Turbulence, Training and Unemployment

Pascal Belan∗ Arnaud Chéron†

August 29, 2013

Abstract

In this paper, we develop a matching model where firms invest in transferable human capital. Workers are endowed with heterogenous abilities and, as a result of economic turbulence, can undergo a depreciation of their human capital during unemployment spells. We find that an increase in the probability of experiencing human capital depreciation raises unemployment and decreases training investments. The equilibrium also typically features level of unemployment and a proportion of workers who access the training process that are respectively too high and low with respect to the first best allocation. This result builds on the well-known poaching externality, but also on an unemployment externality that is enlightened in the paper. Higher turbulence then generates some opposite forces on the gap between efficient and equilibrium allocations, so that it does not necessarily require higher training subsidies. However, for a calibration on the french economy which satisfied the Hosios condition, it appears that the gap between equilibrium and efficient unemployment rises from zero when there is no turbulence (tranquil times), to more than 2.5 points of percentage in the current context. This result is found to be not only related to higher equilibrium unemployment but also lower efficient unemployment in turbulent times.

JEL classification: J24, J31.

Keywords: Training, training subsidies, unemployment, matching.

∗THEMA, Université de Cergy-Pontoise.
†GAINS-TEPP, Université du Maine and EDHEC.
1 Introduction

Ljungqvist and Sargent [1998, 2007] emphasize that economic turbulence, featuring human capital depreciation during unemployment spell, interacts with labor market institutions to generate persistently higher unemployment in Europe than in the US. More precisely, high levels of unemployment insurance benefits and employment protection are shown to explain the unemployment gap between Europe and the US following the observed increase in the probability of skill deterioration after involuntary layoffs. Furthermore, Ljungqvist and Sargent (LS) show the plausibility of this view by assessing the role of turbulence in the context of alternative frictional labor market models. But to some extent, one caveat of this approach is to consider that the process of human capital accumulation is purely exogenous, so that it leaves no room for discussing the role of training policies. This paper aims at filling this gap by examining the efficiency and labor market policy issues of a frictional labor market model à la LS extended to account for endogenous training decision. It has indeed long been recognized that frictional labor markets give rise to inefficient training outcomes.

At the end of the nineties, some key contributions revisited Becker’s competitive approach to human capital investments. Acemoglu [1997] first emphasizes that frictional labor market may explain the willingness of employers to bear part of the costs of general training, in contrast with the perfect labor market result. For instance, wage bargaining indeed implies that a fraction of additional productivity obtained from worker’s training goes to the firm. Then, the point is that training investment in general human capital can also benefit to future employers, hence giving rise to a poaching externality; with some probability, an unknown party (the future employer) is getting a proportion of the training benefit when the worker is displaced. Training subsidies are then required to reach optimal investment levels. On another (positive) standpoint, Wasmer [2004] deals with the relative returns to specific vs. general human capital investments, which are found to depend both on market frictions and institutions such as employment protection. More particularly, general human capital investments are found to be more valuable in the US than in Europe, due to lower firing costs in the US.

The primarily goal of this paper is to show how economic turbulence modifies the conventional normative analysis of training. This requires to combine the turbulence explanation of unemployment as developed by LS and the literature of endogenous human capital investments in frictional labor markets. Following LS, we only deal with general human capital investment whose transferability property is assumed to be lost with some probability during workers’ unemployment spell, i.e. specific human capital investments are not allowed for. More precisely, if we refer to the island metaphor applied to human capital investments, as developed in Wasmer [2004], firms are assumed to eventually provide workers a common technology to all islands (which is highly valuable with connected islands) but with some probability the connection fails; the greater the turbulence, the higher the probability.\footnote{Wasmer [2004] argues that in an economy made of very distant islands it is better to learn the technology}

1See also Acemoglu and Pischke [1998, 1999a, 1999b] and Acemoglu and Shimer [1999]. Stevens (1994, 1996) also emphasized the role of poaching externalities for underinvestment in transferable training in a different context with imperfect competition on the labor market.
A first contribution of this paper is therefore to show how turbulence interacts with the poaching externality. Firms can pay for some vocational training which leads to an endogenous accumulation of transferable skills, whose cost is partly shared with the workers through the wage bargaining process. If the rate of human capital obsolescence during unemployment is increased (higher economic turbulence) the probability that future employers benefit from present training by the incumbent employer is lower. The size of the poaching externality is therefore reduced so that the gap between the equilibrium and efficient outcomes is also reduced.

Beyond that, our paper points out that taking into account of the impact of general human capital depreciation on matching probabilities can give rise to an original source of externality, that we label unemployment externality. The baseline idea is that training investments may increase the probability of leaving unemployment and contribute to raise steady-state employment, hence output. But it is obvious that firms do not internalize the consequences of their own training decisions on the unemployment level. The wedge between social and private return on training results in lower training investments than required by the first-best allocation. Furthermore, we highlight that with endogenous matching transition rates, the higher the turbulence, the higher the gap between equilibrium and efficient unemployment rates. Ceteris paribus, it is indeed optimal to reduce unemployment duration that exposes to a higher risk of human capital depreciation. Overall, turbulence is thus found to generate some opposite forces on the gap between efficient and equilibrium allocations.

To derive those results we develop a frictional labor market model with endogenous matching, heterogeneous workers according to observable characteristics (diplomas), where firms can invest in training that brings up-to-date knowledge to workers and raises their productivity. During unemployment spells, the worker may lose his up-to-date knowledge, but firms cannot know ex ante who among the unemployed underwent such a skill depreciation. Once hiring decision is taken, worker’s skill is revealed and the firm chooses to pay the training cost or not. Turbulent times mean that depreciation of transferable skill during unemployment spell occurs with higher probability.

Our assumptions fit some observed patterns in firm training policies: Ok and Tergeist [2003] indeed showed, (i) by collecting data from 19 OECD countries that the participation rate of workers in high-skilled occupations is always higher than that of workers in low-skilled occupations, (ii) by running some wages regressions based on the ECHP, that the impact of training is significantly increasing with the level of workers’ diploma. Accordingly, we assume that the higher the observable skill characteristic, the higher the training efficiency (see also Cunha, Heckman and Lochner [2006] on that aspect). This implies therefore that firms concentrate training investments on high skilled workers. Additionally, accrued productivity due to training allows skilled workers to be more employable.

The theoretical analysis is begun by considering exogenous contact rates between unem-

3 Poaching externalities are generally emphasized in the context of on-the-job search. Although our paper does not allow for on-the-job search, we will also refer to poaching externality according to the fact that some employers may benefit from training of other firms.

4 To the best of our knowledge, this issue has not yet been addressed (see Leuven [2005] for a survey).
ployed workers and firms, assuming that high skilled workers, who are likely to be trained, have higher probability to be matched with a job than low skilled ones, who have no chance to be trained. Such a structure in contact rates is shown to be obtained in the more general benchmark matching model with endogenous contact rates. We then make a focus on the poaching and unemployment externalities and discuss as well the impact of turbulence on those externalities.

We lastly run some quantitative investigations of the general equilibrium model with endogenous contact rates, based on the french economy. In particular, for a calibration that satisfied the Hosios condition, the gap between equilibrium and efficient unemployment is found to rise from zero when there is no turbulence (tranquil times), to more than 2.5 points of percentage when the expected unemployment duration before experiencing human capital loss is two quarters.

Section 2 is devoted to the presentation of the benchmark matching model with turbulence and training. Section 3 characterizes the equilibrium and efficient properties of training by first assuming exogenous contact rates. Section 4 extends those former results to the endogenous matching case and run the quantitative exercises. Section 5 concludes.

2 A matching model with turbulence and endogenous training investments

2.1 Environment and labor market flows

Time is continuous. The population of workers is a continuum of unit mass. Workers look for jobs and are randomly matched with employers looking for workers to fill vacant units of production. A productive unit is the association of one worker and one firm. Workers are heterogeneous with respect to ability a, distributed on the interval $[\bar{a}, \tilde{a}]$ according to p.d.f. $f(a)$. Ability a is a general human capital index, perfectly observable by firms, due to certification through school or university diplomas.

An individual at skill level a can reach two levels of productivity, $(1 + \Delta)a$ or a, with $\Delta > 0$, according to the fact that his knowledge is respectively still up-to-date or not. Additionally, firms can pay for a fixed training cost γ_F in order to provide up-to-date knowledge to the worker. Training brings additional transferable job skills which can be used in present and any future occupation. For instance, workers can be trained in order to use new technologies and be aware of recent innovations in their field. These skills can be used in other jobs, but are not certified by any diploma and is therefore not observable by future employers.

Moreover, during unemployment spell, the worker may lose the benefits of past firms training, and will then need a new formation to recover his up-to-date knowledge when matched with a new job. The latter assumption introduces obsolescence of human capital as a result of what Ljungqvist and Sargent [1998] have called turbulence. It embodies the possibility of substantial human capital destruction after job loss (Jacobson & al. [1993], Farber [2005]).

For the sake of simplicity, it is assumed that workers cannot accumulate skills according to tenure and experience: either the worker has up-to-date knowledge which improves its
efficiency on the job according to its ability (with an additional output equal to Δa), or his knowledge has become obsolete or depreciated which precludes any additional output.

The combination of firm training and human capital obsolescence gives rise to informational asymmetry between workers and firms during the matching process. Once the match is formed, the information on worker’s skill is revealed and the negotiated wage takes account of the training cost that the firm has to pay if the worker has obsolete knowledge; this results in lower wages.\(^5\)

Training policy of a firm simply consists in determining whether new hired workers of ability a should be trained or not. In steady state, this means that some ability level will never be trained, while other will always be trained once hired. This yields the following typology for workers. Any a-ability worker belongs to one of the three following categories: (1) type-0 individuals: unable for training; (2) type-1 individuals: able for training, but with obsolete knowledge; (3) type-2 individuals: previously trained and still highly productive.

