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Abstract

The purpose of this paper is to extend the results of [13] and [20] concerning the approx-
imation of the solution of some nonlinear second order stochastic PDEs like those satisfied
by a consistent dynamic utilities, see [9, 18]. Indeed, in this works, authors showed that the
solution of a SPDE of this class is the compound of two monotonic stochastic flows satisfy-
ing two SDE. The objective is then to take advantage of this representation to establish a
numerical scheme approximating the SPDE’s solution using Euler’s approximations of the
two stochastic flows. This allows us to avoid a complicated discretization in time and space
of the SPDE for which it seems really difficult to obtain error estimates. The case where
the two flows are solutions of two time-continuous SDEs has been treated in [13] and then
extended to the framework with jumps but with a finite Lévy measure in [20]. In the case
where the measure is infinite, additional terms specific to the truncation method will appear
in our error estimates. In many cases, an optimal choice of parameters allows us to find
a convergence rate equal to those established in [13] and [20]. However we provide some
examples of Lévy measures with much slower convergence rate.

1 Introduction

The main idea of this work and that of [13] and [20] finds its sources in the results of El
Karoui and Mrad [9] and Matoussi and Mrad [18] on the field of dynamic consistent utilities,
introduced under the name of forward utilities by Musiela and Zariphopoulou [21]. This concept
which generalizes the classic utility functions, models possible changes over the time of both the
individual preferences of an agent and the dynamic of the universe of investment. Researchers
in this area have shown that a consistent dynamic utility {U(t, z, ω), t ≥ 0, z ∈ R, ω ∈ Ω} is a
solution of a nonlinear second-order stochastic PDE, which has proven to be very complicated
to study and solve theoretically by standard tools. It is only in [9] that the answers to a large
part of the questions concerning this stochastic PDE have been given. The originality is that
authors have succeeded in linking the solutions of these SPDEs with those of two SDEs. They
have shown that it is more appropriate to consider the SPDE satisfied by the marginal utility
{Uz(t, z, ω)} and then, along the path of a well-chosen process Y , the marginal utility satisfies a
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regular SDE whose unique solution X necessarily satisfies a.s. Xt(uz(y)) = Uz(t, Yt(y)) for any
t (u is the initial given utility function).

Therefore under the assumption that the process Y is such that y 7→ Yt(y) is homeomorphic
flow, one can easily characterize, by making a variable change, the marginal Uz which is written
Uz(t, z) = Xt(uz(Y

−1
t (z))) and then U by integration. These results were later generalized to the

framework with jumps in [18]. Unfortunately, apart from a few special cases, it is complicated,
if not impossible, to obtain closed formulas for the characteristics X and Y (or its inverse Y −1).
This explains the need to study the composition of the approximations of the two SDEs instead
of trying to directly discretize the SPDEs, which is not an easy task.
Let Xn be an approximation of X and ξn be an approximation of ξ := Y −1 for some convergence
parameter n → +∞, our aim is to show that the compound approximation Xn(ω, ξn(ω)) con-
verges to X(ω, ξ(ω)). For this we need to answer the following questions: Which scheme to ap-
proximate the inverse flow ξ? Under which assumptions does the compound approximation ω 7→
Xn(ω, ξn(ω)) converge to the compound map ω 7→ X(ω, ξ(ω)) and in which manner? And finally,
what is the convergence rate and how does it depend on those related to the approximations
Xn to X and ξn to ξ?

Note that our study becomes simple if we make the hypothesis that the pair (X,Xn) is
independent of (ξ, ξn), by using a conditioning argument. This is not the case in this work as
we will explain later. The study is therefore more complex and the classic arguments are not
necessarily effective.
In [13], authors answer some of these questions in a very general framework and establishes a
strong convergence rates for compound maps in complicated situations where the error analysis
was not available so far. Theorem 1 in [13] gives a strong approximation of the compound
Ft(Θt(θ)) where the random fields F and Θ are arbitrary (not a necessarily semimartingales)
and satisfy some space regularities assumptions. The scope of application of this result is
potentially large: the application to utility-SPDE without jumps is developed in Section 3 of
[13] and applications to stochastic processes (possibly non semimartingales) at random times
(possibly non stopping times) are considered in [12], where the nice interplay with unbiased
simulation scheme of Rhee-Glynn [26] is presented.
In this work, we first study the convergence of the compound of two approximations of two SDEs
with jumps and then we develop an application to the resolution of the SPDE utility. To get
an idea of this equation and its complexity, a dynamic utility in our general framework solves,
denoting by Uz and Uzz the first and the second derivative of U with respect to z, the following
second-order fully nonlinear Stochastic partial integro-differential equation (SPIDE) driven by
Lévy noise and of HJB type [18],

dU(t, z) =
(
− zUz(t, z)rt +

∫
R

(U(t, z) +H(t, z, e))ν(de)−Q(t, z, κ∗)
)

dt

+ γ(t, z)dWt +

∫
R
H(t, z, e)Ñ(dt,de), (1)

where W is a d-dimensional Brownian motion and Ñ the compensated version of an independent
Poisson random measure N on [0,∞[×R with intensity measure `(t)dt× ν(de). (γ,H) denotes
the pair diffusion/jump coefficients of U with values in ×Rd×R. The quantity Q(t, z, κ∗) is the
quadratic form given by

Q(t, z, κ∗) =

∫
R

(U +H)
(
t, z(1 + κ∗(t, z)hS(t, e))

)
ν(de)− 1

2Uzz
‖γRz + Uz(t, z)(ηt − αt)‖2

+
1

2Uzz(t, z)
‖
∫
R

(Uz +Hz)
(
t, z(1 + κ∗(t, z)hS(t, e))

)
hS(t, e)ν(de)‖2.
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With r and η denoting the interest rate and the risk premium of the market. hS is a column
vector (d × 1) representing the jump coefficient of the vector of risky-assets prices S = (Si)di=1

of the considered financial market. The process αt is equal to
∫
R h

S(t, e)ν(de) and the vector
zκ∗(t, z) (required to lie at any time t in a set of constraints Rt, assumed to be a linear space
of Rd) denotes the optimal strategy of the investor (with capital z at time t ) and is given by

zκ∗(t, z) = −γ
R
z (t, z) + Uz(t, z)(ηt − αt)

Uzz(t, z)
−

∫
R

(Uz +Hz)
(
t, z(1 + κ∗(t, z)hS(t, e))

)
hS(t, e)ν(de)

Uzz(t, z)
,

γRz denotes the orthogonal projection of the derivative γz of the diffusion vector γ into R.
Both in continuous and discontinuous cases [9, 18], the spatial first derivative of the SPDE
solution is the compound of the solutions of two SDEs with explicit coefficients and driven
by the same Brownian motion W and the same Poisson random measure N ; denote them by
(Xt(x) : t ≥ 0) and (Yt(y) : t ≥ 0), parameterized by their initial space conditions x and y at
time 0. More precisely, the utility-SPDE (1) admits a unique concave (with respect to the space
variable z) solution with marginal Uz characterized by composition of stochastic flows:

Uz(t, z, ω) = Xt

(
uz(ξt(z, ω)), ω

)
, U(0, z, ω) = u(z) (2)

where ξt(z) denotes the inverse flow of y 7→ Yt(y).
The case of continuous semimartingale (H ≡ 0) was considered in [13, Theorem 8] where

authors have shown, using Euler’s schemes to approximate X and ξ, that Xn
t

(
uz(ξ

n
t (z))

)
con-

verge with order 1
2 to the first derivative Uz(t, z) of the solution U of (1) with initial condition

U(0, z) = u(z). The same convergence rate was also established in [20] for a finite measure ν.
The purpose of this paper is to to study the case where the Lévy measure ν is infinite.

The paper is organized as follows. In Section 2, we recall a general convergence result [13,
Theorem 1] estimating the Lp-error ‖Fn(Θn)− F (Θ)‖Lp by assuming locally uniform approxi-
mations of Fn−F , and local-Hölder continuity on F . In Section 3, we give more details on our
model, the main assumptions and then study local and uniform estimates for SDE’s solution
and it space-differential, this results are crucial for establishing our main result (Theorem 5)
for compound Euler schemes with the cutoff of the small jumps related to SDEs with jumps,
through their initial conditions. Contrary to the frameworks of [13] and [20] an optimal con-
vergence rate n−1/2 is not always guaranteed, it depends a lot on the measure ν and on the
regularity of the jump coefficients of the SDEs in the neighborhood of 0. Examples are then
detailed in Section 3.5. Section 4 is dedicated to the proof of Theorem 5. The major difficulty
is to show that the hypotheses of [13, Theorem 1] are satisfied in order to be able to apply
this result to the framework of this paper. Several intermediate results, whose proofs are long
and complex, are necessary to verify all these assumptions. In Section 5, we come back to the
application to utility-SPDE.

2 Lp-approximation of compound random maps

Consider a separable Banach space (E , |.|) and a probability space (Ω,F ,P). Let F be a random
field, i.e. an F ⊗ B(Rd)-measurable mapping (ω, x) ∈ (Ω,Rd) 7→ F (ω, x) ∈ E , continuous in x
for a.e. ω and let Θ : Ω → Rd an Rd-valued F-random variable. Denote by Fn and Θn the
approximations of F and Θ, where n→ +∞ is an asymptotic parameter.
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Along this paper, for p > 0 and for a random variable Z : Ω → E or Rd, we set ‖Z‖Lp =

(E |Z|p)1/p and say that Z ∈ Lp if ‖Z‖Lp < +∞. Despite ‖.‖Lp not being a norm for p < 1, we
refer to it as Lp-norm to simplify the discussion.
The following assumptions implies, as it has been established in [13], a general convergence
result for the compound Fn(Θn) to F (Θ). They also ensure that all the quantities of interest
to us belong to any Lp, with some locally uniform estimates w.r.t. the space dependence.

(H1) For any p > 0, there exist constants α
(H1)
p ∈ [0,+∞[ and C

(H1)
p ∈ [0,+∞[ such that∥∥∥∥∥ sup

|x|≤λ
|F (·, x)|

∥∥∥∥∥
Lp

≤ C(H1)
p λα

(H1)
p , ∀λ ≥ 1. (H1)

(H2) There is a κ ∈]0, 1] such that for any p > 0, there exist constants α
(H2)
p ∈ [0,+∞[ and

C
(H2)
p ∈ [0,+∞[ such that∥∥∥∥∥ sup

x 6=y,|x|≤λ,|y|≤λ

|F (·, y)− F (·, x)|
|y − x|κ

∥∥∥∥∥
Lp

≤ C(H2)
p λα

(H2)
p , ∀λ ≥ 1. (H2)

(H3) For any p > 0, there exist a constant α
(H3)
p ∈ [0,+∞[ and a sequence (ε

n,(H3)
p )N≥1 with

ε
n,(H3)
p ∈ [0,+∞[ such that∥∥∥∥∥ sup

|x|≤λ
|Fn(·, x)− F (·, x)|

∥∥∥∥∥
Lp

≤ εn,(H3)
p λα

(H3)
p , ∀λ ≥ 1,∀N ≥ 1. (H3)

(H4) For any p > 0, there exist a constant C
(H4-a)
p ∈ [0,+∞[ and a sequence (ε

n,(H4-b)
p )N≥1

with ε
n,(H4-b)
p ∈ [0,+∞[ such that

‖Θ‖Lp ∨ ‖Θ
n‖Lp ≤ C

(H4-a)
p , ∀N ≥ 1, (H4-a)

‖Θn −Θ‖Lp ≤ ε
n,(H4-b)
p , ∀N ≥ 1. (H4-b)

These assumptions being satisfied, the following Theorem states an error estimate on the ap-
proximation of F (Θ) by Fn(Θn), as a function of n, through the sequences (εn,(H3)

. )n≥1 and
(εn,(H4-b)
. )n≥1.

