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Abstract We consider a controlled linear differential equation which is partially observed
with an additive fractional noise. In this setting, we study the asymptotic (for large obser-
vation time) design problem of the input and give an efficient estimator of the unknown
signal drift parameter. The optimal estimation input is deduced. The consistency, asymptotic
normality and convergence of the moments of the MLE are established.
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1 Introduction

1.1 Historical survey

The problem of the choice of inputs so as to obtain maximal information from the experiments
have been given a great deal of interest over the last 60 years. Background to this problem can
be found in the early statistics literature (see e.g. Kiefer 1974; Wald 1943; Whittele 1973)
as well as in the engineering literature (see e.g. Gevers 2005; Goodwin and Payne 1977;
Goodwin et al. 1973, 2007). The focus has been predominately on experiments design for
identification of directly observed dynamic system parameters.

The classical approach for experiment design consists on a two-step procedure: maximize
the Fisher information and find an adaptive estimation procedure. In this area, there are sev-
eral approaches like sequential design, Bayesian design, mini-max and robust design (see
e.g. Brodeau and Le Breton 1979; Lopez-Toledo and Athans 1975; Goodwin et al. 2007;
Levadi 1966; Mehra 1974a and the references therein). However, there has been little work
on partially observed systems, even linear because of the implicit form of estimators. We can
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mention Aoki and Staley (1970), Levin (1960), Mehra (1974a,b), Ovseevich et al. (2000),
where linear signal-observation model perturbed by the white noise has been considered.

In this paper, we consider a controlled linear differential equation which is partially
observed with an additive fractional noise. In this setting, we study the asymptotic (for
large observation time) design problem of the input and give an efficient estimator of the
unknown signal drift parameter.

As in a classical approach, we can separate the initial problem in two subproblems.
In the one hand, we deduce the optimal input by maximizing the Fisher information under

certain constraints on the energy of the input. In a contrast with the previous works (see e.g.
Levadi 1966; Mehra 1974a; Ovseevich et al. 2000), the problem can not be reduced to the
optimization on the real line and the method proposed in Ovseevich et al. (2000) does not
work. We propose to use Laplace transform computations, in particular, the Cameron–Martin
formula and the link between the Laplace transform of the integral of the square of a Gaussian
process and the eigenvalues of its self-adjoint covariance operator.

Surprisingly, the asymptotical optimal input does not depend on the unknown parameter
(see Proposition 1.1) and so the MLE is a good candidate to reach efficient estimation.

In the other hand, we study the asymptotic properties of the MLE. We establish consis-
tency, asymptotic normality and convergence of the moments of the MLE. This is done by the
method previously developed by the authors Brouste (2010), Brouste and Kleptsyna (2010).

1.2 The setting and the main result

We consider real-valued functions x = (xt , t ≥ 0), u = (u(t), t ≥ 0) and a process
Y = (Yt , t ≥ 0), representing the signal, the control and the observation respectively, gov-
erned by the following homogeneous linear system of ordinary and stochastic differential
equations interpreted as integral equations:

{
dxt = −ϑxt dt + u(t)dt , x0 = 0 ,

dYt = μxt dt + dV H
t , Y0 = 0.

(1)

Here, V H = (V H
t , t ≥ 0) is normalized fBm with Hurst parameter H ∈ [ 1

2 , 1) and the
coefficients ϑ and μ �= 0 are real constants. System (1) has a uniquely defined solution
process (x, Y ) where Y is Gaussian but neither Markovian nor a semimartingale for H �= 1

2 .
Suppose that parameter ϑ > 0 is unknown1 and is to be estimated given the observed

trajectory Y T = (Yt , 0 ≤ t ≤ T ) for a control u in the proper class.
For a fixed value of the parameter ϑ , let PT

ϑ denote the probability measure, induced by Y T

on the function space C[0,T ] and let FY
t be the natural filtration of Y , FY

t = σ (Ys, 0 ≤ s ≤ t).
Let L(ϑ, Y T ) be the likelihood, i.e. the Radon–Nikodym derivative of PT

ϑ , restricted to FY
T

with respect to some reference measure on C[0,T ]. The explicit representation of the likeli-
hood function can be written thanks to the transformation of observation model (1) proposed
in Kleptsyna and Le Breton (2002a). Therefore, Fisher information stands for:

IT (ϑ, u) = −Eϑ

∂2

∂ϑ2 ln LT (ϑ, Y T ).

