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Abstract

In this paper, we are concerned with backward stochastic differential equations (BSDE for short) of the
following type:

Yt = ξ −

∫ T

t
Yr |Yr |

q dr −

∫ T

t
Zr dBr ,

where q is a positive constant and ξ is a random variable such that P(ξ = +∞) > 0. We study the link
between these BSDE and the associated Cauchy problem with terminal data g, where g = +∞ on a set of
positive Lebesgue measure.
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0. Introduction and main results

Backward stochastic differential equations (BSDE for short in the remainder) are equations
of the following type:

Yt = ξ +

∫ T

t
f (r, Yr , Zr ) dr −

∫ T

t
Zr dBr , 0 ≤ t ≤ T,

where (Bt )0≤t≤T is a standard d-dimensional Brownian motion on a probability space(
Ω ,F, (Ft )0≤t≤T ,P

)
, with (Ft )0≤t≤T the standard Brownian filtration. The function f :

[0, T ] × Rn
× Rn×d

→ Rn is called the generator, T the terminal time, and the Rn-valued
FT -adapted random variable ξ a terminal condition.

The unknowns are the processes {Yt }t∈[0,T ] and {Z t }t∈[0,T ], which are required to be adapted
with respect to the filtration of the Brownian motion: this is a crucial point.

Such equations, in the non-linear case, were introduced by Pardoux and Peng in 1990 in [1].
They gave the first existence and uniqueness result for n-dimensional BSDE under the following
assumptions: f is Lipschitz continuous in both variables y and z and the data, ξ , and the process,
{ f (t, 0, 0)}t∈[0,T ], are square integrable. Since then, BSDE have been studied with great interest.
In particular, many efforts have been made to relax the assumptions on the generator and the
terminal condition. For instance Briand et al. in [2] proved an existence and uniqueness result
under the following assumptions: f is Lipschitz in z, continuous and monotone in y, the data, ξ ,
and the process, { f (t, 0, 0)}t∈[0,T ], are in L p for p > 1. The result is still true for p = 1 with
another technical condition.

The results of [2] are the starting point of this work, where we consider a one-dimensional
BSDE with a non-linear generator:

Yt = ξ −

∫ T

t
Yr |Yr |

q dr −

∫ T

t
Zr dBr with q ∈ R∗

+. (1)

The generator f (y) = −y|y|
q satisfies all the assumptions of the Theorems 4.2 and 6.2–6.3

of [2]: f is continuous on R, does not depend on z, and is monotone:

∀(y, y′) ∈ R2, (y − y′)( f (y)− f (y′)) ≤ 0. (2)
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Therefore there exists a unique solution (Y, Z) for ξ ∈ L p(Ω) for p ≥ 1 (we do not make precise
the class of (Y, Z) in which uniqueness holds). The solution of the related ordinary differential
equation, namely y′

= y|y|
q , yT = x , is given by the formula:

sign(x)

(
1

q(T − t)+
1

|x |q

) 1
q

where sign(x) = −1 if x < 0 and sign(x) = 1 if x > 0. We remark that, even if x is equal to
+∞ or −∞, y is finite on [0, T [.

Numerous theorems (see for instance [3,4] and [5]) show the connections between BSDE
associated with some forward classical stochastic differential equation (SDE for short) (or
forward–backward system) and solutions of a large class of semi-linear and quasilinear parabolic
and elliptic partial differential equations. Those results may be seen as a non-linear generalization
of the celebrated Feynman–Kac formula.

The BSDE (1) is connected with the following type of PDE (see [5]):{
∂u

∂t
(t, x)+ Lu(t, x)− u(t, x)|u(t, x)|q = 0, (t, x) ∈ [0, T [×Rm

;

u(T, x) = g(x), x ∈ Rm .
(3)

where L is the infinitesimal generator:

L =
1
2

∑
i, j

(σσ ∗)i j
∂2

∂xi∂x j
+

∑
i

bi
∂

∂xi
=

1
2

Trace
(
σσ ∗ D2

)
+ b∇; (4)

where in the rest of the paper, ∇ and D2 will always denote respectively the gradient and the
Hessian matrix w.r.t. the space variable.

Indeed Baras and Pierre [6], Marcus and Veron [7] have given existence and uniqueness results
for this PDE. In [7] it is shown that every positive solution of (3) possesses a uniquely determined
final trace g which can be represented by a couple (S, µ) where S is a closed subset of Rm and
µ a non-negative Radon measure on R = Rm

\ S. The final trace can also be represented
by a positive, outer regular Borel measure ν, and ν is not necessary locally bounded. The two
representations are related by:

∀A ⊂ Rm, A Borel,
{
ν(A) = ∞ if A ∩ S 6= ∅

ν(A) = µ(A) if A ⊂ R.

The set S is the set of singular final points of u and it corresponds to a “blow-up” set of u. From
the probabilistic point of view Dynkin and Kuznetsov [8] and Le Gall [9] have proved similar
results for the PDE (3) in the case 0 < q ≤ 1: they use the theory of superprocesses.

In this paper we are concerned with a real FT -measurable random variable such that:

P(ξ = +∞ or ξ = −∞) > 0. (5)

Thus ξ is not in L1(Ω). We give a new definition of a solution of the BSDE.

Definition 1. Let us have q > 0 and ξ an FT -measurable random variable. We say that the
process (Y, Z) is a solution of the BSDE

Yt = ξ −

∫ T

t
Yr |Yr |

q dr −

∫ T

t
Zr dBr
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if (Y, Z) verifies:

(D1) for all 0 ≤ s ≤ t < T : Ys = Yt −
∫ t

s Yr |Yr |
q dr −

∫ t
s Zr dBr ;

(D2) for all t ∈ [0, T [, E
(

sup0≤s≤t |Ys |
2
+
∫ t

0 ‖Zr‖
2 dr

)
< +∞;

(D3) P-a.s. limt→T Yt = ξ .

The outline of the paper is as follows. Except in Section 5, ξ is supposed to be non-negative.
In the first section, without any further assumptions on ξ , we construct a process (Y, Z) which
satisfies all conditions for being a solution in the sense of the previous definition, except the last
one. More precisely we establish in Section 1 the

Theorem 2. Let ξ ≥ 0 a.s. There exists a progressively measurable process (Y, Z), with values
in R+ × Rd , such that:

(1) (D1) and (D2) are satisfied:
(a) for all t ∈ [0, T [, and all 0 ≤ s ≤ t:

Ys = Yt −

∫ t

s
(Yr )

1+q dr −

∫ t

s
Zr dBr , (i)

(b) for all t ∈ [0, T [,

0 ≤ Yt ≤
1

(q(T − t))
1
q

, and E
∫ t

0
‖Zr‖

2 dr ≤
1

(q(T − t))
2
q

; (ii)

(2) Y is continuous on [0, T [, the limit of Yt , when t goes to T , exists and:

lim
t→T

Yt ≥ ξ, P − a.s.; (iii)

(3) Z satisfies also:

E
(∫ T

0
(T − r)2/q‖Zr‖

2 dr

)
≤ 8

(
1
q

) 2
q

. (iv)

Note that this result does not specify whether Y satisfies limt→T Yt = ξ . The existence of this
process (Y, Z) is obtained by approximation. For every integer n, let (Y n, Zn) be the solution
of the BSDE (1) with terminal condition ξ ∧ n ∈ L∞(Ω). (Y, Z) is the limit of this sequence
(Y n, Zn)n∈N.

In Section 2, we study our process Y in the neighbourhood of T . In a first part we make precise
the asymptotic behaviour of Y on the “blow-up” set.

Proposition 3. On the set {ξ = +∞}

lim
t→T

(T − t)1/qYt =

(
1
q

)1/q

a.s. (6)

In the second part we will prove the continuity of Y under stronger conditions on ξ . So far we
only have the inequality:

lim
t→T

Yt ≥ ξ = YT .

