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Abstract

This paper deals with homogenization of divergence form second order parabolic operators whose coef-
ficients are periodic with respect to the spatial variables and random stationary in time. Under proper mixing
assumptions, we study the limit behaviour of the normalized difference between solutions of the original and
the homogenized problems. The asymptotic behaviour of this difference depends crucially on the ratio be-
tween spatial and temporal scaling factors. Here we study the case of self-similar parabolic diffusion scaling.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

The goal of this paper is to characterize the rate of convergence in the homogenization prob-
lem for a second order divergence form parabolic operator with random stationary in time and
periodic in spatial variables coefficients. We also aim at describing the limit behaviour of a nor-
malized difference between solutions of the original and homogenized problems.
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To avoid boundary effects we study a Cauchy problem that takes the form

∂t u
ε

= div


a
 x

ε
,

t

εα


∇uε


, x ∈ Rn, t > 0,

uε(x, 0) = g(x).
(1)

with α > 0. In this paper we consider the case α = 2. We assume that the matrix a(z, s) =

{ai j (z, s)} is uniformly elliptic, (0, 1)n-periodic in z variable, and random stationary ergodic in
s. We denote Y = (0, 1)n and in what follows identify Y -periodic function with functions define
on the torus Tn .

It is known (see [14,8]) that under these assumptions problem (1) admits homogenization.
More precisely, for any g ∈ L2(Rn), almost surely (a.s.) solutions uε of problem (1) converge,
as ε → 0, to a solution of the homogenized problem

∂t u
0

= div

aeff

∇u0
u0(x, 0) = g(x)

(2)

with a constant (non-random) positive definite matrix aeff. The convergence is in L2(Rn
×(0, T )).

More detailed description of the existing homogenization results is given in Sections 3 and 3.1.
The paper focuses on the rate of this convergence and on higher order terms of the asymptotics

of uε. Our goal is to describe the limit behaviour of the normalized difference ε−1(uε − u0).
Clearly, the main oscillating term of the asymptotics of this normalized difference should be

expressed in terms of the corrector. We recall (see [8,3]) that the equation

∂sχ(z, s) = divz

a(z, s)


∇zχ(z, s)+ I


has a unique up to an additive (random) constant periodic in z and stationary in s solution. Thus,
the gradient ∇zχ is uniquely defined. The principal corrector takes the form εχ

 x
ε
, t
ε2


·

∇u0(x, t). We study the limit behaviour of the expression

U ε(x, t) :=
uε(x, t)− u0(x, t)

ε
− χ

 x

ε
,

t

ε2


· ∇u0(x, t).

For generic stationary ergodic coefficients a(z, s) the family {U ε
} needs not be compact or tight

in L2(Rn
× (0, T )).

For this reason we assume that (see Section 2 for further details)

• The coefficients a(z, s) have good mixing properties.
• The initial function g is sufficiently smooth.

Under these conditions we show (see Theorem 3, Section 6) that U ε converges in law in L2(Rn
×

(0, T )) equipped with the strong topology to a solution of a SPDE with constant coefficients and
an additive noise. This SPDE reads

dU 0
= div


aeff

∇U 0
+ µ

∂3

∂x3 u0


dt + Λ1/2 ∂
2

∂x2 u0 dWt ,

U 0(x, 0) = 0;

(3)

where U 0 is a scalar-valued function of x and t , aeff is the homogenized coefficients matrix, u0

is a solution of (2), Wt = W i j
t is a standard n2-dimensional Wiener process, and µ = µi jk and
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Λ1/2
= (Λ1/2)i jkl are constant tensors with three and four indices, respectively, so that the two

driving terms in (3) take the form

µ
∂3

∂x3 u0
= µi jk ∂3u0

∂x i∂x j∂xk , Λ1/2 ∂
2

∂x2 u0 dWt = (Λ1/2)i jkl ∂2u0

∂x i∂x j dW kl
t ;

here and in what follows we assume summation over repeated indices.
The tensors µ and Λ1/2 are defined in Section 6. We show that problem (3) is well-posed and,

thus, defines the limit law of U ε uniquely.
Notice that under proper choice of an additive constant the mean value of χ(z, s) is equal to

zero. Therefore, the function χ
 x
ε
, t
ε2


∇u0(x, t) converges a.s. to zero weakly in L2(Rn

×(0, T )),

as ε → 0. Therefore, in the weak topology of L2(Rn
× (0, T )), the limit in law of the normalized

difference ε−1(uε(x, t)− u0(x, t)) coincides with that of U ε.
The first results on homogenization of elliptic operators with random statistically homoge-

neous coefficients were obtained in [9,11]. At present there is an extensive literature on this
topic. However, optimal estimate for the rate of convergence is an open issue. In [13] some
power estimates for the rate of convergence were obtained in dimension three and more. In the
recent work [5] a further important progress has been made in this problem.

Parabolic operators with random coefficients depending both on spatial and temporal variables
have been considered in [14]. In the case of a diffusive scaling, the a.s. homogenization theorem
has been proved.

The case of non-diffusive scaling has been studied in [7] under the assumption that the coef-
ficients are periodic in spatial variables and random stationary in time.

It turns out that the structure of the higher order terms of the asymptotics of uε depends cru-
cially on whether the scaling is diffusive or not. Here we study the diffusive scaling. The case of
non-diffusive scaling will be addressed elsewhere.

2. The setup

Let (Ω ,F ,P) be a standard probability space equipped with a measure preserving ergodic
dynamical system Ts , s ∈ R.

Given a measurable matrix function ã(z, ω) = {ãi j (z, ω)}n
i, j=1 which is periodic in z variable

with a period one in each coordinate direction, we define a random field a(z, s) by

a(z, s) = ã(z, Tsω).

Then a(z, s) is periodic in z and stationary ergodic in s.
We consider the following Cauchy problem in Rn

× (0, T ], T > 0:
∂uε

∂t
= div


a
 x

ε
,

t

ε2


∇uε


uε(0, x) = g(x)

(4)

with a small positive parameter ε.
We assume that the coefficients in (4) possess the following properties.

H1 The matrix a(z, s) is symmetric and satisfies a uniform ellipticity conditions that is there
exists λ > 0 such that for all (z, ω) the following inequality holds:

λ|ζ |2 ≤ ã(z, ω)ξ · ξ ≤ λ−1
|ζ |2 for all ζ ∈ Rn .
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H2 The initial condition g is four times continuously differentiable, and for any K > 0 there is
CK > 0 such that

|j|≤4

 ∂ j

(∂x1) j1 . . . (∂xn) jn
g(x)

 ≤ CK (1 + |x |)−K

for all x ∈ Rn , where the sum is taken over all j = ( j1, . . . , jn) with
n

i=1 ji ≤ 4.