We let $u(a)$ denote the unemployment level of a-ability workers ($e(a) = f(a) - u(a))$ and $v(a)$ the mass of job vacancies. The number of job matches taking place per unit time is given by a standard matching function $M(u(a),v(a))$.\(^6\) The job vacancies and unemployed workers that are matched are selected randomly.

Let us denote by $u_i(a)$, the mass of unemployed a-ability workers of type i. If a-ability workers are unable for training, then they are all type-0 workers and therefore $u(a) = u_0(a)$. If, however, they are able for training, then unemployed workers are of type 1 or 2 and the unemployment level becomes $u(a) = u_1(a) + u_2(a)$. It is worthwhile to notice that type-1 and type-2 workers share the same contact rates due to informational asymmetry.

We focus on steady state equilibria where there exists a threshold ability \tilde{a} such that below, workers are of type 0, and above, workers are to type 1 or 2.\(^7\) The process that changes the state of unemployed a-workers is Poisson. If $a \geq \tilde{a}$, the Poisson rate is denoted by $p(a) \equiv M(\theta(a),1)$, where $\theta(a) \equiv v(a)/u(a)$ represents the tightness of the labor market for ability a. We also let $q(a)$ be the contact rate for a vacant job directed toward individuals with ability a to be matched with a worker: $q(a) \equiv p(a)/\theta(a)$. Contact rates and tightness are defined in a similar way if $a < \tilde{a}$ and are respectively denoted by $p_0(a)$, $q_0(a)$ and $\theta_0(a)$. All jobs are assumed to separate at rate $\delta > 0$. The number of unemployed with up-to-date knowledge who experience a human capital depreciation follows a Poisson process with rate $\pi > 0$.

In steady state, for type-0 workers, inflow into unemployment $\delta (f(a) - u_0(a))$ is equal to outflow $p_0(a)u_0(a)$. This implies that, for all $a < \tilde{a}$,

$$u_0(a) = f(a)\frac{\delta}{p_0(a) + \delta}$$

Furthermore, for $a \geq \tilde{a}$, $u_1(a)$ and $u_2(a)$ are derived according to the following equilibrium flows condition:

\(^5\)However, the newly trained worker has ex-post a clear incentive to renege on the initial wage agreement, giving rise to a hold-up problem. This point has already been emphasized in a context where firms invest in physical capital by Acemoglu and Shimer [1999]. Chéron [2005] also considers the case of training costs. We discuss this issue in Section 3.6.

\(^6\)The function M is assumed to be increasing in both its arguments, concave, and homogeneous of degree one.

\(^7\)We discuss this point in Appendix 6.1.
• inflow into type-1 unemployment $πu_2(a)$ is equal to outflow $p(a)u_1(a)$.
• inflow into type-2 unemployment $δ(f(a) − u_2(a) − u_1(a))$ is equal to outflow $(p(a) + π)u_2(a)$.

The resulting unemployment levels are

$$u_1(a) = f(a) \frac{δπ}{(p(a) + π)(p(a) + δ)} \text{ and } u_2(a) = f(a) \frac{δp(a)}{(p(a) + π)(p(a) + δ)}$$ (1)

and $u(a) = u_1(a) + u_2(a) = δ/|δ + p(a)|$.

2.2 Steady state training and vacancy decisions of the firms

The intertemporal value of a vacant job only depends on ability a and is denoted by $V_0(a)$ for type-0 ability levels and $V(a)$ for other. Let $J_0(a)$ denote the intertemporal value of a job matched with a type-0 worker, we have $∀a < ̂a$

$$rV_0(a) = -c + q_0(a)(J_0(a) − V_0(a))$$ (2)
$$rJ_0(a) = a − w_0(a) − δ(J_0(a) − V_0(a))$$ (3)

where $w_0(a)$ stands for the wage of type-0 workers, and r the interest rate.

Let $J_1(a)$ and $J_2(a)$ denote the intertemporal values of job filled respectively with a type-1 and a type-2 worker, training in past or current job increases instantaneous production from a to $(1 + \Delta)a$. Hence, values $J_i(a)$ for $i = 1, 2$, satisfy the Bellman equations

$$rJ_i(a) = (1 + \Delta)a − w_i(a) − δ(J_i(a) − V(a))$$ (4)

where $w_i(a)$ is the wage for $i = 1, 2$.

The cost of training $γ_F$ is payed by firms. The government can subsidize training at the time of job creation, by paying a fraction s of the training cost, so that the net training cost is $\hat{γ}_F = γ_F(1 − s)$. The firm posting a job does not know the type of worker it will meet, but they know the aggregate composition of unemployment and therefore can calculate the probability of meeting each of the worker type: $u_1(a)/u(a)$ for type-1 and $u_2(a)/u(a)$ for type-2. The values of filled and vacant jobs for a-workers able to be trained ($a ≥ ̂a$) satisfy the Bellman equation

$$rV(a) = −c + q(a)\left[\frac{u_1(a)}{u(a)}(J_1(a) − \hat{γ}_F) + \frac{u_2(a)}{u(a)}J_2(a) − V(a)\right]$$ (5)

In equilibrium, free-entry implies that the rents from vacant jobs are zero: $V(a) = V_0(a) = 0$, implying that

$$J_0(a) = \frac{c}{q_0(a)} \quad ∀a < ̂a$$ (6)

$$\frac{u_1(a)}{u(a)}(J_1(a) − \hat{γ}_F) + \frac{u_2(a)}{u(a)}J_2(a) = \frac{c}{q(a)} \quad ∀a ≥ ̂a$$ (7)

8We abstract from the costs of subsidizing training. Either, there exists other resources for the government in the economy, or this remains to assume that all firms pay the same fixed instantaneous tax $τ$. In the latter case, we could add $−τ$ on the RHS in equations (3) and (4); this would not modify qualitatively the results.
Once matched, the firm immediately becomes aware of the skill of the worker, and thus identifies if the worker has experienced some skill depreciation during unemployment spell. The firm chooses to pay the training cost if the value of the filled job with training (net of training cost) is higher or equal to the value of the filled job without training. In steady-state, ability levels with training are those that satisfy $a \geq \hat{a}$ where \hat{a} is defined by

$$J_1(\hat{a}) - \hat{\gamma}_F = J_0(\hat{a})$$ \hspace{1cm} (8)

2.3 Nash bargaining of wages

We consider ex-post bargaining, which means that it takes place after the firm observes the ability of the worker a and whether past training (if any) is obsolete or not; but it is assumed that this bargaining occurs before the firm eventually pays the training cost. Moreover, we consider that this negotiated wage is fixed over all the job duration (no renegotiation can occur).\(^9\)

The present-discounted value of the expected income stream of an unemployed depends on its ability and type. Let $U_i(a)$, $i = 0, 1, 2$, denote this value for an unemployed of type-i. During search the worker earns some real return b that may represents home production. We assume b to be less than the lower bound of the range of abilities: $b < a$, so that the joint return of any match without training is positive. The present-discounted value is denoted by $E_i(a)$ for a type-i worker. Those functions satisfy

$$rU_0(a) = b + p_0(a)(E_0(a) - U_0(a))$$ \hspace{1cm} (9)

$$rU_1(a) = b + p(a)(E_1(a) - U_1(a))$$ \hspace{1cm} (10)

$$rU_2(a) = b + p(a)(E_2(a) - U_2(a)) - \pi(U_2(a) - U_1(a))$$ \hspace{1cm} (11)

$$rE_i(a) = w_i(a) - \delta(E_i(a) - U_i(a)) \hspace{1cm} i = 0, 2$$ \hspace{1cm} (12)

$$rE_1(a) = w_1(a) - \delta(E_1(a) - U_2(a))$$ \hspace{1cm} (13)

Equations (11) and (13) deserve some attention. For type-2 unemployed workers, we have to account for skill depreciation during unemployment spell, according to Poisson rate π (equation (11)). Moreover, since any type-1 worker benefits from training provided by his new employer, a type-1 employed becomes a type-2 unemployed in the event of job destruction (equation (13)).

Let β, $0 < \beta < 1$, be the bargaining power of workers. Wages are assumed to be the solutions of the following Nash-sharing rules

$$\beta J_0(a) = (1 - \beta)(E_0(a) - U_0(a))$$ \hspace{1cm} (14)

$$\beta(J_1(a) - \hat{\gamma}_F) = (1 - \beta)(E_1(a) - U_1(a))$$ \hspace{1cm} (15)

$$\beta J_2(a) = (1 - \beta)(E_2(a) - U_2(a))$$ \hspace{1cm} (16)

where the threat points of firms $V_0(a)$ and $V(a)$ have been set to zero. Since negotiation takes place immediately after the match, a new-hired type-1 worker has not been trained yet. Hence, his threat point is $U_1(a)$.