Theorem 1 (Gobet-Mrad [13]). Assume (H1)-(H2)-(H3)-(H4-a)-(H4-b). Then for any p > 0
and any p2 > p, there is a constant c(3) independent on N such that

‖Fn(Θn)− F (Θ)‖Lp ≤ c(3)

(
ε
n,(H3)
2p + [εn,(H4-b)

κp2 ]κ
)
, ∀N ≥ 1. (3)

Quite intuitively, the global approximation error inherits the rates from that on F and that
on Θ modified by the local Hölder regularity of x 7→ F (ω, x). Note that there is a second variant
of this Theorem (see [13]) which gives an equivalent conclusion but instead of the λ-polynomial
dependency of the upper bounds in (H1−H2−H3), we consider exponential dependency. This
allow us to analyse the approximation of diffusion process in diffusion time Zt = X|Yt| see [1]
and [12] for this and and for other applications.
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From pointwise to locally uniform estimates From a practical point of view the conditions
(H1-H2-H3) are sometimes very complicated to verify. For example, if x is the time variable,
one can verify that (H1-H2-H3) are satisfied by using Doob inequalities or other martingale
estimates. But in other situations this verification can be complex. One can think of using
the Kolmogorov continuity criterion for random fields [16, Theorem 1.4.1 p.31], but it does not
yield the quantitative estimates we are looking for. However, there is an interesting result that
gives refinement compared to the Kolmogorov criterion. It is the Garsia-Rodemich-Rumsey
lemma [11] (see [22, p.353–354]). This result allows us to go from pointwise estimates to locally
uniform estimates, by assuming Hölder regularity in Lp. In the literature, this approach has
been extensively developed in [4] for studying regularity of local times of continuous martingales
w.r.t. the space variable.

The following two results will be used frequently in this paper. The first one is obtained
from Garsia-Rodemich-Rumsey Lemma [11], see the proof of [13, Theorem 2], while the second
one is a direct application of the first.

Theorem 2 (Gobet-Mrad [13]). Let p > d. Assume that G is F ⊗ B(Rd)-measurable mapping
(ω, x) ∈ (Ω,Rd) 7→ G(ω, x) ∈ E, continuous in x for a.e. ω. Assume that G(x) is in Lp for any
x and that there exist constants C(G) ∈ [0,+∞[, β(G) ∈]d/p, 1] and τ (G) ∈ [0,+∞[ such that

‖G(x)−G(y)‖Lp ≤ C
(G)|x− y|β(G)

(1 + |x|+ |y|)τ (G)
, ∀(x, y) ∈ Rd × Rd. (4)

Then, for any β ∈]0, β(G) − d/p[, we have∥∥∥∥∥ sup
x 6=y,|x|≤λ,|y|≤λ

|G(y)−G(x)|
|y − x|β

∥∥∥∥∥
Lp

≤ c(5)C
(G)λτ

(G)+β(G)−β, ∀λ ≥ 1, (5)

where c(5) is a constant depending only on d, p, β, β(G), τ (G).

A similar result is proved in [25, Theorem 2.1, p.26] using the Kolmogorov criterion, with x
and y in a compact set, i.e. with τ (G) = 0; the quoted result is not sufficient for our study.

As a consequence, we obtain the following result that may serve to easily check (H1).

Corollary 1. Let us consider the assumptions and notations of Theorem 2. Then we have∥∥∥∥∥ sup
|x|≤λ

|G(x)|

∥∥∥∥∥
Lp

≤ c(6)λ
τ (G)+β(G)

, ∀λ ≥ 1, (6)

where c(6) := ‖G(0)‖Lp + c(5)C
(G) where c(5) is defined in Theorem 2 with β = (β(G) − d/p)/2.

In particular, the constant c(5) depends only on d, p, β(G), τ (G).

3 Application to compound schemes

3.1 Problem’s setting

For the rest of the paper, T denotes a finite time horizon and the filtered probability space
(Ω,F,P) is supposed to support two q-dimensional standard Brownian motionsW = (W 1, . . . ,W q)
and B = (B1, . . . , Bq) on [0, T ] and an independent q′-dimensional Poisson random measure N
on [0,∞[×Rq′ with deterministic time dependent intensity measure `(t)dt×ν(de) defined on the
filtered probability space (Ω,F ,F,P). ` is the time intensity of jumps with `([0, T ]) = [0, `max]
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for some `max ∈]0,∞[ and ν is a positive measure on Rq′ , satisfying standard integrability
assumption for Lévy processes: ∫

Rq′
(1 ∧ |e|2)ν(de) < +∞. (7)

We also denote by Ñ the compensated version of N :

Ñ(dt,de) = N(dt,de)− ν(de)`(t)dt.

Depending on the potential applications, we may require that B and W are the same, or differ-
ent, or built from each other, possibly in complicated ways. Actually, observe that we do not
assume that the couple (B,W ) forms a higher-dimensional Brownian motion: this general set-
ting allows flexibility in further applications. As an example for solving utility-SPDE in Section
5, we need to consider B as the backward Brownian motion of W .

We are also concerned by two Rd-valued stochastic processes X and Y , solutions of the following
stochastic differential equations (SDE for short)

dXt(x) = µ(t,Xt(x))dt+

q∑
i=1

σi(t,Xt(x))dW i
t +

∫
Rq′

h(t,Xt−(y), e)Ñ(dt,de), X0(x) = x, (8)

dYt(y) = b(t, Yt(y))dt+

q∑
i=1

γi(t, Yt(y))dBi
t +

∫
Rq′

g(t, Yt−(y), e)Ñ(dt,de), Y0(y) = y, (9)

where µ, b, σi, γi are deterministic functions from [0, T ] × Rd into Rd and h, g are deterministic
functions from [0, T ] × Rd × Rq′ into Rd×q′ , globally Lipschitz in space to ensure the existence
of a unique strong solution.

Denote by Xn
T (x) (resp. Y n

T (y)) the Euler scheme with time step T/n of XT (x) (resp. YT (y)).
Using previous results, we aim at establishing a new convergence result of the compound scheme
Xn
t (Y n

t (y)) to the compound random field Xt(Yt(y)) as n goes to infinity. This approximation
issue is actually motivated by the resolution of some SPDEs (with or without jumps) by com-
position of stochastic flows. Relating compound SDEs to SPDEs is, in a sense, obvious since
it is sufficient to apply an extension of the Itô-Ventzel’s formula established by Øksendal and
Zhang [23, Theorem 3.1] to the compound process V (t, y) := Xt(Yt(y)). Under good regularity
assumptions on (µ, σ, h), the quoted result shows that V (t, y) := Xt(Yt(y)) is still a semimartin-
gale. For simplicity, take d = q = q′ = 1 and W = B, V (t, y) is solution of a second order SPDE,
with stochastic coefficients, given by

dV (t, y) =

[
∂yV (t, y) b(t,Yt(y))

∂yYt(y) + 1
2

(
∂2
yV (t, y)− ∂yV (t, y)

∂2yYt(y)

∂yYt(y)

)
γ2(t,Yt(y))
(∂yYt(y))2

+µ(t, V (t, y)) + ∂yV (t, y)(∂xσ)(t, V (t, y))γ(t,Yt(y))
∂yYt(y)

]
dt

+

∫
R

[
V̄ (t, y, e)− V (t, y)− h(t, V (t, y), e)− ∂yV (t, y)

∂yYt(y)
g(t, Yt(y), e)

]
ν(de)λ(t)dt

+

[
∂yV (t, y)γ(t,Yt(y))

∂yYt(y) + σ(t, V (t, y))

]
dWt +

∫
R

[
V̄ (t, y, e)− V (t−, y)

]
Ñ(dt,de).

Note that V (t−, z) = Xt−(Yt−(z)) and V̄ (t, y, e) is defined by

V̄ (t, y, e) := Xt−

(
Yt−(y) + g(t, Yt−(y), e)

)
+ h
(
t, Yt−(y) + g(t, Yt−(y), e)

)
.
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V̄ (t, ., e) corresponds to V (t, .) after a jump on (t, e) which is the compound of Xt−(.) +
h(t,Xt−(.), e) corresponding to X after a jump on (t, e) and Yt−(.)+g(t, Yt−(.), e) corresponding
to Y after a jump at the same time for the same mark e.

In the reverse direction, i.e., linking SPDE with SDEs is not obvious but it is possible in the
cases considered by Kunita [16, Chapter 6] and utility-SPDEs of [9, 18].

Preliminary results In the following we will often need to control in Lp-norms of a d-
dimensional semimartingales Zt = (Z1

t , Z
2
t , . . . , Z

d
t ) solutions of a stochastic differential equation

of the following form

Zit = zi +

∫ t

0
bisds+

m∑
j=1

∫ t

0
f i,js dŴ j

s +

∫ t

0

∫
Rq′

gi(s, e)Ñ(ds, de), (10)

where Ŵ is a m-dimensional Brownian motion and Z0 = z ∈ Rd 1. To do, we use the following
result established in [17, Theorem 2.11, Corollary 2.12].

Theorem 3. For any p ≥ 2, there exists a positive constant Cp,`max such that

E
[

sup
0<s≤t

|Zs|p
]
≤ Cp,`max

{
|z|p + E

[
(

∫ t

0
|bs|ds)p

]
+ E

[( ∫ t

0
|fs|2ds

) p
2

]
+ E

[( ∫ t

0

∫
Rq′
|g(s, e)|2ν(de)ds

) p
2

]
+ E

[ ∫ t

0

∫
Rq′
|g(s, e)|pν(de)ds

]}
.

3.2 Assumptions

For the rest of the paper, the process X plays the role of the random field F and Y that of Θ
in Theorem 1. In order to apply this Theorem, we need to show that its assumptions namely
(H1-H2-H3-H4) are satisfied by X and Y . As we are concerned with solutions of stochastic
differential equations it is natural to impose certain conditions on their coefficients and not
directly on the solutions. Concerning the X − SDE, we impose the following time and space
regularities. When we will discuss on approximation of X(Y ), similar assumptions will be made
on the coefficients b, γi and g of Equation (9) for Y .

(HP1) The coefficients µ, σ and h are Lipschitz continuous with respect to the space variable
x, uniformly in time. More precisely, there exist positive constants CX and CX(e) such
that for any t ∈ [0, T ], x, y ∈ Rd and e ∈ Rq′

|µ(t, x)− µ(t, y)| ≤ CX |x− y|, |µ(t, 0)| ≤ CX ,
|σ(t, x)− σ(t, y)| ≤ CX |x− y|, |σ(t, 0)| ≤ CX ,
|h(t, x, e)− h(t, y, e)| ≤ CX(e)|x− y|, |h(t, 0, e)| ≤ CX(e),

(HP1)

where the constant CX(e) satisfies
∫
Rq′ [C

X(e)]pν(de) <∞, ∀p ≥ 2.

(HP2δ) µ, σ and h are continuously differentiable with respect to the space variable x such
that their derivatives ∇xµ := {∇xµ(t, x); t ∈ [0, T ], x ∈ Rd}, ∇xσ = {∇xσi(t, x); 1 ≤ i ≤
q, t ∈ [0, T ], x ∈ Rd} and ∇xh := {∇xh(t, x, e); t ∈ [0, T ], x ∈ Rd, e ∈ Rq′} are δ-Hölder

1The integrals of the form
∫ t
0

∫
Rq′ g

i(s, e)Ñ(ds,de) should be understood as
∫
[0,t]

∫
Rq′ g

i(s, e)Ñ(ds, de).
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for a certain exponent δ ∈]0, 1]. Namely, there exist positive constants CX,∇ and CX,∇(e)
such that for any t ∈ [0, T ], x, y ∈ Rd and e ∈ Rq′

|∇xµ(t, x)−∇xµ(t, y)| ≤ CX,∇|x− y|δ, |∇xµ(t, x)| ≤ CX,∇,
|∇xσ(t, x)−∇xσ(t, y)| ≤ CX,∇|x− y|δ, |∇xσ(t, x)| ≤ CX,∇,
|∇xh(t, x, e)−∇xh(t, y, e)| ≤ CX,∇(e)|x− y|δ, |∇xh(t, x, e)| ≤ CX,∇(e),

(HP2δ)

with
∫
Rq′ [C

X,∇(e)]pν(de) <∞, ∀p ≥ 2.

(HP3α) µ, σ and h are Hölder continuous in time, locally in space, i.e. there exists an exponent
α ∈]0, 1] and positive constants CX and CX(e)

( ∫
Rq′ C

X(e)pν(de) < ∞, ∀p ≥ 2
)
, such

that for any x ∈ Rd, e ∈ Rq′ and s, t ∈ [0, T ]{
|µ(t, x)− µ(s, x)|+ |σ(t, x)− σ(s, x)| ≤ CX(1 + |x|)|t− s|α.
|h(t, x, e)− h(s, x, e)| ≤ CX(e)(1 + |x|)|t− s|α. (HP3α)

(HP4α) ∇xµ, ∇xσ and ∇xh are Hölder continuous in time, locally in space, i.e. there exists
an exponent α ∈]0, 1], such that for any x ∈ Rd, e ∈ Rq′ and s, t ∈ [0, T ]{

|∇xµ(t, x)−∇xµ(s, x)|+ |∇xσ(t, x)−∇xσ(s, x)| ≤ CX,∇(1 + |x|)|t− s|α.
|∇xh(t, x, e)−∇xh(s, x, e)| ≤ CX,∇(e)(1 + |x|)|t− s|α.