Without additional assumption, we were unable to prove the converse inequality. The first
hypothesis on ξ is the following:

ξ = g(XT ), (H1)
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where g is a measurable function defined on Rm with values in R+ such that the set F∞ =

{g = +∞} is closed; and where XT is the value at t = T of a diffusion process or more precisely
the solution of a stochastic differential equation (for short SDE):

X t = x +

∫ t

0
b(r, Xr ) dr +

∫ t

0
σ(r, Xr ) dBr , for t ∈ [0, T ]. (7)

We will always assume that b and σ are defined on [0, T ] × Rm , with values respectively in Rm

and Rm×d , are measurable w.r.t. the Borelian σ -algebras, and that there exists a constant K > 0
s.t. for all t ∈ [0, T ] and for all (x, y) ∈ Rm

× Rm :

(1) Lipschitz condition:

|b(t, x)− b(t, y)| + ‖σ(t, x)− σ(t, y)‖ ≤ K |x − y|; (L)

(2) Growth condition:

|b(t, x)| + ‖σ(t, x)‖ ≤ K (1 + |x |). (G)

The second hypothesis on ξ is: for all compact sets K ⊂ Rm
\ F∞

g(XT )1K(XT ) ∈ L1 (Ω ,FT ,P; R) . (H2)

Moreover in the case q ≤ 2 we will add the following conditions:

(1) σ and b are bounded: there exists a constant K s.t.

∀(t, x) ∈ [0, T ] × Rm, |b(t, x)| + ‖σ(t, x)‖ ≤ K ; (B)

(2) the second derivatives of σσ ∗ belongs to L∞:

∂2σσ ∗

∂xi∂x j
∈ L∞([0, T ] × Rm). (D)

(3) σσ ∗ is uniformly elliptic, i.e. there exists λ > 0 s.t. for all (t, x) ∈ [0, T ] × Rm :

∀y ∈ Rm, σσ ∗(t, x)y.y ≥ λ|y|
2. (E)

(4) g is continuous from Rm to R+ and:

∀M ≥ 0, g is a Lipschitz function on the set OM = {|g| ≤ M} . (H3)

Theorem 4 (Continuity of Y at T ). Under the assumptions (H1), (H2), (L) and (G), and with
either q > 2 or (H3), (B), (D) and (E), Y is continuous at time T

lim
t→T

Yt = ξ, P − a.s.

In Section 3, we prove that our solution is the minimal solution.

Theorem 5 (Minimal Solution). The solution (Y, Z) obtained in Theorems 2 and 4 is minimal:
if (Ȳ , Z̄) is another non-negative solution in the sense of Definition 1, then for all t ∈ [0, T ],
P-a.s.: Ȳt ≥ Yt .

Moreover we prove that:

Ȳt ≤

(
1

q(T − t)

)1/q

.
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The fourth section provides connections between this constructed solution of the BSDE (1)
and viscosity solutions of related semi-linear PDE (3). For all (t, x) ∈ [0, T ] × Rm , we denote
by X t,x the solution of the SDE:

X t,x
s = x +

∫ s

t
b(r, X t,x

r ) dr +

∫ s

t
σ(r, X t,x

r ) dBr , for s ∈ [t, T ], (8)

and X t,x
s = x for s ∈ [0, t]. The coefficients b and σ verify always the assumptions of the

second section. As a final condition of the BSDE, we take g(X t,x
T ), where g is a function defined

from Rm to R+ such that the set F∞ = {g = +∞} is closed and such that the condition (H2) is
verified. Moreover g is supposed to be continuous from Rm to R+.

Theorem 6 (Viscosity Solution). The minimal solution of the BSDE (1) with ξ = g(X t,x
T ) is

denoted by Y t,x . Then Y t,x
t is a deterministic number and if we set u(t, x) = Y t,x

t , then u is
lower semi-continuous from [0, T ] × Rm to R+ with u(t, .) < +∞ whenever t < T and u is a
(discontinuous) viscosity solution of the PDE (3).

We prove that the previous solution is minimal among all non-negative viscosity solutions.

Theorem 7 (Minimal Viscosity Solution). If v is a non-negative viscosity solution of the PDE
(3), then for all (t, x) ∈ [0, T ] × Rm:

u(t, x) ≤ v(t, x).

We give sufficient conditions to have u continuous on [0, T ] × Rm .
In Section 5, we extend our results when there is no sign assumption on ξ .

Theorem 8. Let ξ be an FT -measurable random variable, possibly negative, such that:

P(ξ = +∞ or ξ = −∞) > 0. (5)

Moreover ξ satisfies

ξ = g(XT ), (H1)

with g : Rm
→ R ∪ {−∞,+∞} such that:

(1) the two sets {g = +∞} and {g = −∞} are closed;
(2) the condition (H2) is verified: for all compact sets K ⊂ Rm

\ {g = ±∞}

g(XT )1K(XT ) ∈ L1(Ω ,FT ,P; R);

(3) if q ≤ 2, (H3) holds.

The coefficients of the SDE (7) satisfy (L), (G) and in the case 0 < q ≤ 2, they also verify (B),
(D) and (E).

There exists a process (Y, Z) which is a solution of the BSDE

Yt = ξ −

∫ T

t
Yr |Yr |

q dr −

∫ T

t
Zr dBr

in the sense of Definition 1.

In the continuation, unimportant constants will be denoted by C .
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1. Approximation and construction of a solution

From now and in Sections 2–4, ξ satisfies:

P(ξ ≥ 0) = 1 and P(ξ = +∞) > 0.

In this section we prove Theorem 2. For q > 0, let us consider the function f : R → R,
defined by f (y) = −y|y|

q . f is continuous and monotone (inequality (2)). By Theorem 2.2 and
Example 3.9 in [5], for ζ ∈ L2(FT ), the BSDE (1) with ζ as terminal condition has a unique
solution (Y, Z) with values in R × Rd , such that Y is continuous on [0, T ] and that:

E

(
sup

0≤t≤T
|Yt |

2
+

∫ T

0
‖Z t‖

2 dt

)
< ∞. (9)

Remark that a straightforward application of the Tanaka formula (see [10]) and of the comparison
Theorem 2.4 in [5] shows that:

∀t ∈ [0, T ], |Yt | ≤

(
1

q(T − t)

)1/q

. (10)

For every n ∈ N∗, we introduce ξn = ξ ∧ n. ξn belongs to L2 (Ω ,FT ,P; R). We apply the
previous result with ξn as the final data, and we build a sequence of random processes (Y n, Zn)

which satisfy (1) and (9).
From the comparison Theorem 2.4 in [5], if n ≤ m, 0 ≤ ξn ≤ ξm ≤ m, which implies for all

t in [0, T ], a.s.,

0 ≤ Y n
t ≤ Y m

t ≤

(
1

q(T − t)+
1

mq

) 1
q

≤

(
1

q(T − t)

) 1
q

. (11)

We define the progressively measurable R-valued process Y , as the increasing limit of the
sequence (Y n

t )n≥1:

∀t ∈ [0, T ], Yt = lim
n→+∞

Y n
t . (12)

Then we obtain for all 0 ≤ t ≤ T

0 ≤ Yt ≤

(
1

q(T − t)

) 1
q

. (13)

In particular Y is finite on the interval [0, T [ and bounded on [0, T − δ] for all δ > 0.

1.1. Proof of (i) and (ii) from Theorem 2

Here we will prove the properties (i) and (ii). Let δ > 0 and s ∈ [0, T − δ]. For all 0 ≤ t ≤ s,
Itô’s formula leads to the equality:

|Y n
t − Y m

t |
2
+

∫ s

t
‖Zn

r − Zm
r ‖

2 dr = |Y n
s − Y m

s |
2

− 2
∫ s

t
(Y n

r − Y m
r )(Z

n
r − Zm

r ) dBr + 2
∫ s

t
(Y n

r − Y m
r )
(

f (Y n
r )− f (Y m

r )
)

dr
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≤ |Y n
s − Y m

s |
2
− 2

∫ s

t
(Y n

r − Y m
r )(Z

n
r − Zm

r ) dBr ,

from the monotonicity of f (inequality (2)). Thanks to (9):

E
(∫ s

t
(Y n

r − Y m
r )(Z

n
r − Zm

r ) dBr

)
= 0.

