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On the fundamental solution of heat and stochastic heat

equations

Marina Kleptsyna‡ Andrey Piatnitski § and Alexandre Popier‡

June 17, 2019

Abstract

We consider the generic divergence form second order parabolic equation with
coefficients that are regular in the spatial variables and just measurable in time. We
show that the spatial derivatives of its fundamental solution admit upper bounds that
agree with the Aronson type estimate and only depend on the ellipticity constants of
the equation and the L∞ norm of the spatial derivatives of its coefficients.

We also study the corresponding stochastic partial differential equations and prove
that under natural assumptions on the noise the equation admits a mild solution, given
by anticipating stochastic integration.

2010 Mathematics Subject Classification. 60H15, 60H07, 35A08,
35C15, 35K08.

Keywords. Heat kernel, Aronson’s estimates, stochastic partial differential equation,
mild solution.

1 Introduction

In the first part of the paper we study the fundamental solution Γ = Γ(x, t, y, s) of the
parabolic equation

∂u

∂t
(x, t) = div

[
a
(
x, t
)
∇u(x, t)

]
, (x, t) ∈ Rd × (0, T ]. (1)

The existence of the fundamental solution Γ and the description of its properties is
an old story that has given rise to a vast literature (see among others [7, 11, 16, 6, 9]
and the references therein). One of the most famous result in this field is the Aronson
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estimate (see Inequality (4) and [2, Theorem 7]), which holds under the uniform ellipticity
condition on the diffusion matrix a (see condition (H1)). No regularity assumption on
the coefficients of a is required. To obtain similar estimates on the spatial derivatives of
Γ, it is usually assumed in the existing literature that the matrix a is Hölder continuous
w.r.t. both x and t (see [11], Chapter IV, sections 11 to 13 or [7], Chapter I): for some
~ ∈ (0, 1) ∣∣a (x, t)− a

(
x′, t′

)∣∣ ≤ Ka

(
|x− x′|~ +

∣∣t− t′∣∣~/2) .
Notice that this setting is not well adapted to the stochastic framework, for example if
a(x, t) = a(x, ξt) where ξ is a diffusion process. Indeed, in this case the constant Ka

depends on the continuity properties of ξ and is random (see for example [3] for details).
Hence the constants in the estimate of ∇xΓ need not be uniformly bounded if we follow
directly this construction.

Our first goal in the paper is to obtain Aronson type estimates for the spatial derivatives
of Γ, without any regularity assumption on the dependence t 7→ a(x, t). We impose only
a uniform Lipschitz continuity condition on the dependence x 7→ a(x, t). Then the upper
bounds only depend on the ellipticity constants and L∞ norm of the gradient of the
coefficients (see Theorem 1). To our best knowledge, this result is new, we did not succeed
to find it in the existing literature. We believe that it is of essential interest for theory of
parabolic operators.

In the second part of this paper we deal with the following stochastic heat equation:

dv(x, t)− div
[
a
(
x, t
)
∇v(x, t)

]
dt = G (x, t) dBt (2)

with the initial condition v(x, 0) = 0 (see Remark 1 for more general initial value). B is
a standard Brownian motion, generating the filtration F = (Ft, t ≥ 0). The matrix a
is supposed to be a measurable function from R

d × [0,+∞[×Ω into Rd×d and for each
(x, t) ∈ Rd× [0,+∞[, a(x, t) is Ft-measurable. This stochastic partial differential equation
(SPDE in short) in divergence form is somehow classical and among many other we refer
to the books [7, 11] on PDE in divergence form, [4, 5, 10, 14, 17] on SPDE (and the
references therein).

Our aim is to prove that the SPDE in (2) admits a mild solution v given by:

v(x, t) =

∫ t

0

∫
Rd

Γ(x, t, y, s)G (y, s) dydBs, (3)

where Γ is the fundamental solution of the equation in (1).
If the matrix a is deterministic, Γ is also deterministic and the existence of a mild

solution v given by (3) is well known (see [17, Chapter 5]). However, when a is random,
the stochastic integral in (3) has to be defined properly since Γ(x, t, y, s) is measurable
w.r.t. the σ-field Ft generated by the random variables Bu with u ≤ t. In other words
Equation (3) involves an anticipating integral. To our best knowledge, there is only one
work on this topic by Alos et al. [1]. Compared to our setting, the authors in [1] consider
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a space-time Wiener process, but the matrix a is Hölder continuous in time1 (condition
(A3) in [1]).

From the first part of this paper, we know that Γ and its spatial derivative admit
Aronson’s type upper bounds and we extend these bounds to the Malliavin derivatives of
Γ, again without regularity assumption on a w.r.t. t (see Theorem 2 and, in the diffusion
case, Corollary 1).

Finally, since our noise is a one parameter Brownian motion, we also want to obtain
a regular mild solution v on Rd × (0, T ) in the sense of Definition 1 of Equation (2).
Compared to [1], since we have no space noise, we do not impose any condition on the
dimension d and our solution is derivable w.r.t. x (see Theorem 3 and Corollary 2).

In a recent paper paper [15] a similar subject is handled with a parametrix construc-
tion. However, since the studied operator is not in the divergence form, the authors have
to impose more regularity assumptions on the diffusion matrix a. Also, the SPDEs inves-
tigated in this paper are rearranged in such a way that the anticipating stochastic calculus
can be avoided.

The paper is organized as follows. In Section 2 we consider the generic heat equation
(1) and its fundamental solution Γ. We prove that the spatial derivatives of Γ admit an
Aronson’s type upper bound, without any time regularity condition on a. Our result is
presented in Theorem 1.

In the next section 3, we assume that the matrix a is random. Using the arguments
developed in the previous section, we a number of estimates for the Malliavin derivative
of Γ and of ∇Γ, see Theorem 2. We also study the particular case where the randomness
is given by the solution of a SDE (diffusion case, section 3.2).

In Section 4 we construct a mild solution v of the SPDE in (2). Here we use anticipating
calculus and the properties of the fundamental solution Γ of a parabolic equation with
random coefficients. In the first part of this section we provide our assumptions and
formulate the main result concerning a mild solution (Theorem 3 and Corollary 2 in the
diffusion case). Section 4.2 is devoted to the proof of those results.

2 Estimate for the spatial derivative of the fundamental so-
lution

Our goal here is to obtain an upper bound for the derivative of the fundamental solution
Γ for the PDE (1). On the matrix a : Rd × [0,+∞) → R

d×d we impose the following
conditions.

(H1) Uniform ellipticity. For any (t, x, ζ) ∈ R+ ×Rd ×Rd

λ−1|ζ|2 ≤ a(x, t)ζ · ζ ≤ λ|ζ|2.
1At the end of [1, section 5], the authors make a remark and give an example on this time regularity

assumption.
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(H2) The matrix a is measurable on Rd ×R+, and for any t ≥ 0 the function a(·, t) is of
class C1 w.r.t. x ∈ Rd. Moreover, there is a constant Ka such that for all t and x

|∇a(x, t)| ≤ Ka.

We denote by L the operator: L = div
[
a
(
x, t
)
∇
]
, then (1) can be written:

∂u

∂t
(x, t) = Lu(x, t).

It is well known (see among other [2] or [6]) that under condition (H1) there exist two
constants ς > 0 and $ > 0 depending only on the constant λ in Assumption (H1) and
the dimension d, such that

0 ≤ Γ(x, t, y, s) ≤ gς,$(x− y, t− s); (4)

here and in what follows, for two positive constants c and C, the function gc,C(x, t) is
defined by

gc,C(x, t) = c t−
d
2 exp

(
−C|x|2

t

)
, t > 0, x ∈ Rd.

Inequality (4) is called the Aronson estimate2. Our first result reads.

Theorem 1 If the matrix a = a(x, t) satisfies the uniform ellipticity condition (H1) and
the regularity condition (H2), then the (weak) fundamental solution Γ of equation (1)
admits the following estimate: there exist two constants % > 0 and $ > 0 such that

|∇xΓ(x, t, y, s)| ≤ 1√
t− s

g%,$(x− y, t− s); (5)

here $ depends only on the uniform ellipticity constant λ and the dimension d, while %
might also depend on Ka and on T .