(HP4α)

Some Comments Assumptions (HP3α) and (HP4α) are not necessary to establish a first
convergence result but they ensure an optimal convergence rate, see Theorem 5. In fact, they
allow to take κ = 1 in Theorem 1.

3.3 SDE: differentiability, local and uniform estimates

In this section we recall some key results concerning Lp estimates of the solution X of a reg-
ular SDE in order to verify the assumptions of the general Theorem 1. In view to obtain an
optimal convergence rate we also need similar estimates for the space derivative of this solution
(if it is differentiable). Such random fields are also called stochastic flows and are the main
subject of Kunita’s book and papers [16, 17, 10], see also [16, Chapter 3 and 4] for continuous
framework. According to Kunita’s results, under (HP1) the map (t, x) 7→ Xt(ω, x) has a good
modification, continuous with respect to the spatial parameter [17, Theorems 3.1& 3.2 & 4.1],
we are working with. Moreover, under the additional space regularity (HP2δ) of the coeffi-
cients (µ, σ, h), the strong solution Xt(x) to (8) is continuously differentiable in space and its
derivative denoted by ∇Xt(x) is locally ε-Hölder2 for any ε < δ, see [17, Theorem 3.4]. Further-
more, it is a semimartingale solution of a linear equation, with bounded stochastic parameters
(∇xµ(t,Xt(x)),∇xσ(t,Xt(x)),∇xh(t,Xt(x), e)) given by

d∇Xt(x) = ∇xµ(t,Xt(x))∇Xt(x)dt+

q∑
i=1

∇xσi(t,Xt(x))∇Xt(x)dW i
t

+

∫
Rq′
∇xh(t,Xt−(x), e)∇Xt−(x)Ñ(dt,de), (11)

∇X0(x) = Id.

2That is for any compact K of Rd there exists a finite positive random variable C(K) such that for any x, y ∈ K
we have |∇Xt(x, ω)−∇Xt(y, ω)| ≤ C(K,ω)|x− y|ε a.s., see [17, Theorem 3.3] for details .
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Notations: Throughout this paper, we will make use of different constants that may depend
on the integer p of Lp-norm, on the dimensions d and q, on the time horizon T and on the
constants from the assumptions. These constants will be called generic constant and will be
denoted by the same notation Cp even if their values change from line to line. They will not
depend on N .

We now recall some Lp-estimates of Xt(x) and its derivative ∇xXt(x), very useful in the rest
of this work, see [20] for the proofs.

Proposition 1. Assume (HP1). For any p > 0, there exist generic constants Cp,(12) and Cp,(13)

such that

‖Xt(x)‖Lp ≤ Cp,(12)(1 + |x|), (12)

‖Xt(x)−Xt(y)‖Lp ≤ Cp,(13)|x− y|, (13)

for any (t, x, y) ∈ [0, T ]×Rd×Rd. In addition under (HP2δ), for any p > 0 there exist generic
constants Cp,(14) and Cp,(15) such that

‖∇Xt(x)‖Lp ≤ Cp,(14), (14)

‖∇Xt(x)−∇Xt(y)‖Lp ≤ Cp,(15)|x− y|δ (15)

for any (t, x, y) ∈ [0, T ]× Rd × Rd.

In order to put the sup over the space variable inside the expectation, we combine Proposition
1 with Theorem 2 and Corollary 1. This is the following assertion.

Theorem 4. Let Assumption (HP1) hold. For any p > 0 and any β ∈]0, 1[, there exist generic
constants Cp,(16) and Cp,(17) such that, for any t ∈ [0, T ],∥∥∥∥∥ sup

|x|≤λ
|Xt(x)|

∥∥∥∥∥
Lp

≤ Cp,(16)λ, ∀λ ≥ 1, (16)∥∥∥∥∥ sup
x 6=y,|x|≤λ,|y|≤λ

|Xt(x)−Xt(y)|
|y − x|β

∥∥∥∥∥
Lp

≤ Cp,(17)λ
1−β, ∀λ ≥ 1. (17)

If in addition (HP2δ) is satisfied, for any p > 0 and any β ∈]0, δ[, there exist generic constants
Cp,(18), Cp,(19) and Cp,(20) such that, for any t ∈ [0, T ],∥∥∥∥∥ sup

|x|≤λ
|∇Xt(x)|

∥∥∥∥∥
Lp

≤ Cp,(18)λ
δ, ∀λ ≥ 1, (18)∥∥∥∥∥ sup

x 6=y,|x|≤λ,|y|≤λ

|∇Xt(x)−∇Xt(y)|
|y − x|β

∥∥∥∥∥
Lp

≤ Cp,(19)λ
δ−β, ∀λ ≥ 1, (19)∥∥∥∥∥ sup

x 6=y,|x|≤λ,|y|≤λ

|Xt(x)−Xt(y)|
|y − x|

∥∥∥∥∥
Lp

≤ Cp,(20)λ
δ, ∀λ ≥ 1. (20)

Remark 3.1.

• Observe that the additional smoothness (HP2δ) enables us to improve (17) (for β < 1)
to (20) (i.e. β = 1): this improvement will play a key role in the derivation of our main
Theorem 5, with the optimal convergence order β.
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• As a direct consequence of this Theorem we have, under (HP1) and (HP2δ),

1. Assumption (H1) is satisfied by X in place of F , with C
(H1)
p := Cp,(16) and α

(H1)
p := 1

in view of Theorem 4.

2. Assumption (H2) is satisfied by X in place of F , for any given κ ∈]0, 1[ with C
(H2)
p :=

Cp,(17) (depending on κ) and α
(H2)
p := 1− κ.

3.4 Compound Euler schemes: Main result

It is well known that, for a general Lévy measure ν, there is no available algorithm to simulate
the increments of the driving Lévy process. Moreover, a large number of jumps of N occurring
between two discretization points can lead to a large discretization error, so we cannot apply
the Euler scheme. But, one can read in the literature that there are many works that have
considered this general framework and propose methods to overcome these difficulties. For
example, in [15, 14], the authors use the fact that it is easy to simulate the jumps of N larger
in absolute value than a certain ε > 0 and to take into account the jumps smaller than ε, they
use the idea of Asmussen and Rosiński [2] and replace all such jumps with σεB̃ where B̃ is
an independent Brownian motion and σε is a coefficient chosen to match the variance of the
Brownian approximation with the variance of the small jumps which are removed. See also
[27, 8, 19, 5]. Inspired by these works we use herein a method based on the cutoff of the small
jumps, so we introduce for any ε > 0, the finite measure on Rq′ :

νε(de) = 1|e|≥εν(de) ;

finiteness comes from (7).
Considering a non-finite measure ν certainly impacts the convergence rate but complicates

our analysis a lot since we are composing two schemes. The challenge in the rest of this paper is
to optimally control the error of the compound approximations as a function of the parameter
ε and of the integer n (related to a discretization step that we will see in the next section) and
study the limit when ε → 0, which is not obvious contrary to the framework of [20] where the
measure of Lévy is supposed to be finite and then the error depends only on n which simplifies
the study a lot.

We now follow the presentation of [19] to expose how to simulate the integral with respect
to the Poisson measure νε.

Simulation of the integral with respect to the Poisson random measure νε. Consider
a sequence e1, e2, . . . of independent random variables with common exponential distribution
with parameter 1. Define

Λε(t) = νε(Rq
′
)

∫ t

0
`(s)ds, t ∈ [0, T ].

The number of jumps of the Poisson random measure Ñ ε(dt,de) in an interval [0, t] is determined
as

Jε(t) = max{k :
k∑
j=1

ej ≤ Λε(t)},

10



and the total number of jumps in [0, T ] is denoted by Jε = Jε(T ). Let us emphasize that for
general Lévy measure ν this number tends to ∞ as ε goes to zero. Let Λε,−1 be the right-
continuous inverse of Λε, the jump times of the Poisson measure can be defined by θ0 = 0,

θεk = Λε,−1

 k∑
j=1

ej

 , k ∈ J1, JεK := {1, . . . , Jε},

and can be computed recursively by

ek =

∫ θεk

θεk−1

νε(Rq
′
)`(s)ds, k ∈ J1, JεK.

Once the jump times are computed, we proceed to sample the marks (values of the associated
Poisson point process sorted in chronological order) {Eεk}, that, conditionally on the values
of the jumps times, are independent random variables distributed respectively according to

1

νε(Rq′)
νε(de). The random measure with intensity `(t)dt× νε(de) can then be constructed as

N ε(dt,de) =
Jε∑
k=1

δ(θεk,E
ε
k)(dt,de),

and, consequently, the stochastic integral with respect to the Poisson random measure, i.e. the
last term in the SDE (8), can be computed as∫ t

0

∫
Rq′

h(s,Xs− , e)N
ε(ds, de) =

Jε(t)∑
k=1

h(θk, X(θεk)− , E
ε
k), t ∈ [0, T ]. (21)

Euler Scheme We now need a numerical scheme to approximate the solution X of the SDE(8)
and show that it satisfies Assumptions (H2−H3). Here we consider the Euler scheme for the
simple reason that it is the simplest and the best known scheme to discretize an SDE, see for
example [24] and [5]3. As we can read in Theorem 1, the result is true for any approximation
considered for F and Θ, but we have to expect that the convergence rate of the compound of
the approximations changes; the convergence rate for Euler scheme is different from the one of
Milstein for example.

Let n ≥ 1 and consider the discretization family {t̄i := iTn , i ∈ J0, nK} of [0, T ]. Consider
also the jump times {θεk, k ∈ J1, JεK} with corresponding marks {Eεk, k ∈ J1, JεK} as explained
in [19]. Consider the augmented partition given by the union

{tl, l ∈ J0, n+ JεK} := {t̄i := i
T

n
, i ∈ J0, nK} ∪ {θεk, k ∈ J1, JεK}. (22)

• Set Xn,ε
0 (x) = x.

• For k = 0, . . . , n+ Jε − 1 and t ∈ (tk, tk+1], set

Xn,ε
t− (x) = Xn,ε

tk
(x) + µ(tk, X

n,ε
tk

(x))(t− tk) +

q∑
i=1

σi(tk, X
n,ε
tk

(x))(W i
t −W i

tk
).

− (t− tk)λ(tk)

∫
Rq′

h(tk, X
n,ε
tk

(x), e)νε(de).

3[5] is a survey of strong discrete time approximations of jump-diffusion processes described by SDEs.
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• When tk+1 = θεl , we introduce a correction due to jump discontinuities.

Xn,ε
tk+1

(x) = Xn,ε

t−k+1

(x) + h(tk+1, X
n,ε

t−k+1

(x), Eεl ).

It can be equivalently written for any time t ∈ [0, T ]: denoting by

τt := max{tk : k ∈ J0, n+ JεK, tk ≤ t}

the last discretization-time before t, we have

Xn,ε
t (x) = x+

∫ t

0
µ(τs, X

n,ε
τs (x))ds+

q∑
i=1

∫ t

0
σi(τs, X

n,ε
τs (x))dW i

s

+

∫ t

0

∫
Rq′

h(τs, X
n,ε

τ−s
, e)Ñ ε(ds, de), (23)

where the last integral is as in (21). Similarly, assume that b, γ and g fulfill (HP1), so that the
strong solution Y to (9) is well defined, together with its Euler scheme Y n,ε.

Notations: In the rest of this work, we define for Z = X,Y , p ≥ 1 and ε > 0

EZ,εp =

∫
Rq′

(CZ(e))pνε(de) ≤ EZp =

∫
Rq′

(CZ(e))pν(de),

KZ,ε
p =

∫
Rq′

(CZ(e))p1Bε(e)ν(de).