From the Burkholder–Davis–Gundy inequality, we deduce the existence of a universal constant
C with:

E

(
sup

0≤t≤s
|Y n

t − Y m
t |

2
+

∫ s

0
‖Zn

r − Zm
r ‖

2 dr

)
≤ C E

(
|Y n

s − Y m
s |

2
)
. (14)

From the estimate (13), for s ≤ T − δ, Y n
s ≤

1
(qδ)1/q

and Ys ≤
1

(qδ)1/q
. Since Y n

s converges to Ys

a.s., the dominated convergence theorem and the previous inequality (14) imply:

(1) for all δ > 0, (Zn)n≥1 is a Cauchy sequence in L2(Ω × [0, T − δ]; Rd), and converges to
Z ∈ L2(Ω × [0, T − δ]; Rd),

(2) (Y n)n≥1 converges to Y uniformly in mean square on the interval [0, T − δ]; in particular Y
is continuous on [0, T [,

(3) (Y, Z) satisfies for every 0 ≤ s < T , for all 0 ≤ t ≤ s:

Yt = Ys −

∫ s

t
(Yr )

1+q dr −

∫ s

t
Zr dBr . (i)

The relation (i) is proved. Since Yt is smaller than 1/(q(T − t))1/q by (13), and since
Z ∈ L2(Ω × [0, T − δ]; Rd), applying the Itô formula to |Y |

2, with s < T and 0 ≤ t ≤ s,
we obtain:

|Yt |
2
+

∫ s

t
‖Zr‖

2 dr = |Ys |
2
− 2

∫ s

t
Yr Zr dBr + 2

∫ s

t
Yr f (Yr ) dr

≤
1

(q(T − s))
2
q

− 2
∫ s

t
Yr Zr dBr ,

again thanks to the monotonicity of f (inequality (2)). From (13), since Z ∈ L2([0, s] × Ω), we
have: E

∫ s
t Yr Zr dBr = 0. Therefore, we deduce:

∀s ∈ [0, T [, E
∫ s

0
‖Zr‖

2 dr ≤
1

(q(T − s))
2
q

. (ii)

1.2. Proof of (iii)

From now, the process Y is continuous on [0, T [ and we define YT = ξ . The main difficulty
will be to prove the continuity at time T . It is easy to show that:

ξ ≤ lim inf
t→T

Yt . (15)

Indeed, for all n ≥ 1 and all t ∈ [0, T ], Y n
t ≤ Yt , therefore:

ξ ∧ n = lim inf
t→T

Y n
t ≤ lim inf

t→T
Yt . (16)
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Thus, Y is lower semi-continuous on [0, T ] (this is clear since Y is the supremum of continuous
functions). Without other assumptions on ξ , we are unable to prove the continuity of Y at t = T−.
But now we will show that Y has a limit on the left at time T . We will distinguish the case when
ξ is greater than a positive constant from the case ξ non-negative.

1.2.1. The case ξ bounded away from zero
We can show that Y has a limit on the left at T , by using Itô’s formula applied to the process

1/(Y n)q . We prove the following result:

Proposition 9. Suppose there exists a real α > 0 such that ξ ≥ α > 0, P-a.s. Then

Yt =

(
q(T − t)+ EFt

(
1
ξq

)
− Φt

)−
1
q

, 0 ≤ t ≤ T, (17)

where Φ is a non-negative supermartingale.

Proof. From the comparison result 2.4 of [5], for every n ∈ N∗ and every 0 ≤ t ≤ T :

n ≥ Y n
t ≥

(
1

q(T − t)+ 1/αq

)1/q

≥

(
1

qT + 1/αq

)1/q

> 0.

By the Itô formula

1
(Y n

t )
q =

1
(ξ ∧ n)q

+ q(T − t)−
q(q + 1)

2

∫ T

t

‖Zn
s ‖

2(
Y n

s

)q+2 ds +

∫ T

t

q Zn
s(

Y n
s

)q+1 dBs

= EFt

(
1

(ξ ∧ n)q

)
+ q(T − t)−

q(q + 1)
2

EFt

∫ T

t

‖Zn
s ‖

2(
Y n

s

)q+2 ds.

The process:(
1

(Y n
t )

q ,
−q Zn

s(
Y n

s

)q+1

)

is the maximal solution in L∞ ([0, T ] × Ω)× L2
(
[0, T ] × Ω; Rd

)
of the BSDE:

Yt =
1

(ξ ∧ n)q
+

∫ T

t

(
q −

q + 1
2q

‖Zs‖
2

Ys ∨ 1/nq

)
ds −

∫ T

t
Zs dBs .

Indeed, for this BSDE there exists a maximal solution (U, V ) (see [11], Theorem 2.3)
and since U ≥ 1/(Y n)q , we can apply Itô’s formula to the process U−1/q . We find that
(U−1/q , (1/q)V/U 1+1/q) satisfies the BSDE (1) with terminal value ξ ∧ n. Thus U−1/q

= Y n

and the conclusion follows.
Let n ≥ m. Since ξ ∧ n ≥ ξ ∧ m, we obtain for all 0 ≤ t ≤ T :

0 ≤
1

(Y m
t )

q −
1

(Y n
t )

q = EFt

(
1

(ξ ∧ m)q
−

1
(ξ ∧ n)q

)
−

q(q + 1)
2

(
EFt

∫ T

t

‖Zm
s ‖

2(
Y m

s

)q+2 ds − EFt

∫ T

t

‖Zn
s ‖

2(
Y n

s

)q+2 ds

)
.



A. Popier / Stochastic Processes and their Applications 116 (2006) 2014–2056 2023

Now:

q(q + 1)
2

∣∣∣∣∣EFt

∫ T

t

‖Zm
s ‖

2(
Y m

s

)q+2 ds − EFt

∫ T

t

‖Zn
s ‖

2(
Y n

s

)q+2 ds

∣∣∣∣∣
≤

[
EFt

(
1

(ξ ∧ m)q
−

1
(ξ ∧ n)q

)]
∨

[
1

(Y m
t )

q −
1

(Y n
t )

q

]
.

For a fixed t ∈ [0, T ], the sequences
(
EFt 1

(ξ∧n)q

)
n≥1

and
(

1
(Y n

t )
q

)
n≥1

converge a.s. and in L1

(dominated convergence theorem). Then
(

EFt
∫ T

t
‖Zn

s ‖
2

(Y n
s )

q+2 ds

)
n≥1

converges a.s. and in L1 and

we denote by Φt the limit:

Φt = lim
n→+∞

q(q + 1)
2

EFt

∫ T

t

‖Zn
s ‖

2(
Y n

s

)q+2 ds.

We can also remark that:

q(q + 1)
2

EFt

∫ T

t

‖Zn
s ‖

2(
Y n

s

)q+2 ds = EFt

(
1

(ξ ∧ n)q

)
+ q(T − t)−

1
(Y n

t )
q ,

with Y n
t ≤ 1/(q(T − t))1/q , so

0 ≤
q(q + 1)

2
EFt

∫ T

t

‖Zn
s ‖

2(
Y n

s

)q+2 ds ≤ EFt

(
1

(ξ ∧ n)q

)
≤

1
αq .

Therefore,

0 ≤ Φt ≤ EFt

(
1
ξq

)
.

For r ≤ t ,∫ T

r

‖Zn
s ‖

2(
Y n

s

)q+2 ds ≥

∫ T

t

‖Zn
s ‖

2(
Y n

s

)q+2 ds

H⇒ EFr

∫ T

r

‖Zn
s ‖

2(
Y n

s

)q+2 ds ≥ EFr EFt

∫ T

t

‖Zn
s ‖

2(
Y n

s

)q+2 ds

H⇒ Φr ≥ EFr Φt .

We deduce that (Φt )0≤t<T is a non-negative bounded supermartingale. Now for all n ∈ N∗,

1
(Y n

t )
q = q(T − t)+ EFt

(
1

(ξ ∧ n)q

)
−

q(q + 1)
2

EFt

∫ T

t

‖Zn
s ‖

2(
Y n

s

)q+2 ds.

Fix t < T . Taking the limit as n → +∞, we deduce:

1
(Yt )q

= q(T − t)+ EFt

(
1
ξq

)
− Φt .

From the above expression, (Φt )0≤t<T is right-continuous. �
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Φ being a right-continuous non-negative supermartingale, the limit of Φt as t goes to T exists
P-a.s. and this limit ΦT is finite P-a.s., since it is bounded by 1/αq . The L1-bounded martingale

EFt

(
1
ξq

)
converges a.s. to 1/ξq , as t goes to T ; then the limit of Yt as t → T exists and is equal

to:

lim
t→T

Yt =
1

( 1
ξq − ΦT )1/q

.

If we were able to prove that ΦT is zero a.s., we would have shown that YT = ξ .

1.2.2. The case of ξ non-negative
Now we just assume that ξ ≥ 0. We cannot apply the Itô formula to 1/(Y n)q because we have

no positive lower bound for Y n . We will approach Y n in the following way. We define for n ≥ 1
and m ≥ 1, ξn,m by:

ξn,m
= (ξ ∧ n) ∨

1
m
.