\(^9\) Obviously, as it will become clear soon, such bargaining process implies that some hold-up problem can arise. We will deal with this issue afterwards, but at this stage our primarily goal is to focus on externalities and inefficiencies independent of the wage setting process.
Let us define \(x(a) = \beta \left(\frac{r + \delta + p(a)}{r + \delta + \beta p(a)} \right) \) and \(x_0(a) = \beta \left(\frac{r + \delta + p_0(a)}{r + \delta + \beta p_0(a)} \right) \). Wage equations write

\[
\begin{align*}
 w_0(a) &= x_0(a)a + (1 - x_0(a))b \\
 w_1(a) &= x(a)[(1 + \Delta)a - (r + \delta)\hat{\gamma}_F] + (1 - x(a))[b - \delta(\mathcal{U}_2(a) - \mathcal{U}_1(a))] \\
 w_2(a) &= x(a)(1 + \Delta)a + (1 - x(a))[b - \pi(\mathcal{U}_2(a) - \mathcal{U}_1(a))]
\end{align*}
\]

where

\[
\mathcal{U}_2(a) - \mathcal{U}_1(a) = \frac{\beta p(a)}{r + \pi + \beta p(a)}\hat{\gamma}_F
\]

Property 1. Human capital depreciation is associated with a wage loss that amounts to

\[
 w_2(a) - w_1(a) = \hat{\gamma}_F\frac{\beta(r + \delta)(r + \pi + p(a))}{r + \pi + \beta p(a)} > 0, \quad \forall a \geq \tilde{a}.
\]

Proof. By substituting out for \(\mathcal{U}_2(a) - \mathcal{U}_1(a) \) from (20) into (18) and (19), the result follows. \(\square \)

Property 1 states that holding up-to-date knowledge brings a wage premium to the worker. This is consistent with Ljungqvist and Sargent’s analysis: turbulence entails substantial wage loss for workers.

Wages actually correspond to a weighted average of worker’s net contribution to output and reservation wage\(^{10}\). Importantly, the reservation wages of type-1 and type-2 workers are negatively related to the unemployment gap \(\mathcal{U}_2(a) - \mathcal{U}_1(a) \), or equivalently to the wage gap \(w_2(a) - w_1(a) \), since Bellman equations imply:

\[
\mathcal{U}_2(a) - \mathcal{U}_1(a) = \frac{p(a)(w_2(a) - w_1(a))}{(r + \delta)(r + \pi + p(a))}
\]

When matched with a job, type-1 workers expect that, in the event of job destruction at rate \(\delta \), they will enter the pool of type-2 unemployed instead of their actual type-1 position, and then can earn a higher wage in some future type-2 position\(^{11}\). This reduces type-1 reservation wages at the time of bargaining. Furthermore, type-2 workers expect that if the bargaining process fails they face a risk of human capital depreciation, occurring at rate \(\pi \), which accounts for a loss \(\mathcal{U}_2(a) - \mathcal{U}_1(a) \). This lowers type-2 reservation wages.

\(^{10}\)The latter refers to the wage earnings when assuming \(\beta \rightarrow 0 \) (which means \(x = x_0 = 0 \)).

\(^{11}\)This can account for a hold-up issue, which leads to additional source of inefficiencies, as discussed in section 3.6.
2.4 The discontinuity of the steady-state arrival rates

From equations (33)-(38) in Appendix 6.1, the characterization of the steady-state labor market equilibrium can be stated as follows:

\[
\frac{c}{q_0(a)} = \frac{(1 - \beta) (a - b)}{r + \delta + \beta p_0(a)} \quad (21)
\]

\[
\frac{c}{q(a)} = \frac{(1 - \beta) ((1 + \Delta) a - b)}{r + \delta + \beta p(a)} - \frac{(1 - \beta) \hat{\gamma}_F}{r + \delta + \beta p(a)} \left(\frac{\pi}{\pi + p(a)} \right) \left[(r + \delta) - \frac{p(a) - p_0(a)}{r + \pi + \beta p(a)} \right] \quad (22)
\]

\[
\Delta \hat{a} = \hat{\gamma}_F \left(r + \frac{(r + \pi) \delta}{r + \pi + \beta p(\hat{a})} \right) + (\hat{a} - b) \beta \left(\frac{p(\hat{a}) - p_0(\hat{a})}{r + \delta + \beta p_0(\hat{a})} \right) \quad (23)
\]

A general discussion of the existence and uniqueness of this equilibrium is provided in appendix 6.1; section 4.2.2 will also look at some numerical experiments. At this stage, our point is to examine the occurrence of a discontinuity point of the arrival contact rates around the threshold ability \(\hat{a} \).

Property 2. Let us assume that a steady state equilibrium exists and is unique. If (8) is satisfied for some ability level \(a \), then \(p(a) > p_0(a) \).

Proof. From the Bellman equations (3)-(4) and the wage equations (17)-(20) one deduces that (8) implies

\[J_2(a) > J_1(a) - \hat{\gamma}_F \geq J_0(a) \]

Then, the free-entry equations (6) and (7) imply

\[\frac{c}{q(a)} > \frac{c}{q_0(a)} \]

which leads to the result.

This discontinuity point results from imperfect information of firms about workers’ productivity. Since firms cannot *ex ante* observe whether an unemployed worker has up-to-date knowledge or not, they cannot discriminate between type-1 and type-2 workers before entering the matching process. At the ability level \(\hat{a} \), a worker either have up-to-date knowledge and productivity \((1 + \Delta)\hat{a} \), or he will be trained in his future position at cost \(\hat{\gamma}_F \) in order to reach this same level of productivity. By contrast, for ability levels \(a \) just below \(\hat{a} \), worker’s productivity is \(a \) and firm pays no training cost. Then, by posting a vacant position directed toward workers with ability higher or equal to \(\hat{a} \), the firm expects that it may meet a type-2 worker whose up-to-date knowledge allows to reach a higher productivity without any additional cost. This implies that, everything else being equal, more firms would like to enter.
3 Turbulence and training: the partial equilibrium case

To allow easier understanding of our results, let us first assume exogenous contact rates with a discontinuity at \(a = \tilde{a} \):

\[
p(a) = \begin{cases}
 p_0 & \text{if } a < \tilde{a} \\
 p & \text{for type-1 and type-2 individuals with } a \geq \tilde{a}
\end{cases}
\]

with \(p_0 \leq p \).

3.1 The impact of turbulence on equilibrium training

Our goal here is to show how turbulence affects this threshold. We restrain our analysis to economies where workers with the lowest ability \(a \) are not trained in equilibrium, that is \(\tilde{a} > a \). Proposition 1 gives a necessary and sufficient condition for the existence of such an ability threshold \(\tilde{a} \).

Proposition 1. With Nash-bargaining wage setting, the equilibrium ability threshold \(\tilde{a} \) is larger than \(a \) and characterized by:

\[
\Delta \tilde{a} = \frac{\beta - \gamma}{(r + (r + \pi) \delta)} + \left(\tilde{a} - b \right) \left(\frac{x - x_0}{1 - x} \right)
\]

if and only if the following condition is satisfied

\[
(1 - x)(1 + \Delta) > (1 - x_0) \quad \text{and} \quad \hat{\gamma}_F \left(r + \frac{(r + \pi) \delta}{r + \pi + p} \right) > \Delta a
\]

(25)

Proof. Combining equation (8) with (17), (18) and (20) leads to equation (24). Condition (25) then implies that \(\tilde{a} > a \).

The first inequality in condition (25) is equivalent to \((1 - x)(1 + \Delta)a > (1 - x_0)a\) which means that, once the training cost has been paid, the instantaneous profit value of training is positive and increases with \(a \). Since \(p \geq p_0 \), the “effective” worker’s shares of instantaneous surplus are such that \(x \geq x_0 \). Therefore, \(\Delta \) has to be large enough to imply that the instantaneous profit of the firm increases with training. Since the training cost is fixed, high-ability workers are more likely to be trained than low-ability ones. The second inequality in (25) implies that workers with the lowest ability \(a \) are never trained.

Overall unemployment

\[
u = \int_{\tilde{a}}^{a} \frac{\delta f (a)}{p_0 + \delta} da + \int_{\tilde{a}}^{a} \frac{\delta f (a)}{p + \delta} da
\]

(26)

is then negatively related to the share of workers who are eligible for training as soon as \(p > p_0 \). The effect of turbulence on unemployment therefore depends on the relationship between \(\tilde{a} \) and \(\pi \).
Property 3. Under condition (25), a higher turbulence reduces the share of trained workers and, for \(p > p_0 \), raises the unemployment rate.

Proof. From Proposition 1, it comes that

\[
\bar{a} = \frac{\gamma F \left(r + \frac{(r+\pi) \delta}{r+\pi+\beta p} \right) - b \left(\frac{x-x_0}{1-x} \right)}{\Delta - \frac{x-x_0}{1-x}}
\]

The first inequality in condition (25) implies that the denominator is positive. The threshold \(\bar{a} \) is then unambiguously increasing with respect to \(\pi \). Moreover, equation (26) implies that, if \(p > p_0 \), overall unemployment is positively related to the proportion of type-0 workers, \(F(\bar{a}) \). This concludes the proof.

To understand Property 3, it is worth emphasizing that the equilibrium training rule highly depends on the expected unemployment surplus related to training \(U_2(a) - U_1(a) \). Formally, the derivation of Proposition 1 indeed relies on the fact that the equilibrium ability threshold solves:

\[
\Delta \bar{a} = (r+\delta) \gamma F - \delta (U_2(a) - U_1(a)) + (\bar{a} - b) \left(\frac{x-x_0}{1-x} \right) \tag{27}
\]

where the unemployment gain \(U_2(a) - U_1(a) \) is defined by (20). Higher turbulence reduces the unemployment gain, because workers expect to switch more quickly from type-2 to type-1 unemployment. Therefore, turbulence increases the reservation wage of type-1 workers and raises the ability threshold \(\bar{a} \). Otherwise stated, turbulence discourages firms to train by increasing threat points of type-1 workers. Then, the fraction of untrained workers \(F(\bar{a}) \) who face a lower probability of exiting unemployment \((p_0 < p) \) increases with \(\pi \). From equation (26), this results in a rise in the overall unemployment rate.

3.2 Efficient training policy

In order to determine the efficient training decision, we consider the problem of a social planner that maximizes the expected sum of social output subject to the same matching and informational constraints as the decentralized economy. The results summarized in the following proposition are derived in Appendix 6.2.