Weak fundamental solution is defined in [6, Definition VI.6]. Let us emphasize that these
estimates are coherent with [6, Theorem VI.4]. The novelty is that the regularity of a
w.r.t. t is not required. The rest of this section is devoted to the proof of this theorem.

2.1 When a does not depend on x.

First assume that a just depends on t. In this case the fundamental solution Γ is
denoted by Z and is given by the formula: for any s < t and (x, y) ∈ (Rd)2

Z(x− y, t, s) =
1

(2π)d/2

∫
Rd

eiζ(x−y)V (t, s, ζ)dζ, (6)

where V is the following function:

V (t, s, ζ) = exp

(
−
〈∫ t

s
a(u)du ζ, ζ

〉)
.

2The function Γ has a lower bound similar to the upper bound (see [2, Theorem 7])
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Due to Condition (H1) the matrix a verifies the estimates

λ−1(t− s)|ζ|2 ≤
〈∫ t

s
a(u)du ζ, ζ

〉
≤ λ(t− s)|ζ|2.

From the above expression for Z, we deduce that for any k ≥ 1 and 1 ≤ j
`
≤ d with

1 ≤ ` ≤ k

∂kxj1 ...xjk
Z(x− y, t, s) =

(i)k

(2π)d/2

∫
Rd

eiζ(x−y)V (t, s, ζ)(ζj1 . . . ζjk)dζ.

As in [7], Chapter 9, Theorem 1, we obtain that:

|∂kxj1 ...xjkZ(x− y, t, s)| ≤ 1

(t− s)k/2
gς,$(x− y, t− s). (7)

In particular the Aronson estimates (4) and (5) can be derived.
Now we define the parametrix, also denoted by Z, as the fundamental solution of (1)

for a(z, t) where z ∈ Rd is a fixed parameter:

∂u

∂t
(x, t) = div

[
a(z, t)∇u(x, t)

]
.

We have again the representation

∀s ≤ t, Z(x− y, t, s, z) =
1

(2π)d/2

∫
Rd

eiζ(x−y)V (t, s, ζ, z)dζ, (8)

with

V (t, s, ζ, z) = exp

(
−
〈∫ t

s
a(z, u)du ζ, ζ

〉)
.

The above arguments give Estimates (4) and (5). The following statement is equivalent
to Lemma 5 in [7], Chapter 9, Section 3 (see also [7, Theorem I.3.2]).

In the next section, we use the parametrix method to construct Γ when a depends on
both x and t. The following technical result is used several times.

Lemma 1 Suppose that f is a measurable function on Rd × [0,+∞) that satisfies the
estimate

|f(x, t)| ≤ k exp(k|x|2)
for some constants k and k < $/T . Then the integral

F (x, t) =

∫ t

0

(∫
Rd

Z(x− ζ, t, s, ζ)f(ζ, s)dζ

)
ds

is well defined for 0 ≤ t ≤ T , continuous on Rd× [0, T ], and the derivative ∇xF exists for
0 < t ≤ T and

∇xF (x, t) =

∫ t

0

(∫
Rd

∇xZ(x− ζ, t, s, ζ)f(ζ, s)dζ

)
ds.

Proof. We skip the proof of this Lemma because it is the same as the proof of Lemma
IX.5 in [7] (see also [7], Chapter 1, Section 3 for more details). �
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2.2 Parametrix method and the estimate on the gradient

The parametrix method suggests to construct Γ in the form

Γ(x, t, y, s) = Z(x− y, t, s, y)

+

∫ t

s

∫
Rd

Z(x− ζ, t, r, ζ)Φ(ζ, r, y, s)dζdr. (9)

If the function Φ is measurable and satisfies a suitable growth condition, we can apply
Lemma 1. Then Γ is the fundamental solution if and only if

Φ(x, t, y, s) = K(x, t, y, s) +

∫ t

s

∫
Rd

K(x, t, ζ, r)Φ(ζ, r, y, s)dζdr,

where

K(x, t, y, s) = div
[(

a
(
x, t
)
− a
(
y, t
))
∇xZ(x− y, t, s, y)

]
.

Notice that in the expression a
(
x, t
)
− a
(
y, t
)
, the matrix is evaluated two times at the

same time t. Hence formally the function Φ is the sum of iterated kernels

Φ(x, t, y, s) =
∞∑
m=1

Km(x, t, y, s) (10)

with Km defined by

Km(x, t, y, s) =

∫ t

s

∫
Rd

K(x, t, ζ, r)Km−1(ζ, r, y, s)dζdr.

Let us follow the scheme of [7] to obtain (5). Remark that continuity of a w.r.t. t is
not assumed. We will use the following notations: ai is the i-th column of a, γ is the
vector-function such that

γi(x, t) = div(ai(x, t)) =

n∑
j=1

∂aji
∂xj

(x, t).

Note that under (H2), γ is bounded. The kernel K satisfies:

K(x, t, y, s) =

n∑
i,j=1

(aij(x, t)− aij(y, t))
∂2Z

∂xi∂xj
(x− y, t, s, y)

+

n∑
i=1

γi(x, t)
∂Z

∂xi
(x− y, t, s, y). (11)
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Lemma 2 Under (H1) and (H2), the series in (10) converge. The sum Φ is measurable
and satisfies the estimate

|Φ(x, t, y, s)| ≤ 1√
t− s

g%,$(x− y, t− s). (12)

The constants % and $ depend on λ and d, whereas % also depends on the Lispchitz constant
Ka and on T .

Proof. From estimate (7) considering Lipschitz continuity of a, we obtain

|K(x, t, y, s)| ≤ Ka|x− y|
1

t− s
gς,$(x− y, t− s)

+ Ka
1√
t− s

gς,$(x− y, t− s)

≤ 1√
t− s

g%,$(x− y, t− s).

Again ς, $ or % may differ from line to line. Thus K satisfies inequality (4.6) of [7],
Chapter 9, Section 4. Then the convergence of the series in (10) can be proved by the
same arguments. Indeed, by Lemma IX.7 in [7] for any η, 0 < η < 1, there is a constant
M(η,$) > 0 depending on η, $ and d such that

|K2(x, t, y, s)| ≤
∫ t

s

∫
Rd

|K(x, t, ζ, r)| |K(ζ, r, y, s)| dζdr

≤
∫ t

s

∫
Rd

1√
(t− r)(r − s)

g%,$(x− ζ, t− r)g%,$(ζ − y, r − s)dζdr

≤
∫ t

s

M(η,$)%2√
(t− r)(r − s)

1

(t− s)
d
2

exp

(
−$(1− η)

|x− y|2

t− s

)
dr

By direct computation (see also Lemma I.2 in [7])∫ t

s

1√
(t−r)(r−s)

dr = π.

Thereby there exist two constants % > 0 and $ > 0 such that

|K2(x, t, y, s)| ≤ g%,$(x− y, t− s).

Iterating this computation we obtain by induction for m ≥ 2:

|Km(x, t, y, s)| ≤ Mm

(1 +m/2)!
(t− s)m/2−1g%,$(x− y, t− s)

where M is a constant depending on % and $, and the symbol (·)! stands for the gamma
function (see the proof of Theorem IX.2 in [7] for the details). The convergence of the
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series and estimate (12) can be then deduced. Namely,

|Φ(x, t, y, s)| ≤ 1√
t− s

g%,$(x− y, t− s)
[∑
m≥1

Mm

(1 +m/2)!
(t− s)(m−1)/2

]
=

1√
t− s

g%,$(x− y, t− s)Θ(t− s).

For t and s in [0, T ], we get: Θ(t− s) ≤ Θ(T ). �
Using Lemma 1, we deduce that Γ is well-defined, and inequality (5) follows from the

formula

∂xjΓ(x, t, y, s) = ∂xjZ(x− y, t, s, y)

+

∫ t

s

∫
Rd

∂xjZ(x− ζ, t, r, ζ)Φ(ζ, r, y, s)dζdr, (13)

together with estimate (7) on Z and (12) on Φ. We underline that only the properties
(H1) and (H2) of a are required to obtain (5). This completes the proof of Theorem 1.