It should be noted that under condition H2 for any K > 0 there is CK (T ) > 0 such that a solution
of problem (2) satisfies the estimate

|j|≤4

 ∂ j

(∂x1) j1 . . . (∂xn) jn
u0(x, t)

 ≤ CK (T )(1 + |x |)−K (5)

for all (x, t) ∈ Rn
× [0, T ].

In order to formulate one more condition we introduce the so-called maximum correlation
coefficient. Setting F≤r = σ {a(z, s) : s ≤ r} and F≥r = σ {a(z, s) : s ≥ r}, we define

ρ(r) = sup
ξ1,ξ2

E(ξ1ξ2)

where the supremum is taken over all F≤0-measurable ξ1 and F≥r -measurable ξ2 such that Eξ1
= Eξ2 = 0, and E{(ξ1)

2
} = E{(ξ2)

2
} = 1. We then assume that

H3 The function ρ satisfies the estimate


∞

0 ρ(r)dr < +∞.

Remark 1. Condition H3 is somehow implicit. In applications various sufficient conditions are
often used. In particular, H3 is fulfilled if ρ(r) ≤ cr−(1+δ) for some δ > 0.

Remark 2. In an important particular case we set

a(z, s) = a(z, ξs),

where ξs is a stationary process with values in RN , and a(z, y) satisfies the uniform ellipticity
conditions

λ|ζ |2 ≤ a(z, y)ξ · ξ ≤ λ−1
|ζ |2 for all ζ ∈ Rn, (z, y) ∈ Zn

× RN .

If ξs is Gaussian then condition H3 follows from integrability of the correlation function of ξ·.
If ξs is a diffusion process, then condition H3 can be replaced with some conditions on the

generator of ξs . This case is considered in Sections 3.1 and 7.

3. Homogenization results

In this section we remind of the existing homogenization results for problem (1). Although
we only deal in this paper with the case α = 2, for convenience of the reader we formulate the
homogenization results for all α > 0. To this end we first introduce the so-called cell problem.
For α = 2 it reads

∂sχ(z, s) = div

a(z, s)(I + ∇χ(z, s))


, (z, s) ∈ Tn

× (−∞,+∞) (6)

with I being the unit matrix; here χ = {χ j
}
n
j=1 is a vector function. In what follows for the sake

of brevity we denote diva = div(aI) =
∂
∂zi ai j (z). Also, we assume summation over repeated

indices.
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According to Lemma 4.1, under assumption H1 this equation has a stationary periodic in y
vector-valued solution. This solution is unique up to an additive constant. We define

aeff
= E


Tn

a(z, s)

I + ∇χ(z, s)


dz. (7)

Notice that due to stationarity the expression on the right-hand side does not depend on s.
If α < 2, the cell problem reads

div

a(z, s)(I + ∇χ−(z, s))


= 0, z ∈ Tn

; (8)

here s is a parameter. This equation has a unique up to a multiplicative constant solution. We
then set

aeff
− = E


Tn

a(z, s)

I + ∇χ−(z, s)


dz. (9)

For α > 2 we first define a(z) = Ea(z, s), then introduce a deterministic function χ+(z) as a
periodic solution to the problem

div

a(z)(I + ∇χ+(z))


= 0, z ∈ Tn, (10)

and finally define

aeff
+ =


Tn

a(z)

I + ∇χ+(z)


dz. (11)

The following statement has been obtained in [14,3].

Theorem 1. Let g ∈ L2(Rn), and assume that condition H1 holds. If α = 2, then a solution uε

of problem (1) converges a.s. in L2(Rn
× (0, T )) to a solution of the limit problem (2) with aeff

given by (7).
If α < 2, then a solution uε of problem (1) converges in probability in L2(Rn

× (0, T )) to a
solution of the limit problem (2) with aeff

= aeff
− defined in (9).

If α > 2, then a solution uε of problem (1) converges in probability in L2(Rn
× (0, T )) to a

solution of the limit problem (2) with aeff
= aeff

+ defined in (11).

Notice that only symmetric part of the matrix aeff matters. In particular, a solution of (2) does
not change if we replace aeff with any constant matrix having the same symmetric part.

Remark 3. An alternative way of defining the effective matrix aeff is related to the operator with
reversed time. We define χ− as a stationary solution of the problem

− ∂sχ−(z, s) = div

a(z, s)(I + ∇χ−(z, s))


, (z, s) ∈ (−∞,+∞)× Tn (12)

and set

aeff
=


E


Tn

a(z, s)

I + ∇χ−(z, s)


dz

t
, (13)

where (·)t denotes a transposed matrix. In order to show that (13) and (7) define the same effec-
tive matrix, we multiply the i th component of Eq. (12) by χ j , and the j th component of Eq. (6)
by χ i

− and integrate the resulting relations over Tn
× (0, 1). Subtracting the second relation from

the first one and taking the expectation, we obtain the desired equality.
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3.1. Diffusive dependence on time

In this section as a particular case of (4) we introduce the following problem
∂uε

∂t
= div


ã
 x

ε
, ξ t

ε2


uε


uε(0, x) = g(x)

(14)

with a diffusion process ξs, s ∈ (−∞,+∞), with values in RN or on a compact manifold. This
process is defined on a probability space (Ω ,F ,P). For the sake of definiteness we consider here
the case of a diffusion in RN . The corresponding Itô equation reads

dξt = b(ξt )dt + σ(ξt )dWt ,

here W· stands for a standard N -dimensional Wiener process. The infinitesimal generator of ξ is
denoted by L:

L f (y) = q i j (y)
∂2

∂yi∂y j f (y)+ b(y) · ∇ f (y), y ∈ RN ,

with a N × N matrix q(y) =
1
2σ(y)σ

∗(y). We also introduce the operator

A f (x) = divx (a (x, y)∇x f ) ;

here y is a parameter. Applied to a function f (z, y), L acts on the function y → f (z, y) for z
fixed, and A acts on the function z → f (z, y) for y fixed.

In the diffusive case condition H3 can be replaced with certain assumptions on the generator
L. More precisely, we suppose that the following conditions hold true.

A1. The coefficients a and q are uniformly bounded as well as their first order derivatives in all
variables:

|a(z, y)| + |∇za(z, y)| + |∇ya(z, y)| ≤ C1,

|q(y)| + |∇q(y)| ≤ C1.

The function b as well as its derivatives satisfy polynomial growth condition:

|b(y)| + |∇b(y)| ≤ C1(1 + |y|)N1 .

A2. Both A and L are uniformly elliptic:

C2I ≤ a(z, y), C2I ≤ q(y), with C2 > 0,

where I stands for a unit matrix of the corresponding dimension.
A3. There exist N2 > −1, R > 0 and C3 > 0 such that

b(y)
y

|y|
≤ −C3|y|

N2

for all y, |y| > R.