1 In the continuous-time observation setting, there is no statistical error made for the Hurst parameter H
estimation with classical methods, see for instance quadratic generalized variations method in Istas and Lang
(1997).
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Let us denoted UT some functional space of controls, that is defined by (8) and (9) page 136.
Let us also note

JT (ϑ) = sup
u∈UT

IT (ϑ, u) .

Our main goal is to find estimator ϑT of the parameter ϑ which is asymptotically efficient
in the sense that, for any compact K ⊂ R

+∗ = {ϑ ∈ R, ϑ > 0},

sup
ϑ∈K

JT (ϑ)Eϑ

(
ϑT − ϑ

)2 = 1 + o(1), (2)

as T → ∞.
We claim that:

Proposition 1.1 The asymptotical optimal input in the class of controls UT is uopt (t) =
κ√
2λ

t H− 1
2 , where

κ = 2H�

(
3

2
− H

)
�

(
1

2
+ H

)
and λ = H�(3 − 2H)�(H + 1

2 )

2(1 − H)�( 3
2 − H)

(3)

and � stands for the Gamma function. Moreover,

lim
T →+∞

JT (ϑ)

T
= μ2

ϑ4

As the optimal input does not depend on ϑ (see Proposition 1.1), a possible candidate is the
maximum likelihood estimator (MLE) ϑ̂T , defined as the maximizer of the likelihood:

ϑ̂T = arg max
ϑ>0

L(ϑ, Y T ). (4)

Moreover, MLE reaches efficiency and we deduce its large samples asymptotic properties:

Proposition 1.2 The MLE is uniformly consistent on compacts K ⊂ R
+∗ , i.e. for any ν > 0,

lim
T →∞ sup

ϑ∈K

PT
ϑ

{∣∣∣ϑ̂T − ϑ

∣∣∣ > ν
}

= 0 , (5)

uniformly on compacts asymptotically normal: as T tends to +∞,

lim
T →∞ sup

ϑ∈K

∣∣∣Eϑ f
(√

T
(
ϑ̂T − ϑ

))
− E f (ξ)

∣∣∣ = 0 ∀ f ∈ Cb (6)

and ξ is a zero mean Gaussian random variable of variance J (θ)−1 = ϑ4

μ2 which does not
depend on H and we have the uniform on ϑ ∈ K convergence of the moments: for any
p > 0,

lim
T →∞ sup

ϑ∈K

∣∣∣Eϑ

∣∣∣√T
(
ϑ̂T − ϑ

)∣∣∣p − E |ξ |p
∣∣∣ = 0. (7)

Finally, the MLE is efficient in the sense of (2).

Remark 1 It is worth emphasizing that the classical case H = 1
2 , treated in Ovseevich et al.

(2000), presents the same result.
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2 The proofs

2.1 Preliminaries

In what follows, all random variables and processes are defined on a given stochastic basis
(�, F, (Ft )t≥0, P) satisfying the usual conditions and processes are (Ft )-adapted. Moreover
the natural filtration of a process is understood as the P-completion of the filtration generated
by this process.

Even if fBm are not martingales, there are simple integral transformations which change
the fBm to martingales (see Norros et al. 1999; Nuzman and Poor 2000). In particular, with
(3), defining for 0 < s < t ,

kH (t, s) = κ−1s
1
2 −H (t − s)

1
2 −H , Nt =

t∫
0

kH (t, s)dV H
s ,

then the process N = (Nt , t ≥ 0) is a Gaussian martingale, called in Norros et al. (1999) the
fundamental martingale whose variance function is the function

wH (t) = 1

2λ(2 − 2H)
t2−2H .

Moreover the natural filtration of the martingale N coincides with the natural filtration of the
fBm V H .

For a given control u we define the function v by the following equation

v(t) = d

dwH (t)

t∫
0

kH (t, s)u(s)ds; (8)

provided that the fractional derivative exists. Let us define the space of controls UT as the
space of functions u s.t. v given by (8) exists and v ∈ VT where

VT =
⎧⎨
⎩v

∣∣∣∣ 1

T

T∫
0

|v(t)|2 dwH (t) ≤ 1

⎫⎬
⎭ . (9)

Note that these sets are non empty. Remark that with (8) the following relation between
control u and its transformation v holds:

u(t) = d

dt

t∫
0

K H (t, s)v(s)dwH (s) (10)

where

K H (t, s) = H(2H − 1)

t∫
s

r H− 1
2 (r − s)H− 3

2 dr for 0 ≤ s ≤ t .