3 Malliavin derivative of the fundamental solution

From now on we suppose that a = a(x, t) are random fields defined on a probability
space (Ω,F ,P) that carries a d-dimensional Brownian motion B and that the filtration
F = (Ft, t ≥ 0) is generated by B, augmented with the P-null sets. The matrix a :
R
d × [0,+∞) × Ω → R

d×d depends3 also on ω and we assume that conditions (H1)
and (H2) are fulfilled uniformly w.r.t. ω. In particular the ellipticity constant λ and the
bound Ka do not depend on ω. Since (H1) and (H2) hold, by Theorem 1 the fundamental
solution Γ of (1) and its spatial derivatives satisfy estimates (4) and (5).

In order to define properly the stochastic integral in (3), we will use the approach
developed in [13] for anticipating integrals and thus Malliavin’s derivatives. In what follows
we borrow some notations from Nualart [12]. Recall that B is a d-dimensional Brownian
motion. Let f be an element of C∞p (Rdn) (the set of all infinitely many times continuously
differentiable functions such that these functions and all their partial derivatives have at
most polynomial growth at infinity) with

f(x) = f(x11, . . . , x
d
1; . . . ;x1n, . . . , x

d
n).

We define a smooth random variable F by:

F = f(B(t1), . . . , B(tn))

for 0 ≤ t1 < t2 < . . . < tn ≤ T . The class of smooth random variables is denoted by S.
Then the Malliavin derivative DtF is given by

Dj
t (F ) =

d∑
i=1

∂f

∂xji
(B(t1), . . . , B(tn))1[0,ti](t)

3Note that here and in the sequel we follow the usual convention and omit the function argument ω.
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(see Definition 1.2.1 in [12]). Dt(F ) is the d-dimensional vector Dt(F ) = (Dj
t (F ), j =

1, . . . , d). Moreover, this derivative Dt(F ) is a random variable with values in the Hilbert
space L2([0, T ];Rd). The space D1,p, p ≥ 1, is the closure of the class of smooth random
variables with respect to the norm

‖F‖1,p =
[
E(|F |p) + E

(
‖DF‖p

L2([0,T ];Rd)

)]1/p
.

For p = 2, D1,2 is a Hilbert space. Then by induction we can define Dk,p the space of
k-times differentiable random variables where the k derivatives are in Lp(Ω). Finally

Dk,∞ =
⋂
p≥1

Dk,p, D∞ =
⋂
k∈N

Dk,∞.

For the Malliavin differentiability property of Γ, we use the approach developed in
Alòs et al. [1]. We assume that, in addition to (H1) and (H2), the matrix a possesses
the following properties:

(H3) For each (x, t) ∈ Rd × [0,+∞), a(x, t) is a Ft-measurable random variable.

(H4) For each (x, t) ∈ Rd × [0,+∞) the random variable a(x, t) belongs to D1,2.

(H5) There exists a non negative process ψ such that for any t ∈ [0, T ] and any x ∈ Rd,

|Dra(x, t)|+ |Dr∇a(x, t)| ≤ ψ(r).

Moreover, ψ satisfies the integrability condition: for some p > 1

E

(∫ T

0
ψ(r)2pdr

)
< +∞.

Note that if (H5) holds, then for all (x, x′, t) ∈ Rd ×Rd ×R+

|Dra(x, t)−Dra(x′, t)| ≤ ψ(r)|x− x′|.

Indeed

aij(x, t)− aij(x
′, t) =

∫ 1

0
∇aij(x

′ + θ(x− x′), t)dθ(x− x′).

We differentiate both sides in the Malliavin sense and we use the estimate on Dr∇a. Our
second main result is

Theorem 2 Under conditions (H1)–(H5), the fundamental solution Γ of (1) and its
spatial derivatives belong to D1,2 for every (t, s) ∈ [0, T ]2, s < t and (x, y) ∈ (Rn)2.
Moreover, there exist two constants % and $ that depend only on the uniform ellipticity
constant λ, the dimension d, on Ka and on T , such that

|DrΓ(x, t, y, s)| ≤ ψ(r)g%,$(x− y, t− s), (14)
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and

|Dr∇xΓ(x, t, y, s)| ≤ ψ(r)√
t− s

g%,$(x− y, t− s). (15)

The quantity ψ is defined by (23). Finally Γ and DrΓ are continuous w.r.t. (x, y) ∈ R2d

and 0 ≤ s < t ≤ T .

Let us emphasize that the constant $ depends only on the uniform ellipticity constant λ
and the dimension d, whereas the constant % also depends on Ka and T .

3.1 Proof of Theorem 2

Let us remark that the construction of Γ in Section 2 applies pathwise, ω by ω. We
want to prove now that in the framework of this section Γ is also Malliavin differentiable.
As a straightforward consequence of (H3) one obtains that for any s < t, the random
variables Z(x− y, t, s), Φ(x, t, y, s) and Γ are Ft-measurable.

Let us first assume that a does not depend on x and consider the Malliavin derivative of
Z. From the representation (6), this derivative can be computed explicitly: for j = 1, . . . , d

Dj
rZ(x− y, t, s) =

1

(2π)d/2

∫
Rd

eiζ(x−y)Dj
rV (t, s, ζ)dζ

= − 1

(2π)d/2

∫
Rd

eiζ(x−y)V (t, s, ζ)

〈∫ t

s
Dj
ra(u)du ζ, ζ

〉
dζ.

Thus

Dj
rZ(x− y, t, s) = Trace

[(∫ t

s
Dj
ra(u)du

)
∂2xZ(x− y, t, s)

]
.

Therefore,

|Dj
rZ(x− y, t, s)| ≤

∣∣∣∣∫ t

s
Dj
ra(u)du

∣∣∣∣ 1

t− s
gς,$(x− y, t− s).

Since the Malliavin derivative of a is bounded by ψ(r), we obtain:

|DrZ(x− y, t, s)| ≤ ψ(r)gς,$(x− y, t− s).

This yields (14). Similar computations give:

Dr∂xjZ(x− y, t, s) = −i 1

(2π)d/2

∫
Rd

eiζ(x−y)V (t, s, ζ)

〈∫ t

s
Dj
ra(u)du ζ, ζ

〉
ζjdζ.

Using the estimate on the third derivative of Z w.r.t. x, we obtain (15):

|Dr∂xiZ(x− y, t, s)| ≤ ψ(r)
1

(t− s)1/2
gς,$(x− y, t− s). (16)

In other words if a does not depend on x, estimates (4), (5), (14) and (15) hold for Z. In
the case a(t) = a(ξt), the constants appearing in inequalities (14) and (15) depend on the
Lipschitz constant of the matrix a(y). Similar computations also show that

|Dr∂
2
xixjZ(x− y, t, s)| ≤ ψ(r)

1

(t− s)
gς,$(x− y, t− s).

We turn to the case of a that depends on both x and t.
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Lemma 3 (Malliavin differentiability of Φ) The function Φ belongs to D1,2 for every
(t, s) ∈ [0, T ]2, s < t and (x, y) ∈ (Rd)2. Moreover, there exists two constants % > 0 and
$ > 0 such that

|DrΦ(x, t, y, s)| ≤ ψ(r)
1√
t− s

g%,$(x− y, t− s). (17)

Proof. Recall that

γi(x, t) = div(ai(x, t)) =

d∑
j=1

∂aji
∂xj

(x, t).

Note that due to Condition (H5) the process γ belongs also to D1,2. According to (11)
the Malliavin derivative of K is given by:

DrK(x, t, y, s) =
n∑

i,j=1

[Draij(x, t)−Draij(y, t)]
∂2Z

∂xi∂xj
(x− y, t, s, y)

+
n∑
i=1

Drγi(x, t)
∂Zε

∂xi
(x− y, t, s, y)

+
n∑

i,j=1

(aij(x, t)− aij(y, t))Dr
∂2Z

∂xi∂xj
(x− y, t, s, y)

+

n∑
i=1

γi(x, t)Dr
∂Z

∂xi
(x− y, t, s, y).