Under above assumptions the process ξ has a unique invariant probability measure (see [12]).
We assume that ξs is stationary. Then

E f (z, ξs) =


RN

f (z, y)π(y)dy,

where π is a density of the invariant measure.
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Remark 4. Notice that conditions A1–A3 need not imply condition H3. In general, mixing prop-
erties that follow from A1–A3 are weaker than those stated by H3. However, in the diffusive case
these conditions are sufficient for the CLT type results used in the proofs below. This makes the
diffusive case interesting. It should also be noted that in this case the conditions are given in
terms of the process generator, which might be more comfortable in applications.

Let us recall the result of [7] (see also [2]).

Theorem 2. Under Assumptions A1–A3, the solution uε of (14) converges almost surely in the
space L2((0, T )× Rn) to the solution of problem (2) with

aeff
=


RN


Tn

a(I + ∇zχ
0)π(y) dzdy

t
, (15)

χ0 being the solution of the following equation

(A + L)χ0
= −divza(z, y). (16)

Remark 5. Let us show that formulae (15) and (7) are consistent. To this end we apply Ito’s
formula to the product χ i (z, s)χ j

0 (z, ξs). This yields

d(χ iχ
j

0 ) = χ i Lχ j
0 ds + χ iσ∇yχ

j
0 dWs + χ

j
0 divz


a(∇zχ

i
+ ei )


ds

= −χ i divz

a(∇zχ

j
0 + e j )


ds + χ iσ∇yχ

j
0 dWs + χ

j
0 divz


a(∇zχ

i
+ ei )


ds;

here we have used (16), e j stands for the j th coordinate vector in Rn . Integrating this relation in
s from 0 to 1, taking the expectation and considering the stationarity of χ and ξ , we obtain

E


Tn
χ i (z, s)divz


a(z, ξs)(∇zχ

j
0 (z, ξs)+ e j )


dz

= E


Tn
χ

j
0 (z, ξs)divz


a(z, ξs)(∇zχ

i (z, s)+ ei )


dz.

Since a(z, y) is symmetric, this implies

E


Tn
∇zχ

i (z, s) · a(z, ξs)e j dz = E


Tn
∇zχ

j
0 (z, ξs) · a(z, ξs)ei dz,

and (15) follows.

4. Technical statements

In this section we provide a number of technical statements required for formulating and
proving the main results.

Consider an equation

∂sψ(z, s)− div

a(z, s)∇ψ(z, s)


= φ(z, s) (17)

with a stationary in s and periodic in z random function φ.

Lemma 4.1. Let φ ∈ L2
loc(R; H−1(Tn)), and assume that ∥φ∥

2
L2((0,1);H−1(Tn))

≤ C with a non-
random constant C. Assume, moreover, that

Tn
φ(z, s)dz = 0 a.s. (18)
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Then Eq. (17) has a stationary solution ψ ∈ L∞

loc((−∞,+∞); L2(Tn)) ∩ L2
loc((−∞,+∞);

H1(Tn)). It is unique up to an additive (random) constant, and

∥ψ∥
2
L∞(R;L2(Tn))

≤ C1, ∥ψ∥
2
L2((0,1);H1(Tn))

≤ C1. (19)

Proof. Since a proof of this statement is similar to that of Lemmata 2 and 4 in [8], we provide
here only a sketch of the proof. Consider the Green function of (17). It solves a Cauchy problem

∂s G(z, z0, s, s0)− div

a(z, s)∇G(z, z0, s, s0)


= 0, z ∈ Tn, s ≥ s0,

G(z, z0, s0, s0) = δ(z − z0).

From the Harnack inequality and maximum principle it easily follows (see [8]) that for all
s ≥ s0 + 1

∥G(·, z0, ·, s0)− 1∥L2((s,s+1);H1(Tn)) ≤ Ce−ν(s−s0) (20)

with deterministic constants C and ν > 0. Then we have

ψ(z, s) =

 s

−∞


Tn

G(z, ẑ, s, ŝ)φ(ẑ, ŝ) dẑdŝ

=

 s−1

−∞


Tn


G(z, ẑ, s, ŝ)− 1


φ(ẑ, ŝ) dẑdŝ +

 s

s−1


Tn


G(z, ẑ, s, ŝ)


φ(ẑ, ŝ) dẑdŝ,

here we have also used (18). The first term on the right-hand side can be estimated with the help
of (20), the second one by means of the standard energy inequality. This yields the first bound in
(19). By construction, ψ(z, s) is a stationary solution of (17). The second bound in (19) readily
follows from the first one. �

Corollary 1. If the function φ in (17) belongs to L∞(R; W −1,∞(Tn)), then ψ ∈ L∞(R × Tn)

and

∥ψ∥L∞(R×Tn) ≤ C∥φ∥L∞(R;W−1,∞(Tn))

with a deterministic constant C.

Proof. This statement follows from Lemma 4.1 due to the Nash type estimates for solutions of
parabolic equations (see [4, Theorem VII, 3.1]). �

Denote by F a,φ
≤T the σ -algebra σ {a(z, s), φ(x, s) : s ≤ T }. The σ -algebra F a,φ

≥T is defined
accordingly. Let ρa,φ(r) be maximum correlation coefficient of (a, φ). Denote also

l(s) =


Tn


a(z, s)∇zψ(z, s)− E(a(z, s)∇zψ(z, s))


dz.

Lemma 4.2. For the vector-function l(·) the following estimate holds

∥E{l(s) | F a,φ
≤0 }∥L2(Ω) ≤ C


e−νs/2

+ ρa,φ(s/2)

, ν > 0.

Proof. This inequality has been proved in [8, Proof of Lemma 3]. Here we provide an outline of
the proof. We represent

ψ(z, s) = ψ1(z, s)+ ψ2(z, s)

=

 s/2

−∞


Tn


G(z, ẑ, s, ŝ)− 1


φ(ẑ, ŝ) dẑdŝ +

 s

s/2


Tn


G(z, ẑ, s, ŝ)


φ(ẑ, ŝ) dẑdŝ.
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Then

l(s) = l1(s)+ l2(s)

with

l i (s) =


Tn


a(z, s)∇zψ

i (z, s)− E(a(z, s)∇zψ
i (z, s))


dz, i = 1, 2.