Following Kleptsyna and Le Breton (2002a), let us introduce Z = (Zt , t ≥ 0) the funda-
mental semimartingale associated to Y , namely

Zt =
t∫

0

kH (t, s)dYs . (11)
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Note that Y can be represented as Yt = ∫ t
0 K H (t, s)d Zs and therefore the natural filtrations

of Y and Z coincide. It can be proved that the following equation holds (see e.g. Kleptsyna
and Le Breton 2002a):

d Zt = μλ�(t)∗ζt d〈N 〉t + d Nt , Z0 = 0, (12)

where v is defined by (8) and ζ = (ζt , t ≥ 0) is the solution of the ordinary differential
equation

dζt

d〈N 〉t
= −ϑλA(t)ζt + b(t)v(t), ζ0 = 0, (13)

with

�(t) =
(

t2H−1

1

)
, A(t) =

(
t2H−1 1
t4H−2 t2H−1

)
and b(t) =

(
1

t2H−1

)
.

2.2 Likelihood function and the Fisher information

Recall that Z T = (Zt , 0 ≤ t ≤ T ) is the observed transformed trajectory. In this section,
we are interested in the explicit representation of the likelihood function LT

(
ϑ, Z T

)
. The

classical Girsanov theorem gives the following equality

LT (ϑ, Z T ) = exp

⎧⎨
⎩μλ

T∫
0

�(t)∗ζt d Zt − μ2λ2

2

T∫
0

ζ ∗
t �(t)�(t)∗ζt d〈N 〉t

⎫⎬
⎭ (14)

where ζ = (ζt , t ≥ 0) is the solution of the ordinary differential Eq. (13).
The Fisher information stands for

IT (ϑ, v) = −Eϑ

∂2

∂ϑ2 ln LT (ϑ, Z T )

= Eϑ

T∫
0

μ2λ2
(

∂

∂ϑ
�(t)∗ζt

)2

d〈N 〉t

=
T∫

0

μ2λ2
(

∂

∂ϑ
�(t)∗ζt

)2

d〈N 〉t (ζ is deterministic)

=
T∫

0

(
∂ζt

∂ϑ

)∗
μ2λ2�(t)�(t)∗ ∂ζt

∂ϑ
d〈N 〉t . (15)

From (13), we get

ζt = ϕ(t)

t∫
0

ϕ−1(s)b(s)v(s)d〈N 〉s (16)

where ϕ(t) is the fundamental matrix, i.e.

dϕ(t)

d〈N 〉t
= −ϑλA(t)ϕ(t) , ϕ(0) = Id, (17)
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and Id is the 2 × 2 identity matrix. Therefore

IT (ϑ, v) = μ2λ2

T∫
0

(
∂ζt

∂ϑ

)∗
�(t)�(t)∗ ∂ζt

∂ϑ
d〈N 〉t

=
T∫

0

T∫
0

KT (s, σ )
s

1
2 −H

√
2λ

v(s)
σ

1
2 −H

√
2λ

v(σ )dsdσ,

where

KT (s, σ ) =
T∫

max(s,σ )

G(t, s)G(t, σ )dt , (18)

and

G(t, σ ) = ∂

∂ϑ

(μ

2
t

1
2 −H �(t)∗ϕ(t)ϕ−1(σ )b(σ )σ

1
2 −H

)
.

2.3 Optimal input and efficiency

Let us denote ||.||2,T the usual norm in L2([0, T ]) and ||.||2 the usual norm in L2(R). From
the previous formulas and (9), we obtain

JT (ϑ) = sup
v∈VT

IT (ϑ, v)

= T sup
ṽ∈L2([0,T ]), ||ṽ||2,T ≤1

T∫
0

T∫
0

KT (s, σ )ṽ(s)ṽ(σ )dsdσ

= T sup
ṽ∈L2([0,T ]), ||ṽ||2,T ≤1

(KT ṽ, ṽ) ,

with ṽ(s) = s
1
2 −H

√
2λ

v(s)√
T

.

We have, due to the explicit form of the kernel (see Remark 2 page 148), that

lim
T →+∞ KT (s, σ ) = K∞(s, σ )

uniformly in any finite interval of s and σ . Contrary to the classical case H = 1
2 (see

Ovseevich et al. 2000), the limit kernel K∞(s, σ ) is no more of the form

C(s − σ) = μ2

4ϑ3 e−ϑ |σ−s| (ϑ |σ − s| + 1) .