From our previous assumptions and properties we deduce that

|DrK(x, t, y, s)| ≤ ψ(r)
|x− y|
(t− s)

g%,$(x− y, t− s)

+ ψ(r)
1√
t− s

g%,$(x− y, t− s)

+
|x− y|
(t− s)

ψ(r) g%,$(x− y, t− s)

+ ψ(r)
1√
t− s

g%,$(x− y, t− s)

≤ ψ(r)
1√
t− s

g%,$(x− y, t− s).

By induction, using the same techniques as in the proof of Lemma 2), we obtain for m ≥ 2

|DrKm(x, t, y, s)| ≤ Mm

(1 +m/2)!
ψ(r)(t− s)m/2−1g%,$(x− y, t− s)

11



with some constant M > 0 depending on % and $. Indeed, for m = 2

|DrK2(x, t, y, s)| ≤
∫ t

s

∫
Rd

|DrK(x, t, ζ, τ)| |K(ζ, τ, y, s)| dζdτ

+

∫ t

s

∫
Rd

|K(x, t, ζ, τ)| |DrK(ζ, τ, y, s)| dζdτ

≤ 2ψ(r)

∫ t

s

∫
Rd

1√
(t− τ)(τ − s)

g%,$(x− ζ, t− τ)g%,$(ζ − y, τ − s)dζdτ

and the required estimate on the integral can be deduced by the classical arguments. By
the closability of the operator D we conclude that

DrΦ(x, t, y, s) =
∞∑
m=1

DrKm(x, t, y, s) (18)

and that estimate (17) holds. Since ψ(r) belongs to L2(Ω), Φ ∈ D1,2. This completes the
proof of the Lemma. �

We turn to the proof of Theorem 2. Let us show that Γ ∈ D1,2 and that the Gaussian
estimates hold for the Malliavin derivative. From the definition of Γ in (9), the two
previous lemmata and the properties of the Malliavin derivative D we obtain that

DτΓ(x, t, y, s) = DτZ(x− y, t, s, y)

+

∫ t

s

∫
Rd

DτZ(x− ζ, t, τ, ζ)Φ(ζ, τ, y, s)dζdτ

+

∫ t

s

∫
Rd

Z(x− ζ, t, τ, ζ)DτΦ(ζ, τ, y, s)dζdτ. (19)

Inequalities (16) and (17) imply that

|DrΓ(x, t, y, s)| ≤ ψ(r)g%,$(x− y, t− s);

for the details see Lemma I.4.3 in [7]. From equation (13) one can obtain an expression

for the Malliavin derivative of
∂

∂xi
Γ(x, t, y, s):

Dr
∂

∂xi
Γ(x, t, y, s) = Dr

∂Z

∂xi
(x− y, t, s, y)

+

∫ t

s

∫
Rd

Dr
∂Z

∂xi
(x− ζ, t, τ, ζ)Φ(ζ, τ, y, s)dζdτ

+

∫ t

s

∫
Rd

∂Z

∂xi
(x− ζ, t, τ, ζ)DrΦ(ζ, r, y, s)dζdτ.

Again with the help of Lemma I.4.3 in [7], estimates (16) and (17) imply (15). This
achieves the proof.

12



3.2 Diffusion example

Here we consider the special case a(x, t) = a(x, ξt), with a matrix-valued function a
defined on Rd ×Rd such that

a1. a is uniformly elliptic: for any (x, y, ζ) ∈ Rd ×Rd ×Rd

λ−1|ζ|2 ≤ a(x, y)ζ · ζ ≤ λ|ζ|2.

a2. a is continuous on Rd ×Rd and of class C1 w.r.t. x with a bounded derivative: for
any (x, y)

|∇xa(x, y)| ≤ Ka.

The process ξ is given as the solution of the following SDE:

dξt = β(t, ξt)dt+ σ(t, ξt)dBt, (20)

or, in the coordinate form, dξit = βi(t, ξt)dt +
∑d

j=1 σi,j(t, ξt)dB
j
t . We assume that the

matrix-function σ and vector-function β possess the following properties.

c1. σ and b are globally Lipschitz continuous: there exists Kβ,σ > 0 such that

‖σ(t, y′)− σ(t, y′′)‖+ |β(t, y′)− β(t, y′′)| ≤ Kβ,σ|y′ − y′′|.

c2. t 7→ σ(t, 0) and t 7→ β(t, 0) are bounded on R+.

c3. σ and β are at least two times differentiable w.r.t. x with uniformly bounded deriva-
tives. The absolute value of these derivatives does not exceed a constant that is also
denoted by Kβ,σ.

It is well known that under the assumptions c1 and c2, ξ is the unique strong solution of
the SDE (20) and for any T ≥ 0 and any p ≥ 2

E
(

sup
t∈[0,T ]

|ξt|p
)
≤ C,

where C is a positive constant depending on p, T , Kβ,σ and ξ0. The next result can be
found in [12], Theorems 2.2.1 and 2.2.2.

Lemma 4 Under conditions c1– c3, the coordinate ξit belongs to D1,∞ for any t ∈ [0, T ]
and i = 1, . . . , d. Moreover for any j = 1, . . . , d and any p ≥ 1

sup
0≤r≤T

E

(
sup
r≤t≤T

|Dj
rξ
i
t|p
)
< +∞. (21)

The derivative Dj
rξit satisfies the following linear equation:

Dj
rξ
i
t = σi,j(ξr) +

∑
1≤k,l≤d

∫ t

r
σ̃li,k(s)D

j
r(ξ

k
s )dBl

s +
d∑

k=1

∫ t

r
b̃i,k(s)D

j
r(ξ

k
s )ds

13



for r ≤ t a.e. and Dj
rξt = 0 for r > t a.e., where σj is the column number j of the matrix

σ and where for 1 ≤ i, j ≤ d and 1 ≤ l ≤ d, b̃i,j(s) and σ̃li,j(s) are given by:

b̃i,j(s) = (∂xjbi)(ξs), σ̃li,j(s) = (∂xjσi,l)(ξs). (22)

The process ξ belongs to D2,∞ and the second derivatives Di
rD

j
sξkt satisfy also a linear

stochastic differential equation with bounded coefficients.

For any r ∈ [0, T ] we define
ψ(r) = sup

t∈[r,T ]
‖Drξt‖. (23)

From Lemma 4 we have for any p ≥ 2

sup
r∈[0,T ]

E (ψ(r)p) < +∞. (24)

We define for any (x, t) ∈ Rd × [0,+∞)

a(x, t) = a(x, ξt).

Assumptions a1 and a2 imply that Conditions (H1), (H2) and (H3) hold. Moreover
let us assume that the matrix a is smooth w.r.t. y and satisfies the following regularity
conditions.

a3. For any 1 ≤ j, k ≤ d

|∇ya(x, y)|+
∣∣∣∣ ∂2

∂xj∂yk
a(x, y)

∣∣∣∣ ≤ Ka.

Using conditions a2 and a3, the previous lemma and the classical chain rule (see
Proposition 1.2.3 in [12]), we obtain that

Dj
rai,`(x, t) =

∑
k

∂ai,`
∂yk

(x, ξt)D
j
rξ
k
t .

Thus Dra(x, t) = 0 if r > t, while for r ≤ t we have

|Dk
raij(x, t)| ≤

∣∣∣∣∂aij∂y`

∣∣∣∣ |Dr(ξt)| ≤ Kaψ(r). (25)

The same computation shows that

Dk
r

∂aij
∂x`

(x, t) =
∑
k

∂2ai,`
∂x`∂yk

(x, ξt)D
j
rξ
k
t .

Hence ∣∣∣Dk
r

∂aij
∂x`

(x, t)
∣∣∣ ≤ Kaψ(r).