Considering (20) we get ∥l1(s)∥L2(Ω) ≤ Ce−νs/2. Since l2(s) is F a,φ
≥s/2-measurable, we obtain

∥E{l2(s) | F a,φ
≤0 }∥L2(Ω) ≤ Cρa,φ(s/2). This yields the desired inequality. �

5. Formal asymptotic expansion

In this section we deal with the formal asymptotic expansion of a solution of problem (1). Al-
though, in contrast with the periodic case, this method fails to work in full generality in the case
under consideration, we can use it in order to understand the structure of the leading terms of the
difference uε − u0. As usually in the multi-scale asymptotic expansion method we consider z =

x/ε and s = t/ε2 as independent variables and use repeatedly the formulae

∂

∂x j f


x,
x

ε


=

 ∂

∂x j f (x, z)+
1
ε

∂

∂z j f (x, z)


z= x
ε

,

∂

∂t
f


t,
t

ε2


=

 ∂
∂t

f (t, s)+
1

ε2

∂

∂s
f (t, s)


s= t

ε

.

We represent a solution uε as the following asymptotic series in integer powers of ε:

uε(x, t) = u0(x, t)+ εu1


x, t,
x

ε
,

t

ε2


+ ε2u2


x, t,

x

ε
,

t

ε2


+ · · · ; (21)

here all the functions u j (x, t, z, s) are periodic in z. The dependence in s is not always stationary.
Substituting the expression on the right-hand side of (21) for uε in (4) and collecting power-

like terms in (4) yield

(ε−1): ∂su1
− divz


a(z, s)∇zu1


= −divz


a(z, s)∇x u0


.

(ε0): ∂su2
− divz


a(z, s)∇zu2


= −∂t u0

+ divx

a(z, s)∇x u0


+ divz


a(z, s)∇x u1


+

divx

a(z, s)∇zu1


.

(ε1): ∂su3
− divz


a(z, s)∇zu3


= −∂t u1

+ divx

a(z, s)∇x u1


+ divz


a(z, s)∇x u2


+

divx

a(z, s)∇zu2


.

We will see later on that dealing with the first three equations is sufficient.
In equation (ε−1) the variables x and t are parameters. By Lemma 4.1 this equation has

a unique stationary solution. The fact that the right-hand side of the equation is of the form
[divz


a(z, s)


] · ∇x u0 suggests that

u1(x, t, z, s) = χ(z, s)∇x u0(x, t)

with a vector-function χ = {χ j (z, s)}n
j=1 solving Eq. (6) that reads

∂sχ − divz

a(z, s)∇zχ


= divz


a(z, s)


,

divza(z, s) stands for ∂
∂zi ai j (z, s). By Lemma 4.1 and Corollary 1 we have χ ∈ (L∞(R×Tn))n ∩

(L2
loc(R; H1(Tn)))n , and
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∥χ j
∥L∞(R×Tn) ≤ C, ∥χ j

∥L2([0,1];H1(Tn)) ≤ C, j = 1, . . . , n (22)

with a deterministic constant C . For the sake of definiteness we assume from now on that
Tn
χ(z, s)dz = 0. (23)

One can easily check that this integral does not depend on s so that the normalization condition
makes sense.

We turn to the terms of order ε0. We do not reprove here the homogenization results (see [14])
and assume that u0 satisfies problem (2) with aeff given by (7). Then assuming the formulae
(ε−1)–(ε0), the right-hand side of equation (ε0) takes the form

−∂t u
0
+ divx


a(z, s)∇x u0

+ divz

a(z, s)∇x u1

+ divx

a(z, s)∇zu1

= divx

{a(z, s)(I + ∇zχ(z, s))− aeff

}∇x u0
+ divz


a(z, s)∇x u1.

By the definition of aeff (see (7)) we have

E


Tn
{a(z, s)(I + ∇zχ(z, s))− aeff

} dz = 0.

Letting

Ψ2,1(s) =


Tn

{a(z, s)(I + ∇zχ(z, s))− aeff
} dz (24)

and

Ψ2,2(z, s) = {a(z, s)(I + ∇zχ(z, s))− aeff
} − Ψ2,1(s)+ divz


a(z, s)⊗ χ(z, s)


(25)

with

divz

a(z, s)⊗ χ(z, s)


=


∂

∂zi


ai j (z, s)χk(z, s)

n

j,k=1
,

we rewrite equation (ε0) as follows

∂su2
− divz


a(z, s)∇zu2

=

Ψ i j

2,1(s)+ Ψ i j
2,2(z, s)

 ∂2

∂x i∂x j u0. (26)

Since the process
 s

0 Ψ2,1(r)dr need not be stationary, we cannot follow any more the same
strategy as in the periodic case. Instead, we consider the equation

∂V ε,1

∂t
= div


a
 x

ε
,

t

ε2


∇V ε,1


+ Ψ i j

2,1

 t

ε2

 ∂2

∂x i∂x j u0(x, t)

V ε,1(0, x) = 0.

(27)

This suggests the representation

uε(x, t) = u0(x, t)+ εχ
 x

ε
,

t

ε2


∇u0(x, t)+ V ε,1

+ ε2v2


x, t,
x

ε
,

t

ε2


+ · · · (28)

with

v2(x, t, z, s) = χ
i j
2,2(z, s)

∂2

∂x i∂x j u0(x, t),
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where χ i j
2,2(z, s) is a stationary zero mean solution of the equation

∂sχ
i j
2,2(z, s)− divz


a(z, s)∇zχ

i j
2,2(z, s)


= Ψ i j

2,2(z, s). (29)

It is straightforward to check that due to (22)–(25) we have

∥Ψ i j
2,2∥L2((0,1);H−1(Tn)) ≤ C, i, j = 1, . . . , n.

Then the conditions of Lemma 4.1 are fulfilled for Eq. (29) and, therefore, this equation has a
stationary solution that satisfies the estimate

∥χ
i j
2,2∥L2([0,1];H1(Tn)) + ∥χ

i j
2,2∥L∞((−∞.+∞);L2(Tn)) ≤ C, i, j = 1, . . . , n (30)

with a deterministic constant C .
By its definition, Ψ2,1(s) is a stationary zero mean process. Denote

χ
i j
2,1(s) =

 s

0
Ψ i j

2,1(r)dr.

Estimates (22) imply that

∥Ψ i j
2,1∥L2(0,1) ≤ C, i, j = 1, . . . , n

with a deterministic constant C . It follows from Lemmata 4.1 and 4.2 that under condition H3 it
holds 

∞

0
∥E{Ψ2,1(s) | F Ψ2,1

≤0 }∥
(L2(Ω)) n2 ds ≤ C


∞

0


e−νs/2

+ ρΨ2,1(s/2)

dy < ∞.

Therefore, the invariance principle holds for this process (see [6, Theorem VIII.3.79]), that is for
any T > 0

εχ2,1


·

ε2


ε→0
−→ Λ1/2W· (31)

in law in the space (C[0, T ])n
2

with

Λi jkl
=


∞

0
E


Ψ i j

2,1(0)Ψ
kl
2,1(s)+ Ψ kl

2,1(0)Ψ
i j
2,1(s)


ds,

here W is a standard n2-dimensional Wiener process. Since the n2
× n2 matrix Λ is symmetric

and positive semi-definite, its square root is well defined.