Observe that, from (HP1) and Jensen’s inequality, for any p ≥ 2 and ε > 0, EZ,εp < +∞,

EZp < +∞ and limε↓0K
X,ε
p = 0. Moreover we assume that for any ε > 0,

EX,ε1 + EY,ε1 =

∫
|e|≥ε

CX(e)ν(de) +

∫
|e|≥ε

CY (e)ν(de) < +∞. (HP5)

Theorem 5 (Main). Assume that (µ, σ, h) satisfies Assumptions (HP1) and (HP3α) (which α-
parameter is denoted by αX) and that (b, γ, g) satisfies Assumptions (HP1) and (HP3α) (which
α-parameter is denoted by αY ). Let βX = min(αX , 1

2) and βY = min(αY , 1
2). The compound

Euler scheme Xn,ε
. (Y n,ε

. ) converges to X.(Y.) in any Lp-norm, w.r.t. n and ε: For any p > 0,
ρ > 0 and y ∈ Rd, there is a constant Cp,ρ such that for any s, t ∈ [0, T ],

‖Xn,ε
t (Y n,ε

s (y))−Xt(Ys(y))‖Lp ≤ Cp,ρ

 1

nκβY
+

1

nβX−ρ
+

(
EY,ε1

n

)κ
+

(
EX,ε1

n

)βX−ρ
βX

+(KY,ε
2 )

κ
2 + (KY,ε

p )
κ
p +

(
KX,ε

2

)βX−ρ
2βX +

(
KX,ε
p

)βX−ρ
pβX

]
:= Cp,ρE

n,ε
p (κ, ρ).

Under (HP5), the right-hand side is finite.
Assume additionally that (µ, σ, h) satisfies Assumptions (HP2δ) and (HP4α) with the α-

parameter equal to αX . Then the above estimate holds true with κ = 1 ans ρ = 0:

‖Xn,ε
t (Y n,ε

s (y))−Xt(Ys(y))‖Lp ≤ Cp

[
1

nβY
+

1

nβX
+
EY,ε1

n
+
EX,ε1

n
+ (KY,ε

2 )
1
2

12



+(KY,ε
p )

1
p + (KY,ε

2p )
1
2p +

(
KX,ε

2

) 1
2

+
(
KX,ε
p

) 1
p +

(
KX,ε

2p

) 1
2p

]
:= CpE

n,ε
p .

Let us emphasize that the constants Cp,ρ and Cp also depend on lmax. Compared to [20], the

main novelty is the presence of additional terms in the error of the scheme: EY,ε1 , EX,ε1 ,KY,ε
2 ,KX,ε

2 , . . .
Evoke that if the measure ν is finite as in [20], the global error is

En
p (κ, ρ) =

1

nκβY
+

1

nβX−ρ
, En

p =
1

nβY
+

1

nβX
.

The proof of this main result is postponed in Section 4.

Remark 3.2. Note that the cross term
EX,ε1

n
may not appear for some particular cases. For

example if the Lévy measure has an even density w.r.t. the Lebesgue measure and if h and g
only depend on e and are odd ; thus (8) becomes:

dXt(x) = µ(t,Xt(x))dt+

q∑
i=1

σi(t,Xt(x))dW i
t +

∫
Rq′

h(e)N(dt,de), X0(x) = x.

The dynamics of X is the same as in [20] plus a pure-jump martingale independent of X.

3.5 Global error and examples

The global error En,ε
p in Theorem 5 greatly depends on the Lévy measure ν and the asymptotic

behavior of the functions CX , CY . In this section we are interested in some standard examples of
these measures. We study in each case the error of the compound scheme and give under which
conditions the rate of convergence is optimal i.e., En,ε

p = O(n−β), with β = min(αX , αY , 1
2).

Let us mention that under (HP5), for any fixed ε0 > 0 and ε < ε0

EX,ε1

n
=

1

n

∫
|e|≥ε0

CX(e)ν(de) +
1

n

∫
|e|≤ε0

CX(e)νε(de) = O(n−β
X

) +
1

n

∫
|e|≤ε0

CX(e)νε(de).

The same holds for Y . Therefore the global error En,ε
p depends on the behavior of ν on a

neighborhood of zero. In other words we only have to precise the structure of ν close to zero.

3.5.1 Stable case.

Suppose that the Lévy measure is of the form

ν(de) =
1

|e|a
de

where 1 < a < 3. The stable (tempered) Lévy processes, the CGMY Lévy process ([6]) or the
Meixner process ([28]) have a Lévy measure of this form on a neighborhood of zero.

Evoke that the Blumenthal-Getoor index δ of ν is defined as follows:

δ = inf

{
γ > 0,

∫
|e|<1
|e|γν(de) < +∞

}
.

In what follows, the aim is to establish the next result:
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Proposition 2. Let 1 < a < 3 and assume that the Lévy measure is of the form

ν(de) =
1

|e|a
de, the Blumenthal-Getoor index is a− 1.

If in addition CX(e) = CX(1 ∧ |e|ζ) and CY (e) = CY (1 ∧ |e|ζ′) for ζ, ζ ′ ≥ 1, then

• If 1 < a ≤ min(ζ, ζ ′) + 1, En,ε
p = O(n−β) with ε = O(n

−2β
2min(ζ,ζ′)+1−a ).

• If min(ζ, ζ ′) + 1 < a ≤ 1 +
2 min(ζ, ζ ′)

β + 1
, En,ε

p = O(n−β) with ε = O(n−
2
a−1 ).

• If 1 +
2 min(ζ, ζ ′)

β + 1
< a < 3 we have only that En,ε

p = O(n1− 2min(ζ,ζ′)
a−1 ) with ε = O(n−

2
a−1 ).

The condition on CX(e) and CY (e) is a standard assumption (see among others [3, 7]).
Remark that the rate of convergence only depends on the minimum between ζ and ζ ′ and that:

• if min(ζ, ζ ′) ≥ 2, only the first case holds: 1 ≤ a < 3 ≤ 1 + min(ζ, ζ ′) ;

• and if min(ζ, ζ ′) ≥ β + 1, then the rate of convergence is of order n−β, whatever a is,

because a < 3 ≤ 1 +
2 min(ζ, ζ ′)

β + 1
.

The rate can be deteriorated (compared to n−β) only if min(ζ, ζ ′) is sufficiently small. Conversely
the larger this minimum is, the slower the convergence of ε to zero is.

Proof. In the proof we write for β = min(βX , βY )

EX,n,ε
p (ζ) =

1

nβ
+
EX,ε1

n
+
(
KX,ε

2

) 1
2

+
(
KX,ε
p

) 1
p +

(
KX,ε

2p

) 1
2p

and

EY,n,ε
p (ζ ′) =

1

nβ
+
EY,ε1

n
+
(
KY,ε

2

) 1
2

+
(
KY,ε
p

) 1
p +

(
KY,ε

2p

) 1
2p

and the global error satisfies

En,ε
p ≤ EX,n,ε

p (ζ) + EY,n,ε
p (ζ ′).

Since the two errors are similar, in the rest of the proof we only study EX,n,ε
p (ζ) and for simplicity

we remove the superscript X.
Under this setting for any p ≥ 2∫

R
C(e)pν(de) = Cp

∫
|e|≤1
|e|ζp−ade+ Cp

∫
|e|>1
|e|−ade < +∞.

That is, (HP1) holds since pζ − a > −1. Here we can explicitly compute for any ε < 1 and
p ≥ 2 (

Kε
p

) 1
p =

(∫
0<|e|<ε

|e|ζp−ade

) 1
p

=

(
2

ζp+ 1− a

) 1
p

ε
ζ+ 1−a

p
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and

Eε1 =

∫
ε<|e|<1

|e|ζ−ade+

∫
|e|>1
|e|−ade =

2

a− 1
+


2

1− εζ+1−a

ζ + 1− a
if 1 < a < ζ + 1

−2 ln(ε) if a = ζ + 1

2
εζ+1−a − 1

a− ζ − 1
if ζ + 1 < a < 3.

In particular (HP5) holds and the global error becomes

En,ε
p (ζ) =

1

nβ
+
Eε1
n

+ (Kε
2)

1
2 + (Kε

p)
1
p + (Kε

2p)
1
2p ≤ 1

nβ
+
Eε1
n

+ Cp,ζε
ζ+ 1−a

2 .

Moreover

lim
ε↓0
Eε1 =


2

ζ + 1− a
if 1 < a < ζ + 1

+∞ if ζ + 1 ≤ a < 3.

Finite variation case. If ζ > a− 1 (the Blumenthal-Getoor index), Eε1 is bounded, and since
β ≤ 1/2 the error can be controlled by:

En,ε
p (ζ) ≤ 1

nβ
+

2

ζ + 1− a
1

n
+ Cp,ζε

ζ+ 1−a
2 ≤ Ca,ζ

1

nβ
+ Cp,ζε

ζ+ 1−a
2

and n and ε can be separately fixed. In some sense, there is a decoupling between n and ε:

En,ε
p (ζ) ≤ η ⇐⇒ n ≥ η−

1
β and ε ≤ η

2
2ζ+1−a .

Infinite variation case. If a = ζ + 1, we have:

En,ε
p (ζ) ≤ 1

nβ
+ 2

ln(1/ε)

n
+ Cpε

ζ/2.

If ε = n−2β/ζ , then

En,ε
p (ζ) ≤ 1

nβ
+

4β

ζ

ln(n)

n
+ Cp

1

nβ
≤ C

nβ
.

For ζ + 1 < a < 3, things are more nested:

En,ε
p (ζ) ≤ 1

nβ
+ Ca

εζ+1−a

n
+ Cpε

ζ+ 1−a
2 ,

and let us take ε = N−γ for γ > 0. Then

En,ε
p (ζ) ≤ n−β + Can

−(1−(a−1−ζ)γ) + Cpn
−γζ+γ a−1

2 .

Note that ζ − a−1
2 > 0 since ζ ≥ 1. Hence we should have 0 < γ <

1

a− 1− ζ
to ensure

convergence to zero of the error. Easy computations show that

min

(
1− (a− 1− ζ)γ, γζ − γ a− 1

2

)
=

{
γζ − γ a−1

2 if 0 ≤ γ ≤ 2
a−1

1− (a− 1− ζ)γ if 2
a−1 ≤ γ ≤

1
a−1−ζ
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Hence the optimal choice is γ∗ =
2

a− 1
. Moreover for γ = γ∗,

min

(
1− (a− 1− ζ)γ∗, γ∗ζ − γ∗a− 1

2

)
=

2ζ

a− 1
− 1.

And since β ∈ (0, 1/2],

2ζ

a− 1
− 1 ≤ β ⇐⇒ a ≥ 1 +

2ζ

β + 1
= h(β) ≥ 1 +

4ζ

3
.

To summarize, previous calculations lead to the following result.

• If 1 < a < ζ + 1, En,ε
p (ζ) = O(n−β)⇐⇒ ε ≤ cN

−2β
2ζ+1−a , for some constant c.

• If a = ζ + 1, it suffices to take ε = n−2β/ζ to get an optimal convergence rate, i.e.,
En,ε
p (ζ) = O(n−β).

• If ζ + 1 < a < 3 and ε = n−γ , γ > 0, an optimal choice is to take γ = 2
a−1 ,

– when a ≤ 1 +
2ζ

β + 1
we have En,ε

p (ζ) = O(n−β).

– otherwise, a > 1 +
2ζ

β + 1
we have only that En,ε

p (ζ) = O(n1− 2ζ
a−1 ).

We use this result twice for X and Y with parameters ζ and ζ ′ and the proof of the proposition
is achieved.

3.6 An example with low convergence rate

We now give an example where the convergence rate is very slow.

Proposition 3. Assume that on a neighborhood of zero the Lévy measure ν and the jump
coefficients of X and Y satisfy

ν(de) =
1

|e|3(− ln(e))α
de, α > 1 CX(e) = CX |e| and CY (e) = CY |e|.

Then the global error En,ε
p of Theorem 5 is logarithmic, that is, there exists a constant Cp,α s.t.

En,ε
p ≤ Cp,α ln(n)

1−α
2 .

Proof. To simplify, we omit the superscript, the calculations are identical for CX and CY . In
order to get the global error, we have (see Theorem 5) to estimate the quantities Eε1 ,Kε

2 and Kε
p .

We start with Eε1 ,

Eε1 = 2

∫ 1/2

ε

1

|e|2(− ln(e))α
de = 2

∫ − ln(ε)

ln(2)
x−αexdx

= 2

∫ α

ln(2)
x−αexdx+ 2

∫ − ln(ε)

α
x−αexdx.

The first integral in the last line is a constant which we denote by Cα. The idea is then to
majorize the second positive integral. Since (x−αex)′ = x−α−1ex(x−α), the functionx 7→ x−αex

is increasing on [α,+∞[ and decreasing on [ln(2), α[. This implies that
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0 ≤
∫ − ln(ε)

ln(2)
x−αexdx ≤ Cα + (− ln(ε))−αe− ln(ε)

∫ − ln(ε)

α
dx

≤ Cα + (− ln(ε))−αε−1(− ln(ε)− α)

= Cα + ε−1((− ln(ε))1−α − α(− ln(ε))−α)

≤ Cε−1((− ln(ε))1−α − α(− ln(ε))−α) for ε small enough,

which implies that lim
ε→0

εEε1 = 0 since α > 1.