We deduce that a(x, t) belongs to D1,∞ (condition (H4)), the previous computations yield
(H5), and ψ satisfies the integrability condition (24). From Theorems 1 and 2 we deduce
immediately the following result.

14



Corollary 1 Under assumptions a1 – a3 on the matrix a and conditions c1 – c3 on the
coefficients of the SDE (20), if a(x, t) = a(x, ξt), then the fundamental solution Γ of
equation (1) and its spatial derivatives belong to D1,2 and satisfy Estimates (4), (5), (14)
and (15).

4 Mild solution of the heat SPDE

In this last section we construct a mild solution v to the heat SPDE (2) with the initial
condition v(x, 0) = 0, that is we construct a solution v of equation (3).

Remark 1 If the initial condition for v is given by a function ı, then by linearity of the
SPDE, we should add in (3) one term:

v(x, t) =

∫ t

0

∫
Rd

Γ(x, t, y, s)G (y, s) dydBs +

∫
Rd

Γ(x, t, y, 0)ı(y)dy

Under the setting of Theorem 1, this additional term is well defined provided that the
function ı increases no faster than a function exp(cx2) (see [7, Theorem I.7.12]).

Let us specify our setting. We still assume that all hypotheses (H1) to (H5) hold and
we add several conditions on G.

(D1) The function G : Rd × [0,+∞) × Ω → R
d is a progressively measurable function

that satisfies the estimate (1 + |x|)N |G(x, t)| ≤ G(t) for some N > d/2 and some
adapted process G such that

E

(∫ T

0
G(t)2qdt

)
< +∞

with some q > 1.

(D2) For each (x, t) ∈ Rd × [0,+∞), the random variable G(x, t) belongs to D1,2, and for
any t ∈ [0, T ] and any x ∈ Rd,

|DrG(x, t)| ≤ G̃(x, t)ψ(r).

The process ψ is the same as in Condition (H5) and G̃ verifies the growth assump-
tion: (1 + |x|)N |G̃(x, t)| ≤ G(t).

(D3) The constants p of (H5) and q verify: p > q > 2d+ 4.

(D4) The process G verifies P

(
sup
t∈[0,T ]

G(t) < +∞

)
= 1.

Remark 2 Under (D3), we have the weaker condition 1
p + 1

q ≤ 1. From the proofs, we
are aware that this condition (D3) is a little bit too strong. But a relation between p, q
and d is needed with our arguments. In [1], this relation is implicitly given: for example
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in Theorem 3.5, the authors impose p > 8 (for d = 1). (D1) and (D4) is a little bit more
general than in [1] where G is bounded with respect to (x, t).

Moreover the following relations hold:

2 ≤ κ ≤ 2pq

p+ q
⇒ q

q − 1
≤ κq

2q − κ
≤ p, 1

p
+

1

q
≤ 1⇔ 2pq

p+ q
≥ 2,

and
1

2
+
p+ q

2pq
≤ q − 1

q
≤ 1− p+ q

2pq
≤ 2p− 1

2p
.

Let us give our third main result.

Theorem 3 Let assumptions (H1) – (H5) be fulfilled, and assume that conditions (D1) –
(D4) hold. Then on Rd × (0,+∞), the random field v given by (3) is well defined, is
continuous w.r.t. (x, t) and has first derivatives w.r.t. x such that

E

[
sup
x,t

(
|v(x, t)|

2pq
p+q + |∇v(x, t)|

2pq
p+q

)]
< +∞.

Moreover v is a weak solution of the SPDE in (2).

The notion of a weak solution is explained in Definition 1.

4.1 The diffusion case

Again we assume that a(x, t) = a(x, ξt) where ξ is the solution of the SDE in (20). Let
us fix a measurable function g : Rd × [0,+∞)×Rd → Rd such that g is of class C1 w.r.t.
the last component and

G (x, t) = g(x, t, ξt)

Then the Malliavin derivative ofG can be computed by a chain rule argument: DrG (x, t) =
∇yg(x, t, ξt)Drξt. Hence

|DrG (x, t) | ≤ |∇yg(x, t, ξt)|ψ(r).

Let us assume that for some N > d/2:

|g(x, t, y)|+ |∇yg(x, t, y)| ≤ C |y|
(1 + |x|)N

.

Then G(t) = |ξt| is continuous w.r.t. t, thus (D4) holds. And, for any q > 1,

E

(
sup
t∈[0,T ]

|ξt|2q
)
≤ C.

Therefore, (D1) and (D3) are also satisfied. From Theorem 3 we get

Corollary 2 Under conditions a1 – a3 on the matrix a and c1 – c3 on the coefficients of
the SDE, if the previous assumptions are satisfied, then the conclusion of Theorem 3 holds
in the diffusion case.
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4.2 Construction of the mild solution

The rest of the paper is devoted to the proof of Theorem 3. Let us first specify the
meaning of a weak solution of equation (2).

Definition 1 Let v = {v(x, t), (x, t) ∈ Rd × [0,+∞)} be a random field. We say that v
is a weak solution of equation (2) if

• v is continuous on Rd × (0,+∞). Moreover, a.s. for any x ∈ Rd,

lim
t↓0

v(x, t) = 0 ;

• v has all first order partial derivatives in x on Rd × (0,+∞) ;

• for any test function φ ∈ C∞0 (Rd) and for all t ∈ [0, T ] we have

∫
Rd

v(x, t)φ(x)dx+

t∫
0

∫
Rd

a(x, s)∇φ(x)∇v(x, s)dx =

t∫
0

∫
Rd

G(x, s)φ(x)dxdBs.

Our aim is to prove that the random function v given by (3) is a weak solution of the
SPDE (2). The stochastic integral in (3) has to be defined properly since Γ(x, t, y, s) is
measurable w.r.t. the σ-field Ft generated by the random variables Bu with u ≤ t. The
correct definition can be found in [13] and is based on Malliavin’s calculus. To define a
mild solution of (2), let us recall [13, Definition 3.1].

Definition 2 Let L1,2 denote class of scalar processes u ∈ L2([0, T ] × Ω) such that ut ∈
D1,2 for a.a. t and there exists a measurable version of Drut verifying

E

∫ T

0

∫ T

0
|Drut|2drdt < +∞.

L1,2
d is the set of d-dimensional processes whose components are in L1,2.

Proposition 1 For any (t, x) ∈ [0, T ]×Rd, the stochastic integral

v(x, t) =

∫ t

0

∫
Rd

Γ(x, t, y, s)G (y, s) dydBs

is well defined and

E

[∫ T

0

∫
Rd

(v(x, t))2dxdt

]
< +∞.

Proof. From Theorem 2 and condition (D1) on G, we deduce that for each (x, t) ∈
R
d × [0, T ], the process

u(x, t, s) =

∫
Rd

Γ(x, t, y, s)G(y, s)dy (26)

17



is well defined. Aronson’s estimate (4), Hölder’s inequality and condition (D1) lead to:

|u(x, t, s)|2 ≤ C
∫
Rd

gς,$(x− y, t− s)|G(y, s)|2dy ≤ C

(1 + |x|)2N
G(s)2. (27)

Therefore,

E

∫ t

0
|u(x, t, s)|2ds ≤ C2

(1 + |x|)2N
E

∫ t

0
G(s)2ds < +∞. (28)

Moreover,

Dru(x, t, s) =

∫
Rd

[DrΓ(x, t, y, s)G(y, s) + Γ(x, t, y, s)DrG(y, s)] dy.

Therefore, from estimate (14) on DrΓ, Hölder’s inequality and conditions (D1) and (D2)
for G and G̃, we obtain

|Dru(x, t, s)|2 ≤
(∫

Rd

|DrΓ(x, t, y, s)G(y, s) + Γ(x, t, y, s)DrG(y, s)| dy
)2

≤ ψ(r)2C

∫
Rd

g%,$(x− y, t− s)
[
|G(y, s)|2 + |G̃(y, s)|2

]
dy

≤ C

(1 + |x|)2N
ψ(r)2G(s)2. (29)

Applying again the Hölder inequality yields

E

∫ t

0

∫ t

0
|Dru(x, t, s)|2dsdr

≤ C2

(1 + |x|)2N
E

[(∫ t

0
ψ(r)2dr

) q
q−1

] q−1
q

E

[(∫ t

0
G(s)2ds

)q] 1
q

.