Proposition 2. Under condition (25), the efficient training ability threshold \(a^* \) is larger than \(a \). It satisfies

\[
\Delta a^* = \left(r + \frac{(r+\pi) \delta}{r+\pi+\beta p} \right) \gamma F - (a^* - b) \left(\frac{r+\delta}{r+\delta+\beta p} \right) \frac{p-p_0}{p} \tag{28}
\]

\[
< \Delta \bar{a} = \left(r + \frac{(r+\pi) \delta}{r+\pi+\beta p} \right) \gamma F + (\bar{a} - b) \left(\frac{\beta (p-p_0)}{r+\delta+\beta p_0} \right)
\]

and is increasing with turbulence.

\[\text{12} \text{It should be emphasized that this result is consistent with an average wage that decreases with turbulence. Indeed, the share of untrained workers who earn the lowest wage } w_0(a) \text{ is increasing with } \pi.\]
Proof. Equation (39) in Appendix and condition (25) implies that the efficient threshold a^\star above which workers should be trained is characterized by (28) and is larger than a. The rest of the proposition follows immediately.

Efficient training threshold is always lower than the equilibrium one. Even if efficiency does not necessarily imply that all workers should be trained once hired, the mass of workers who benefit from training in equilibrium is too low. Then, turbulence has the same effect on the optimal ability threshold as on the equilibrium one. From the social planner’s point of view, it is indeed less worthwhile to train workers since turbulence increases the probability of losing training investment costs. Hence, low-ability workers who could be trained in the context of low turbulence, are no longer trained if the turbulence is high.

In order to disentangle the externalities that make equilibrium inefficient, we focus on the two following extreme configurations: (i) $p_0 = p$ and $\beta < 1$ and (ii) $p_0 < p$ and $\beta \to 1$. The well-known poaching externality appears as soon as the worker does not benefit from the full return of the training investment, i.e. as soon as β is lower than one. In the following, we stress that there is also another externality that we call steady-state unemployment externality that appears as soon as the contact rates differ between workers who will never benefit training and those who will be retrained if necessary. If workers below some ability threshold are never trained, they face higher unemployment duration. Then the higher is the threshold, the higher overall unemployment. Assuming $p_0 = p$ (case (i)) allows to eliminate the steady-state unemployment externality and focus on the poaching externality. On the contrary, case (ii) assumes β close to one which eliminates the poaching externality.

3.3 The poaching externality

Consider $p_0 = p$ in equation (28). The difference between efficient and equilibrium thresholds only comes from the fact that β is lower than one. In line with Acemoglu [1997], imperfect labor market implies that firms do not internalize the entire social gain of their own training decision. Training does not only increase productivity of the worker in the current firm but also increases productivity in future jobs if his human capital does not depreciate during unemployment spells. This point leads us to refer to the poaching externality although our model does not allow for on-the-job search. Unlike firms, workers may internalize this value of training (higher expected wages in other firms). Nevertheless, since $\beta < 1$, they only get a fraction of the additional productivity related to training when they move to another job. Thus, the relative unemployed value of having up-to-date knowledge ($U_2(a) - U_1(a)$) is not high enough. Consequently, the reservation wage of type-1 workers is too high and the number of people kept out of training is higher than the efficient level. Of course, as β goes to unity, workers tend to capture the total gain related to training. The gap between equilibrium and efficient thresholds would then tend to zero (when both $p_0 = p$ and $\beta \to 1$).

3.4 The steady-state unemployment externality

We now abstract from the poaching externality by assuming that β is arbitrarily close to unity and go back to the case $p_0 < p$. From the point of view of the social planner, equation (28) shows that a lower contact rate for type-0 workers reduces the efficient ability threshold.
3.5 Turbulence and the optimal training subsidies

Differences between the equilibrium and the optimum come from the gap between the efficient ability threshold and its equilibrium value. We now address the issue of the optimal policy. Does a subsidy of the training cost allow to decentralize the optimum? Moreover, how should it evolve according to the level of turbulence? Otherwise stated, should the subsidy rate increase or decrease when the probability of losing human capital during unemployment spell raises? Our point is that the relative importance of the two externalities presented above, either “poaching” or “steady-state unemployment”, determines the effect of turbulence on the optimal level of subsidy.

Proposition 3. Under condition (25), the optimal subsidy rate of training is:

\[
s^* = \left[\frac{r + \delta}{(r + \pi)(r + \delta) + r\beta p} \left(1 - \beta \right) p \right] + \left[\frac{r + (r + \pi)\delta - \Delta b \gamma_F}{r + \pi + p} \left(\frac{r + \delta (p - p_0)}{r + \delta + \beta p} + \frac{\beta (p - p_0)}{r + \delta + \beta p_0} \right) \right]
\]

Proof. Using Propositions 1 and 2 with \(\hat{\gamma}_F = (1 - s^*) \gamma_F \), \(s^* \) is the value of the subsidy rate such that \(\tilde{a} = a^* \). \(\square \)

To analyze the effect of turbulence, in a preliminary step, we take the two specifications considered above, \(\{ \beta < 1, p_0 = p \} \) and \(\{ \beta = 1, p_0 < p \} \), since they allow to focus separately on each externality at work. Intermediate cases will then be considered at the end of this section.

Corollary 1. Consider \(p_0 = p \) and \(r = 0 \). The optimal rate of training subsidy is:

\[
s^* = \frac{(1 - \beta) p}{\pi + p}
\]

and is decreasing with the Poisson rate of human capital depreciation \(\pi \).
For $\beta < 1$, it is efficient to subsidize the training cost due to the poaching externality. Corollary 1 states that the optimal subsidy rate should decrease with turbulence. Both equilibrium and efficient ability thresholds are increasing with π but, the higher the turbulence, the lower the size of the poaching externality. Indeed, \tilde{a} tends to a^* as the Poisson rate π goes to infinity. When the turbulence is high, a firm would less likely benefit from training decision of other firms; the social return to training investment converges to its private return. Ultimately, if the rate π goes to infinity, the probability of experiencing a human capital depreciation tends to unity. Then, training investment collapses to job-specific human capital, so that both equilibrium training policy and unemployment rate are optimal and no subsidy is required. From that point of view, we need less training subsidies in the context of high turbulence.

Let us now consider the specification which eliminates the poaching externality: $p_0 < p$ and $\beta \to 1$.

Corollary 2. Consider $p_0 < p$, $\beta \to 1$ and $r = 0$. The optimal subsidy rate of training is:

$$s^* = \frac{\delta + p}{\delta + \Delta \frac{p(\delta + p_0)}{p - p_0} \left(1 - \frac{\Delta b}{\delta \gamma F} \left[\frac{\pi + p}{\pi}\right]\right)}$$

and is increasing with the Poisson rate of human capital depreciation π.

Corollary 2 only deals with what we have labeled steady-state unemployment externality. It turns out that a higher rate π of human capital depreciation leads to implement a higher training subsidy rate in order to restore efficiency. Both efficient and equilibrium training ability thresholds are still increasing with economic turbulence, but the gap between them also increases with respect to π. Indeed, the higher the rate π, the higher the output loss ($\tilde{a} - b$) during unemployment spells of type-0 workers. Unlike the central planner, firms do not internalize the social incidence of an increase in ability threshold. Therefore, the higher the turbulence, the larger the gap between equilibrium and efficient thresholds. Consequently, the training subsidy rate increases with π.

As a result, the overall impact of turbulence on the subsidy rate of training cost is ambiguous. In response to higher turbulence, the increase in steady-state unemployment externality introduces an opposite force to the reduction of inefficiencies related to the poaching externality. It is thus unclear whether decentralization of the efficient threshold leads to greater training subsidies in the context of higher economic turbulence or not.

Let us now consider the intermediate case where both externalities are simultaneously at work. Figure 3 reports the sign of the marginal impact of an increase in turbulence on the optimal subsidy rate of training, according to the Poisson rate of human capital depreciation and the contact rate for type-0 workers, (π, p_0). It shows that three regimes typically emerge, according to the value of p_0:\n
\[\tilde{a} - a^* = \left[1 + \frac{p - p_0}{\delta \Delta} \left(1 + \frac{p}{\delta}\right) (\tilde{a} - b)\right]^{-1} \left(1 + \frac{p}{\delta}\right) (\tilde{a} - b)\]

\[\pi_{\text{min}}\] corresponds to the lower bound of the Poisson rate π that satisfies the second inequality
• If \(p_0 \leq \hat{p}_0 \), then the steady-state unemployment externality is so high that an increase in turbulence always requires to increase the subsidy rate of training.

• If \(p_0 \geq \tilde{p}_0 \), then the steady-state unemployment externality is so low that an increase in turbulence always requires to reduce the subsidy rate of training.

• For intermediate values \(p_0 \in (\hat{p}_0, \tilde{p}_0) \), there exists a threshold initial value for \(\pi \) (defined by \(C \)) above which an increase in turbulence requires a cut in the subsidy rate of training.

3.6 The impact of hold-up

With Nash bargaining wage setting process, it is obvious that workers have ex-post a clear incentive to renegotiate on the initial wage agreement. Type-1 worker can only become type-2 worker (with higher wage) only if gets unemployed and finds a new job quickly enough so that he does not lose his human capital. Without enforceable contractual arrangement of the type developed by Malcomson [1997], a hold-up problem may then arise. Until now, we considered an extreme assumption - more favorable to see emerging efficient outcomes in condition (25) for \(s = 0 \) and \(r = 0 \). Considering \(\pi \) larger than \(\pi^{\min} \) means that \(\tilde{a} \) and \(a^* \) are both greater than \(b \). The curve \(C \) is the set of values of \(\pi \) and \(p_0 \) such that \(\frac{ds^*/d\pi}{d\pi} = 0 \). \(C \) is decreasing, passes through the point \((0, p)\) with an asymptote \(p_0 = \tilde{p}_0 \) for \(\pi \to +\infty \). Finally, \(\tilde{p}_0 \) is the value of \(p_0 \) where the curve \(C \) intersects the vertical line \(\pi = \pi^{\min} \).