One can also have a more precise boundaries of the second integral using the mean value
theorem: as the functions x−α and ex keep a constant sign on the interval [α,− ln(ε)], there
exists a constant c(α, ε) ∈ [α,− ln(ε)] such that,∫ − ln(ε)

α
x−αexdx = c(α, ε)−α

∫ − ln(ε)

α
exdx = c(α, ε)−α(ε−1 − eα).

Observe that c(α, ε)−α is bounded as α > 0,

(− ln(ε))−α ≤ c(α, ε)−α ≤ α−α.

Thus,
1

ε(− ln(ε))α
(1− εeα) ≤

∫ − ln(ε)

ln(2)
x−αexdx ≤ C

ε(− ln(ε))α
(− ln(ε)− α).

So, for ε small enough Eε1 ∼ C(ε)ε−1 and from previous calculations lim
ε→0

C(ε) = 0.

Let now turn to the quantities Kε
p . For p > 2,

Kε
p = 2C

∫ ε

0
ep−3(− ln(e))−αde = 2C

∫ +∞

− ln(ε)
x−αe−(p−2)xdx

≤ 2C(− ln(ε))−α
∫ +∞

− ln(ε)
e−(p−2)xdx =

2C

p− 2
(− ln(ε))−αεp−2.

That is, there exists a constant Cp,α s.t. (Kε
p)

1
p ≤ Cp(− ln(ε))

−α
p ε

1− 2
p , p > 2.

Taking p = 2, we have

Kε
2 = 2C

∫ +∞

− ln(ε)
x−αdx = 2C

(− ln(ε))1−α

α− 1
.

Equivalently, there exists a constant Cα (Kε
2)

1
2 ≤ Cα(− ln(ε))

1−α
2 .

To sum up, taking ε = n−γ , follows

1

nβ
+
Eε1
n

+ (Kε
2)

1
2 + (Kε

p)
1
p +

(
Kε

2p

) 1
2p

≥ 1

nβ
+ C

nγ

n
(γ ln(n))−α + Cα(γ ln(n))

1−α
2

and

1

nβ
+
Eε1
n

+ (Kε
2)

1
2 + (Kε

p)
1
p +

(
Kε

2p

) 1
2p

17



≤ 1

nβ
+
nγ

n
(γ ln(n))1−α + Cα(γ ln(n))

1−α
2

that is, for some positive constant cp,α

1

nβ
+ C

nγ

n
(γ ln(n))−α + Cα(γ ln(n))

1−α
2 ≤ cp,αEn,ε

p ≤
1

nβ
+
nγ

n
(γ ln(n))1−α + Cα(γ ln(n))

1−α
2 .

So, for n large enough, there exists a new positive constant (independent of N) such that

En,ε
p ≤ Cp,α ln(n)

1−α
2 .

The proof is then achieved.

4 Proof of Theorem 5

The proof of this result requires several intermediate results, some of them being completely new
(Theorems 4 and 7 and Proposition 5). Since Theorem 4 above implies (H1)-(H2) (see Remark
3.1), we seek to prove that Assumptions (H3)-(H4-a) are also satisfied if that of Theorem 5
hold true.

In this section, to lighten the notations, we assume w.l.o.g. that `max = 1. Indeed since we
need to control ν(de)`(t)dt, we can rewrite

ν(de)`(t)dt = `maxν(de)
`(t)

`max
dt = ν̃(de)˜̀(t)dt

with 0 ≤ ˜̀(t) ≤ 1.

4.1 Euler scheme: local and uniform estimates

In order to prove Theorem 5, we partly generalize the previous results about the SDE to its Euler
approximation. Some derivations are more subtle and require details at some places. Recall the
definition of Euler scheme in (23).

First, as for the solution of the SDE (8), some estimates for its approximation scheme are
needed. This is the analogue of Proposition 1 given in the first statement of the next Proposition.
Second, using the same arguments than for the SDE case (Theorem 4), we can put the sup over
the space variable inside the Lp-norm to derive the second statement of the following result.

Proposition 4. Let (HP1) hold true.

(i) For any p > 0 there exist generic constants Cp,(24) and Cp,(25) such that∥∥∥∥∥ sup
0≤t≤T

∣∣Xn,ε
t (x)

∣∣∥∥∥∥∥
Lp

≤ Cp,(24)(1 + |x|), ∀x ∈ Rd, (24)∥∥∥∥∥ sup
0≤t≤T

∣∣Xn,ε
t (x)−Xn,ε

t (y)
∣∣∥∥∥∥∥

Lp

≤ Cp,(25)|x− y|, ∀x, y ∈ Rd. (25)

(ii) The estimates (16) and (17) where we replace X by Xn,ε hold true, up to changing the
generic constants.

18



We omit the proof which is quite standard, see that of Theorem 3.2 of Kunita’s paper [17].
Let us now show the following estimates on local increments, it will be needed for the sequel.

Lemma 1. Let Assumption (HP1) hold true and let p > 0. Then there exist generic constants
Cp,(26) and Cp,(27) such that, for any x, y ∈ Rd and any t ∈ [0, T ],∥∥∥∥ sup

τt≤u≤t
|Xn,ε

u (x)−Xn,ε
τu (x)|

∥∥∥∥
Lp

≤ Cp,(26)
(1 + |x|)
n1/2

(
1 +
EX,ε1

n1/2

)
, (26)

∥∥∥∥ sup
τt≤u≤t

|Xn,ε
u (x)−Xn,ε

u (y)−Xn,ε
τu (x) +Xn,ε

τu (y)|
∥∥∥∥
Lp

≤ Cp,(27)
|x− y|
n1/2

(
1 +
EX,ε1

n1/2

)
. (27)

Proof. Here again, it is enough to prove the estimates for p ≥ 2, which we assume from now on.
Also we take d = q = q′ = 1 to simplify the exposition. Since, for any u ∈ [0, T ], τu is the last
discretization time before u, there is no jump in the interval [τu, u], so we have

Xn,ε
u (x)−Xn,ε

τu (x) =

∫ u

τu

µ(τs, X
n,ε
τs (x))ds+

∫ u

τu

σ(τs, X
n,ε
τs (x))dWs

−
∫ u

τu

`(τs)

∫
R
h(τs, X

n,ε

τ−s
(x), e)ν(de)ds. (28)

Applying Theorem 3, the Jensen inequality, and using the fact that τs = τt for any s ∈ [τt, t[,
there exists a constant Cp s.t.

E
(

sup
τt≤u≤t

|Xn,ε
u (x)−Xn,ε

τu (x)|p
)
≤ Cp

{
E
(

(t− τt)p|µ(τt, X
n,ε
τt (x))|p + (t− τt)p/2|σ(τt, X

n,ε
τt (x))|p

)
+ E

(
(t− τt)p

∣∣∣∣∫
R
|h(τt, X

n,ε

τ−t
, e)|νε(de)

∣∣∣∣p)}.
According to Assumption (HP1), it follows that for any t ∈ [0, T ],

|µ(t, x)|+ |σ(t, x)| ≤ CX(1 + |x|) and |h(t, x, e)| ≤ CX(e)(1 + |x|).

This combined with (24) and the fact that 0 ≤ t− τt ≤ 1
N for any t ∈ [0, T ] , follows

E
(

sup
τt≤u≤t

|Xn,ε
u (x)−Xn,ε

τu (x)|p
)

≤ CpCpp,(24)

[
(CX)p

(
1

np
+

1

np/2

)
+

1

np

(∫
R
CX(e)νε(de)

)p]
(1 + |x|)p),

which readily leads to the announced estimate (26).
Let us now turn to the second inequality. The same arguments combined with Assumption

(HP1) and (25) lead, for some positive constant Cp, to

E
(

sup
τt≤u≤t

|Xn,ε
u (x)−Xn,ε

u (y)−Xn,ε
τu (x) +Xn,ε

τu (y)|p
)

≤ Cp
{
E
(

(t− τt)p−1

∫ t

τt

|µ(τs, X
n,ε
τs (x))− µ(τs, X

n,ε
τs (y))|pds

)
19



+ E
(

(t− τt)p/2−1

∫ t

τt

|σ(τs, X
n,ε
τs (x))− σ(τs, X

n,ε
τs (y))|pds

)
+ E

(
(t− τt)p−1

∫ t

τt

∣∣∣∣∫
R
|h(τs, X

n,ε

τ−s
(x), e)− h(τs, X

n,ε

τ−s
(y), e)|νε(de)

∣∣∣∣p ds

)
≤ CpCpp,(25)

[
(CX)p

( 1

np
+

1

np/2
)

+
1

np

(∫
R
CX(e)νε(de)

)p]
|x− y|p,

which completes the proof.

Let us explain here Remark 3.2. If h does not depend on x, we don’t need to control the
increments w.r.t. x and (27) becomes:∥∥∥∥ sup

τt≤u≤t
|Xn,ε

u (x)−Xn,ε
u (y)−Xn,ε

τu (x) +Xn,ε
τu (y)|

∥∥∥∥
Lp

≤ Cp,(27)
|x− y|
n1/2

as in [20]. If the Lévy measure has an even density and if h only depends on e and is odd, then
in (28), the term

∫
R h(τs, X

n,ε

τ−s
(x), e)ν(de) is equal to zero and we obtain the same estimate as

in [20] for (26): ∥∥∥∥ sup
τt≤u≤t

|Xn,ε
u (x)−Xn,ε

τu (x)|
∥∥∥∥
Lp

≤ Cp,(26)
(1 + |x|)
n1/2

.

4.2 Strong convergence results

In order to derive a sharp convergence result, we must take into account the temporal regularity,
Assumption (HP3α), of the coefficients µ, σ and h.

Theorem 6. Let Assumptions (HP1) and (HP3α) hold and set β = min(α, 1
2). Then, for any

p > 0 there exists a generic constant Cp,(29) such that for any x ∈ Rd∥∥∥∥∥sup
t≤T
|Xt(x)−Xn,ε

t (x)|

∥∥∥∥∥
Lp

≤ Cp,(29)(1 + |x|)

[
1

nβ
+
EX,ε1

n
+
(
KX,ε

2

)1/2
+
(
KX,ε
p

)1/p]
. (29)

Proof. To simplify, as in the previous lemma, we take d = q = q′ = 1. Since it suffices to prove
in the case of p ≥ 2, we assume so. By definition, we have

Xt(x)−Xn,ε
t (x) =

∫ t

0

(
µ(s,Xs(x))− µ(τs, X

n,ε
τs (x))

)
ds+

∫ t

0

(
σ(s,Xs(x))− σ(τs, X

n,ε
τs (x))

)
dWs

+

∫ t

0

∫
R

(
h(s,Xs−(x), e)− h(τs, X

n,ε

τ−s
(x), e)

)
Ñ ε(ds, de)

+

∫ t

0

∫
R
h(s,Xs−(x), e)(Ñ − Ñ ε)(ds, de).

Using the fact that λ(t) ≤ 1, ∀t ∈ [0, T ], Theorem 3 and the Jensen inequality for the first two
terms, we have for some positive constant Cp,

E

(
sup
t≤T
|Xt(x)−Xn,ε

t (x)|p
)
≤ Cp

{
T p−1

∫ T

0
E
(
|µ(s,Xs(x))− µ(τs, X

n,ε
τs (x))|p

)
ds

+ T p/2−1

∫ T

0
E
(
|σ(s,Xs(x))− σ(τs, X

n,ε
τs (x))|p

)
ds
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+ E
([∫ T

0

∫
R
|h(s,Xs−(x), e)− h(τs, X

n,ε

τ−s
(x), e)|2dsνε(de)

] p
2

)
+ E

∫ T

0

∫
R
|h(s,Xs−(x), e)− h(τs, X

n,ε

τ−s
(x), e)|pνε(de)ds

+ E
([∫ T

0

∫
R
|h(s,Xs−(x), e)|2ds1Bε(e)ν(de)

] p
2

)
+ E

∫ T

0

∫
R
|h(s,Xs−(x), e)|p1Bε(e)ν(de)ds

}
.