But we have the following result:

Lemma 2.1 In this setting,

lim inf
T →+∞

JT (ϑ)

T
≥ sup

w∈L2(R),||w||2 =1
(Cw,w) = μ2

ϑ4 .

Proof The proof is postponed in Sect. 2.5. ��
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In the classical case, the reminder K∞(s, σ )−KT (s, σ ) corresponds to a positive quadratic
form and

sup
ṽ∈L2([0,T ]), ||ṽ||2,T ≤1

(KT ṽ, ṽ) ≤ sup
w∈L2(R),||w||2 =1

(K∞w,w) = sup
w∈L2(R),||w||2 =1

(Cw,w).

In the fractional case, we only have that:

sup
ṽ∈L2([0,T ]), ||ṽ||2,T ≤1

(KT ṽ, ṽ) ≤ sup
w∈L2(R),||w||2 =1

(K∞w,w).

Nevertheless, we claim the following result:

Proposition 2.1

lim
T →+∞ sup

ṽ∈L2([0,T ]), ||ṽ||2,T ≤1
(KT ṽ, ṽ) = sup

w∈L2(R),||w||2 =1
(Cw,w) = μ2

ϑ4 .

Proof Lemma 2.1 gives the lower bound. It remains to show the upper bound:

lim
T →+∞ sup

ṽ∈L2([0,T ]), ||ṽ||2,T ≤1
(KT ṽ, ṽ) ≤ sup

w∈L2(R),||w||2 =1
(Cw,w) = μ2

ϑ4 .

Let us introduce the pair process ξ = ((
ξ1

t , ξ2
t

)
, 0 ≤ t ≤ T

)
with

ξ1
t =

⎛
⎝

T∫
t

σ
1
2 −H �(σ )∗ϕ(σ) ∗ dWσ

⎞
⎠ϕ−1(t) and ξ2

t = ∂

∂ϑ
ξ1

t , (19)

where W is a Wiener process and ∗dWσ denotes the Itô backward integral (see e.g Rozovskii
1990). It is worth emphasizing that

KT (s, σ ) = μ2

4
E
(
ξ2

s b(s)s
1
2 −H ξ2

σ b(σ )σ
1
2 −H

)
= E (Xσ Xs) ,

where X is the centered Gaussian process defined by:

Xt = μ

2
ξ2

t b(t)t
1
2 −H .

The process ξ also satisfies the following dynamic

−dξt = ξtA(t)d〈N 〉t + L(t)
t

1
2 −H

√
2λ

∗ dWt , ξT = 0,

or

−dξt = ξtA(t)d〈M〉t + L(t) ∗ d Mt , ξT = 0,

with M = (Mt , t ≥ 0) a martingale of the same variance function as N = (Nt , t ≥ 0),

A(t) =
(−ϑ −1

0 −ϑ

)
⊗ λA(t) and L(t) = √

2λ
(
�(t)∗ 0

)
.

Obviously, we should estimate the spectral gap (the first eigenvalue ν1(T )) of the opera-
tor associated to the kernel KT . The estimation of the spectral gap is based on the Laplace
transform computation.
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Let us compute, for sufficiently small negative a < 0 the Laplace transform of
∫ T

0 X 2
t dt :

LT (a) = Eϑ exp

⎧⎨
⎩−a

T∫
0

X 2
t dt

⎫⎬
⎭

= Eϑ exp

⎧⎨
⎩−a

T∫
0

[
μ

2

(
∂

∂ϑ
ξ1

t

)
b(t)t

1
2 −H

]2

dt

⎫⎬
⎭

On the one hand, X is a centered Gaussian process with covariance operator KT . For a >

− 1
ν1(T )

, using Mercer’s theorem and Parseval’s inequality, LT (a) can be represented as:

LT (a) =
∏
i≥1

(1 + 2aνi (T ))−
1
2 , (20)

where νi (T ), i ≥ 1 is the sequence of positive eigenvalues of the covariance operator. On
the other hand,