Remark 6. One can see that the processes χ2,1 and χ2,2 show rather different behaviour. In fact,
since the process χ2,2 is stationary, the function εχ2,2(x/ε, t/ε2) goes to zero, as ε → 0. To the
contrary, by the Central Limit Theorem type arguments, the process εχ2,1(t/ε2) need not tend
to zero on [0, T ], and, thus, it contributes to the asymptotics in question. Under our standing
conditions, this process is of order one.

Lemma 5.1. The functions ε−1V ε,1 converge in law, as ε → 0, in the space C((0, T ); L2(Rn))

to the unique solution of the following SPDE with a finite dimensional additive noise:dV 0,1
= div(aeff

∇V 0,1)dt +

Λ1/2i jkl ∂2

∂x i∂x j u0(x, t)dW kl
t

V 0,1(0, x) = 0.
(32)
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Proof. The proof is a consequence of (31) and the fact that u0(x, t) is a smooth determinis-
tic function that satisfies estimate (5). To see this we introduce an auxiliary function V̌ ε as the
solution to the following Cauchy problem

∂ V̌ ε

∂t
= div(aeff

∇ V̌ ε)+
1
ε
Ψ i j

2,1

 t

ε2

 ∂2

∂x i∂x j u0(x, t)

V̌ ε(0, x) = 0.

For the sake of brevity we denote v0
i j (x, t) =

∂2

∂x i ∂x j u0(x, t). Notice that v0
i j solves the equation

∂tv
0
i j = div(aeff

∇v0
i j ) for all i, j = 1, . . . , n. Then one can easily check that

V̌ ε(x, t) = εχ
i j
2,1

 t

ε2


v0

i j (x, t). (33)

Our first goal is to show that

∥ε−1V ε,1
− V̌ ε

∥L2((0,T )×Rn) −→ 0 in probability. (34)

To this end we represent ε−1V ε,1 as

ε−1V ε,1
= εχ

i j
2,1

 t

ε2


v0

i j (x, t)+ Z ε(x, t)

and substitute it in (27). This yields the following equation for Z ε:
∂Z ε

∂t
= div


a
 x

ε
,

t

ε2


∇Z ε


+ εχ

i j
2,1

 t

ε2


∂tv

0
i j − div


a
 x

ε
,

t

ε2


∇v0

i j


Z ε(0, x) = 0.

Let ζ = ζ(t) be a continuous function on [0, T ]. Thenζ(·)∂tv
0
i j − div


a


·

ε
,

·

ε2


∇v0

i j


L2(0,T ;H−1(Rn))

≤ C∥ζ∥L∞(0,T ), (35)

where the constant C does not depend on ε. Next, we consider the following Cauchy problem:
∂Zε

∂t
= div


a
 x

ε
,

t

ε2


∇Zε


+ ζ(t)


∂tv

0
i j − div


a
 x

ε
,

t

ε2


∇v0

i j


Zε(0, x) = 0.

(36)

With the help of energy estimates we derive from (35) that

∥Zε
∥L2(0,T ;H1(Rn)) + ∥∂t Zε

∥L2(0,T ;H−1(Rn)) ≤ C∥ζ∥L∞(0,T ).

Due to (5) and the definition of v0, for any K > 0 we have

|v0
i j (x, t)| + |∇xv

0
i j (x, t)| ≤ CK (T )(1 + |x |)−K , (x, t) ∈ Rn

× [0, T ],

for some CK (T ) > 0. From this estimate we deduce (see [10]) that almost surely for a subse-
quence the function Zε converges in C([0, T ]; L2(Rn)) to some function Z 0. In order to char-
acterize Z 0, assume for a while that ζ is smooth. For an arbitrary ϕ ∈ C∞

0 ((0, T )× Rn) we use
in the integral identity of problem (36) the following test function

ϕε(x, t) = ϕ(x, t)+ εχ−

 x

ε
,

t

ε2


∇ϕ(x, t)
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with χ− defined in (12). Setting aε(x, t) = a
 x
ε
, t
ε2


, χε−(x, t) = χ−

 x
ε
, t
ε2


, after integration by

parts in this integral identity and straightforward rearrangements we obtain

−

 T

0


Rn

Zε

∂tϕ + (aε)i j∂x i ∂x jϕ + (aε)i j∂z j (χ

ε
−)

k∂x i ∂xkϕ

+ ∂zi [(aε)i j (χε−)
k
]∂x j ∂xkϕ


dxdt

− ε−1
 T

0


Rn

Zε

∂zi (aε)i j∂x jϕ + ∂s(χ

ε
−)

j∂x jϕ + ∂zi [(aε)i j∂z j (χ
ε
−)

k
]∂xkϕ


dxdt

− ε

 T

0


Rn

Zε

(aε)i j (χε−)

k∂x i ∂x j ∂xkϕ + (χε−)
j∂t∂x jϕ


dxdt

=

 T

0


Rn


ζϕ∂tv

0
lm − ζv0

lm{(aε)i j∂x i ∂x jϕ

− (aε)i j∂zi (χ
ε
−)

k∂x j ∂xkϕ − ∂z j [(aε)i j (χε−)
k
]∂x i ∂xkϕ}


dxdt

− ε−1
 T

0


Rn


ζv0

lm{∂s(χ
ε
−)

k
+ ∂zi ((aε)i j∂z j (χ

ε
−)

k)+ ∂zi (aε)ik
}∂xkϕ


dxdt

− ε

 T

0


Rn


v0

lm(χ
ε
−)

k∂t (ζϕ)+ ζv0
lm(a

ε)i j (χε−)
k∂x i ∂x j ∂xkϕ


dxdt.

Notice that due to Eq. (12) all the terms of order ε−1 are equal to zero. Passing to the limit, as
ε → 0 yields T

0


Rn

Z 0(∂tϕ + div(aeff
∇ϕ)) dxdt =

 T

0


Rn


ζϕ∂tv

0
lm − ζv0

lmdiv(aeff
∇ϕ)


dxdt.

Since v0
lm solves the effective equation, the integral on the right-hand side is equal to zero. There-

fore,

∂t Z 0
− div(aeff

∇Z 0) = 0.

Since Z 0(x, 0) = 0, we conclude that Z 0
= 0.

By the density arguments, Z 0
= 0 for any continuous ζ . Due to the tightness of the family

εχ
i j
2,1

 t
ε2


in C[0, T ] this implies that Z ε converges to zero in probability in L2(Rn

× (0, T )),
and (34) follows.