Since p ≥ q/(q − 1), using Jensen’s inequality, we obtain

E

∫ t

0

∫ t

0
|Dru(x, t, s)|2dsdr < +∞. (30)

Conditions (28) and (30) are exactly the ones required in Definition 2. Hence u(x, t, s)
belongs to the space L1,2

d and the stochastic integral v(x, t) is well-defined for any (x, t).
Moreover, the isometric property of the anticipating Itô integral holds (see Eq. (3.5) in
[13]):

E((v(x, t))2) = E

∫ t

0
|u(x, t, s)|2ds+ E

∫ t

0

∫ t

0
|Dru(x, t, s)|2dsdr.

From our previous estimates (28) and (30), we obtain that

E

∫ T

0

∫
Rd

(v(x, t))2dxdt

≤ CE

[(∫ T

0
ψ(r)2dr

) q
q−1

] q−1
q

E

[(∫ T

0
G(s)2ds

)q] 1
q

.
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�
We are going to prove that (x, t) 7→ v(x, t) is continuous and x 7→ v(x, t) is differ-

entiable. Note that we cannot directly use [13, Theorem 5.2] since Γ also depends on t.
Even if Γ is continuous on {0 ≤ s < t ≤ T}, the singularity at time t should be han-
dled carefully. We follow some ideas contained in [1, Section 3] and the regularity results
concerning the volume potential (see Lemmata A.1 and A.2 in the Appendix). The main
trick is to transform the anticipating stochastic integral v into a Lebesgue integral.

4.2.1 Another representation of v

Given α ∈ (0, 1) define for any (t, x) ∈ [0, T ]×Rd:

X(x, t) =

∫ t

0

∫
Rd

(t− s)−αDsΓ(x, t, y, s)G(y, s)dyds, (31)

Y (x, t) =

∫ t

0

∫
Rd

(t− s)−αΓ(x, t, y, s)G(y, s)dydBs. (32)

Due to the Aronson estimate (14) on DsΓ and hypothesis (D1) on G the field X is well
defined for any α ∈ [0, 1).

Lemma 5 Assume that 0 ≤ α < 2p−1
2p . Then a.s. (x, t) 7→ X(x, t) is continuous. More-

over, for any α < 1− p+q
2pq and any 1 < δ ≤ 2pq

p+q

E

(
sup
x,t
|X(x, t)|δ

)
+ E

∫ T

0

∫
Rd

|X(x, t)|δdxdt

≤ CE

[(∫ T

0
ψ(s)2pds

)] q
p+q
[
E

(∫ T

0
G(s)2qds

)] p
p+q

.

Assume furthermore that 0 ≤ α < p−1
2p . Then a.s. x 7→ X(x, t) is differentiable:

∇X(x, t) =

∫ t

0

∫
Rd

(t− s)−αDs∇Γ(x, t, y, s)G(y, s)dyds

and if 0 ≤ 2α < 1− p+q
pq , then E

[
sup
x,t
|∇X(x, t)|

2pq
p+q

]
< +∞.

Proof. We already know that DsΓ(x, t, y, s) is continuous w.r.t. (x, y) and s < t. Thanks
to (14), we have a.s.∫

Rd

(t− s)−α|DsΓ(x, t, y, s)|dy

≤
∫
Rd

(t− s)−αψ(s)g%,$(x− y, t− s)dy ≤ Cψ(s)(t− s)−α.
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From our assumption on α and ψ we have∫ t

0
ψ(s)(t− s)−αds ≤

(∫ t

0
ψ(s)2pds

) 1
2p
(∫ t

0
(t− s)−

2pα
2p−1ds

) 2p−1
2p

< +∞.

Moreover, a.s.

sup
y,s
|G(y, s)| ≤ sup

y,s

G(s)

(1 + |y|)N
< +∞.

Arguing as in the proof of Lemma A.1, we get the a.s. continuity of X w.r.t. (x, t). From
estimate (14) on DsΓ we deduce∫

Rd

|DsΓ(x, t, y, s)G(y, s)| dy ≤ Cψ(s)G(s)
1

(1 + |z|)N
.

Let us choose r > 1 such that 1/r + 1/(2p) + 1/(2q) = 1 and αr < 1. Then

|X(x, t)| ≤ C

(1 + |x|)N

∫ t

0
(t− s)−αψ(s)G(s)ds

≤ C

(1 + |x|)N

(∫ t

0
(t− s)−rαds

) 1
r
(∫ t

0
G(s)2qds

) 1
2q
(∫ t

0
ψ(s)2pds

) 1
2p

≤ C

(1 + |x|)N

(∫ T

0
G(s)2qds

) 1
2q
(∫ T

0
ψ(s)2pds

) 1
2p

.

Finally, the Hölder and Jensen inequalities lead to the desired result.
To obtain the differentiability observe that estimate (15) leads to:

(t− s)−α|Ds∇xΓ(x, t, y, s)| ≤ ψ(s)(t− s)−α−1/2g%,$(x− y, t− s).

It then remains to apply the same arguments as above with α+ 1/2 instead of α. �
In the next lemma we prove that Y is well defined and integrable.

Lemma 6 For any (t, s, x) ∈ [0, T ]2 ×Rd and any 0 ≤ α < q−1
q , the process

uα(x, t, s) = (t− s)−α
∫
Rd

Γ(x, t, y, s)G(y, s)dy1[0,t)(s)

belongs to L1,2
d . Moreover, for any 2 ≤ κ ≤ 2pq

p+q it holds

E [|Y (x, t)|κ] ≤ C

(1 + |x|)κN
.

Proof. As was shown in the proof of Proposition 1, we have the upper bound (27) on u
and (29) on Dru. Thus by the Hölder inequality

E

∫ t

0
(t− s)−2α

∣∣∣∣∫
Rd

Γ(x, t, y, s)G(y, s)dy

∣∣∣∣2 ds
≤ C

(1 + |x|)2N

(∫ t

0
(t− s)−

αq
q−1ds

) q−1
q
(

E

∫ t

0
G(s)2qds

) 1
q

< +∞;
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here we have also used the inequality αq
q−1 < 1. Similarly,

E

∫ t

0

∫ t

0
(t− s)−2α |Dru(x, t, s)|2 drds

≤ C

(1 + |x|)2N

[
E

(∫ t

0
G(s)2qds

)] 1
q

[
E

(∫ t

0
ψ(r)2dr

) q
q−1

] q−1
q

.

Since p ≥ q/(q − 1), by the Jensen inequality we derive that the process uα is in L1,2
d .

Now, using [13, Proposition 3.5], we have for any κ ≥ 2

E

(∣∣∣∣∫ t

0

∫
Rd

(t− s)−αΓ(x, t, y, s)G(y, s)dydBs

∣∣∣∣κ)
≤ cκ

(∫ t

0
(t− s)−2α |E(u(x, t, s))|2 ds

)κ/2
+cκ E

[(∫ t

0

∫ t

0
(t− s)−2α |Dru(x, t, s)|2 drds

)κ/2]
.

Combining this with the previous inequalities we get

E

(∣∣∣∣∫ t

0

∫
Rd

(t− s)−αΓ(x, t, y, s)G(y, s)dydBs

∣∣∣∣κ)
≤ C

(1 + |x|)κN

(
E

∫ t

0
G(s)2qds

) κ
2q

+
C

(1 + |x|)κN
E

[(∫ t

0
G(s)2qds

) κ
2q
(∫ t

0
ψ(r)2dr

)κ
2

]

≤ C

(1 + |x|)κN

[
E

∫ T

0
G(s)2qds

] κ
2q

1 +

[
E

(∫ T

0
ψ(r)2dr

) κq
2q−κ

] 2q−κ
2q

 .