From now, all terms will be treated in the same way. Taking the jump’s terms, we write for any
p ≥ 2,

|h(s,Xs−(x), e)− h(τs, X
n,ε

τ−s
(x), e)|p

= |h(s,Xs−(x), e)− h(s,Xn,ε
s− (x), e) + h(s,Xn,ε

s− (x), e)− h(τs, X
n,ε
s− (x), e)

+h(τs, X
n,ε
s− (x), e)− h(τs, X

n,ε

τ−s
(x), e)|p

≤ 3p−1
(
|h(s,Xs−(x), e)− h(s,Xn,ε

s− (x), e)|p + |h(s,Xn,ε
s− (x), e)− h(τs, X

n,ε
s− (x), e)|p

+|h(τs, X
n,ε
s− (x), e)− h(τs, X

n,ε

τ−s
(x), e)|p

)
≤ 3p−1[CX(e)]p

(
|Xs−(x)−Xn,ε

s− (x)|p + (1 + |Xn,ε

τ−s
(x)|)p(s− τs)pα + |Xn,ε

s− (x)−Xn,ε

τ−s
(x)|p

)
where we used (HP1) and (HP3α) for the last inequality. This leads to∫ T

0

∫
R
|h(s,Xs−(x), e)− h(τs, X

n,ε

τ−s
(x), e)|pνε(de)ds

≤ 3p−1

∫
R

[CX(e)]pνε(de)
(∫ T

0
|Xs−(x)−Xn,ε

s− (x)|pds+

∫ T

0
(1 + |Xn,ε

τ−s
(x)|)p(s− τs)pαds

+

∫ T

0
|Xn,ε

s− (x)−Xn,ε

τ−s
(x)|pds

)
, ∀p ≥ 2. (30)

Using estimates (24) in Proposition 4 and (26) in Lemma 1 with the fact that |s− τs| ≤
1

n
for

any s ∈ [0, T ], one can easily deduce, for some generic constant Cp,∫ T

0

∫
R
E
(
|h(s,Xs−(x), e)− h(τs, X

n,ε

τ−s
(x), e)|p

)
dsνε(de)

≤ CpEX,εp

(∫ T

0
E
(
|Xs−(x)−Xn,ε

s− (x)|p
)
ds+ (1 + |x|p)

[
1

npα
+

1

np/2

(
1 +

(EX,ε1 )p

np/2

)])

≤ Cp

(∫ T

0
E
(
|Xs−(x)−Xn,ε

s− (x)|p
)
ds+ (1 + |x|p)

[
1

npβ
+

(EX,ε1 )p

np

])
, (31)

where we used that for p ≥ 2, EX,εp ≤ EXp < +∞. Again using inequality (30) for p = 2, we have∫ T

0

∫
R
|h(s,Xs−(x), e)− h(τs, X

n,ε

τ−s
(x), e)|2dsνε(de)

≤ 3

∫
R

[CX(e)]2νε(de)
(∫ T

0
|Xs−(x)−Xn,ε

s− (x)|2ds+

∫ T

0
(1 + |Xn,ε

τ−s
(x)|)2(s− τs)2αds
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+

∫ T

0
|Xn,ε

s− (x)−Xn,ε

τ−s
(x)|2ds

)
,

and therefore, by the Jensen inequality(∫ T

0

∫
R
|h(s,Xs−(x), e)− h(τs, X

n,ε

τ−s
(x), e)|2dsνε(de)

) p
2

≤ 3p−1
(
EX,ε2

) p
2T

p
2
−1
(∫ T

0
|Xs−(x)−Xn,ε

s− (x)|pds+

∫ T

0
(1 + |Xn,ε

τ−s
(x)|)p(s− τs)pαds

+

∫ T

0
|Xn,ε

s− (x)−Xn,ε

τ−s
(x)|pds

)
,

thus we conclude as for (31), that

E
((∫ T

0

∫
R
|h(s,Xs−(x), e)− h(τs, X

n,ε

τ−s
(x), e)|2dsν(de)

) p
2

)
≤ Cp

(
EX,ε2

) p
2

(∫ T

0
E
(
|Xs(x)−Xn,ε

s (x)|p
)
ds+ (1 + |x|p)

[
1

npβ
+

(EX,ε1 )p

np

])
.

Again evoke that EX,ε2 ≤ EX2 < +∞. Therefore

E
((∫ T

0

∫
R
|h(s,Xs−(x), e)− h(τs, X

n,ε

τ−s
(x), e)|2dsν(de)

) p
2

)
≤ Cp

(∫ T

0
E
(
|Xs(x)−Xn,ε

s (x)|p
)
ds+ (1 + |x|p)

[
1

npβ
+

(EX,ε1 )p

np

])
.

for some new constant Cp.

E
([∫ T

0

∫
R
|h(s,Xs−(x), e)|2ds1Bε(e)ν(de)

] p
2

)
+ E

∫ T

0

∫
R
|h(s,Xs−(x), e)|p1Bε(e)ν(de)ds

≤ E
∫ T

0
(1 + |Xs− |p)ds

[(∫
R

(CX(e))21Bε(e)ν(de)

)p/2
+

∫
R

(CX(e))p1Bε(e)ν(de)

]
.

Then, using (12),

E
([∫ T

0

∫
R
|h(s,Xs−(x), e)|2ds1Bε(e)ν(de)

] p
2

)
+ E

∫ T

0

∫
R
|h(s,Xs−(x), e)|p1Bε(e)ν(de)ds

≤ Cp(1 + |x|p)
[(
KX,ε

2

)p/2
+KX,ε

p

]
.

By the same reasoning for µ and σ, we deduce the existence of a constant Cp such that

E

(
sup
t≤T
|Xt(x)−Xn,ε

t (x)|p
)
≤ Cp

(∫ T

0
E
(

sup
u≤s
|Xu(x)−Xn,ε

u (x)|p
)
ds

+ (1 + |x|p)

[
1

npβ
+

(EX,ε1 )p

np
+
(
KX,ε

2

)p/2
+KX,ε

p

])
.

The proof is then achieved by applying the Gronwall’s lemma and Jensen’s inequality.
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As mentioned in Remark 3.2, in Estimate (29), the cross term EX,ε1 /n can be removed for
some cases.

This result will be useful in the proof of our main result Theorem 5 (see Section 4.3), but
unfortunately it is not sufficient at all. In view of Theorem 1 and its assumptions (in particular
(H3)), one should have a sup over |x| ≤ λ inside the Lp-norm. This is the purpose of the next
derivations.
We now aim at obtaining uniform in space convergence results. Let us start with an easy result.

Proposition 5. Assume (HP1), (HP3α) and let β = min(α, 1
2). For any p > 0 and any

ρ ∈ [0, β], there exists a generic constant Cp,ρ,(32) such that

‖Xt(x)−Xn,ε
t (x)−Xt(y) +Xn,ε

t (y)‖Lp ≤ Cp,ρ,(32)|x− y|ρ/β(1 + |x|+ |y|)1−ρ/β × 1

nβ−ρ
+

(
EX,ε1

n

)β−ρ
β

+
(
KX,ε

2

)β−ρ
2β

+
(
KX,ε
p

)β−ρ
pβ

 (32)

for all x, y ∈ Rd and t ∈ [0, T ]. Furthermore, for any p > 0 and any ρ > 0, there exists a generic
constant Cp,ρ,(33) such that, for any t ∈ [0, T ],∥∥∥∥∥ sup

|x|≤λ
|Xt(x)−Xn,ε

t (x)|

∥∥∥∥∥
Lp

≤ λCp,ρ,(33)

 1

nβ−ρ
+

(
EX,ε1

n

)β−ρ
β

+
(
KX,ε

2

)β−ρ
2β

+
(
KX,ε
p

)β−ρ
pβ

 . (33)

Here again Remark (3.2) holds. To prove this result we can adapt the one of [13, Theorem
6] except that we have to pay attention to the additional terms EX,ε1 , KX,ε

2 and KX,ε
p .

Proof. Let Γ(t, x, y, n) := ‖|Xt(x)−Xn,ε
t (x)−Xt(y) +Xn,ε

t (y)|‖Lp and consider p ≥ 1 without

loss of generality. Using triangular inequality in two ways and inequalities (13)-(25)-(29), we get
Γ(t, x, y, n) ≤

(
Cp,(13) + Cp,(25))

)
|x− y|,

Γ(t, x, y, n) ≤ 2Cp,(29)(1 + |x|+ |y|)

[
1

nβ
+
EX,ε1

n
+

[(
KX,ε

2

)p/2
+KX,ε

p

]1/p
]
.

Let Cp,ρ,(32) :=
(
Cp,(13) + Cp,(25)

)ρ/β (
2Cp,(29)

)1−ρ/β
, by interpolation between the two estimates,

it readily follows that

Γ(t, x, y, n) ≤ Cp,ρ,(32)|x− y|ρ/β(1 + |x|+ |y|)1−ρ/β

[
1

nβ
+
EX,ε1

n
+

[(
KX,ε

2

)p/2
+KX,ε

p

]1/p
]1−ρ/β

Jensen
≤ Cp,ρ,(32)|x− y|ρ/β(1 + |x|+ |y|)1−ρ/β× 1

nβ−ρ
+

(
EX,ε1

n

)β−ρ
β

+
(
KX,ε

2

)β−ρ
2β

+
(
KX,ε
p

)β−ρ
pβ


therefore (32) is proved.
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To get (33) it is enough to assume ρ ∈ (0, β]; we apply Corollary 1 by checking the assump-
tions of Theorem 2 applied to G(x) := Xt(x)−Xn,ε

t (x). From (32) we can set

C(G) = Cp,ρ,(32)

 1

nβ−ρ
+

(
EX,ε1

n

)β−ρ
β

+
(
KX,ε

2

)β−ρ
2β

+
(
KX,ε
p

)β−ρ
pβ

 ,
τ (G) = 1 − ρ/β and β(G) = ρ/β provided that ρ/β ∈ (d/p, 1], which is true for p large enough
(recall that ρ > 0). Therefore for such p, the estimate (6) holds true, which yields the announced
inequality (33). The estimate for smaller values of p are automatically satisfied invoking once
again the stability of Lp norms as p decreases.

As it is the case for Theorem 6, this result is not sufficient to derive Theorem 5. The next step
is to generalize these two results. By making the best use of the regularity assumptions made
on ∇xµ and ∇xσi (see (HP2δ) and (HP4α)) we now obtain, in the following crucial Theorem,
improved dependency in n by allowing the case ρ = 0.

In the rest of the paper,

KX,ε =
(
KX,ε

2

)p/2
+KX,ε

p + (KX,ε
2p )

1
2 . (34)

Theorem 7. Let (HP1), (HP2δ), (HP3α), (HP4α) hold and let β = min(αX , 1
2). For any

p > 0, there exists a generic constant Cp,(35) such that∥∥∥∥sup
u≤t
|Xu(x)−Xn,ε

u (x)−Xu(y) +Xn,ε
u (y)|

∥∥∥∥
Lp

≤ Cp,(35)(1 + |x|+ |y|)
[
|x− y|+ |x− y|δ

] [ 1

nβ
+
EX,ε1

n
+ (KX,ε)

1
p

]
(35)

for all x, y ∈ Rd and t ∈ [0, T ]. Furthermore, for any p > 0 there exists a generic constant
Cp,(36) such that, for any t ∈ [0, T ],∥∥∥∥∥ sup

|x|≤λ
|Xt(x)−Xn,ε

t (x)|

∥∥∥∥∥
Lp

≤ λ2Cp,(36)

(
1

nβ
+
EX,ε1

n
+ (KX,ε)

1
p

)
, ∀λ ≥ 1. (36)

Proof. As in the previous proofs, we argue that it is enough to assume p ≥ 2. To alleviate the
presentation, we additionally assume d = q = q′ = 1, the derivation in the general case being
similar. From the dynamics of X and Xn,ε, we write

Xt(x)−Xn,ε
t (x)−Xt(y) +Xn,ε

t (y)

=

∫ t

0

(
µ(s,Xs(x))− µ(τs, X

n,ε
τs (x))− µ(s,Xs(y)) + µ(τs, X

n,ε
τs (y))

)
ds

+

∫ t

0

(
σ(s,Xs(x))− σ(τs, X

n,ε
τs (x))− σ(s,Xs(y)) + σ(τs, X

n,ε
τs (y))

)
dWs

+

∫ t

0

∫
R

(
h(s,Xs−(x), e)− h(τs, X

n,ε

τ−s
(x), e)− h(s,Xs−(y), e) + h(τs, X

n,ε

τ−s
(y), e)

)
Ñ ε(ds, de)

+

∫ t

0

∫
R

(
h(s,Xs−(x), e)− h(s,Xs−(y), e), e)