This random variable is in L2 and is greater than or equal to 1/m a.s. The BSDE (1), with ξn,m

as terminal condition, has a unique solution (Ỹ n,m, Z̃n,m). It is immediate that if m ≤ m′ and
n ≤ n′ then:

Ỹ n,m′

≤ Ỹ n′,m .

As for the sequence Y n , we can define Ỹ m as the limit when n grows to +∞ of Ỹ n,m . That limit
Ỹ m is greater than Y = limn→+∞ Y n . But for m ≤ m′, for t ∈ [0, T ]:

Ỹ n,m
t − Ỹ n,m′

t = ξn,m
− ξn,m′

−

∫ T

t

[(
Ỹ n,m

r

)q+1
−

(
Ỹ n,m′

r

)q+1
]

dr

−

∫ T

t

[
Z̃n,m

r − Z̃n,m′

r

]
dBr

≤ ξn,m
− ξn,m′

−

∫ T

t

[
Z̃n,m

r − Z̃n,m′

r

]
dBr ,

and taking the conditional expectation given Ft :

0 ≤ Ỹ n,m
t − Ỹ n,m′

t ≤ EFt
(
ξn,m

− ξn,m′
)

≤
1
m
. (18)

Recall that (Y n, Zn) is the solution of the BSDE (1) with ξn
= ξ ∧ n as terminal data. Thus we

also have:

0 ≤ Ỹ n,m′

t − Y n
t ≤ EFt

(
ξn,m′

− ξn
)

≤
1

m′
.

Letting m′
→ +∞ in the last estimate leads to limm′→+∞ Ỹ n,m′

t = Y n
t a.s. and using the

inequality (18):

0 ≤ Ỹ n,m
t − Y n

t ≤
1
m
.
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Therefore P-a.s.:

sup
t∈[0,T ]

∣∣Ỹ m
t − Yt

∣∣ ≤
1
m
.

Since Ỹ m has a limit on the left at T , so does Y .

1.3. Proof of (iv)

In order to complete the proof of Theorem 2, we need to establish the statement (iv).

Proposition 10. Suppose there exists a constant α > 0 such that P-a.s. ξ ≥ α. In this case:

E
∫ T

0
(T − s)2/q‖Zs‖

2 ds ≤ 8
(

1
q

)2/q

. (iv)

Proof. If ξ ≥ α, by comparison, for all integers n and all t ∈ [0, T ]:

Y n
t ≥

(
1

qT + 1/αq

)1/q

> 0.

Let δ > 0 and θ : R → R, θq : R → R defined by:{
θ(x) =

√
x on [δ,+∞[,

θ(x) = 0 on ]−∞, 0],
and

{
θq(x) = x

1
2q on [δ,+∞[,

θq(x) = 0 on ]−∞, 0],

and such that θ and θq are non-negative, non-decreasing and in respectively C2(R) and C1(R).
We apply the Itô formula on [0, T −δ] to the process θq(T −t)θ(Y n

t ), with δ < (qT +1/αq)−1/q :

θq(δ)θ(Y
n
T −δ)− θq(T )θ(Y

n
0 ) =

1
2

∫ T −δ

0
(T − s)1/2q(Y n

s )
−1/2 Zn

s dBs

+
1
2

∫ T −δ

0
(T − s)

1
2q (Y n

s )
1
2

(
(Y n

s )
q

−
1

q(T − s)

)
ds

−
1
8

∫ T −δ

0
(T − s)1/2q ‖Zn

s ‖
2

(Y n
s )

3/2 ds

so:

1
8

∫ T −δ

0
(T − s)1/2q ‖Zn

s ‖
2

(Y n
s )

3/2 ds ≤ T 1/2qθ(Y n
0 )+

1
2

∫ T −δ

0

(T − s)1/2q

(Y n
s )

1/2 Zn
s dBs

+
1
2

∫ T −δ

0
(T − s)1/2q(Y n

s )
1/2
(
(Y n

s )
q

−
1

q(T − s)

)
ds

and since Y n
s ≤ 1/(q(T − s))1/q and T 1/qY n

0 ≤ q−1/q , taking the expectation we obtain:

1
8

E
∫ T −δ

0
(T − s)1/2q ‖Zn

s ‖
2

(Y n
s )

3/2 ds ≤ θq(T )θ(Y
n
0 ) ≤ (1/q)1/2q ,

that is for all n and all δ > 0:

E
∫ T −δ

0
(T − s)1/2q ‖Zn

s ‖
2

(Y n
s )

3/2 ds ≤ 8(1/q)1/2q .
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Now, since 1/Y n
s ≥ (q(T − s))1/q , E

∫ T −δ

0 (T − s)2/q‖Zn
s ‖

2 ds ≤ 8(1/q)2/q , and letting δ → 0
and with the Fatou lemma, we deduce that

E
∫ T

0
(T − s)2/q‖Zs‖

2 ds ≤ 8(1/q)2/q .

This achieves the proof of the proposition. �

Now we come back to the case ξ ≥ 0. We cannot apply the Itô formula because we do not have
any positive lower bound for Y n . But we can approximate the process (Y n, Zn) by a sequence of
processes (Ỹ n,m, Z̃n,m) as in the proof of the existence of a limit for Y at time T . Let us recall
that we solve the BSDE (1) with ξn,m

= (ξ ∧ n) ∨
1
m as terminal condition. For all δ > 0, the

Itô formula, applied to the process (T − .)2/q
∣∣Ỹ n,m

− Y n
∣∣2, leads to the inequality:

E
∫ T −δ

0
(T − r)2/q

∥∥Z̃n,m
r − Zn

r

∥∥2
dr ≤ (δ)2/qE

∣∣Ỹ n,m
T −δ − Y n

T −δ

∣∣2
+

2
q

E
∫ T −δ

0
(T − s)(2/q)−1

∣∣Ỹ n,m
s − Y n

s

∣∣2 ds.

Let δ go to 0 in the previous inequality. We can do that because for all t ∈ [0, T ], 0 ≤ Ỹ n,m
t −Y n

t ,

which implies
∣∣Ỹ n,m

t − Y n
t

∣∣2 ≤ n2, and because (T − .)(2/q)−1 is integrable on the interval [0, T ].
Finally, using the inequality: 0 ≤ Ỹ n,m

s − Y n
s ≤

1
m , we have:

E
∫ T

0
(T − r)2/q

∥∥Z̃n,m
r − Zn

r

∥∥2
dr ≤

2
q

1

m2

∫ T

0
(T − s)(2/q)−1 ds =

T 2/q

m2 .

Therefore, for all ε > 0:

E
∫ T

0
(T − r)2/q

∥∥Zn
r

∥∥2 dr ≤ E
∫ T

0
(T − r)2/q

∥∥Z̃n,m
r

∥∥2
dr

+ E
∫ T

0
(T − r)2/q

∥∥Z̃n,m
r − Zn

r

∥∥2
dr

+ 2E
∫ T

0
(T − r)2/q

∥∥Z̃n,m
r

∥∥ ∥∥Z̃n,m
r − Zn

r

∥∥ dr

≤ (1 + ε)E
∫ T

0
(T − r)2/q

∥∥Z̃n,m
r

∥∥2
dr

+

(
1 +

1
ε

)
E
∫ T

0
(T − r)2/q

∥∥Z̃n,m
r − Zn

r

∥∥2
dr

≤ 8(1 + ε)(1/q)2/q +
T 2/q

m2

(
1 +

1
ε

)
.

We have applied the previous result to Z̃n,m . Now we let first m go to +∞ and then ε go to 0,
we have:

E
∫ T

0
(T − r)2/q

∥∥Zn
r

∥∥2 dr ≤ 8(1/q)2/q . (19)

The result follows by letting finally n go to ∞.
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2. Continuity of Y at T

In this section, ξ is still supposed non-negative. We make precise the behaviour of Y in
a neighbourhood of T (Proposition 3) and we show the continuity of Y at T under stronger
assumptions (Theorem 4).

2.1. Lower bound and asymptotic behaviour in a neighbourhood of T

Now we construct an adapted process which is smaller than Y .

Lemma 11. For 0 ≤ t < T , P-a.s.

Yt ≥ EFt

( 1

q(T − t)+
1
ξq

)1/q
 .

Remark 12. The right hand side is obtained through the following operation: first, we solve
the ordinary differential equation y′

= y1+q with ξ as terminal condition; then we project this
solution on the σ -algebra Ft .

Proof. Let n ∈ N∗ and consider for 0 ≤ t ≤ T :

Γ n
t = EFt

( 1

q(T − t)+
1

(ξ∧n)q

)1/q
 .

