |fxa| ≤ f̄ , and 0 < faa ≤ f̄ ′;

(25)

Control-boosting Algorithm
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Convergence Results

Lemma 1. Under Assumptions A1 and A2, by choosing α large and
ρ(k)(x) small, for any k ,

(i) λ(k), λ
(k)
x and a(k) are of linear growth;

(ii) a
(k)
x is uniformly bounded.

Theorem 1. Under Assumptions A1 and A2, {λ(k)}k and {a(k)}k are

Cauchy sequences in L2
ν-sense.

Control-boosting Algorithm
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Convergence Results: Kernel Method for Sub-Optimum

From Theorem 1, both {λ(k)}k and {a(k)}k generated by the
control-boosting Algorithm 1 converge in L2

ν-sense, i.e. ∃ λ∗ and a∗

such that limk→∞ λ
(k) = λ∗ and limk→∞ a(k) = a∗ respectively.

But, generally speaking, is (λ∗, a∗) our targeted limit we want?

Essentially YES! But how to solve it in practical sense? We propose
a parametric approach for a sub-optimum.

Control-boosting Algorithm
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Convergence Results: Kernel Method for Sub-Optimum

Let S be a set of real-valued functions, and define a linear spanning
function space as

span(S) =

{
N∑
j=1

ωjϕj : ϕj ∈ S , ωj ∈ R,N ∈ Z+

}
. (26)

We want to find a function Φ ∈ span(S) that approximately solves
the systems:

αλ(x) = Dλ(x)g(x ,Φ(x)) + D∗x g(x ,Φ(x))λ(x) + Dx f (x ,Φ(x)), (27)

with
Φ = arg inf

ϕ∈span(S)
M (g∗(·, ϕ(·))λ(·) + f (·, ϕ(·))) , (28)

where M is a real-valued function on span(S) representing a
loss/penalty function, for instance, the expectation of the square of
certain deviation in decision theory.

Control-boosting Algorithm
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Convergence Results: Kernel Method for Sub-Optimum

Consider the iteration:

Given Φk ,λk , find λk+1 by solving

αλk+1(x)− Dλk+1(x)g(x ,Φk (x)) = D∗x g(x ,Φk (x))λk (x) + Dx f (x ,Φk (x)).

(29)

Select a closed subset Λk ⊂ R such that 0 ∈ Λk and Λk = −Λk .

Find ρ̄k ∈ Λk and ϕ̄k ∈ S to approximately minimize:

(ρk , ϕk )→M(Φk + ρkϕk ); (30)

any standard greedy algorithm ([4],[7]).

Update Φk by
Φk+1 = Φk + ρ̄k ϕ̄k . (31)

Theorem 2. Under Assumptions A1 and A2, the above iteration produces a convergence

sequence {(λk ,Φk )}k such that its limit solves the systems (27), (28), which is

also a sub-optimum for the original problem with span(S) as the admissible set

of controls.

Control-boosting Algorithm
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Example: Linear-Quadratic Case

Consider a deterministic control problem of Linear-Quadratic case:

The state x ∈ Rd satisfies that

dx(t) = (Ax(t) + Ba(t))dt, x(0) = x . (32)

The payoff is given by

Jx (a(·)) = E

∫ ∞
−∞

exp(−αt)
1

2
(x∗(t)Mx(t) + a∗(t)Na(t)) dt. (33)

We aim to solve the minimization problem

u(x) := inf
a(·)

Jx (a(·)). (34)

Accordingly, the specific control-boosting algorithm for the LQ case as:

Generic Algorithm LQ Algorithm

αλk+1(x)− Dλk+1(x)g(x, ak (x)) αλk+1(x)− Dλk+1(x)(Ax + Bak (x))

= D∗
x g(x, ak (x))λk (x) + Dx f (x, ak (x)) = Aλk (x) + Mx

ak+1(x) = ak (x) ak+1(x) = ak (x)

ρk (x)
(

(Dag)∗(x, ak (x))λk+1(x) + Daf (x, ak (x))
)

ρk (x)
(
B∗λk+1(x) + Nak (x)

)

Control-boosting Algorithm
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Example: Linear-Quadratic Case

Particularly, from (21), by the first order principle, as a(k+1) can be explicitly solved as
a(k+1)(x) = −N−1B∗λ(k+1)(x), so that one can skip the “boosting” step, and (20)
immediately yields

αλ(k+1)(x) = Mx + Dλ(k+1)(x)(Ax − BN−1B∗λ(k)(x)) + A∗λ(k)(x), (35)

and this has the solution
λ(k+1)(x) = P(k+1)x , (36)

where P(k+1) is the solution of the algebraic Riccati equation

αP(k+1) = M + A∗P(k) + P(k+1)(A− BN−1B∗P(k)). (37)

Proposition 1. Assume that

α > 2‖A‖ + 2
√
‖M‖‖BN−1B∗‖, (38)

and ‖P0‖ ≤ ω in the interval such that

α− ‖A‖ −
√

(α− 2‖A‖)2 − 4‖M‖‖BN−1B∗‖

2‖BN−1B∗‖
< ω <

α− 2‖A‖
2‖BN−1B∗‖

,

then ‖P(k) − P‖ → 0, as k →∞, with P unique solution of

αP = M + A∗P + P(A− BN−1B∗P),

with ‖P‖ ≤ ω.

Control-boosting Algorithm



33/36

General Perception
Inter-play between Control Theory and Deep Learning

Machine Learning Approach of Control Problems

General Theory
Dynamic Programming Approach
Convergence in Functional Sense

Numerical Example: Linear Quadratic Case

A =

 −1 1 0
0 −1 1
−35 −28 −9

 ,B =

0
0
1

 ,M =

−0.5 0 0
0 −1.5 0
0 0 −1

 ,N =

1 0 0
0 1 0
0 0 1

 , α = 50.

Figure: ‖P(k+1) − P(k)‖ Figure: ‖P(k)‖

Control-boosting Algorithm
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Thank you!

In memory of my father (1948 - 2018)
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