This gives the conclusion of the lemma. �
In particular if N > d/2, the process Y belongs to Lκ([0, T ] ×Rd × Ω). We use the

semigroup property of the fundamental solution to derive the desired representation of v.

Lemma 7 For any 0 < α < q−1
q , v(x, t) admits the following representation:

v(x, t) =
sin(πα)

π

∫ t

0

∫
Rd

(t− r)α−1Γ(x, t, z, r)(Y (z, r) +X(z, r))dzdr

−
∫ t

0

∫
Rd

DsΓ(x, t, y, s)G(y, s)dyds, (33)

where X and Y are given by (31) and (32).
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Proof. Recall that for any α ∈ (0, 1),

Γ(x, t, y, s) =
sin(πα)

π

∫ t

s

∫
Rd

(t− r)α−1(r − s)−αΓ(x, t, z, r)Γ(z, r, y, s)dzdr.

Applying Fubini’s theorem for the Skorohod integral we obtain

v(x, t) =

∫ t

0

∫
Rd

Γ(x, t, y, s)G(y, s)dydBs

=
sin(πα)

π

∫ t

0

∫
Rd

[∫ r

0

∫
Rd

(t− r)α−1Γ(x, t, z, r)

(r − s)−αΓ(z, r, y, s)G(y, s)dydBs

]
dzdr.

By Lemma 6 with 0 < α < q−1
q and uα(r, x, s) ∈ L1,2

d , and by [13, Theorem 3.2] we have∫ r

0

∫
Rd

(t− r)α−1Γ(x, t, z, r)(r − s)−αΓ(z, r, y, s)G(y, s)dydBs

= (t− r)α−1Γ(x, t, z, r)Y (z, r)

−
∫ r

0

∫
Rd

(t− r)α−1DsΓ(x, t, z, r)(r − s)−αΓ(z, r, y, s)G(y, s)dyds.

Hence

v(x, t) =
sin(πα)

π

∫ t

0

∫
Rd

(t− r)α−1Γ(x, t, z, r)Y (z, r)dzdr

−sin(πα)

π

∫ t

0

∫
Rd

(t− r)α−1
[∫ r

0

∫
Rd

DsΓ(x, t, z, r)

(r − s)−αΓ(z, r, y, s)G(y, s)dyds

]
dzdr.

Since for 0 ≤ s < r < t ≤ T we have

DsΓ(x, t, y, s) =

∫
Rd

[DsΓ(x, t, z, r)Γ(z, r, y, s) + Γ(x, t, z, r)DsΓ(z, r, y, s)] dz,

then

v(x, t) =
sin(πα)

π

∫ t

0

∫
Rd

(t− r)α−1Γ(x, t, z, r)(Y (r, z) +X(r, z))dzdr

−sin(πα)

π

∫ t

0
(t− r)α−1

[∫ r

0

∫
Rd

(r − s)−αDsΓ(x, t, y, s)G(y, s)dyds

]
dr

By the Fubini theorem we deduce the representation (33). �
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4.2.2 Regularity of the process v

Now we assume that 0 < α < q−1
q and study separately the three terms in the decom-

position (33) of v. Let us begin with the last one, namely

I3(x, t) =

∫ t

0

∫
Rd

DsΓ(x, t, y, s)G(y, s)dyds.

Remark that I3 is equal to X with α = 0. By Lemma 5 with α = 0, a.s. the mapping
(x, t) 7→ I3(x, t) is continuous, x 7→ I3(x, t) is differentiable, and

E

[
sup
x,t

(
|I3(x, t)|

2pq
p+q + |∇I3(x, t)|

2pq
p+q

)]
< +∞.

We proceed with the term I2 given by

I2(x, t) =

∫ t

0

∫
Rd

(t− r)α−1Γ(x, t, z, r)X(z, r)dzdr.

Notice that for all p > q we have 1− p+q
2pq > (q − 1)/q. Therefore, for α < q−1

q by Lemma
5 we obtain

E

(
sup
x,t
|X(x, t)|

2pq
p+q

)
< +∞. (34)

Thus a.s. X is bounded w.r.t. (x, t). Arguing as in the proof of Lemma 5, we show that
for all α such that 1/2 + p+q

2pq < α < q−1
q the term I2 has the same regularity as I3 with

∇I2(x, t) =

∫ t

0

∫
Rd

(t− r)α−1∇Γ(x, t, z, r)X(z, r)dzdr.

Up to now the dimension d plays no role in our estimate, and we only used (D1), (D2)
and the relation p > q > 4. To control I2, we used the fact that supx,t |X(x, t)| is a.s. finite.
The estimate in the next statement does depend on d. Remark that if p > q > 2d + 4,
then

1

2
+

(d+ 2)(p+ q)

4pq
<
q − 1

q
.

Lemma 8 Assume that 1
2 + (d+2)(p+q)

4pq < α < q−1
q . Then

E

[
sup
x,t
|I2(x, t)|

2pq
(p+q) + sup

x,t
|∇I2(x, t)|

2pq
(p+q)

]
< +∞.

Proof. We only detail the arguments for the gradient of I2 ; for I2 itself they are similar.
Note that 1

2 + (d+2)(p+q)
4pq < α is equivalent to

(
α− 3

2 −
d
2δ

)
δ
δ−1 > −1 with δ = 2pq

(p+q) . Thus
by the Hölder inequality:∣∣∣∣∫ t

0

∫
Rd

(t− r)α−1∇Γ(x, t, z, r)X(z, r)dzdr

∣∣∣∣
≤
∫ t

0
(t− r)α−1

(∫
Rd

|∇Γ(x, t, z, r)|
δ
δ−1dz

) δ−1
δ
(∫

Rd

|X(z, r)|δdz
) 1
δ

dr.
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From Estimate (5), we obtain

|∇xΓ(x, t, y, r)|
δ
δ−1 ≤ (t− r)−δ/2(δ−1) g%,$(x− y, t− r)

δ
δ−1

≤ (t− r)−
δ

2(δ−1)
− d

2
1
δ−1 g%′,$′(x− y, t− r)

with (%′, $′) = (%
δ
δ−1 , $ δ

δ−1). This yields

(t− r)α−1
(∫

Rd

|∇Γ(x, t, z, r)|
δ
δ−1dz

) δ−1
δ

≤ C(t− r)α−1(t− r)−
1
2
− d

2δ .

Using again the Hölder inequality we arrive at the estimate∫ t

0
(t− r)α−1

(∫
Rd

|∇Γ(x, t, z, r)|
δ
δ−1dz

) δ−1
δ
(∫

Rd

|X(z, r)|δdz
) 1
δ

dr

≤ C
(∫ t

0
(t− r)(α−

3
2
− d

2δ
) δ
δ−1dr

) δ−1
δ
(∫ t

0

∫
Rd

|X(z, r)|δdzdr
) 1
δ

≤ C
(∫ T

0

∫
Rd

|X(z, r)|δdzdr
) 1
δ

.

Thereby

sup
x,t
|∇I2(x, t)|

2pq
(p+q) ≤ C

(∫ T

0

∫
Rd

|X(z, r)|
2pq

(p+q)dzdr

)
.

Taking the expectation and considering (34) we obtain the desired statement. �
It remains to estimate the term I1 in decomposition (33). It reads

I1(x, t) =

∫ t

0

∫
Rd

(t− r)α−1Γ(x, t, z, r)Y (z, r)dzdr

with Y given by (32). Note that we are not able to obtain boundedness of Y ; to do so we
would have to exchange the expectation and the supremum for an anticipating stochastic
integral. Recall that according to (D3) we have 2pq/(p+ q) > 2d+ 4. Hence the constant
κ in Lemma 6 can be chosen in such a way that 2 < κ < 2d+ 4. Since Y is not bounded,
we will apply Lemma A.2. Denote

Z(x, t) =

∫ t

0

∫
Rd

(t− r)α−1Γ(x, t, u, r)|Y (u, r)|δdudr,

Ẑ(x, t) =

∫ t

0

∫
Rd

(t− r)α−1∇Γ(x, t, u, r)|Y (u, r)|δdudr.