Γ n is well defined because the term in the conditional expectation is bounded by n. We have:

(
1

q(T − t)+
1

(ξ∧n)q

)1/q

= ξ ∧ n −

∫ T

t

 1(
q(T − r)+

1
(ξ∧n)q

) 1
q


1+q

dr.

So Γ n verifies:

Γ n
t = EFt

ξ ∧ n −

∫ T

t

1(
q(T − r)+

1
(ξ∧n)q

) 1+q
q

dr


= EFt

(
ξ ∧ n −

∫ T

t
(Γ n

r )
1+q dr −

∫ T

t
U n

r dr

)
,

with U n the adapted and bounded (by n1+q ) process:

U n
r = EFr

 1(
q(T − r)+

1
(ξ∧n)q

) 1+q
q

− (Γ n
r )

1+q
;

the Jensen inequality (1 + q > 1) showing that U n
r ≥ 0, for 0 ≤ r ≤ T . Then, the comparison

Theorem 2.4 in [5] allows us to conclude that, for all t ∈ [0, T ], a.s.

Γ n
t ≤ Y n

t ≤ Yt .
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We then deduce from the monotone convergence theorem:

lim
n→+∞

Γ n
t = EFt

( 1

q(T − t)+
1
ξq

)1/q
 = Γt . �

We now establish the:

Proposition 13. On the set {ξ = +∞},

lim
t↑T
(T − t)1/qYt =

(
1
q

)1/q

, a.s. (6)

Proof. Indeed,

Γt = EFt

[(
ξq1ξ<∞

1 + q(T − t)ξq

)1/q
]

+
1

(q(T − t))1/q
EFt

(
1ξ=∞

)
≥ EFt

[(
ξq1ξ<∞

1 + qT ξq

)1/q
]

+
1

(q(T − t))1/q
EFt

(
1ξ=∞

)
.

Then,

(T − t)1/qΓt ≥ (T − t)1/qEFt

[(
ξq1ξ<∞

1 + qT ξq

)1/q
]

+

(
1
q

)1/q

EFt
(
1ξ=∞

)
.

The first term, in the right hand side, converges to 0 on the set {ξ = +∞} and the second
converges to (1/q)1/q . Indeed, we have:

0 ≤
ξq

1 + qT ξq ≤
1

qT

and we can apply the martingale convergence theorem. Since Y is bounded from above by
1/(q(T − t))1/q , this achieves the proof. �

2.2. Continuity at time T : The first step

We now want to prove Theorem 4, i.e. ξ ≥ lim supt→T Yt . Recall that we already know that
the limit of Yt as t → T exists a.s. From the inequality (15), we just have to show that on the set
{ξ < +∞},

ξ ≥ lim
t→T

Yt = lim inf
t→T

Yt .

The main difficulty here is to find a “good” upper bound of Yt . We shall use a method widely
inspired by the article of Marcus and Véron [7] and more precisely by the proof of Lemma 2.2
page 1450. We try to adapt this method to our case.

We make stronger assumptions on ξ . From now and for the rest of this paper, we suppose that
the conditions (H1), (H2), (L) and (G) hold.
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Let ϕ be a function in the class C2 (Rm) with a compact support. Let (Y, Z) be the solution
of the BSDE (1) with the final condition ζ ∈ L2(Ω). For any t ∈ [0, T ]:

Ytϕ(X t ) = Y0ϕ(X0)+

∫ t

0
ϕ(Xr )

[
Yr |Yr |

q dr + Zr . dBr
]
+

∫ t

0
Yr d(ϕ(Xr ))

+

∫ t

0
Zr .∇ϕ(Xr )σ (r, Xr ) dr

= Y0ϕ(X0)+

∫ t

0
ϕ(Xr )Yr |Yr |

q dr +

∫ t

0
Zr .∇ϕ(Xr )σ (r, Xr ) dr

+

∫ t

0
YrLϕ(Xr ) dr +

∫ t

0
(Yr∇ϕ(Xr )σ (r, Xr )+ ϕ(Xr )Zr ) . dBr

where L is the operator defined by (4). Taking the expectation:

E(Ytϕ(X t )) = E(Y0ϕ(X0))+ E
∫ t

0
ϕ(Xr )Yr |Yr |

q dr

+ E
∫ t

0
Zr .∇ϕ(Xr )σ (r, Xr ) dr + E

∫ t

0
YrLϕ(Xr ) dr. (20)

The idea is to use the relation (20) with a suitable function ϕ. The set Fc
∞ = {g < +∞} is

open in Rm . Let U be a bounded open set with a regular boundary and such that the compact
set U is included in Fc

∞. We denote by Φ = ΦU a function which is supposed to belong to
C2(Rm

; R+) and such that Φ is equal to zero on Rm
\U , is positive on U . Let α be a real number

such that

α > 2(1 + 1/q).

For n ∈ N, let (Y n, Zn) be the solution of the BSDE (1) with the final condition (g ∧ n)(XT ).
The equality (20) becomes for 0 ≤ t ≤ T :

E(Y n
T Φα(XT )) = E(Y n

t Φα(X t ))+ E
∫ T

t
Zn

r .∇(Φ
α)(Xr )σ (r, Xr ) dr

+ E
∫ T

t
Φα(Xr )(Y

n
r )

1+q dr + E
∫ T

t
Y n

r L(Φα)(Xr ) dr. (21)

Using (21), we will first prove that for every real α > 2(1 + 1/q) and for every n:

E
∫ T

0
(Y n

r )
1+qΦα(Xr ) dr ≤ C < ∞,

where the constant C is independent of n. In particular, we will have to find a bound for the term
containing Z in the right hand side of the equation (21). We know how to control this term in the
two cases of Theorem 4: we suppose that either q > 2 or (H3), (B), (D) and (E) are satisfied.
Thanks to the Fatou lemma, Y 1+qΦα(X) will belong to L1(Ω × [0, T ]). Then, we will deduce
that the limit as t goes to T of Yt is less than or equal to ξ a.s. on the set {ξ < +∞}.
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2.3. Continuity when q > 2

In this section, we will suppose that q > 2. In that case, we can easily control the term

E
∫ T

0
Zn

r .∇(Φ
α)(Xr )σ (r, Xr ) dr.

Using the Cauchy–Schwarz inequality, we obtain:∣∣∣∣E ∫ t

0
Zn

r .∇(Φ
α)(Xr )σ (r, Xr ) dr

∣∣∣∣
≤

(
E
∫ t

0
‖Zn

r ‖
2(T − r)2/q dr

) 1
2
(

E
∫ t

0

‖∇(Φα)(Xr )σ (r, Xr )‖
2

(T − r)2/q
dr

) 1
2

.

From the inequality (19) of the first section:

E
∫ T

0
‖Zn

r ‖
2(T − r)2/q dr ≤ 8

(
1
q

) 2
q

.

And the second term

E
∫ T

0

‖∇(Φα)(Xr )σ (r, Xr )‖
2

(T − r)2/q
dr

is finite if q > 2. Indeed, recall that Φ is compactly supported and α > 2. Hence the numerator
is bounded for all (t, x) ∈ [0, T ] × Rm :

‖∇(Φα)(x)σ (t, x)‖2
≤ α2Φ2(α−1)(x)‖∇Φ(x)‖2(K (1 + |x |))2 ≤ C.

Therefore, there exists a constant C = C(q,Φ, α, σ ) such that for all t ∈ [0, T ] and n ∈ N:∣∣∣∣E ∫ t

0
Zn

r .∇(Φ
α)(Xr )σ (r, Xr ) dr

∣∣∣∣ ≤ C. (22)

The term

E
∫ T

0
Y n

r L(Φα)(Xr ) dr

can be bounded using the Hölder inequality. Let p be such that 1/p + 1/(1 + q) = 1 or
p = 1 + 1/q and p/(1 + q) = p − 1.

We will prove that

Φ−α(p−1)
∣∣L(Φα)

∣∣p
∈ L∞([0, T ] × Rm).

Using the growth condition (G) on σ , we have:

Φ−α(p−1)
∣∣∣Trace(D2(Φα)σσ ∗(t, .))