15This point has already been emphasized in a context where firms invest in physical capital by Acemoglu and Shimer [1999]. Chéron [2005] also considers the case of training costs.
- which has allowed us to make a focus on the poaching externality and the additional unemployment externality.

But we propose now to deal with the other polar case where type-1 workers are able to bargain initially the same earnings as type-2 workers.16 Then, since we assume homogenous contact rate p for type-1 and type-2 unemployed workers, it comes that $U_1 = U_2$. Denoting by $w^h(a)$ the wage for workers with ability $a \geq \hat{a}$, it is now straightforward to see that:

$$w^h(a) = x(1 + \Delta)a + (1 - x)b$$

Proposition 4. Consider $r = 0$. In the context of unenforceable wage contracts, under condition (25), the equilibrium training ability threshold a^h is larger than b, it satisfies

$$\Delta a^h = \hat{\gamma} \left(\frac{\delta + \beta p}{1 - \beta} \right) + (a^h - b) \beta \left(\frac{p - p_0}{\delta + \beta p_0} \right) > \Delta \hat{a}$$

and it does not depend on turbulence.

In the context of contractual incompleteness, each type-1 worker has ex-post incentives to renege on the wage contract and claims for type-2 wage level. Accordingly, firms face an additional wage cost that moves upward the training threshold. Moreover, since wages are (re)negotiated after training, turbulence has no longer impact on wages and equilibrium training rules. It also appears that the sign of the relationship between the optimal subsidy rate of training and turbulence is now clear cut even though $p > p_0$.

Proposition 5. Consider $r = 0$ and $p_0 = 0$. Under condition (25), the optimal rate of training subsidy is

$$s^h = 1 - \Delta \left(\frac{1}{1 + \Delta} \right) \left[\frac{\pi}{\pi + p} \left(\frac{\delta}{\delta + \beta p} \right) \left(1 - \frac{\beta p}{\Delta \delta} \right) + \frac{b}{\delta \hat{\gamma}} \right]$$

and it is decreasing with π.

An increase in the Poisson rate of human capital depreciation π unambiguously implies a decrease in the optimal subsidy rate of training, and despite we are looking at a parameter configuration where the steady-state unemployment externality is at its highest value (with $p_0 = 0$). The intuition behind this result is as follows. On the one hand, the equilibrium ability threshold a^h is no longer related to the Poisson rate of human capital loss. This occurs because, in the context of hold-up, workers do not expect any wage loss in the event of human capital depreciation. On the other hand, the efficient ability threshold still increases with turbulence, because it is less worthwhile from the planner’s point of view to pay the training costs which are more likely to become unproductive. As a consequence, the gap between efficiency and equilibrium thresholds unambiguously decreases when the Poisson rate of human capital depreciation raises. The higher the turbulence, the lower is the optimal subsidy rate of training.

16Moreover, remark that there is no shock that could provide some grounds for two-tier wage contracts (as in Mortensen-Pissarides). It could also be possible to introduce an exogenous probability of wage renegotiation where the cost of training is shared by the two parties only before this renegotiation. However, without any other constraints or distortions, the labour market outcomes are unchanged wrt the case where the wage is rigid and the costs of training shared during all the job duration. It comes indeed that the higher the probability of renegotiation is, the lower the wage during the initial period (lower than our rigid wage) because firms expect additional wage costs related to renegotiation (proof available upon request).
4 Turbulence and (In)efficiency with endogenous matching

We now go back to the initial framework with endogenous arrival rates and analyze how both externalities (poaching and steady-state unemployment) interact with the equilibrium arrival rates.

4.1 Efficient allocation and optimal policy with endogenous matching

A general presentation of the social planner program is provided in appendix 6.2.2. Hereafter, we consider $r \to 0$ to show optimal conditions and discuss the efficiency properties. Let $\psi = 1 - \frac{\theta p'(\theta(a))}{p(\theta(a))}$, and index by stars endogenous variables at their optimal values, the efficient allocation is characterized by:

$$\begin{align*}
c &\equiv (1 - \psi)(a - b), \quad \forall a < a^* \tag{30} \\
c' &\equiv (1 - \psi)((1 + \Delta)a - b) \\
\Delta a^* &= \frac{\gamma F}{\pi + p^*(a^*)} \left[\frac{\pi}{\pi + p^*(a^*)} \right] \left[\delta + \frac{\pi}{\pi + p^*(a^*)} p^*(a) - \frac{p^*(a) - \pi}{\pi + p^*(a^*)} \right] \\
\end{align*}$$

Property 4. The Hosios condition $\psi = \beta$ does not achieve efficiency.

Proof. Assuming $\psi = \beta$, $r = 0$ and $\gamma_F = \gamma_F (s = 0)$ in equations (21)-(23), and compare with (30)-(32) leads to the result. □

First, it is obvious that, due to poaching and steady-state externalities, the equilibrium ability threshold does not correspond to its efficient counterpart ($\tilde{a} \neq a^*$); see the discussion in section 3.2, that is here generalized for endogenous contact rates, hence $c > 0$.

But importantly, even if training were optimal ($\tilde{a} = a^*$), efficiency would still not be achieved. Indeed, with positive investment costs γ_F, equation (31) and equation (34) are still different. This is due to the fact that the valuation of the gap $U_2 - U_1$, which is related to training costs paid through wage cuts by type-1 unemployed when they come back to employment, remains lower than the corresponding valuation by the planner. Accordingly, reservation wages of type-1 and type-2 workers are too high and this pushes down labor market tightness for workers with ability $a \geq \tilde{a}$.

Two policy tools are therefore required to restore equilibrium efficiency. Even though the Hosios condition would be satisfied, the training subsidy at rate s should be completed by another instrument such as an employment subsidy that can take the form of a transfer to workers.
4.2 Quantitative illustration

We now go back to the properties of the equilibrium model with endogenous matching. We implement some numerical experiments in order to illustrate, on the one hand, to what extent turbulence affects equilibrium training and unemployment. And on the other hand, we aim at examining how sensitive to turbulence is the gap between the equilibrium and the efficient allocations. This quantitative section is therefore divided into three steps. We first deal with the impact of the training cost and turbulence parameter on some key labor market outcomes (unemployment rate, share of trained workers, labor market tightness) by considering the conventional Nash bargaining. Secondly, we explore the quantitative incidence of hold-up. Lastly, we compare those equilibrium outcomes to efficient counterparts. As a preliminary step, we start by presenting the benchmark calibration.

4.2.1 Benchmark calibration

We calibrate the model on a monthly basis. Key parameters are chosen to fit stylized facts that feature the french labor market, by referring to the recent paper of Hairault, Le Barbanchon and Sopraseuth [2012] which provides new evidence on labor market flows in France. The design of our calibration strategy is such that it remains only one free parameter, γ_F, that we let vary to show the robustness and sensitivity of our quantitative results.

We first need to specify some functional forms. As regards to the matching process we assume a basic Cobb-Douglas function consistent with $q(\theta) = \Gamma \theta^{\alpha - 1}$ and $p(\theta) = \Gamma \theta^\alpha$ with $\alpha \in (0, 1)$. Secondly, the heterogeneity of abilities satisfies the following Pareto distribution function $F(a) = \frac{3}{2} \left(1 - \frac{1}{a} \right)$ for $a \in [1, 3]$. This range for abilities implies that the highest wage is 4 times greater than the lowest wage in the economy, suggesting that we only leave aside the top-5% of the wage distribution.

Then, a first set of parameters is fixed in accordance with the existing literature. In a fairly standard way, we set $b = 0.2$ and consider $\alpha = \beta = 0.5$. As stated earlier, the latter condition, which reflects the well-known Hosios condition, no longer guarantees efficiency in our context. A second subset of parameters is calibrated to fit stylized facts of the labor market in France, namely the monthly job destruction rate $\delta = 0.017$, and $c = 2.3$, $\Gamma = 0.18$ to be consistent with an average monthly job finding rate of 0.14, and an average labor market tightness of 0.65.

Next, we follow Den Haan, Haeckle and Ramey [2001] (dHHR) and Ljunqgvist and Sargent [2004], who focused on the impact of turbulence (in contexts without any endogenous training decisions) to calibrate $\Delta = 0.25$, consistent with an increase of 25% of the average productivity between high and low productivity workers (as in dHHR), and $\pi = 1/6$, implying that over one quarter the expected probability for unemployed workers to fall from high to low type is 50% (LS [2004]). From that respect, going from the actual turbulent times to more tranquil times means a fall of π; we will consider alternative values from 0 to 1/6.

4.2.2 Equilibrium with Nash bargaining

Figure 2 and table 1 show some key labor market outcomes as implied by the model, under the benchmark calibration and the assumption of Nash bargaining of wages. In particular, we have $\pi = 1/6$ as a reference for turbulent times, and we let vary γ_F to show the sensitivity
Figure 2: Equilibrium with Nash-bargaining: benchmark simulation

\[p(a) = \theta(a)q(\theta(a)) \]

\[u_r(a) = \frac{\delta}{\delta + p(a)} \]

Figure 3: Equilibrium with Nash-bargaining: the impact of turbulence

\[\pi = \frac{1}{6} \text{ (reference)} \]
\[\pi = \frac{1}{12} \]
\[\pi = \frac{1}{24} \]
of results, \(\gamma_F = 12 \) being a reference value consistent with a training cost that represents 20% of the lowest expected productivity gain over the match duration (\(\frac{4}{3} = \frac{1}{0.017} = 59 \)).