It remains to pass to the limit in (33) and check that the limit process satisfies (32). Due to (31)
and (33), V̌ ε converges in law in C(0, T ; L2(Rn)) to the process Λ1/2W·v

0 with n2-dimensional
Wiener process Wt . Recalling the definition of v0

i j , we obtain the desired convergence. �

We proceed with equation (ε1). Its right-hand side can be rearranged as follows:

−∂t u
1
+ divx


a(z, s)∇x u1

+ divz

a(z, s)∇xv

2
+ divx


a(z, s)∇zv

2
=


−aeff

⊗ χ(z, s)+ a(z, s)⊗ χ(z, s)+ divz[a(z, s)⊗ χ2,2(z, s)]

+ a(z, s)∇zχ2,2(z, s)
 ∂3

∂x3 u0(x, t) := Ψ3(z, s)
∂3

∂x3 u0(x, t);

here and in what follows the symbol ∂3

∂x3 u0(x, t) stands for the tensor of third order partial

derivatives of u0, that is ∂3

∂x3 =


∂3

∂x i ∂x j ∂xk

n
i, j,k=1; we have also denoted
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a(z, s)⊗ χ(z, s) =

ai j (z, s)χk(z, s)

n
i, j,k=1

and

divz[a(z, s)⊗ χ2,2(z, s)] =

∂zi [ai j (z, s)χkl

2,2(z, s)]
n

j,k,l=1.

We introduce the following constant tensor µ = {µi jk
}
n
i, j,k=1:

µ = E


Tn


−aeff

⊗ χ(z, s)+ a(z, s)⊗ χ(z, s)+ a(z, s)∇zχ2,2(z, s)

dz

with a(z, s)∇zχ2,2(z, s) = {ai j (z, s)∂zlχ lk
2,2(z, s)}n

i, j,k=1, and consider the following problems:
∂Ξε,1
∂t

= div


a
 x

ε
,

t

ε2


∇Ξε,1


+


Ψ3

 x

ε
,

t

ε2


− µ

 ∂3

∂x3 u0(x, t)

Ξε,1(x, 0) = 0,
(37)

and 
∂Ξε,2
∂t

= div


a
 x

ε
,

t

ε2


∇Ξε,2


+ µ

∂3

∂x3 u0(x, t)

Ξε,2(0, x) = 0
(38)

with

µ
∂3

∂x3 u0
= µi jk ∂3u0

∂x i∂x j∂xk , Ψ3
 x

ε
,

t

ε2

 ∂3

∂x3 u0
= Ψ i jk

3

 x

ε
,

t

ε2

 ∂3u0

∂x i∂x j∂xk .

Notice that Ξε,1 and Ξε,2 are scalar-valued functions.

Lemma 5.2. The solution of problem (37) tends to zero a.s., as ε → 0, in L2(Rn
× [0, T ]).

Moreover,

lim
ε→0

E

∥Ξε,1∥2

L2(Rn×[0,T ])


= 0.

Proof. Splitting further the term (Ψ3 − µ) on the right-hand side of (37) into two parts

Ψ3(z, s)− µ = divz[a(z, s)⊗ χ2,2(z, s)] +

(a(z, s)− aeff)⊗ χ(z, s)

+ a(z, s)∇zχ2,2(z, s)− µ


= Ψ3,1(z, s)+ (Ψ3,2(z, s)− µ), (39)

we represent the solution Ξε,1 as the sum Ξ 1
ε,1 and Ξ 2

ε,1, respectively. Denote Ψ ε
3,1(x, t) =

Ψ3,1
 x
ε
, t
ε2


and Ψ ε

3,2(x, t) = Ψ3,2
 x
ε
, t
ε2


. Combining (5) with (30) we conclude that

Ψ ε
3,1

∂3

∂x3 u0


L2([0,T ];H−1(Rn))
≤ Cε. (40)

Indeed, for any φ ∈ L2(0, T : H1(Rn)) we have T

0


Rn


Ψ ε

3,1
∂3

∂x3 u0

φ dxdt

= −ε

 T

0


Rn

ai j,εχ
kl,ε
2,2

 ∂3u0

∂x j∂xk∂x l

∂φ

∂x i +
∂4u0

∂x i∂x j∂xk∂x l φ


dxdt
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with ai j,ε(x, t) = ai j
 x
ε
, t
ε2


and χkl,ε

2,2 (x, t) = χkl
2,2

 x
ε
, t
ε2


. By (5) and (30),

∥ai j,εχ
kl,ε
2,2

∂3u0

∂x j∂xk∂x l ∥L2(Rn×(0,T )) ≤ C,

∥ai j,εχ
kl,ε
2,2

∂4u0

∂x i∂x j∂xk∂x l ∥L2(Rn×(0,T )) ≤ C.

Therefore, T

0


Rn


Ψ ε

3,1
∂3

∂x3 u0

φ dxdt

 ≤ Cε∥φ∥L2(0,T ;H1(Rn)),

and (40) follows. As a consequence of (40) one obtains

∥Ξ 1
ε,1∥L2([0,T ];H1(Rn)) ≤ Cε. (41)

Due to (30) and the properties of u0, we have
Ψ ε

3,2 − µ
 ∂3

∂x3 u0


L2(Rn×(0,T )) ≤ C

with a deterministic C . Using Theorem 1.5.1 in [10] we derive from this estimate that a.s. the
family Ξ 2

ε,1 is compact in L2((0, T ); L2
loc(R

n)). Considering condition H2 and Aronson’s esti-

mate (see [1]), we then conclude that the family Ξ 2
ε,1 is compact in L2(Rn

× (0, T )).
Our next goal is to show that the function


Ψ ε

3,2 −µ


converges a.s. to zero weakly in L2(Q ×

(0, T )) for any cube Q ⊂ Rd . To this end we represent Ψ3,2(z, s) as

Ψ3,2(z, s) = Ψ3,2(s)+ [Ψ3,2(z, s)− Ψ3,2(s)], Ψ3,2(s) =


Tn

Ψ3,2(z, s) dz.

By (22), (30) and the definition of Ψ3,2 (see (39)) we have

∥Ψ3,2 − Ψ3,2∥L2(Tn×(s,s+1)) ≤ C,


Tn
(Ψ3,2(z, s)− Ψ3,2(s)) dz = 0 for all s.

Therefore, Ψ ε
3,2 − Ψ

ε

3,2 converges weakly to zero, as ε → 0, in L2(Q × (0, T )). From the defi-

nition of Ψ3,2 and µ it follows that Ψ3,2 is stationary, and E(Ψ3,2(s)−µ) = 0. By the Birkhoff
ergodic theorem, the function


Ψ
ε

3,2 −µ


converges a.s. to zero weakly in L2(0, T ). Then it also
converges a.s. to zero weakly in L2(Q × (0, T )) for any cube Q ⊂ Rd . This yields the desired
convergence of


Ψ ε

3,2 − µ

.