∣∣∣p
≤ CΦ−α(p−1)

∥∥∥D2(Φα)

∥∥∥p
(1 + |x |

2)p,

and

D2(Φα) = αΦα−1 D2Φ + α(α − 1)Φα−2
∇Φ ⊗ ∇Φ

Φ−α(p−1)
∥∥∥D2(Φα)

∥∥∥p
≤ 2p−1

(
α pΦα−p

∥∥∥D2Φ
∥∥∥p

+ (α(α − 1))pΦα−2p
|∇Φ|

2p
)
.
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Hence:

Φ−α(p−1)
∣∣∣Trace(D2(Φα)σσ ∗(t, .))

∣∣∣p
≤ CΦα−2pΨ

where Ψ is the continuous function on Rm :

Ψ =

[
α pΦ p

∥∥∥D2Φ
∥∥∥p

+ (α(α − 1))p
|∇Φ|

2p
] [

1 + |x |
2p
]
.

Since α > 2(1 + 1/q) = 2p and since Φ has a compact support,

Φ−α(p−1)
∣∣∣Trace(D2(Φα)σσ ∗(t, .))

∣∣∣p
∈ L∞([0, T ] × Rm). (23)

For the second term Φ−α(p−1) |∇(Φα).b(t, .)|p, we have:

∇(Φα) = αΦα−1
∇Φ ⇒ Φ−α(p−1)

∣∣∇(Φα)
∣∣p

= α pΦα−p
|∇Φ|

p .

Since α > 2p and |b(t, x)| ≤ K (1 + |x |),

Φ−α(p−1)
∣∣∇(Φα).b(t, .)

∣∣p
≤ 2p−1 K pΦ−α(p−1)

∣∣∇(Φα)
∣∣p
(1 + |x |

p)

= 2p−1(Kα)pΦα−p
|∇Φ|

p (1 + |x |
p).

Therefore,

Φ−α(p−1)
∣∣∇(Φα).b(t, .)

∣∣p
∈ L∞([0, T ] × Rm). (24)

Since ∣∣L(Φα)
∣∣p

≤ 2p−1
∣∣∇(Φα).b(t, .)

∣∣p
+ 2p−1

∣∣∣Trace(D2(Φα)σσ ∗(t, .))
∣∣∣p
,

we apply the Hölder inequality:

E
∣∣Y n

t L(Φα)(X t )
∣∣ ≤

[
E
(
Φα(X t )(Y

n
t )

1+q
)] 1

1+q
[
E
(
Φ−α(p−1)(X t )

∣∣L(Φα)(X t )
∣∣p
)]1/p

≤ C
[
E
(
Φα(X t )(Y

n
t )

1+q
)] 1

1+q
,

and the constant C depends only on q , b, σ , Φ and α, not on n, or on t . Finally, we have:

E
∫ T

0

∣∣Y n
r L(Φα)(Xr )

∣∣ dr ≤ C
∫ T

0

[
E
(
Φα(Xr )(Y

n
r )

1+q
)] 1

1+q
dr

≤ C

[
E
∫ T

0
Φα(Xr )(Y

n
r )

1+q dr

] 1
1+q

. (25)

We come back to the Eq. (21) for t = 0:

E(Y n
T Φα(XT )) = E(Y n

0 Φα(X0))+ E
∫ T

0
Zn

r .∇(Φ
α)(Xr )σ (r, Xr ) dr

+ E
∫ T

0
Φα(Xr )(Y

n
r )

1+q dr + E
∫ T

0
Y n

r L(Φα)(Xr ) dr.

Recall that Y n
T Φα(XT ) ≤ g(XT )Φα(XT ); since Φ is equal to zero outside a compact set included

in Fc
∞ = {g < +∞}, using the condition (H2) the left hand side of the previous equality is

bounded by a constant independent of n.
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In the right hand side, using the inequality (22), we deduce that the first two terms are also
bounded. Thus, we have:

E
∫ T

0
Φα(Xr )(Y

n
r )

1+q dr + E
∫ T

0
Y n

r L(Φα)(Xr ) dr ≤ C,

which implies with the inequality (25):

E
∫ T

0
Φα(Xr )(Y

n
r )

1+q dr − C

[
E
∫ T

0
Φα(Xr )(Y

n
r )

1+q dr

] 1
1+q

≤ C. (26)

The set
{

x ∈ R+, x − Cx
1

1+q ≤ C
}

is bounded. Therefore, we deduce that:

E
∫ T

0
Φα(Xr )(Y

n
r )

1+q dr ≤ C.

Hence, we have proved:

Lemma 14. The sequence Φα(X)(Y n)1+q is a bounded sequence in L1(Ω × [0, T ]) and with
the Fatou lemma, Y 1+qΦα(X) belongs to L1(Ω × [0, T ]).

This inequality allows us to show that

lim inf
t→T

Yt ≤ ξ.

Indeed, let θ be a function of class C2(Rm
; R+) with a compact support strictly included in

Fc
∞ = {g < +∞}. There exists an open set U s.t. the support of θ is included in U and

U ⊂ Fc
∞. Let Φ = ΦU be the previously used function. Let us recall that α is strictly greater than

2(1 + 1/q) > 2. Thanks to a result in the proof of the lemma 2.2 of [7], there exists a constant
C = C(θ, α) such that:

|θ | ≤ CΦα, |∇θ | ≤ CΦα−1 and
∥∥∥D2θ

∥∥∥ ≤ CΦα−2.

We write again the Eq. (21) for θ , n ∈ N∗ and 0 ≤ t ≤ T :

E(Y n
T θ(XT )) = E(Y n

t θ(X t ))+ E
∫ T

t
θ(Xr )(Y

n
r )

1+q dr

+ E
∫ T

t
Y n

r Lθ(Xr ) dr + E
∫ T

t
Zn

r ∇θ(Xr )σ (r, Xr ) dr. (27)

In the left hand side, we use the assumption (H2) to pass to the limit as n tends to ∞. We
just have to control the right hand side as n tends to infinity. For the first term, there is no
problem: we use the dominated convergence theorem. For the second, we apply the monotone
convergence theorem. For the third one, we can do the same calculations using the previously
given estimations on θ , ∇θ and D2θ in terms of power of Φα and Hölder’s inequality:

Φ−α(p−1)
|Lθ |p

∈ L∞([0, T ] × Rm). (28)

Now we can write:

Y n
r Lθ(Xr ) =

(
Y n

r Φα/(1+q)
) (

Φ−α/(1+q)Lθ(Xr )
)
.
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The sequence Y nΦα/(1+q)
= Y nΦα(1−1/p) is a bounded sequence in L1+q(Ω × [0, T ]) (see

Lemma 14). With (28), using a weak convergence result and extracting a subsequence if
necessary, we can pass to the limit in the term E

∫ T
t Y n

r Lθ(Xr ) dr . Moreover:

∀n ∈ N,E
∫ T

0

∣∣Y n
r Lθ(Xr )

∣∣ dr ≤ C. (29)

For the remaining term

E
∫ T

t
Zn

r .∇θ(Xr )σ (r, Xr ) dr

recall that from Section 1.3, there exists a constant C = C(q) for all n ∈ N:

E
∫ T

0
‖Zn

r ‖
2(T − r)

2
q dr ≤ C.

Hence, there exists a subsequence, which we still denote as Zn(T − r)1/q , and which converges
weakly in the space L2

(
Ω × (0, T ), dP × dt; Rd

)
to a limit, and the limit is Z(T − r)1/q ,

because we already know that Zn converges to Z in L2 (Ω × (0, T − δ)) for all δ > 0.
∇θ(X)σ (., X)(T − .)−1/q is L2 (Ω × (0, T )), because θ is compactly supported and q > 2.
Therefore,

lim
n→+∞

E
∫ T

t
Zn

r .∇θ(Xr )σ (r, Xr ) dr = E
∫ T

t
Zr .∇θ(Xr )σ (r, Xr ) dr

and

∀n ∈ N, E
∫ T

0

∣∣Zn
r .∇θ(Xr )σ (r, Xr ) dr

∣∣ dr ≤ C. (30)

Passing to the limit as n → +∞ in (27):

E(ξθ(XT )) = E(Ytθ(X t ))+ E
∫ T

t
θ(Xr )(Yr )

1+q dr + E
∫ T

t
YrLθ(Xr ) dr

+ E
∫ T

t
Zr .∇θ(Xr )σ (r, Xr ) dr.

We let t go to T and we apply Lemma 14, inequalities (29) and (30), and Fatou’s lemma:

E [ξθ(XT )] = lim
t→T

E [Ytθ(X t )] ≥ E
[(

lim inf
t→T

Yt

)
θ(XT )

]
= E

[(
lim
t→T

Yt

)
θ(XT )

]
. (31)

But recall that we already know (iii): limt→T Yt ≥ g(XT ). Hence, the inequality in (31) is in fact
a equality, i.e.