With this reference value, it comes that \(\tilde{a} = 1.5 \) and half of the workers are never trained - \(F(\tilde{a}) = 0.5 \) (table 1) - consistent with empirical evidence for France\(^{18}\). Around this threshold ability value, we also observe a discontinuity of the job finding probability, consistent with an increase of the expected unemployment duration from 6.6 months when \(a = \tilde{a} = 1.5 \) to more than 8.5 months for values of \(a \) just below \(\tilde{a} \).

Then, in line with our comparative static analysis, the main results are the following (see table 1):

- the higher the training cost, the lower the share of trained workers and the higher the overall unemployment rate and, as could be expected, the share of trained workers is highly sensitive to the value of \(\gamma_F \);
- the higher the probability of human capital loss (turbulence), the lower the relative value of being trained, hence the higher the wages of type-1 workers, which account for decreasing the share of trained workers and increasing the overall unemployment rate;
- with our benchmark calibration (\(\gamma_F = 12 \)), the rise of turbulence (from tranquil time with \(\pi = 1/24 \) to \(\pi = 1/6 \)) leads to an increase by 1.2 percentage point of the unemployment rate and excludes almost half of the workers from the training process by firms (with \(\pi = 1/24 \) \(F(\tilde{a}) = 3\% \) whereas for \(\pi = 1/6 \), \(F(\tilde{a}) = 50\% \)).
- the relative impact of turbulence is quite the same for alternative value of training costs, although the latter value is key for the determination of the share of trained workers and unemployment rate, \(i.e. \) whatever the value of \(\gamma_F \) (12 or 15), an increase in \(\pi \) from 1/24 to 1/6 accounts for a little bit more than 1 percentage point of unemployment.

<table>
<thead>
<tr>
<th>(\pi = 1/6) (ref.)</th>
<th>(\gamma_F = 12) (ref.)</th>
<th>(\gamma_F = 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma_F = 9)</td>
<td>(\gamma_F = 12) (ref.)</td>
<td>(\gamma_F = 15)</td>
</tr>
<tr>
<td>(\gamma_F = 12) (ref.)</td>
<td>(\gamma_F = 15)</td>
<td>(\gamma_F = 15)</td>
</tr>
<tr>
<td>(\gamma_F = 15)</td>
<td>(\gamma_F = 15)</td>
<td>(\gamma_F = 15)</td>
</tr>
<tr>
<td>(F(\tilde{a})) in %</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>(u) in %</td>
<td>10.5</td>
<td>11.5</td>
</tr>
<tr>
<td>(\theta)</td>
<td>0.72</td>
<td>0.65</td>
</tr>
</tbody>
</table>

\(^{17}\)Similarly, it is a little bit more than two quarters of the computed average productivity of employed workers \((\int_0^a (f(a) - u(a))da + \int_0^a (1 + \Delta)a(f(a) - u(a))da = 1.7) \) by month.

\(^{18}\)In France, we do observe a strong selection effect in continuous training program, according to diploma and age (see for instance DARES (Mai 2012)). In particular, the participation rate to continuous vocational training for low-skilled workers is less than half of that of the high-skilled. Furthermore, the overall participation rate on firm-sponsored CVT for the 20-40 years old workers is about 50\%.

Table 1: Simulations results: equilibrium with Nash bargaining
4.2.3 Equilibrium with hold-up

If we now allow for hold-up problem to arise in the wage determination process, it comes that with the benchmark calibration and the value of $\gamma_F = 12$ none of the workers would be trained (see Figure 4 and table 2). This is due to the upward pressure on wages, which make training investment unprofitable even for the highest ability workers. This accounts for 0.9 additional percentage point of unemployment as regards with the Nash-bargaining case where half of the workers are trained.

Actually, an interior solution for the share of trained workers is found to exist for $\gamma_F \geq 2.5$. But beyond that, table 2 reports the results for $\gamma_F = 3$, and let π vary to show how sensitive is the unemployment to turbulence in this context of hold-up. Again, this shows that the share of trained workers is highly sensitive to the turbulence parameter. In terms of unemployment, the sensitivity is found to be quite lower than in the case of Nash bargaining (because wages are no longer affected by π), about 0.7 point of percentage (instead of 1.2) when going from $\pi = 1/24$ to $\pi = 1/6$. This unemployment impact indeed only reflects a composition effect which reduces the number of vacancies when there is a rise in turbulence: a higher π raises $u_4(a)/u(a)$, which means that when posting a vacancy, the probability to support the training cost is higher for the firms; this pushes downward vacancies and upward the unemployment. On the opposite, with the standard Nash-bargaining, there exists an additional negative effect of turbulence on unemployment: a rise in turbulence increases wages, due to a higher gap between unemployment values $U_2 - U_1$. This wage adjustment amplifies the composition effect and therefore accounts for a higher increase in unemployment.

<table>
<thead>
<tr>
<th>$\gamma_F = 12$</th>
<th>$\gamma_F = 12$</th>
<th>$\gamma_F = 3$</th>
<th>$\gamma_F = 3$</th>
<th>$\gamma_F = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi = 1/6$</td>
<td>$\pi = 1/6$</td>
<td>$\pi = 1/6$</td>
<td>$\pi = 1/12$</td>
<td>$\pi = 1/24$</td>
</tr>
<tr>
<td>$F(\bar{a})$</td>
<td>50</td>
<td>100</td>
<td>41</td>
<td>18</td>
</tr>
<tr>
<td>u in%</td>
<td>11.5</td>
<td>12.4</td>
<td>12.1</td>
<td>11.8</td>
</tr>
<tr>
<td>θ</td>
<td>0.65</td>
<td>0.50</td>
<td>0.55</td>
<td>0.58</td>
</tr>
</tbody>
</table>

4.2.4 Efficiency

Lastly, we examine the efficiency properties of our matching model, from a quantitative standpoint. The planner internalizes both the poaching and the unemployment externalities. Under our benchmark calibration, we have that those externalities are so large that all the workers are trained; this explains the continuous increase of the optimal job finding rate with ability on Figure 5. Actually, $F(a^*)$ turns out to be positive only if $\gamma_F \geq 24$, that is the training cost amounts to approximately one year of productivity. On the contrary, with $\gamma_F < 24$, none of the equilibrium configuration lead to an interior solution for the share of trained workers (neither Nash bargaining nor hold-up).

Figure 5 then shows arrival rate and unemployment rate at the optimum and at the equilibrium with Nash bargaining for the reference parametrization with $\gamma_F = 12$. In addition, considering the Nash bargaining case, when π tends to zero (tranquil times), the
Figure 4: Equilibrium: Nash-bargaining vs. Hold-up

Figure 5: Equilibrium with Nash-bargaining vs. optimum
welfare gap converges to zero, due to our assumption that the Hosios condition is satisfied (see table 3); there is indeed no inefficiency since human capital decision no longer matters, \textit{i.e.} at steady-state all workers are of type-2. However, if π varies in the opposite direction, we find that the welfare cost (that gives room to policy) is increasing with turbulence, and the unemployment gap between the equilibrium allocation with Nash bargaining and the efficient one reaches 2.7 points when $\pi = 1/6$.

Moreover, it is worth noticing that part of this gap is the outcome of a negative relationship between the optimal unemployment and the rate of skill depreciation during unemployment spell, whereas the equilibrium unemployment rate is increasing in π. This result is quite intuitive. On the one hand, all workers remain trained by the planner. On the other hand, the vacancy rate is found to increase in π: the efficient job finding rate increases with turbulence, because the social planner internalizes the social cost of having (everything else being equal) a higher share of workers with obsolete knowledge (the ratio $u_1(a)/u(a)$ rises with π) which implies a higher probability of paying the training costs. In other words, when π rises, the overall costs paid for training in the economy is increasing; a way for the planner to limit this is to increase the job finding rate, and therefore the reduces the optimal unemployment.

Table 3: Simulations results: equilibrium \textit{vs.} optimum

<table>
<thead>
<tr>
<th>π</th>
<th>1/6</th>
<th>1/12</th>
<th>1/24</th>
<th>\to 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equilibrium with Nash bargaining</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F(\tilde{a})$ in%</td>
<td>50</td>
<td>40.5</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>u in%</td>
<td>11.5</td>
<td>11.2</td>
<td>10.3</td>
<td>10.3</td>
</tr>
<tr>
<td>Welfare</td>
<td>1.53</td>
<td>1.57</td>
<td>1.66</td>
<td>1.69</td>
</tr>
<tr>
<td>Optimum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F(\tilde{a})$ in%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>u in%</td>
<td>8.8</td>
<td>8.9</td>
<td>9.4</td>
<td>10.3</td>
</tr>
<tr>
<td>Welfare</td>
<td>1.61</td>
<td>1.64</td>
<td>1.67</td>
<td>1.69</td>
</tr>
</tbody>
</table>

Overall this therefore suggests that, from a quantitative standpoint, the normative and policy issue related to turbulence is important. More precisely, this provides additional insights on the optimal policy implementation that we emphasized in section 4.1, that is combining both employment subsidies to foster vacancies with training subsidies to promote training of some low ability workers. Everything else being equal, this even shows the primary role of employment subsidies in the context of high turbulence that make skill depreciation during unemployment and training costs at re-employment a more stringent issue.

4.3 On policy implications

In practice, public intervention that aims at fostering lifelong learning takes various forms. Subsidies for training, as developed in this paper to promote optimal investment in human capital by firms, is part of a large set of tools at government’s disposal. Public measures in-
deed provide both incentives and support for the provision of continuous vocational training. This includes:

- direct training services, through government department or public agencies, and publicly-funded advisory services;
- regulation, through instruments that are used to define norms and laws that specify levels of investment in training and penalize those who not comply;
- financial subsidies conditional on training persons employed (direct subsidies, tax exemptions...);
- procedures to ensure the standard of trainers and provision of recognized standards for qualification and certification.