LT (a) = Eϑ exp

⎧⎨
⎩−a

μ2λ

2

T∫
0

ξtM(t)ξ∗
t d〈N 〉t

⎫⎬
⎭

= exp

⎧⎨
⎩

1

2

T∫
0

trace(H(t)L(t)∗L(t))d〈N 〉t

⎫⎬
⎭ ,

where

M(t) =
(

0 0
0 b(t)b(t)∗

)

and H = (H(t), t ≥ 0) is the solution of Ricatti differential equation:

dH(t)

d〈N 〉t
= H(t)A(t)∗ + A(t)H(t) + H(t)L(t)∗L(t)H(t) − aμ2λM(t) , (21)

with initial condition H(0)=0, provided that the solution of Eq. (21) exists for any 0≤t≤T .
It is well known that if det�1(t) > 0, for any t ∈ [0, T ], then the solution H of Eq. (21)

can be written as H(t) = �−1
1 (t)�2(t), where the pair of 4 × 4 matrices (�1, �2) satisfies

the system of linear differential equations:

d�1(t)

d〈N 〉t
= −�1(t)A(t) − �2(t)L(t)∗L(t) , �1(0) = Id , (22)

d�2(t)

d〈N 〉t
= −aμ2λ�1(t)M(t) + �2(t)A(t)∗ , �2(0) = 0 ,

and Id is the 4 × 4 identity matrix.
Moreover, under the condition det�1(t) > 0, for any t ∈ [0, T ], the following equality

holds:

123



Stat Inference Stoch Process (2012) 15:133–149 141

LT (a) = exp

⎧⎨
⎩−1

2

T∫
0

trace A(t)d〈N 〉t

⎫⎬
⎭ (det�1(T ))−

1
2

= exp {ϑT } (det�1(T ))−
1
2 , (23)

or, equivalently using (20),
∏
i≥1

(1 + 2aνi (T )) = exp {−2ϑT } (det�1(T )) . (24)

Let us note here that the solution of linear system (22) exists for any t > 0 and for any a ∈ C.
For a = 0, det�1(t) = exp {2ϑ t} > 0. Due to the continuity property of the solutions of
linear differential equations with respect to a parameter, for all T > 0, there exists a(T ) < 0
such that

inf
t∈[0,T ] det�1(t) > 0.

Therefore, equality (24) holds in an open set in C, containing 0. Compactness of the covariance
operator, namely,

∫ T
0 KT (s, s)ds < ∞, implies, due to the Weierstrass theorem, the analytic

property of
∏

i≥1(1 + 2aνi (T )) with respect to a. Hence, equality (24) holds for any a ∈ C.

Now let us show that for T sufficiently large and for − ϑ4

2μ2 < a < 0 det�1(T ) > 0.
Indeed, linear system (22) can be rewritten as

d (�1(t),�2(t)J)

d〈N 〉t
= (�1(t),�2(t)J) · (� ⊗ λA(t)) (25)

where

� =

⎛
⎜⎜⎝

ϑ 1 0 0
0 ϑ 0 −aμ2

−2 0 −ϑ 0
0 0 −1 −ϑ

⎞
⎟⎟⎠ J =

(
0 1
1 0

)
and J =

(
J J
J J

)
.

Clearly, system (25) has an explicit solution:

(�1(t),�2(t)J) = (Id, 0) · (P ⊗ Id) G (P−1 ⊗ Id
)

(26)

where G = diag (G1, G2, G3, G4) and

dGi (t)

d〈N 〉t
= λxi Gi A Gi (0) = Id , i = 1 . . . 4, (27)

with (xi )i=1...4 the eigenvalues of matrix � and P the matrix of its eigenvectors. For

− ϑ4

2μ2 < a < 0,

eigenvalues of matrix � are of the form xi = ±
√

ϑ2 ± μ
√−2a.

It can be checked that there exists a constant C > 0 such that

det�1(T ) = exp ((x1 + x3)T )

(
C + O

(
1

T

))
,
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where x1 =
√

ϑ2 + μ
√−2a > x3 =

√
ϑ2 − μ

√−2a.

Therefore, due to equality (24), we have that
∏

i≥1(1 + 2aνi (T )) > 0 for any a > − ϑ4

2μ2 .

It means that − 1

ν1(T )
≤ −ϑ4

μ2 , or equivalently, that

ν1(T ) ≤ μ2

ϑ4 (28)

which achieves the proof. ��
Combining the proof of Lemma 2.1 and the upper bound (28), we obtain that

vopt (t) = √
2λt H− 1

2 , 0 ≤ t ≤ T

is optimal in the class VT . As in Ovseevich et al. (2000),

1

T

T∫
0

|vopt (t)|2d〈N 〉t = 1

Finally, using (10), we have

uopt (t) = d

dt

t∫
0

K H (t, s)vopt (s)d〈N 〉s = κ√
2λ

t H− 1
2 .

2.4 MLE large sample asymptotic properties

As the optimal input does not depend on ϑ , it is possible to compute directly the MLE on
the following system: {

dxt = −ϑxt dt + uopt (t)dt , x0 = 0 ,

dYt = μxt dt + dV H
t , Y0 = 0.