)
(Ñ − Ñ ε)(ds, de).
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The same reasoning as in the proof of Theorem 6 leads, for some generic constant Cp, to

E
(

sup
u≤t
|Xu(x)−Xn,ε

u (x)−Xu(y) +Xn,ε
u (y)|p

)
≤ Cp

{
tp−1

∫ t

0
E
(∣∣∣µ(s,Xs(x))− µ(τs, X

n,ε
τs (x))− µ(s,Xs(y)) + µ(τs, X

n,ε
τs (y))

∣∣∣p)ds

+ tp/2−1

∫ t

0
E
(∣∣∣σ(s,Xs(x))− σ(τs, X

n,ε
τs (x))− σ(s,Xs(y)) + σ(τs, X

n,ε
τs (y))

∣∣∣p) ds

+

∫ t

0

∫
R
E
(∣∣∣h(s,Xs(x), e)− h(τs, X

n,ε
τs (x), e)− h(s,Xs(y), e) + h(τs, X

n,ε
τs (y))

∣∣∣p) νε(de)ds
+ E

([∫ t

0

∫
R

∣∣∣h(s,Xs(x), e)− h(τs, X
n,ε
τs (x), e)− h(s,Xs(y), e) + h(τs, X

n,ε
τs (y), e)

∣∣∣2νε(de)ds] p2)
+

∫ t

0

∫
R
E
(∣∣∣h(s,Xs(x), e)− h(s,Xs(y), e)

∣∣∣p)1Bε(e)ν(de)ds

+ E
([∫ t

0

∫
R

∣∣∣h(s,Xs(x), e)− h(s,Xs(y), e)
∣∣∣21Bε(e)ν(de)ds

] p
2

)}
. (37)

1. The first four terms of the right side of above inequality can be treated in the same way, thus
we only detail the computations for the last integral. First write that

h(s,Xs(x), e)− h(τs, X
n,ε
τs (x), e)− h(s,Xs(y), e) + h(τs, X

n,ε
τs (y), e)

= h(s,Xs(x), e)− h(s,Xn,ε
s (x), e)− h(s,Xs(y), e) + h(s,Xn,ε

s (y), e)

+ h(s,Xn,ε
s (x), e)− h(τs, X

n,ε
τs (x), e)− h(s,Xn,ε

s (y), e) + h(τs, X
n,ε
τs (y), e). (38)

Now, we treat the two lines above separately.
1.a) Denoting by Xn,ε,λ

s (x) := Xs(x) + λ(Xn,ε
s (x)−Xs(x)

)
for λ ∈ [0, 1], we have

h(s,Xs(x), e)− h(s,Xn,ε
s (x), e)− h(s,Xs(y), e) + h(s,Xn,ε

s (y), e)

=
(
Xs(x)−Xn,ε

s (x)−Xs(y) +Xn,ε
s (y)

) ∫ 1

0
∇xh

(
s,Xn,ε,λ

s (x), e
)
dλ

+
(
Xs(y)−Xn,ε

s (y)
) ∫ 1

0

(
∇xh(s,Xn,ε,λ

s (x), e)−∇xh(s,Xn,ε,λ
s (y), e)

)
dλ.

By definition of Xn,ε,λ, using the fact that |∇xh(t, x, e)| ≤ CX,∇(e) and |∇xh(t, x)−∇xh(t, y)| ≤
CX,∇(e)|x−y|δ with

∫
R(CX,∇(e))pνε(de) <∞, ∀p ≥ 2; there exists a generic constant Cp (whose

values may change from line to line)∫
R
|h(s,Xs(x), e)− h(s,Xn,ε

s (x), e)− h(s,Xs(y), e) + h(s,Xn,ε
s (y), e)|pνε(de)

≤ Cp
(
|Xs(x)−Xn,ε

s (x)−Xs(y) +Xn,ε
s (y)|p

+ |Xs(y)−Xn,ε
s (y)|p

∫ 1

0

∣∣(1− λ)
(
Xs(x)−Xs(y)

)
+ λ

(
Xn,ε
s (x)−Xn,ε

s (y)
)∣∣δpdλ)

≤ Cp
[
|Xs(x)−Xn,ε

s (x)−Xs(y) +Xn,ε
s (y)|p

+ |Xs(y)−Xn,ε
s (y)|p

(
|Xs(x)−Xs(y)|δp + |Xn,ε

s (x)−Xn,ε
s (y)|δp

)]
,
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where we have used the Minkowsky inequality to handle the dλ-integral and also used the
inequality

(a+ b)γ ≤ 2(γ−1)+ (aγ + bγ) ≤ 2γ (aγ + bγ) , ∀a, b, γ ≥ 0,

where (γ − 1)+ =

{
γ − 1 if γ − 1 ≥ 0

0 if not
.

Now, we integrate over (s, ω) and apply the Cauchy-Schwarz inequality, to obtain

E
[ ∫ t

0

∫
R
|h(s,Xs(x), e)− h(s,Xn,ε

s (x), e)− h(s,Xs(y), e) + h(s,Xn,ε
s (y), e)|pνε(de)ds

]
≤ Cp

[ ∫ t

0
E (|Xs(x)−Xn,ε

s (x)−Xs(y) +Xn,ε
s (y)|p) ds

+

∫ t

0

√
E (|Xs(y)−Xn,ε

s (y)|2p)
√
E (|Xs(x)−Xs(y)|2δp + |Xn,ε

s (x)−Xn,ε
s (y)|2δp)ds

]
which rewrites, owing to (13)-(25) and (29),

E
[ ∫ t

0

∫
R
|h(s,Xs(x), e)− h(s,Xn,ε

s (x), e)− h(s,Xs(y), e) + h(s,Xn,ε
s (y), e)|pνε(de)ds

]
≤ Cp

(∫ t

0
E (|Xs(x))−Xn,ε

s (x)−Xs(y) +Xn,ε
s (y)|p) ds

+ (1 + |y|)p|x− y|δp
[

1

npβ
+

(EX,ε1 )p

np
+
(
KX,ε

2

)p/2
+ (KX,ε

2p )
1
2

])
, (39)

for a new generic constant Cp.
1.b) Now we focus on the second line of identity (38). Similarly to before, we introduce for
simplicity the notations{

X̃n,ε,λ
s (x) := Xn,ε

s (x) + λ(Xn,ε
τs (x)−Xn,ε

s (x))

Xn,ε,λ
τs (x, y) := Xn,ε

τs (x) + λ(Xn,ε
τs (y)−Xn,ε

τs (x))

h(s,Xn,ε
s (x), e)− h(τs, X

n,ε
τs (x), e)− h(s,Xn,ε

s (y), e) + h(τs, X
n,ε
τs (y), e)

= h(s,Xn,ε
s (x), e)− h(s,Xn,ε

τs (x), e)−
(
h(s,Xn,ε

s (y), e)− h(s,Xn,ε
τs (y), e)

)
+ h(s,Xn,ε

τs (x), e)− h(s,Xn,ε
τs (y), e)−

(
h(τs, X

n,ε
τs (x), e)− h(τs, X

n,ε
τs (y), e)

)
=

∫ 1

0
∇xh

(
s, X̃n,ε,λ

s (x), e
)
dλ(Xn,ε

s (x)−Xn,ε
τs (x))−

∫ 1

0
∇xh

(
s, X̃n,ε,λ

s (y), e
)
dλ(Xn,ε

s (y)−Xn,ε
τs (y))

+

∫ 1

0
∇xh

(
s,Xn,ε,λ

τs (x, y), e
)
dλ(Xn,ε

τs (x)−Xn,ε
τs (y))−

∫ 1

0
∇xh

(
τs, X

n,ε,λ
τs (x, y), e

)
dλ(Xn,ε

τs (x)−Xn,ε
τs (y))

=

∫ 1

0

(
∇xh

(
s, X̃n,ε,λ

s (x), e
)
−∇xh

(
s, X̃n,ε,λ

s (y), e
))

dλ(Xn,ε
s (x)−Xn,ε

τs (x))

+

∫ 1

0
∇xh

(
s, X̃n,ε,λ

s (y), e
)
dλ× (Xn,ε

s (x)−Xn,ε
τs (x)−Xn,ε

s (y) +Xn,ε
τs (y))

+

∫ 1

0

(
∇xh

(
s,Xn,ε,λ

τs (x, y), e
)
−∇xh

(
τs, X

n,ε,λ
τs (x, y), e

))
dλ(Xn,ε

τs (x)−Xn,ε
τs (y)).
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As in the first step of this proof, taking the power p using the fact that |∇xh(t, x, e)| ≤ CX,∇(e)
and |∇xh(t, x)−∇xh(t, y)| ≤ CX,∇(e)|x−y|δ with

∫
R(CX,∇(e))pν(de) <∞, ∀p ≥ 2; there exists

a generic constant Cp such that∫
R
|h(s,Xn,ε

s (x), e)− h(τs, X
n,ε
τs (x), e)− h(s,Xn,ε

s (y), e) + h(τs, X
n,ε
τs (y), e)|pνε(de)

≤ Cp
[ ∫ 1

0

∣∣∣(1− λ)(Xn,ε
s (x)−Xn,ε

s (y)) + λ(Xn,ε
τs (x)−Xn,ε

τs (y))
∣∣∣pδdλ|Xn,ε

s (x)−Xn,ε
τs (x)|p

+
∣∣Xn,ε

s (x)−Xn,ε
τs (x)−Xn,ε

s (y) +Xn,ε
τs (y)

∣∣p
+ |s− τs|pα

∫ 1

0

(
1 +

∣∣Xn,ε
τs (x) + λ(Xn,ε

τs (y)−Xn,ε
τs (x))

∣∣)pdλ∣∣Xn,ε
τs (x)−Xn,ε

τs (y)
∣∣p].

Integrating w.r.t. (s, ω), one can easily get, for some new generic constant Cp∫ t

0

∫
R
E
(
|h(s,Xn,ε

s (x), e)− h(τs, X
n,ε
τs (x), e)− h(s,Xn,ε

s (y), e) + h(τs, X
n,ε
τs (y), e)|p

)
νε(de)ds

≤ Cp

[∫ t

0

(√
E (|Xn,ε

s (x)−Xn,ε
s (y)|2pδ) +

√
E (|Xn,ε

τs (x)−Xn,ε
τs (y))|2pδ)

)
×
√
E (|Xn,ε

s (x)−Xn,ε
τs (x)|2p)ds

+

∫ t

0
E
(
|Xn,ε

s (x)−Xn,ε
τs (x)−Xn,ε

s (y) +Xn,ε
τs (y)

∣∣p) ds

+
1

nαp

∫ t

0

(
1 +

√
E (|Xn,ε

τs (x)|2p) +
√
E (|Xn,ε

τs (y)|2p)
)√

E
(
|Xn,ε

τs (x)−Xn,ε
τs (y)

∣∣2p)ds

]
.

From results of Proposition 4 and Lemma 1, there is a new constant Cp such that

E
[ ∫ t

0

∫
R
|h(s,Xn,ε

s (x), e)− h(τs, X
n,ε
τs (x), e)− h(s,Xn,ε

s (y), e) + h(τs, X
n,ε
τs (y), e)|pν(de)ds

]
≤ Cp

(
|x− y|pδ(1 + |x|)p 1

np/2

(
1 +

(EX,ε1 )p

np/2

)
+
|x− y|p

np/2

(
1 +

(EX,ε1 )p

np/2

)

+
|x− y|p

nαp
(1 + |x|p + |y|p)

)

≤ Cp(1 + |x|+ |y|)p
(
|x− y|p + |x− y|δp

)( 1

nβp
+

(EX,ε1 )p

np

)
. (40)

Thus, (39) and (40) combined with (38) lead to

E
[ ∫ t

0

∫
R
|h(s,Xn,ε

s (x), e)− h(τs, X
n,ε
τs (x), e)− h(s,Xn,ε

s (y), e) + h(τs, X
n,ε
τs (y), e)|pν(de)ds

]
≤ Cp

[∫ t

0
E (|Xs(x)−Xn,ε

s (x)−Xs(y) +Xn,ε
s (y)|p) ds

+ (1 + |x|+ |y|)p
(
|x− y|p + |x− y|δp

)( 1

nβp
+

(EX,ε1 )p

np
+ (KX,ε

2 )p/2 + (KX,ε
2p )1/2

)]
(41)
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where Cp is a new constant. The same estimates, without the terms KX,ε and EX,ε, hold for µ
and σ instead of h.
2. For the last two remaining terms in (37), using (HP1) and Proposition 4, we have

E
(∫ t

0

∫
R

∣∣∣h(s,Xs(x))− h(s,Xs(y))
∣∣∣p)1Bε(e)ν(de)ds ≤ Cp|x− y|pKX,ε

p

E
((∫ t

0

∫
R

∣∣∣h(s,Xs(x))− h(s,Xs(y))
∣∣∣21Bε(e)ν(de)ds

) p
2

)
≤ Cp|x− y|p(KX,ε

2 )p/2.