E [g(XT )θ(XT )] = E
[
θ(XT )

(
lim

t→+∞
Yt

)]
.
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And using again (iii), we conclude that:

lim
t→+∞

Yt = g(XT ), P-a.s. on {g(XT ) < ∞} .

Therefore, we have proved the continuity of Y on [0, T ] in the case q > 2.

Remark 15. A little modification in the previous arguments shows that the sequences
Y nL(Φα)(X) and Y nLθ(X) are bounded in Lr (Ω × [0, T ]) for 1 ≤ r < 1 + q. Therefore
the sequence Y nLθ(X) is uniformly integrable and the passage to the limit and the estimate (29)
follow.

2.4. When assumptions (H3), (B), (D) and (E) are satisfied

If we just assume q > 0, our previous control on the term containing Z in (21) fails. But with
the assumptions (H3), (B), (D) and (E), we are able to prove that there exists a function ψ such
that for 0 < t ≤ T :

E
∫ T

t
Zn

r .∇θ(Xr )σ (r, Xr ) dr = E
∫ T

t
Y n

r ψ(r, Xr ) dr,

and then, we apply again the Hölder inequality in order to control

E
∫ T

t
Y n

r ψ(r, Xr ) dr by E
∫ T

t
(Y n

r )
1+qΦα(Xr ) dr.

We need the existence of a regular density for the process X solution of the SDE (7).
According to the article of Aronson [12], Theorems 7 and 10, there exists a density (Green’s
function) for X , p(x; ., .) ∈ L2

(
δ, T ; H2

)
for all δ > 0.

Moreover, from the Theorem 7 of [12] and the Theorem II.3.8 of [13], the density is Hölder
continuous in x and satisfies the following inequality for s ∈]0, T ]:

exp
(
−C |y−x |

2

s

)
Csm/2 ≤ p(x; s, y) ≤

C exp
(
−

|y−x |
2

Cs

)
sm/2 , (32)

C depending only on T , on the bounds K and λ in (B) and (E), and C is independent of the
regularity of these functions.

From now on, we omit the variable x in p(x; ., .).

2.4.1. A preliminary result
We now prove the following result for the solution (Y, Z) of the BSDE:

Yt = h(XT )+

∫ T

t
f (Yr ) dr −

∫ T

t
Zr dBr ,

where h : Rm
→ R is a bounded and Lipschitz function.

Proposition 16. Under the assumptions (B), (D) and (E), for each function ϕ in the class
C2 (Rm) with a compact support, there exists a real Borel function ψ defined on ]0, T ] × Rm s.t.
for all t > 0, E (|Ytψ(t, X t )|) < +∞ and

E [Z t .∇ϕ(X t )σ (t, X t )] = −E [Ytψ(t, X t )] .
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The function ψ is given by the following formula:

ψ(t, x) =

d∑
i=1

(∇ϕσ)i (x)
div(pσ i )(t, x)

p(t, x)
+ Trace

(
D2ϕ(x)σσ ∗(t, x)

)

+

d∑
i=1

∇ϕ(x).[(∇σ i )σ i
](t, x); (33)

where σ i is the i-th column of the matrix σ and p is the density of the process X.

Proof. To find this function ψ , we use the following result:

Proposition 17. For all 1 ≤ i ≤ d,
{

Di
sYs, 0 ≤ s ≤ T

}
is a version of (Z)i .

(Z)i = {(Zs)i , 0 ≤ s ≤ T } denotes the i-th component of Z . This result comes from the
Proposition 5.3 in the article of El Karoui et al. [14]. Here, Di

sYs has the following sense:

Di
sYs = lim

r→s
r<s

Di
r Ys .

From the conditions (L) and (G) and the Theorem 2.2.1 of [15], we know that XT belongs
to D1,∞, and since h is Lipschitz, with the Proposition 1.2.3 of [15], ξ = h(XT ) ∈ D1,2.
Moreover, since h is bounded (by M), Y is also bounded (by M) and f is a C1-function. Hence,
the conclusion of the Proposition 5.3 of [14] holds.

We must calculate:

E [Z t .∇ϕ(X t )σ (t, X t )] = E [Dt Yt .∇ϕσ(X t )] =

d∑
i=1

E
[

Di
t Yt .(∇ϕσ)i (X t )

]
,

where ∇ϕσ(X t ) = (∇ϕ)(X t )σ (t, X t ) and (∇ϕσ)i (X t ) denotes the i-th component of ∇ϕσ(X t ).
Let νi

j , j ∈ N∗, be the following function:

νi
j (r) = j1[t−1/j,t](r)ei ,

with r ∈ [0, T ] and with (e1, . . . , ed) the canonical basis of Rd . Here, we need t > 0. We define

Dνi
j
Yt = 〈DYt , ν

i
j 〉H ,

H being the Hilbert space L2([0, T ]; Rd). The integration by parts formula for the Malliavin
derivative is the following:

E
[

Dνi
j
Yt (∇ϕσ)i (X t )

]
= E

[
Yt (∇ϕσ)i (X t )

∫ T

0
νi

j (r). dBr

]
− E

[
Yt Dνi

j
((∇ϕσ)i (X t ))

]
. (34)

Now we calculate the first term of the right hand side.

E
[

Yt (∇ϕσ)i (X t )

∫ T

0
νi

j (r). dBr

]
= j E

[
Yt (∇ϕσ)i (X t )(B

i
t − Bi

t−1/j )
]

= − j E
[

Yt (∇ϕσ)i (X t )

∫ t

t−1/j

div(pσ i )(u, Xu)

p(u, Xu)
du

]
, (35)

where p is the density of X and σ i is the i-th column of the matrix σ .
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The last equality is justified by the Lemmas 3.1 and 4.1 of the article of Pardoux [16]. We
must show that the assumptions of these lemmas are satisfied. First, Y is a function of X : there
exists a continuous function u : [0, T ] × Rm

→ R such that Yt = u(t, X t ). Hence, we can write:

E
[
Yt (∇ϕσ)i (X t )(B

i
t − Bi

t−1/m)
]

= E
[
v(t, X t )(B

i
t − Bi

t−1/m)
]
,

with v(t, x) = u(t, x)(∇ϕσ)i (x). Since ϕ has a compact support, so does v. And v is measurable
and bounded. So the conditions of the Lemma 4.1 are verified, the time dependence of g
playing no role in the demonstration. (L), (B), (E) are not exactly the assumptions of the
Lemmas 3.1 and 4.1, but with these conditions, the conclusions are the same. In fact, the
main problem is to give a sense to the fraction div(pσ i )/p. From the lower bound in (32),
the set {(s, y) ∈]0, T ] × Rm

; p(s, y) = 0} is empty. Thus the conclusion of the Lemma 3.1
holds. Moreover the property p ∈ L2

(
δ, T ; H2

)
,∀δ > 0, implies that div(pσ i ) belongs to

L2([δ, T ] × Rm) for all δ > 0 (Lemma 2.1 in [16] with m = 0 and δ instead of 0). Since t > 0
is fixed here, the proof of the Theorem 2.2 in [16] (see page 53) gives us the equality (35).

We have an additional regularity property on div p. This property is given by the Theorem
12.1, Section 3, page 223 of [17]. Since p(., .) is solution of the PDE:

∂t p = L∗ p,

and since the coefficients of L are bounded and Lipschitz in x , the first derivatives of σσ ∗ belong
to L∞([0, T ] × Rm). Therefore L∗ is uniformly elliptic and can be written in divergence form.
From (B) and (L), b and ∇b are bounded. From (B), (L) and (D), all coefficients of L∗ are
bounded. Hence the conclusions of the Theorem III.12.1 are valid: ∂p/∂xi satisfies a Hölder
condition in x .

From the lower bound in (32), 1/p is a continuous function. Moreover, div(pσ i ) is also
continuous. Let j goes to +∞ in the identity (34):

E
[

Di
t Yt (∇ϕσ)i (X t )

]
= −E

[
Yt (∇ϕσ)i (X t )

div(pσ i )(t, X t )

p(t, X t )

]
− E

[
Yt Di

t ((∇ϕσ)i (X t ))
]
.