(29)

where uopt (t) is the optimal input found in Sect. 2.3. After transformation,

d Zt = μλ�(t)∗ζt d〈N 〉t + d Nt , Z0 = 0, (30)

where

dζt

d〈N 〉t
= −ϑλA(t)ζt + b(t)vopt (t).

Actually, to compute large sample asymptotic properties of the implicit MLE, we need the
explicit representation of the likelihood ratio

ZT (ϑ1, ϑ2, Z T ) = LT (ϑ2, Z T )

LT (ϑ1, Z T )
, (31)

which is also the Radon–Nikodym derivative of PT
ϑ2

with respect to PT
ϑ1

, restricted to FY
T ,

i.e.

ZT (ϑ1, ϑ2, Z T ) = LT (ϑ2, ζ
T )

LT (ϑ1, ζ T )
= dPT

ϑ2

dPT
ϑ1

∣∣∣∣FY
T

.
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From Eq. (13), this ratio can be written in the following form:

ZT (ϑ1, ϑ2, Z T )

= exp

⎧⎨
⎩μλ

T∫
0

�∗(t)δϑ1,ϑ2(t)dν
ϑ1
t − μ2λ2

2

T∫
0

δ∗
ϑ1,ϑ2

(t)�(t)�∗(t)δϑ1,ϑ2(t)d〈N 〉t

⎫⎬
⎭

where δϑ1,ϑ2(t) is the difference ζ
ϑ2
t − ζ

ϑ1
t and

(
ν

ϑ1
t , t ≥ 0

)
is defined by:

dν
ϑ1
t = d Zt − μλ�(t)∗ζϑ1

t d〈N 〉t , ν
ϑ1
0 = 0.

We will denote by ZT (x, Z T ) the perturbation of ZT (ϑ, ϑ2, Z T ), when ϑ2 = ϑ + x√
T

.

Namely, ZT (x, Z T ) = ZT (ϑ, ϑ + x√
T
, Z T ). For this case, we will denote δϑ,x,T (t) =

δϑ,ϑ+ x√
T
(t).

2.4.1 Ibragimov–Khasminskii program

It follows from Ibragimov–Khasminskii (1981, Theorem I.10.1) that in order to prove Prop-
osition 1.2, it is sufficient to check the three following conditions:

(A.1)

ZT (x, Z T )
law�⇒ exp

{
x .η − x2

2
Iopt (ϑ)

}
with η ∼ N (

0, Iopt (ϑ)
)
,

(A.2) for some χ > 0:

Eϑ

√
ZT (x, Z T ) ≤ exp

(−χx2)

(A.3) there exists C > 0 such that

Eϑ

(√
ZT (x1, Z T ) −

√
ZT (x2, Z T )

)2 ≤ C |x1 − x2|2.

We present here the proof of Proposition 1.2 by checking the three conditions.

Proof Since (see Lemma 2.1 and Proposition 2.1)

lim
T →∞

μ2λ2

2

T∫
0

δ∗
ϑ,x,T (t)�(t)�∗(t)δϑ,x,T (t)d〈N 〉t = x2

2
lim

T →∞
I(ϑ, vopt )

T
= x2

2
Iopt (ϑ) ,

with Iopt (ϑ) = μ2

ϑ4 , we have that

μλ

T∫
0

�∗(t)δϑ1,ϑ2(t)dν
ϑ1
t

law�⇒ N (0, Iopt (ϑ))
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and the condition (A.1) is checked. The condition (A.2) holds thanks to the following chain
of inequalities:

Eϑ

√
ZT (x)