Due to (5) and periodicity of Ψ3,2 in spatial variable this implies that

Ψ3,2

 x
ε
, t
ε2


−µ


∂3

∂x3 u0

converges a.s. to zero weakly in L2(Rn
× (0, T )). Combining this with the above compactness

arguments, we conclude that a.s. Ξ 2
ε,1 converges to zero in L2(Rn

×(0, T )). Then in view of (41),

Ξε,1 tends to zero in L2(Rn
×(0, T )) a.s. This yields the first statement of the lemma. The second

statement follows from the first one by the Lebesgue dominated convergence theorem. �

According to [14], problem (38) admits homogenization. In particular, Ξε,2 converges a.s. in
L2(Rn

× (0, T )) to a solution of the following problem:
∂Ξ0,2

∂t
= div


aeff

∇Ξ0,2

+ µ

∂3

∂x3 u0(x, t)

Ξ0,2(0, x) = 0
(42)
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This is not the end of the story with the asymptotic expansion because the initial condition is
not satisfied at the level ε1. In order to fix this problem we introduce one more term of order ε1

so that the expansion takes the form

uε(x, t) = u0(x, t)+ ε

χ

 x

ε
,

t

ε2


+ I

 x

ε
,

t

ε2


∇u0(x, t)

+ V ε,1
+ ε2v2


x, t,

x

ε
,

t

ε2


+ · · · . (43)

The initial layer type function I has been added in order to compensate the discrepancy in the
initial condition. This function solves the following problem:

∂I
∂s

= div

a(z, s)∇I


I(0, z) = −χ(0, z).

(44)

Lemma 5.3. The solution of problem (44) decays exponentially as s → ∞. We have

∥I(·, s)∥L∞(Tn) ≤ Ce−νs, ∥I∥L∞([s,s+1];H1(Tn)) ≤ Ce−νs

Proof. The desired statement is an immediate consequence of the fact that


Tn I(z, s)dz =
Tn I(z, 0)dz = 0, the maximum principle and the parabolic Harnack inequality (see [8] for

further details). �

6. Main results

In this section we present the main result. Consider the expression

U ε(x, t) =
uε(x, t)− u0(x, t)

ε
− χ

 x

ε
,

t

ε2


∇x u0. (45)

It is easily seen that U ε is equal to the normalized difference between uε and the first two terms
of asymptotic expansion (43). The limit behaviour of U ε is described by the following statement.

Theorem 3. Under the assumptions H1–H3 the function U ε converges in law, as ε → 0, in the
space L2(Rn

× (0, T )) to a solution of the following SPDE

dU 0
= div


aeff

∇U 0
+ µ

∂3

∂x3 u0


dt + Λ1/2 ∂
2

∂x2 u0 dWt ,

U 0(x, 0) = 0.
(46)

Proof. We set

Vε(x, t) = U ε(x, t)− ε−1V ε,1(x, t)− Ξε,2(x, t)

− I
 x

ε
,

t

ε2


∇u0(x, t)− εχ2,2

 x

ε
,

t

ε2

 ∂2

∂x2 u0(x, t)− Ξε,1(x, t).

Substituting this expression in (1) for uε and combining the above equations, we obtain after
straightforward computations that Vε satisfies the problem

∂

∂t
Vε

− div


a
 x

ε
,

t

ε2


∇Vε


= Rε,

Vε(x, 0) = Rε1
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with

Rε = ε−1∂zi [(a
ε)i j (χεil)

k
] + ((aε) j i∂zi (χ

ε
il)

k)

∂x j ∂xk u0

− (χε) j∂t∂x j u0

− (Iε) j∂t∂x j u0
+ ε(aε)i j (χε2,2)

lk∂x i ∂x j ∂x l ∂xk u0
− ε(χε2,2)

i j∂t∂x i ∂x j u0

and

Rε1 = εχ2,2

 x

ε
, 0


∂x∂x u0(x, 0).

It follows from Lemma 5.3 thatε−1∂zi [(a
ε)i j (Iε)k]∂x j ∂xk u0


L2((0,T );H−1(Rn))

+
(Iε) j∂t∂x j u0


L2((0,T )×Rn)

≤ Cε.

By (22), (23) we obtain(χε) j∂t∂x j u0


L2((0,T );H−1(Rn))
≤ Cε.

Then by (30) we haveε(aε)i j (χε2,2)
lk∂x i ∂x j ∂x l ∂xk u0


L2((0,T )×Rn)

+
ε(χε2,2)i j∂t∂x i ∂x j u0


L2((0,T )×Rn)

≤ Cε

and εχ2,2

 x

ε
, 0


∂x∂x u0(x, 0)


L2(Rn)

≤ Cε.

It remains to estimate the contribution of the term ε−1((aε) j i∂zi (χεil)
k)∂x j ∂xk u0. From the esti-

mates of Lemma 5.3 it is easy to deduce thatε−1(aε) j i∂zi (Iε)k

∂x j ∂xk u0


L2((0,T )×Rn)

≤ C

and that a.s. the family

ε−1((aε) j i∂zi (Iε)k)∂x j ∂xk u0


converges to zero weakly in L2((0, T )×

Rn). Then, using the same compactness arguments as those in the proof of Lemma 5.2 one can
show that the solution of problem

∂Ξε,3
∂t

= div


a
 x

ε
,

t

ε2


∇Ξε,3


+ ε−1(aε)∂z(Iε)


∂x∂x u0

Ξε,3(0, x) = 0

converges a.s. to zero in L2((0, T )× Rn). Moreover,

lim
ε→0

E

∥Ξε,3∥2

L2(Rn×[0,T ])


= 0.

Combining the above estimates we conclude that Rε a.s. tends to zero in L2(Rn
× (0, T )), as

ε → 0, and Rε1 a.s. tends to zero in L2(Rn). Furthermore,

E∥Rε∥2
L2(Rn×(0,T )) → 0, E∥Rε1∥

2
L2(Rn)

→ 0.

By Lemmata 5.2 and 5.3 and estimate (30) it follows that (U ε
− ε−1V ε,1

− Ξε,2) tends a.s. to
zero in L2(Rn

× (0, T )), and

E∥U ε
− ε−1V ε,1(x, t)− Ξε,2(x, t)∥2

L2(Rn×(0,T )) → 0.

By Lemma 5.1 the function ε−1V ε,1 converges in law to a solution of (32). Also, Ξε,2 converges
a.s. to Ξ0,2 in L2(Rn

× (0, T )). This yields the convergence

U ε
−→ V 0,1

+ Ξ0,2
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in law in the space L2(Rn
× (0, T )). It remains to note that due to (32) and (42) the random

function U 0
:= (V 0,1

+ Ξ0,2) satisfies the stochastic PDE (46) as required. �

7. Diffusive case

The goal of this section is to extend the statement of Theorem 3 to the diffusive case.