Lemma 9 For any 1
2 + (d+2)(p+q)

4pq < α < q−1
q , there exists 1 < δ < 2pq

(p+q) such that

E

[
sup
x,t

(Z(x, t))
2pq

(p+q)δ + sup
x,t

(
Ẑ(x, t)

) 2pq
(p+q)δ

]
≤ CE

∫ T

0

∫
Rd

|Y (z, r)|
2pq

(p+q)dzdr.
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Proof. Choose 1 < δ < 2pq
(p+q) and θ = 2pq

(p+q)δ > 1. Then∫ t

0

∫
Rd

(t− r)α−1Γ(x, t, z, r)|Y (z, r)|δdzdr

≤
∫ t

0
(t− r)α−1

(∫
Rd

Γ(x, t, z, r)
θ
θ−1dz

) θ−1
θ
(∫

Rd

|Y (z, r)|
2pq

(p+q)dz

) 1
θ

dr

Due to the Aronson estimate the right-hand side here admits the following upper bound:∫ t

0
(t− r)α−1

(∫
Rd

Γ(x, t, z, r)
θ
θ−1dz

) θ−1
θ
(∫

Rd

|Y (z, r)|
2pq

(p+q)dz

) 1
θ

dr

≤ C
∫ t

0
(t− r)α−1−

d
2θ

(∫
Rd

|Y (z, r)|
2pq

(p+q)dz

) 1
θ

dr

≤ C
(∫ t

0
(t− r)(α−1−

d
2θ

) θ
θ−1dr

) θ−1
θ
(∫ t

0

∫
Rd

|Y (z, r)|
2pq

(p+q)dzdr

) 1
θ

≤ C
(∫ T

0

∫
Rd

|Y (z, r)|
2pq

(p+q)dzdr

) 1
θ

;

here the latter inequality holds if
(
α− 1− d

2θ

)
θ
θ−1 > −1, or equivalently α > d+2

2θ =
(d+2)(p+q)

4pq δ.
The computations similar to those in the proof of the previous lemma yield∫ t

0

∫
Rd

(t− r)α−1∇Γ(x, t, z, r)|Y (z, r)|δdzdr ≤ C
(∫ T

0

∫
Rd

|Y (z, r)|
2pq

(p+q)dzdr

) 1
θ

,

if
(
α− 1− 1

2 −
d
2θ

)
θ
θ−1 > −1, or equivalently α > 1

2 + d+2
2θ = 1

2 + (d+2)(p+q)
4pq δ.

�
From Lemmata 9 and A.2 it follows that I1 is a.s. continuous w.r.t. (x, t) and differ-

entiable w.r.t. x. Arguing as in the proof of the above lemma, we obtain

E

[
sup
x,t

(
|I1(x, t)|

2pq
p+q + |∇I1(x, t)|

2pq
p+q

)]
< +∞.

Furthermore, a careful examination of our proofs shows that there exists η > 0 such that
for any h > 0

E
[

sup
x,0≤t≤h

|v(x, t)|
2pq
p+q

]
≤ Chη.

This implies that a.s. for any x ∈ Rd, v(x, t) tends to zero as t goes to zero.
To complete the proof of Theorem 3 consider a function φ ∈ C∞0 (Rd) and

J(t) =

∫
Rd

v(x, t)φ(x)dx+

∫ t

0

∫
Rd

a(x, u)∇v(x, u)∇φ(x)dxdu.
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By the previous Lemmata, J(t) is well defined on [0, T ] with

J(t) =

∫
Rd

(∫ t

0

∫
Rd

Γ(x, t, y, s)G(y, s)dydBs

)
φ(x)dx

+

∫ t

0

∫
Rd

a(x, u)

(∫ u

0

∫
Rd

∇Γ(x, u, y, s)G(y, s)dydBs

)
∇φ(x)dxdu.

By the Fubini theorem

J(t) =

∫ t

0

∫
Rd

(∫
Rd

Γ(x, t, y, s)φ(x)dx

)
G(y, s)dydBs

+

∫ t

0

∫
Rd

(∫ t

s

∫
Rd

∇Γ(x, u, y, s)a(x, u)∇φ(x)dxdu

)
G(y, s)dydBs

=

∫ t

0

∫
Rd

φ(y)G(y, s)dydBs,

since Γ is the fundamental solution of (1).

Appendix

Recall that

V (x, t) =

∫ t

0

∫
Rd

Γ(x, t, y, s)f(y, s)dyds

is the volume potential of f (see [7, Section I.3]). Here we give some results concerning
the regularity of V . The first lemma is closely related to Lemma I.3.1 and Theorem I.3.3
of [7] and Theorem 1 of [8].

Lemma A.1 Assume that f is a bounded measurable function. Then V is continuous
w.r.t. (x, t) ∈ Rd × (0,+∞) and has first continuous derivatives w.r.t. x. Moreover, for
any t > 0 and x ∈ Rd,

∂V

∂xi
(x, t) =

∫ t

0

∫
Rd

∂

∂xi
Γ(x, t, y, s)f(y, s)dyds.

Proof. Fix some x ∈ Rd and t > 0 and consider

J(x, t, s) =

∫
Rd

Γ(x, t, y, s)f(y, s)dy.

This function is continuous with respect to all its arguments x ∈ Rd and 0 ≤ s < t.
Moreover, by (4)

|J(x, t, s)| ≤
∫
Rd

g%,$(x− y, t− s)|f(y, s)|dy ≤ C.
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Since the function
∫ t−ε
0 J(x, t, s)ds is continuous for any sufficiently small ε > 0, this

implies the required continuity of V . For the derivatives, let us consider

J(x, t, s) =

∫
Rd

Γ(x, t, y, s)g(y, s)dy.

For any s < t, it holds

∂J

∂xi
(x, t, s) =

∫
Rd

∂

∂xi
Γ(x, t, y, s)g(y, s)dy.

Now using (5), we have∣∣∣∣ ∂J∂xi (x, t, s)
∣∣∣∣ ≤ (t− s)−1/2

∫
Rd

g%,$(x− y, t− s)|g(y, s)|dy ≤ C(t− s)−1/2.

Therefore the integral ∫ t

0

∂J

∂xi
(x, t, s)ds

converges uniformly with respect to x and t > 0. It follows that for t > 0 and any x, the
derivatives

∂V

∂xi
(x, t) =

∫ t

0

∂J

∂xi
(x, t, s)ds

exist and are continuous. �
Let us give another version of these results.

Lemma A.2 Let g be a measurable function such that for some q > 1 there exists a
constant K ≥ 0 such that for any (x, t) ∈ Rd × (0,+∞)∫ t

0

∫
Rd

[Γ(x, t, y, s) + |∇Γ(x, t, y, s)|] |g(y, s)|qdyds ≤ K.

Then V is continuous w.r.t. (x, t) ∈ Rd × (0,+∞) and has first continuous derivatives
w.r.t. x. Moreover, for any t > 0 and x ∈ Rd,

∂V

∂xi
(x, t) =

∫ t

0

∫
Rd

∂

∂xi
Γ(x, t, y, s)g(y, s)dyds.

Proof. By the Hölder inequality

|J(x, t, s)| ≤
(∫

Rd

Γ(x, t, y, s)dy

) q−1
q
(∫

Rd

Γ(x, t, y, s)|g(y, s)|qdy
) 1
q

.

This implies the uniform convergence of the integral
∫ t
0 J(x, t, s)ds w.r.t. x and t > 0.

Therefore, V is continuous for t > 0. For the derivative, the same arguments give:∣∣∣∣ ∂J∂xi (x, t, s)
∣∣∣∣

≤
(∫

Rd

∣∣∣∣ ∂∂xiΓ(x, t, y, s)

∣∣∣∣ dy) q−1
q
(∫

Rd

∣∣∣∣ ∂∂xiΓ(x, t, y, s)

∣∣∣∣ |g(y, s)|qdy
) 1
q

≤ C(t− s)−(q−1)/(2q).
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The rest of the proof is exactly the same as in the previous lemma. �
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