Hence, plugging the above into (37), we obtain the existence of generic constants Cp such that

E
(

sup
u≤t
|Xu(x)−Xn,ε

u (x)−Xu(y) +Xn,ε
u (y)|p

)
≤ Cp

[ ∫ t

0
E
(

sup
u≤s
|Xu(x)−Xn,ε

u (x)−Xu(y) +Xn,ε
u (y)|p

)
ds

+ (1 + |x|+ |y|)p
(
|x− y|p + |x− y|δp

)( 1

nβp
+

(EX,ε1 )p

np
+KX,ε

p + (KX,ε
2 )p/2 + (KX,ε

2p )
1
2

)]
≤ Cp(1 + |x|+ |y|)p

(
|x− y|p + |x− y|δp

)( 1

nβp
+

(EX,ε1 )p

np
+KX,ε

p + (KX,ε
2 )

p
2 + (KX,ε

2p )
1
2

)
,

where the last inequality follows from Gronwall’s Lemma and Jensen’s inequality, we recall that
KX,ε is defined by (34); the proof of (35) is completed.
Let us now deduce (36) from (35) by applying Corollary 1 with G(x) := Xt(x)−Xn,ε

t (x). From
(35) we have

‖G(x)−G(y)‖Lp ≤ Cp,(35)Cp(1 + |x|+ |y|)p
(
|x− y|+ |x− y|δ

)( 1

npβ
+

(EX,ε1 )p

np
+KX,ε

) 1
p

≤ 2Cp,(35)(1 + |x|+ |y|)2−δ|x− y|δ
(

1

nβ
+
EX,ε1

n
+ (KX,ε)

1
p

)
,

using |x− y|+ |x− y|δ = |x− y|δ(1 + |x− y|1−δ) ≤ 2|x− y|δ(1 + |x|+ |y|)1−δ. Thus, we can take

C(G) = 2Cp,(35)

(
1

nβ
+
EX,ε1

n
+ (KX,ε)

1
p

)
, τ (G) = 2− δ and β(G) = δ provided that δ ∈ (d/p, 1],

which is true for p large enough. We then conclude by applying Corollary 1.

We now have all the necessary elements to finalize the proof of our main result.

4.3 Proof of Theorem 5

We now carefully apply Theorem 1 with F (ω, x) := Xt(ω, x), Fn(ω, x) := Xn
t (ω, x), Θ :=

Ys(ω, y) and Θn := Y n
s (ω, y).

(a) If the coefficients of X and Y satisfy (HP1) and (HP3α).

1. As it is highlighted in Remark 3.1, Assumption (H1) is satisfied with C
(H1)
p := Cp,(16)

and α
(H1)
p := 1 (in view of Theorem 4) and (H2) is also satisfied for any given

κ ∈ (0, 1) with C
(H2)
p := Cp,(17) (depending on κ) and α

(H2)
p := 1− κ.
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2. (H3) is valid owing to Proposition 5 where, for any given ρ > 0, we take α
(H3)
p := 1

and

εn,(H3)
p := Cp,ρ,(33)

 1

nβX−ρ
+

(
EX,ε1

n

)βX−ρ
βX

+
(
KX,ε

2

)βX−ρ
2βX +

(
KX,ε
p

)βX−ρ
pβX


with βX := min(αX , 1

2).

3. Finally, (H4) is clearly true using Propositions 1 and 4 applied to Y instead of X,

which yields C
(H4-a)
p := max(Cp,(12), Cp,(24))(1 + |y|), and Theorem 6, applied to Y

and Y N , which gives

εn,(H4-b)
p := Cp,(29)(1 + |y|)

[
1

nβY
+
EY,ε1

n
+ (KY,ε

2 )
1
2 + (KY,ε

p )
1
p

]

with βY := min(αY , 1
2), EY,ε1 =

∫
RC

Y (e)νε(de) and KY,ε
p =

∫
R(CY (e))p1Bε(e)ν(de).

Thus, for any given κ ∈ (0, 1) and ρ > 0, Theorem 1 gives, for any y

‖Xn,ε
t (Y n,ε

s (y))−Xt(Ys(y))‖Lp ≤ Cp

 1

nκβY
+

1

nβX−ρ
+

(
EY,ε1

n

)κ
+

(
EX,ε1

n

)βX−ρ
βX

+(KY,ε
2 )

κ
2 + (KY,ε

p )
κ
p +

(
KX,ε

2

)βX−ρ
2βX +

(
KX,ε
p

)βX−ρ
pβX

]
,

thus the announced result.

(b) If in addition to the first case, the coefficients ofX satisfy (HP2δ) and (HP4α). Assumption
(H1) and (H4) are still valid. Assumption (H2) is satisfied with κ = 1 thanks to (20).
Assumptions (H3) holds as in the previous case, but now with ρ = 0 owing to Theorem
7. The rest of the proof is unchanged, we are done.

5 Approximation of utility-SPDE

In this section, we apply the previous results to numerically solve the utility-SPDE (1). Let us
specify that in this context d = q′ = 1 and the marginal utility is, according to (2), represented
as follows

Uz(t, z) = Xt

(
uz(ξt(z))

)
, U(0, z) = u(z) (42)

where we recall that ξt(z) := Y −1
t (z) is the inverse flow of y 7→ Yt(y). Moreover, X and Y are

solutions to two scalar SDEs with coefficients (µ, σ, h) and (b, γ, g) respectively, driven by the
same q-dimensional Brownian motion B and the same Poisson random measure. To simplify,
we take λ(t) = 1 for any t.
However, it is obvious that Theorem 5 is not directly applicable since at this step remains the
question how to invert y 7→ Yt(y) for all t?

Different approaches to answer this question have been discussed in detail in [13, Section 4]
and it turned out that the best way is to compute the inverse flow in a backward way, because
in this case it is a solution of a SDE to which we can consider an Euler scheme as before and
thus easily apply the Theorem 5.
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To be more precise, we denote by Ys,t(y) the solution, starting from y at time s, of the SDE
with coefficients (b, γ, g). Let ξs,t be the inverse map of Ys,t. Our idea consists on considering
the dynamics of the process ξs,t(x) in the variable s instead of t, this relies on the following key
result.

Theorem 8 ([17, Theorems 3.11 and 3.13 ]). Suppose the coefficients b, γ and g of the SDE
(9) satisfy (HP1), (HP2δ). Assume further that the maps φ(t, ., e) : y 7→ y + g(t, y, e);R → R
are homeomorphic with 1 + ∂yg(t, y, e) being invertible in y for a.e (t, e).

(i) Then the solution Y defines a stochastic flow of C1-diffeomorphisms.

(ii) Let ψ(t, ., e) be the inverse maps of φ(t, ., e) and k(t, z, e) = z − ψ(t, z, e). Assume γ ∈ C1,2

in (t, x) and
∫
R |k(t, z, e)− g(t, z, e)|ν(de) is bounded. Then the inverse flow ξ satisfies the

following backward SDE
dξs,t(z) =

[
b(s, ξs,t(z))− ∂xγ(s, ξs,t(z)) · γ(s, ξs,t(z)−

∫
R
g(s, ξs,t(z), e)ν(de)

]
d̂s

+γ(t, ξs,t(z)) · d
←−
B s +

∫
R
k(s, ξs,t(z), e)N(d̂s, de), s ≤ t (43)

ξt,t(z) = z.

The notations d̂s and
←−
B s are to remind that the integrals must be considered in a backward

way: 

∫ t

s
µ(s,Xu)d̂u := lim

|∆|→0

n−1∑
k=0

µ(tk+1, Xtk+1
)(tk+1 − tk)

∫ t

s
σ(s,Xu)d

←−
B u := lim

|∆|→0

n−1∑
k=0

σ(tk+1, Xtk+1
)
(
Btk+1

−Btk
)
,

where ∆ = {s = t0 < t2 < · · · < tn = t} and|∆| = max
0≤k≤n−1

(tk+1 − tk)

With this result in hand, the approximation of ξs,t is made possible simply using a standard
Euler scheme like (23) (W ≡ B) for X. Using the same notations of Section 3.4, the backward
Euler scheme ξn,ε.,t is defined as follows:

• Set ξn,εt,t (z) = z. If t = θk for some k ∈ J1, J(ε)K, set ξn,ε
t−,t(z) = z − k(t, z, Eεk) else

ξn,ε
t−,t(z) = z.

- For s ∈]τt, t], set

ξn,εs,t (z) = ξn,ε
t−,t − γ(t, ξn,ε

t−,t(z)) · (Bt −Bs) (44)

−
[
b(t, ξn,ε

t−,t(z))− ∂zγ(t, ξn,ε
t−,t(z)) · γ(t, ξn,ε

t−,t(z))−
∫
R
g(t, ξn,ε

t−,t(z), e)ν
ε(de)

]
(t− s).

• For l ∈ J0, n+ JεK satisfying tl < τt,

- if tl = θk for some k ∈ J1, JεK, set ξn,ε
t−l ,t

(z) = ξn,εtl,t(z)−k(tl, ξ
n,ε
tl,t

(z), Eεk) else ξn,ε
t−l ,t

(z) = ξn,εtl,t(z)
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- and for s ∈ [t(l−1), tl[

ξn,εs,t (z) = ξn,ε
t−l ,t

(z)− γ(tl, ξ
n,ε

t−l ,t
(z)) · (Btl −Bs) (45)

−
[
b(tl, ξ

n,ε

t−l ,t
(z))− ∂xγ(tl, ξ

n,ε

t−l ,t
(z)) · γ(tl, ξ

n,ε

t−l ,t
(z))−

∫
R
g(tl, ξ

n,ε

t−l ,t
(z), e)νε(de)

]
(tl − s).

Theorem 9. Assume that the coefficients (µ, σ, h) of X satisfy (HP1)-(HP2δ)-(HP3α)-(HP4α)
(which α-parameter is denoted by αX) and the coefficients (b − ∂xγ · γ −

∫
gν(de), γ, k) of ξ.,t

satisfy Assumptions (HP1)-(HP3α) (which α-parameter is denoted by αY ). Denote by Xn,ε
0,.

the Euler approximation (23) (W ≡ B) associated to X0,., and by ξn,ε.,t the Euler approximation
of the inverse flow ξ.,t of Y.,t, according to (44)-(45).
Then, for any concave function u with Lipschitz marginal utility uz, the compound Euler scheme
Xn,ε
. (uz(ξ

n,ε
. )) converges to Uz(., .) (solution to the SPDE of the form (1)) in any Lp-norm w.r.t.

n and ε: For any p > 0, t ∈ [0, T ] and any z,∥∥∥Xn,ε
0,t (uz(ξ

n,ε
0,t (z)))− Uz(t, z)

∥∥∥
Lp

= O(En,ε
p ).

From this accurate approximation of Uz(t, z) using two Euler schemes, we can easily retrieve
U(t, z) by standard numerical integration, using that in general the utility of a zero wealth is
equal to zero at any time, i.e., U(t, 0) = 0.
Note that the fact that the two Euler schemes are built with the same Brownian motion (actually
one is the time-reversal of the other) justifies the need for a general result like Theorems 1 and
5, available for arbitrary dependency in F and Θ.
Concerning the proof of this result it is obvious: without the function uz, it would be a direct
application of Theorem 5. However, since uz is Lipschitz, one can easily check that the estimates
are unchanged.

Conclusion. As explained in [20] and in [13], the solution of a SPIDE can be represented
in some cases as the compound of two random fields. Therefore the approximation of this
compound provides a numerical approximation for some SPIDE. When the Lévy measure is
finite, it is proved in [20] that the rate of convergence is of order n−1/2.

In this paper, we generalize this result for non-finite Lévy measure, by truncation of the
small jumps. We show that there is a balance to find between the time discretization and this
truncation threshold ; in general it is not optimal to fix them independently. As a consequence,
in some cases the rate of convergence can be very deteriorated (compared to n−1/2).

Improvements using other approximations for small jumps (Asmussen-Rosinksy technics or
series representation) are left for further research.
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