Theorem 4. Let assumptions A1–A3 be fulfilled. Then the function U ε defined in (45) converges
in law, as ε → 0, in the space L2(Rn

× (0, T )) to the solution of (46).

Proof. The arguments used in the proof of Theorem 3 also apply in the case under consideration.
We used assumption H3 only once, when justified convergence (31). Thus, this convergence
should be reproved under our standing assumptions.

Lemma 7.1. Under assumptions A1–A3 for any K > 0 there exists CK such that the following
estimate holds

∥E{Ψ2,1(s) | F≤0}∥L2(Ω) ≤ CK

e−νs/2

+ (1 + s)−K 
, ν > 0

the function Ψ2,1 has been defined in (24)

Proof. We follow the scheme of proof of Lemma 4.2. Denote

χ(z, s) = χ1(z, s)+ χ2(z, s)

=

 s/2

−∞


Tn


G(z, ẑ, s, ŝ)− 1


divza(ẑ, ξŝ) dẑdŝ

+

 s

s/2


Tn


G(z, ẑ, s, ŝ)


divza(ẑ, ξŝ) dẑdŝ.

Then Ψ2,1(s) = Ψ1(s)+ Ψ2(s) with

Ψ i (s) =


Tn


a(z, ξs)∇zχ i (z, s)− E(a(z, ξs)∇zχ i (z, s))


dz, i = 1, 2.

Considering (20) we obtain the inequality ∥Ψ1(s)∥L2(Ω) ≤ Ce−νs/2. Since Ψ2(s) is F≥s/2-
measurable, we have

∥E{Ψ2(s) | F≤0}∥L2(Ω) = ∥E

E{Ψ2(s) | F≤s/2} | F≤0


∥L2(Ω)

= ∥E

E{Ψ2(s) | F=s/2} | F≤0


∥L2(Ω)

= ∥E


R(ξs/2) | F≤0

∥L2(Ω);

here we have used the Markov property of ξ·. According to [12, Section 2] this yields the desired
inequality. �

From the last Lemma it follows that the invariance principle holds for the process χ2,1(s) (see [6,
Theorem VIII.3.79]), that is (31) holds for any T > 0. The rest of proof of Theorem 4 is exactly
the same as that of Theorem 3. �

Acknowledgement

The work of the first and the third authors was partially supported by ANR STOSYMAP
project ANR-11-BS01-015-02.



1944 M. Kleptsyna et al. / Stochastic Processes and their Applications 125 (2015) 1926–1944

References

[1] D. Aronson, Non-negative solutions of linear parabolic equations, Ann. Sc. Norm. Super. Pisa 22 (1968) 607–694.
[2] F. Campillo, M. Kleptsyna, A. Piatnitski, Homogenization of random parabolic operator with large potential,

Stochastic Process. Appl. 93 (1) (2001) 57–85.
[3] M. Diop, B. Iftimie, E. Pardoux, A. Piatnitski, Singular homogenization with stationary in time and periodic in

space coefficients, J. Funct. Anal. 231 (1) (2006) 1–46.
[4] D. Gilbarg, N. Trudinger, Continuity of solutions of elliptic and parabolic equations, Amer. J. Math. 80 (1958)

931–954.
[5] A. Gloria, F. Otto, An optimal error estimate in stochastic homogenization of discrete elliptic equations, Ann. Appl.

Probab. 22 (1) (2012) 1–28.
[6] J. Jacod, A. Shiryaev, Limit Theorems for Stochastic Processes, second ed., in: Grundlehren der Mathematischen

Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 288, Springer-Verlag, Berlin, 2003.
[7] M. Kleptsyna, A. Piatnitski, Homogenization of random parabolic operators, in: Homogenization and Applications

to Material Sciences (Nice, 1995), in: GAKUTO Internat. Ser. Math. Sci. Appl., vol. 9, Gakkotosho, Tokyo, 1995,
pp. 241–255.

[8] M. Kleptsyna, A. Piatnitski, Homogenization of random nonstationary convection–diffusion problem, Russian
Math. Surveys 57 (4) (2002) 729–751.

[9] S. Kozlov, The averaging of random operators, Mat. Sb. 109 (2) (1979) 188–202.
[10] J.L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites Non Linéaires, Dunod, Gauthier-Villars,

Paris, 1969.
[11] G. Papanicolaou, S.R.S. Varadhan, Boundary value problems with rapidly oscillating random coefficients,

in: Random Fields, Vol. I, II (Esztergom, 1979), in: Colloq. Math. Soc. Jonos Bolyai, vol. 27, North-Holland,
Amsterdam, New York, 1981, pp. 835–873.

[12] E. Pardoux, A. Veretennikov, On the Poisson equation and diffusion approximation. I, Ann. Probab. 29 (3) (2001)
1061–1085.

[13] V. Yurinski, Averaging of an elliptic boundary value problem with random coefficients, Sibirsk. Mat. Zh. 21 (3)
(1980) 209–223.

[14] V. Zhikov, S. Kozlov, O. Oleinik, Averaging of parabolic operators, Tr. Mosk. Mat. Obs. 45 (1982) 182–236.

http://refhub.elsevier.com/S0304-4149(14)00293-2/sbref1
http://refhub.elsevier.com/S0304-4149(14)00293-2/sbref2
http://refhub.elsevier.com/S0304-4149(14)00293-2/sbref3
http://refhub.elsevier.com/S0304-4149(14)00293-2/sbref4
http://refhub.elsevier.com/S0304-4149(14)00293-2/sbref5
http://refhub.elsevier.com/S0304-4149(14)00293-2/sbref6
http://refhub.elsevier.com/S0304-4149(14)00293-2/sbref7
http://refhub.elsevier.com/S0304-4149(14)00293-2/sbref8
http://refhub.elsevier.com/S0304-4149(14)00293-2/sbref9
http://refhub.elsevier.com/S0304-4149(14)00293-2/sbref10
http://refhub.elsevier.com/S0304-4149(14)00293-2/sbref11
http://refhub.elsevier.com/S0304-4149(14)00293-2/sbref12
http://refhub.elsevier.com/S0304-4149(14)00293-2/sbref13
http://refhub.elsevier.com/S0304-4149(14)00293-2/sbref14

	Homogenization of random parabolic operators. Diffusion approximation
	Introduction
	The setup
	Homogenization results
	Diffusive dependence on time

	Technical statements
	Formal asymptotic expansion
	Main results
	Diffusive case
	Acknowledgement
	References