Most of OECD countries are combining both types of measures. From a public spending perspective, only the provision of training services and financial subsidies or tax incentives is costly for the government. A brief examination of public expenditures (OECD 2005) suggest that such direct public investment remains quite limited:

- total labor market expenditures represent more than 4% of GDP in Denmark, 2.5% in France, about 0.5% in the UK and the US;
- total active labor market policy (ALMP) falls to 1.5% of GDP in Denmark, 0.8% in France, 0.3% UK, 0.2% US
- and lastly, the share of training measures in ALMP is only 35% in France and Denmark, 40% in the UK, less than 30% in the US.

This implies for instance that training measures represent 0.3% of GDP (which is also the average for the Europe), and less than 0.05% in the US. Furthermore, those public expenditures on training are in general concentrated on specific individuals: in France, 60% on the youth, and 20% for the unemployed and the remaining 20% for the employed (DARES Analysis, november 2012). This paper deals with continuous vocational training for the employed, and in particular does not address specificities of the youth labor market. Concerning, training of the unemployed, a companion result of this paper (available upon request) is that it is more worthwhile to subsidize firms to provide training, conditionally on hiring the worker (as it is considered), than subsidizing training during unemployment. The point is indeed that, despite being trained, it can be the case the unemployed is facing the turbulence shock, which would imply that the public investment in training is lost. This scenario no longer occurs when the subsidy is paid once hiring has occurred.

In the end, the highest contributors to continuous vocational training of the employed in OECD countries are typically the employers, whose average contribution to the cost of CVT is approximately 75% (see Bassanini, Booth, Brunello, De Paloa and Leuven [2005]). More precisely, total monetary expenditures in CVT by firms represent 1.7% in Denmark of the labor costs, 1.4% in France, 0.6% in Germany (a little less than 1% in EU27); if we add personnel absence cost this amounts to 2.5% in France (1.5% in EU27, 2.7% in Denmark). On the opposite, the direct contribution of individuals is in general low. This suggests that
private returns for firms of human capital investment are high and/or existing incentives and regulation are effective.

Actually, this observation relies on the combination of incentives and compulsory investment in training. In France, the weight of compulsory investment in the CVT system is high (1.6% of the payroll in training investment or also 1% in Quebec), but in most of OECD countries some interesting financing schemes exist to stimulate investment in training (subsidies, loans, training funds, individual learning account and tax incentives).

Concerning financial incentives for the employed, a lot of schemes exist: on firms (tax exemptions...), on individuals (tax credit on interest burden of loans, individual learning accounts...). Those grants/subsidies/tax deductions are designed to alter the cost-benefit calculus for the employer (the government cover part of the cost), as in the model to foster employer investment in training. A large variety exists:

- Denmark: participants in adult vocational training programs are entitled to a fixed allowance by the state; companies paying regular wages to employees participating are entitled to a state grant allowance similar to the allowance corresponding to the max unemployment benefit rate
- Finland: the government pays up to half of the cost of training for recruiting new workers (duration of training is typically 10 days)
- Sweden: the government provides training grants to employers covering up to 50 percent (25% if the training is specific to the company)
- Train to gain in England: the government notably provides wage replacement compensation for companies less than 50 employes
- In the US, incentives are often provided at the state level; subsidies to compensate for 50% of the labor cost during the training program

Face to this diversity of policies and investment in continuous vocation training, the main question question is: are CVT investments high enough in light with the positive externalities they imply? Obviously, an attempt to answer this question is not easy and would require a precise quantitative investigation taking into account the institutional/policy context specific to each country.

To that respect, our contribution is more general. Our normative analysis indeed questions a political orientation of systematically increasing subsidies to training, because turbulence contributes to reducing the size of the poaching externalities. In turn, this paper stresses that it is rather optimal to combine both training and employment subsidies, to help firms internalizing poaching and aggregate unemployment externalities related to their training decision. On the one hand, training subsidies implies that some of the low-ability workers can benefit from training of the employers, whereas if those subsidies are not implemented they can’t. On the other hand, employment subsidies make shorter average unemployment duration and therefore reduce workers’ exposure to facing human capital depreciation. The latter leads to a social cost because it implies some expenditures for the firms who agree

19 In France, only about 1 billion euros are devoted to tax incentives, because most of the public intervention relates to regulation: compulsory of financing vocational training.
to train those workers that faced skill obsolescence. The increasing turbulence makes this social cost more stringent so that reducing unemployment turns out to be - everything else being equal - of primer interest. To some extent, these results are in line with the general recommendation of the CEDEFOP report of combining tax incentives to promote training with other policies in place.

5 Conclusion

Since the works of Ljungqvist and Sargent, it is now well established that an increase of the risk of human capital depreciation was an important driving force behind the rise of European unemployment, due to its interplay with generous unemployment benefits system. The main goal of this paper was to examine and discuss the normative incidence of turbulence on labor market outcomes by extending those previous works to account for endogenous training. Beyond the impact of human capital depreciation during unemployment spells on the well-known poaching externality, we emphasize the role of an unemployment externality. The optimal subsidy rate of training then depends on the relative size of those two externalities who exhibit opposite relationships with the turbulence parameter. Therefore, it is not necessarily clear cut whether to increase the subsidy rate of training in the context of higher turbulence. However, our illustrative quantitative investigation emphasizes the primarily role of reducing the unemployment duration, in light with the unemployment externality. This result is indeed found to be not only related to higher equilibrium unemployment but also lower efficient unemployment in turbulent times, which can account for an unemployment gap up to 2.5 points of percentage. This goal can for instance be achieved through some employment subsidies. Obviously, to say more on policy implementation we would need to extend that work to take into account of distortions related to welfare state and institutional systems which are country dependant. This gives an interesting research agenda.
6 Appendix

6.1 Steady state equilibrium: existence and uniqueness

The steady state equilibrium consists in

• steady-state functions \(p_0(a) \) and \(p(a) \) that give the arrival rates of a job offer for each level of ability. We rewrite the free-entry equations (6) and (7) using expression of unemployment levels (1), Bellman equations (3)-(4) and wage equations (17)-(20). Steady-state arrival rates \(p_0(a) \) and \(p(a) \) are the respective solutions of the two following equations

\[
\phi(p_0(a)) = a - b
\]

\[
\phi(p(a)) = (1 + \Delta)(a - b) + \Delta b + \tilde{\gamma}_F \left[\frac{\pi}{\pi + p} \psi_1(p(a)) + \frac{p}{\pi + p} \psi_2(p(a)) \right]
\]

where

\[
\phi(p) \equiv \frac{c(r + \delta + \beta p)}{(1 - \beta) Q(p)}, \text{ with } Q(p) \text{ solution in } q \text{ of } p = M \left(\frac{p}{q}, 1 \right).
\]

\[
\psi_1(p) \equiv -(r + \delta) + \delta \frac{\beta p}{r + \pi + \beta p}
\]

\[
\psi_2(p) \equiv \frac{\pi}{r + \pi + \beta p}
\]

• an indicator function for any ability level \(a \) with value 0 if \(a \)-workers are never trained and with value 1 if \(a \)-workers are trained as soon as they have faced with human capital depreciation during the preceding unemployment spell. Then it takes value 1 iff \(J_1(a) - \tilde{\gamma}_F = J_0(a) \), that is iff

\[
\left(1 + \Delta - \frac{r + \delta + \beta p(a)}{r + \delta + \beta p_0(a)} \right)(a - b) + \Delta b + \psi_1(p(a)) \tilde{\gamma}_F \geq 0
\]

using Bellman equations (3)-(4), and wage equations (17)-(18).

As stated in Property 2, if the indicator function is equal to one for some ability level \(a \), expected profit of the new entrant is higher than it would be if the \(a \)-workers were never trained. Consequently, everything else being equal, more firms enter the market and labor market tightness is lower.

We now turn to existence and uniqueness of the arrival rates.

Assumption 1. \(\phi(0) < a - b < \bar{a} - b < \phi(+\infty) \).

Noticing that \(\phi(p) \) is strictly increasing leads to the following result.
Proposition 6. Under Assumption 1, for any ability level \(a \), there exists a unique steady state equilibrium arrival rate \(p_0(a) \), and \(p'_0(a) > 0 \).

As stated in the next proposition, existence of the arrival rate \(p(a) \) can be easily derived from Assumption 1. But uniqueness is not always guaranteed. Indeed, the arrival rate has two opponent effects on the expected value of a filled job

\[
\frac{u_1(a)}{u(a)} (J_1(a) - \hat{\gamma}_F) + \frac{u_2(a)}{u(a)} J_2(a)
\]
or equivalently on the expected wage the firm will have to pay. Looking at the wage equations (18) and (19), on the one hand, a higher arrival rate increases the worker’s bargaining strength (through \(x(a) \)), and this leads to higher expected wage. On the other hand, it also increases the gap between the values of unemployment \(U_2(a) - U_1(a) \), and so lowers reservation wages of type-1 and type-2 workers. In order to state uniqueness, one may retain the following additional assumption:

Assumption 2. For any ability level \(a \in [a, \bar{a}] \),

- the function
 \[
 h(p) \equiv \phi(p) - \hat{\gamma}_F \left[\frac{\pi}{\pi + p} \psi_1(p) + \frac{p}{\pi + p} \psi_2(p) \right]
 \]
is strictly convex with respect to \(p \), for any \(p > p_0(a) \).
- the arrival rate \(p_0(a) \) satisfies
 \[
 \phi(p_0(a)) - \hat{\gamma}_F \left[\frac{\pi}{\pi + p_0(a)} \psi_1(p_0(a)) + \frac{p_0(a)}{\pi + p_0(a)} \psi_2(p_0(a)) \right] < a - b
 \]

Proposition 7. Under Assumptions 1 and 2, there exists a unique equilibrium arrival rates \(p(a) \), strictly larger than \(p_0(a) \), and such that \(p'(a) > 0 \).