= Eϑ exp

⎛
⎝μλ

2

T∫
0

�∗(t)δϑ,x,T (t)dνϑ
t − μ2λ2

4

T∫
0

δ∗
ϑ,x,T (t)�(t)�∗(t)δϑ,x,T (t)d〈N 〉t

⎞
⎠

= Eϑ exp

⎛
⎝μλ

2

T∫
0

�∗(t)δϑ,x,T (t)dνϑ
t − μ2λ2

8

T∫
0

δ∗
ϑ,x,T (t)�(t)�∗(t)δϑ,x,T (t)d〈N 〉t

⎞
⎠

× exp

⎛
⎝−μ2λ2

8

T∫
0

δ∗
ϑ,x,T (t)�(t)�∗(t)δϑ,x,T (t)d〈N 〉t

⎞
⎠

(a)≤ exp

⎛
⎝−μ2λ2

8

T∫
0

δ∗
ϑ,x,T (t)�(t)�∗(t)δϑ,x,T (t)d〈N 〉t

⎞
⎠

(b)≤ exp
(−χx2) ,

where (a) is Girsanov theorem since

Eϑ exp

⎛
⎝μλ

2

T∫
0

�∗(t)δϑ,x,T (t)dνϑ
t − μ2λ2

8

T∫
0

δ∗
ϑ,x,T (t)�(t)�∗(t)δϑ,x,T (t)d〈N 〉t

⎞
⎠ ≤ 1,

and (b) comes from the proof of (A.1). To prove (A.3), let us note that

Eϑ

(√
ZT (x1) −√

ZT (x2)
)2 = 2

(
1 − EϑZT (x1)

√
ZT (x2)

ZT (x1)

)

= 2
(

1 − Eϑ1

√
ZT (ϑ1, ϑ2)

)
.

The same chain of inequalities (with reverse Hölder inequality and Girsanov theorem) gives:

Eϑ

(√
ZT (x1) −√

ZT (x2)
)2 ≤ 2

(
1 − exp

(−χ1 (x2 − x1)
2))

≤ C |x1 − x2|2,

which ends the proof of Proposition 1.2. ��
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2.5 Proof of Lemma 2.1

From (16), we have

�(t)∗ζt = �(t)∗ϕ(t)

t∫
0

ϕ−1(s)b(s)v(s)d〈N 〉s

= t H− 1
2

t∫
0

(
t

1
2 −H �(t)∗ϕ(t)ϕ−1(s)b(s)s

1
2 −H

) s
1
2 −H

2λ
vsds

= t H− 1
2

t∫
0

g(t, s)
s

1
2 −H

2λ
vsds,

where

g(t, s) = t
1
2 −H �(t)∗ϕ(t)ϕ−1(s)b(s)s

1
2 −H

and (ϕ(t), t ≥ 0) satisfies Eq. (17). From Kleptsyna and Le Breton (2002b), explicit expres-
sion of ϕ(t), t ≥ 0, can be deduced, namely

ϕ(t) = e− ϑ t
2

(
f2,2(t) − f1,2(t)

− f2,1(t) f1,1(t)

)
, det ϕ(t) = e−ϑ t

where

f1,1(t) =
(

ϑ

4

)H

�(1 − H) t H I−H

(
ϑ t

2

)

f1,2(t) =
(

ϑ

4

)H

�(1 − H) t1−H I1−H

(
ϑ t

2

)

f2,1(t) =
(

ϑ

4

)1−H

�(H) t H IH

(
ϑ t

2

)

f2,2(t) =
(

ϑ

4

)1−H

�(H) t1−H IH−1

(
ϑ t

2

)
,

and Iν is the modified Bessel function of the first kind and order ν. Direct computation
leads to

t
1
2 −H �(t)∗ϕ(t) = e− ϑ t

2
√

t

(
CH (IH−1 − IH )

(
ϑ t

2

)
, C1−H (I−H − I1−H )

(
ϑ t

2

))

where CH = (
ϑ
4

)1−H
�(H).

Let us remark that,

Id = 1

CH C1−H

(
C1−H 0

0 CH

)(
CH 0
0 C1−H

)

and

Id = 1

2

(
1 1
1 −1

)(
1 1
1 −1

)
.

123



146 Stat Inference Stoch Process (2012) 15:133–149

Therefore, we can compute

(a) = t
1
2 −H �(t)∗ϕ(t)

(
C1−H 0

0 CH

)(
1 1
1 −1

)

= e− ϑ t
2 (g1(t), g2(t))

with

g1(t) = CH C1−H
√

t (IH−1 − IH + I−H − I1−H )

(
ϑ t

2

)

g2(t) = CH C1−H
√

t (IH−1 − IH − I−H + I1−H )

(
ϑ t

2

)
.

With the same computation we have

(b) = 1

2CH C1−H

(
1 1
1 −1

)(
CH 0
0 C1−H

)
ϕ−1(s)b(s)s

1
2 −H

= e
ϑs
2

(
g̃1(s)
g̃2(s)

)

with

g̃1(s) =
√

s

2
(IH−1 + IH + I−H + I1−H )

(
ϑs

2

)

g̃2(s) =
√

s

2
(−IH−1 − IH + I−H + I1−H )

(
ϑs

2

)
.

Hence

g(t, s) = (a)(b) = e− ϑ t
2 e

ϑs
2 (g1(t)g̃1(s) + g2(t)g̃2(s))

= e−ϑ t eϑs
(

e
ϑ t
2 g1(t)e

− ϑs
2 g̃1(s)

)
+ e− ϑ t

2 g2(t)e
ϑs
2 g̃2(s). (32)

Since CH C1−H = ϑ
4

π
sin π H , (IH − I−H )

(
ϑ t
2

) ∼
t→∞

2 sin π H√
ϑπ t

e− ϑ t
2 , we get

e
ϑ t
2 g1(t) −→

t→∞
√

πϑ.

With property (see Olver 1997)

Iν

(
ϑ t

2

)
= e

ϑ t
2√

πϑ t

(
1 − 4ν2 − 1

4ϑ t
+ O

t→∞

(
1

t2

))
,

we have that

e− ϑs
2 g̃1(s) −→

s→∞
2√
πϑ

,

e− ϑ t
2 g2(t) ∼

t→∞
2H − 1

2t sin(π H)

√
π

ϑ
,

e
ϑs
2 g̃2(s) ∼

s→∞
(2H − 1) sin(π H)

sϑ
√

πϑ
.
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It follows from (15) that

IT (ϑ, v) =
T∫

0

μ2λ2
(

∂

∂ϑ
�(t)∗ζt

)2

d〈N 〉t

=
T∫

0

μ2λ2

⎛
⎝ ∂

∂ϑ
t H− 1

2

t∫
0

g(t, s)
s

1
2 −H

2λ
vsds

⎞
⎠

2

t1−2H

2λ
dt

= T μ2

4

⎡
⎢⎣ 1

T

T∫
0

⎛
⎝

t∫
0

∂

∂ϑ
g(t, s)

s
1
2 −H vs√

2λ
ds

⎞
⎠

2

dt

⎤
⎥⎦ .

Now if we take vopt (s) = √
2λs H− 1

2 then

1

T

T∫
0

(vopt (s))
2d〈N 〉s = 1

T

T∫
0

(vopt (s))
2 s1−2H

2λ
ds = 1

and

IT
(
ϑ, vopt

) = T μ2

4

⎡
⎢⎣ 1

T

T∫
0

⎛
⎝

t∫
0

∂

∂ϑ
g(t, s)ds

⎞
⎠

2

dt

⎤
⎥⎦ = T μ2

4

⎡
⎣ 1

T

T∫
0

(�(t))2 dt

⎤
⎦ .

It follows from the previous asymptotic estimates that for s ≥ 0 we have

lim
t→+∞

∂

∂ϑ
g(t, s) = 0

and by Lebesgue’s theorem for any M ≥ 0

lim
t→+∞

M∫
0

∂

∂ϑ
g(t, s)1(0,t)(s)ds = 0.

Moreover for s and t large enough we obtain

g(t, s) ∼ 2e−ϑ(t−s) + (2H − 1)4

2ϑ2ts
.

The recurrence relations for the derivatives of Bessel functions

I ′
ν = Iν+1 + ν

x
Iν and I ′

ν = 1

2
(Iν+1 + Iν−1) (33)

imply that

∂

∂ϑ
g(t, s) ∼ −2(t − s)e−ϑ(t−s) − 2(2H − 1)4

2ϑ3ts
.
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Therefore
t∫

M

∂

∂ϑ
g(t, s)ds ∼ −2

t∫
M

(t − s)e−ϑ(t−s)ds − 2(2H − 1)4

2ϑ3

ln t − ln M

t

= −2

ϑ2

[
1 − (1 + ϑ(t − M))e−ϑ(t−M)

]
− 2(2H − 1)4

2ϑ3

ln t − ln M

t
.

Finally we obtain

�(t) −→
t→∞

−2

ϑ2

which implies the the mean converges to the same value and therefore

IT
(
ϑ, vopt

) ∼
T →∞

T μ2

ϑ4 .

To conclude recall that

JT (ϑ) = sup
v∈VT

IT (ϑ, v) ≥ IT
(
ϑ, vopt

)
.

which implies

lim inf
T →+∞

JT (ϑ)

T
≥ μ2

ϑ4 = sup
w∈L2(R),||w||2 =1

(Cw,w).

Remark 2 It is possible to obtain the behavior, as t → ∞, of

G(t, s) = μ

2

∂

∂ϑ
g(t, s)

for any s in a finite interval using the explicit form of g(t, s) in (32) associated to the recur-
rence relation for the derivatives of Bessel functions (33).
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