Proof. We have to show that the equation \(h(p) = (1 + \Delta)(a - b) + \Delta b \) has a unique solution in \(p \) in the interval \([p_0(a), +\infty)\). From Assumptions 1 and 2, the function \(h \) goes from a value lower than \((1 + \Delta)(a - b) + \Delta b\) to \(+\infty\), and is strictly convex. The result follows. \(\square \)

To keep the analysis simple, we consider cases with a threshold ability level \(\tilde{a} \) below which workers are of type 0 and above which they are of type 1 or 2. A quick look at inequality (38) shows that the left-hand side is not necessarily increasing with respect to ability \(a \). Since the productivity gain \(\Delta a \) is linear in \(a \) and the training cost is fixed, higher ability implies higher incentive for training. Nevertheless, higher ability also implies that jobs arrive to workers at higher rate whatever they are of type 0, 1 or 2. This leads to higher wages \(w_0(a) \). As mentioned above, the resulting effect on \(w_1(a) \) is not clear cut because of the two opponent effects: higher worker’s bargaining strength and lower reservation wage. Typically, we assume that \(\Delta \) is large enough to ensure that the increase in productivity is more important than the effects of the variations in both arrival rates.
6.2 Social planner program

For an infinite lived economy, the social planner maximizes the present value of output net of search costs and training costs, subject to the same search frictions as faced by the decentralized economy. Since what happen to some a-ability level does not interact with other levels, we consider the social planner’s problem for some ability a. We also leave the possibility for the social planner to choose the mass of new hired workers that will be trained. Let $\phi(a)$ denote the fraction of new hired workers that will be trained. We then have the following dynamic constraints which apply for each a (we drop the a-index for expositional convenience)

\[
\begin{align*}
\dot{e}_0 &= p_0(1 - \phi) u_1 - \delta e_0 \\
\dot{\phi} &= p(\phi u_1 + u_2) - \delta e \\
\dot{u}_1 &= \delta e_0 + \pi u_2 - [p\phi + p_0(1 - \phi)] u_1 \\
\dot{u}_2 &= \delta e - (p + \pi) u_2
\end{align*}
\]

We will show that the steady state optimum satisfies one of the two following situations:

- $\phi = 0$: new hired workers are never trained. Then all workers are of type-0 and $e = u_2 = 0$.
- $\phi = 1$: new hired workers are always trained if they have experienced human capital depreciation in the preceding unemployment spell. Then, workers are of type 1 or 2, and $e_0 = 0$.

The social objective for ability a writes

\[
\int_0^{+\infty} e^{-rt} \left(fb + e_0(a - b) + e [(1 + \Delta) a - b] - c [\theta_0 (1 - \phi) u_1 + \theta (\phi u_1 + u_2)] - \gamma_F p \phi u_1 \right) dt
\]

where we used the following expressions for the masses of type-0 vacancies $v_0 = \theta_0 (1 - \phi) u_1$ and other vacancies $v = \theta (\phi u_1 + u_2)$. The social planner’s problem is to choose time paths of the control variables ϕ, θ, θ_0 and the state variables: e, u_1, u_2. Notice that e_0 is redundant since $e_0 = f - (e + u_1 + u_2)$.

To solve the social planner’s problem, write down the current-valued Hamiltonian

\[
H = fb + [f - (e + u_1 + u_2)](a - b) + e [(1 + \Delta) a - b] - c [\theta_0 (1 - \phi) u_1 + \theta (\phi u_1 + u_2)] - \gamma_F p \phi u_1 + \lambda [p (\phi u_1 + u_2) - \delta e] + \mu_1 [\delta (f - e - u_1 - u_2) + \pi u_2 - [p\phi + p_0(1 - \phi)] u_1] + \mu_2 [\delta e - (p + \pi) u_2]
\]

where λ, μ_1 and μ_2 are the respective adjoint variables of e, u_1 and u_2.

6.2.1 Exogenous arrival rates and $c = 0$

Let first consider the case with exogenous arrival rates as examined in section 3.2 ($p_0 \leq p$), and $c = 0$. The derivative of the Hamiltonian with respect to ϕ writes

\[
\frac{\partial H}{\partial \phi} = [(\lambda - \gamma_F) p - (p - p_0) \mu_1] u_1
\]

Then, assuming $u_1 > 0$ at the optimum
• If \((\lambda - \gamma_F) p - (p - p_0) \mu_1 > 0\) (or equivalently \(\lambda > \gamma_F + \left(1 - \frac{\omega}{\rho}\right) \mu_1\)), \(\frac{\partial H}{\partial \phi} \geq 0\) and then \(\phi = 1\).
• If \((\lambda - \gamma_F) p - (p - p_0) \mu_1 < 0\), \(\frac{\partial H}{\partial \phi} < 0\) then \(\phi = 0\).

Let us now write the optimality conditions with respect to state variables
\[
\frac{\partial H}{\partial e} = -\lambda + r \lambda \Leftrightarrow \Delta a - (\lambda + \mu_1 - \mu_2) \delta = -\lambda + r \lambda
\]
\[
\frac{\partial H}{\partial u_1} = -\mu_1 + r \mu_1 \Leftrightarrow -(a - b) + (\lambda - \gamma_F) p \phi - \mu_1 [\delta + p \phi + p_0 (1 - \phi)] = -\mu_1 + r \mu_1
\]
\[
\frac{\partial H}{\partial u_2} = -\mu_2 + r \mu_2 \Leftrightarrow -(a - b) + \lambda p + \mu_1 (\pi - \delta) - (p + \pi) \mu_2 = -\mu_2 + r \mu_2
\]

In steady state \((\dot{\lambda} = \dot{\mu}_1 = \dot{\mu}_2 = 0)\), \(\frac{\partial H}{\partial \phi}\) has the same sign as
\[
\Delta a + \left(- (r + \delta) + \frac{\delta p}{r + \pi + p}\right) \gamma_F + (a - b) \frac{r + \delta}{r + \delta + p_0} \frac{p - p_0}{p} \tag{39}
\]

Hence, consider \(\frac{\partial H}{\partial \phi} = 0\) gives the threshold ability value at the optimum, as defined by \(a^*\) in equation (28).

6.2.2 Endogenous arrival rates and \(c > 0\)

Optimality conditions with respect to the state variables write
\[
\frac{\partial H}{\partial e} = -\lambda + r \lambda \Leftrightarrow \Delta a - (\lambda + \mu_1 - \mu_2) \delta = -\lambda + r \lambda \tag{40}
\]
\[
\frac{\partial H}{\partial u_1} = -\mu_1 + r \mu_1
\]
\[
\Leftrightarrow -(a - b) - c [\theta_0 (1 - \phi) + \theta \phi] + (\lambda - \gamma_F) p \phi - \mu_1 [\delta + p \phi + p_0 (1 - \phi)] = -\mu_1 + r \mu_1 \tag{41}
\]
\[
\frac{\partial H}{\partial u_2} = -\mu_2 + r \mu_2 \Leftrightarrow -(a - b) - c \theta + \lambda p + \mu_1 (\pi - \delta) - (p + \pi) \mu_2 = -\mu_2 + r \mu_2 \tag{42}
\]

With endogenous arrival rates, we have to consider the derivatives of the Hamiltonian with respect to labor market tightness \(\theta\) and \(\theta_0\). Then, we get the two following cases

• If \(\frac{\partial H}{\partial \phi} \geq 0\), then \(\phi = 1\) and labor market tightness \(\theta\) must satisfy
\[
\frac{\partial H}{\partial \theta} = -c (u_1 + u_2) - \gamma_F p' (\theta) u_1 + \lambda [p (u_1 + u_2) - \delta e] - \mu_1 p' (\theta) u_1 - \mu_2 p' (\theta) u_2 = 0
\]
where the adjoint variables \(\lambda\), \(\mu_1\) and \(\mu_2\) can be computed from (40), (41) and (42).

• If \(\frac{\partial H}{\partial \phi} < 0\), then \(\phi = 0\) and \(\theta_0\) must satisfy
\[
\frac{\partial H}{\partial \theta_0} = - [c + \mu_1 p' (\theta_0)] u_1 = 0
\]
where the adjoint variable \(\mu_1\) can also be computed from the optimality conditions with respect to state variables.
In order to determine whether a-ability workers are of type 0 or not, we analyze the sign of the derivative of the current-valued Hamiltonian with respect to

$$\frac{\partial H}{\partial \phi} = [-c(\theta - \theta_0) + p(\lambda - \gamma_F) - (p - p_0)\mu_1] u_1$$

In steady state, equations (40), (41) and (42) imply that $\frac{\partial H}{\partial \phi}$ has the same sign as

$$\Delta a + \left(- (r + \delta) + \frac{\delta p}{r + \pi + p} \right) \gamma_F + \frac{(r + \delta)(p - p_0)}{(r + \delta + p_0)p} (a - b) + (r + \delta) c \left(\frac{\theta_0}{r + \delta + p_0} \frac{r + \delta + p}{\theta} - 1 \right)$$

Considering again $\frac{\partial H}{\partial \phi} = 0$ gives the condition that determines the optimal threshold ability value a^* in this general case (equation (32) where it is assumed $r = 0$). Computing μ_1 and μ_2 then allows to state equations (30) and (31).
References

[7] CEDEFOP, ?

[14] Hairault, Le Barbanchon, Sopraseuth

[18] Ljungqvist, L. and T. J. Sargent, 2004

[21] OECD, 2005

[23] Stevens, 1994