To find Di
t ((∇ϕσ)i (X t )), recall the following result (see Proposition 1.2.3 and Theorem 2.2.1

in [15]): since the process X has a density, if µ is a Lipschitz function, then: Di
tµ(X t ) =

∇µ(X t )Di
t (X t ) = ∇µ(X t )σ

i (X t ). Applying this result with µ = (∇ϕσ)i , we obtain:

Di
t ((∇ϕσ)i (X t )) = (σ ∗ D2ϕσ)i i (X t )+ ∇ϕ.[∇σ i .σ i

](X t ).

Finally,

E [Z t .∇ϕ(X t )σ (t, X t )] =

d∑
i=1

E
[

Di
t Yt .(∇ϕσ)i (X t )

]
= −E [Ytψ(t, X t )]

= −E

[
Yt

(
d∑

i=1

(∇ϕσ)i (X t )
div(pσ i )(t, X t )

p(t, X t )

)]

− E

[
Yt

(
Trace(D2ϕσσ ∗)(X t )+

d∑
i=1

∇ϕ.[(∇σ i )σ i
](X t )

)]
. �
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The hypothesis (H3) implies that g ∧ n is a Lipschitz function on Rm . Indeed if we define

Kn = sup
{

|g(x)− g(y)|

|x − y|
; g(x) ∨ g(y) ≤ n

}
,

then the assumption (H3) implies that (Kn) is a non-decreasing sequence of real positive
numbers. Moreover, if x and y satisfy g(x) ∨ g(y) ≤ n or g(x) ∧ g(y) ≥ n, then |(g ∧ n)(x)−

(g ∧ n)(y)| ≤ Kn|x − y|. And if g(y) < n ≤ g(x), then the continuity of g leads to:

|(g ∧ n)(x)− (g ∧ n)(y)| = n − g(y) ≤ Kn+1dist(y,
{
z ∈ Rm

; g(z) ≥ n
}
)

≤ Kn+1|y − x |.

Finally g ∧ n has a Lipschitz norm smaller than Kn+1.
We can apply Proposition 16 with Y n, Zn, ϕ. Coming back to the Eq. (21) for t > 0:

E(Y n
Tϕ(XT )) = E(Y n

t ϕ(X t ))+ E
∫ T

t
ϕ(Xr )(Y

n
r )

1+q dr

− E
∫ T

t
Y n

r ψ(r, Xr ) dr + E
∫ T

t
Y n

r ∇ϕ(Xr )b(r, Xr ) dr

+
1
2

E
∫ T

t
Y n

r Trace(D2ϕ(Xr )σσ
∗(r, Xr )) dr (36)

where ψ is given by the formula (33) in Proposition 16.

2.4.2. Continuity with (H3), (B), (E) and (D)
Recall that U is a bounded open set such that U ⊂ Fc

∞ = {g < ∞}, that Φ = ΦU is a
function which is supposed to belong to C2(Rm

; R+) and such that Φ is equal to zero on Rm
\U ,

is strictly positive on U . α is a real such that α > 2(1 + 1/q). For n ∈ N, let (Y n, Zn) be the
solution of the BSDE (1) with the final condition (g ∧ n)(XT ). For 0 < t ≤ T , the relation (36)
is:

E(Y n
T Φα(XT )) = E(Y n

t Φα(X t ))+ E
∫ T

t
Φα(Xr )(Y

n
r )

1+q dr

+ E
∫ T

t
Y n

r Ψα(r, Xr ) dr, (37)

with Ψα the following function: for t ∈ ]0, T ] and x ∈ Rm

Ψα(t, x) = ∇(Φα)(x).b(t, x)−
1
2

Trace(D2(Φα)(x)σσ ∗(t, x))

−

d∑
i=1

(
(∇(Φα)(x)σ (t, x))i

div(p(t, x)σ i (t, x))

p(t, x)

)

−

d∑
i=1

(
∇(Φα)(x).[∇σ i (t, x)σ i (t, x)]

)
.

Our goal now is to prove that for a fixed ε > 0 and p = 1 + 1/q:

Φ−α(p−1)
|Ψα|

p
∈ L∞([ε, T ] × Rm).
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If it is true, then the last term in (37) satisfies:

E
∫ T

t

∣∣Y n
r Ψα(r, Xr )

∣∣ dr ≤ C

(
E
∫ T

t
Φα(Xr )(Y

n
r )

1+q dr

) 1
1+q

and the end of the proof will be the same as in the case q > 2.
From the case q > 2 (see (23) and (24)), we already know that

Φ−α(p−1)
∣∣∇(Φα).b(t, .)

∣∣p and Φ−α(p−1)
∣∣∣∣12Trace

(
D2(Φα)σσ ∗(t, .)

)∣∣∣∣p

are in L∞([0, T ] × Rm). The next term is:

Φ−α(p−1)

∣∣∣∣∣ d∑
i=1

∇(Φα).[∇σ i (t, .)σ i (t, .)]

∣∣∣∣∣
p

.

σ satisfies the conditions (L) and (B). We use again the calculation done for the gradient of Φα

(see the proof of (24)) to deduce that if α > 2p this term is in L∞([0, T ] × Rm). Now, we come
to the last term which involves the density of X :

Φ−α(p−1)

∣∣∣∣∣ d∑
i=1

(∇(Φα)σ (t, .))i
div(pσ i )(t, .)

p(t, .)

∣∣∣∣∣
p

= α pΦα−p

∣∣∣∣∣ d∑
i=1

(∇Φσ(t, .))i
div(pσ i )(t, .)

p(t, .)

∣∣∣∣∣
p

.

We split this term into two parts:

Φα−p

∣∣∣∣∣ d∑
i=1

(
(∇Φσ(t, .))i

(
(divσ i )+ σ i (∇ p)

p

)
(t, .)

)∣∣∣∣∣
p

≤ (2d)p−1
d∑

i=1

Φα−p
∣∣∣(∇Φσ(t, .))i (div σ i )(t, .)

∣∣∣p

+ (2d)p−1
d∑

i=1

Φα−p
∣∣∣(∇Φσ(t, .))iσ i (t, .)

∣∣∣p |(∇ p)(t, .)|p

|p(t, .)|p .

For the first part, there is no problem because α − p > 0, so Φα−p is continuous and compactly
supported and (∇Φσ)i (div σ i ) is bounded because of conditions (L) and (B). For the second
part, we use the inequality (32) and the fact that the support of Φα−p is a compact set K. So
the minimum of p(., .) exists on the set [ε, T ] × K and is positive. Therefore, we control the
denominator. For the numerator, we already know that ∂p/∂xi satisfies a Hölder condition in x .
We can now conclude that the second part is bounded by a constant K independent of n and t .

Finally, we have:

Φ−α(p−1)
|Ψα|

p
∈ L∞([ε, T ] × Rm),

and thus, for t ≥ ε:

∣∣E [Y n
t Ψα(t, X t )

]∣∣ ≤ CE
[
Φα(X t )(Y

n
t )

1+q
] 1

1+q
, (38)
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where C is a constant independent of t and n. The Eq. (37) is:

E(Y n
T Φα(XT ))− E(Y n

ε Φα(Xε)) = E
∫ T

ε

[
Φα(Xr )(Y

n
r )

1+q
]

dr

+ E
∫ T

ε

[
Y n

r Ψα(r, Xr )
]

dr.

We have: Y n
T Φα(XT ) ≤ g(XT )Φα(XT ); since Φ is equal to zero outside a compact set included

in Fc
∞ = {g < +∞}, using the condition (H2) the left hand side of the previous equality is

bounded by a constant independent of n. Therefore, we obtain:

E
∫ T

ε

[
Φα(Xr )(Y

n
r )

1+q
]

dr − C

[
E
∫ T

ε

(
Φα(X t )(Y

n
t )

1+q
)

dt

] 1
1+q

≤ C.

Since the set {x ∈ R+, x −Cx
1

1+q ≤ C} is bounded, we immediately deduce that Φα(X)(Y n)1+q

is a bounded sequence in L1(Ω × [ε, T ]). With the Fatou lemma, for 0 < ε ≤ T , Y 1+qΦα(X)
belongs to L1(Ω × [ε, T ]).

As Y is bounded on the interval [0, ε], ε < T , by 1/(q(T − ε))1/q , we have proved:

E
∫ T

0
Y 1+q

r Φα(Xr ) dr < +∞. (39)

As in the case q > 2, this inequality allows us to show that: lim inft→T Yt ≤ ξ . Indeed, let θ
be a function of class C2(Rd

; R+)with a compact support strictly included in Fc
∞ = {g < +∞}.

We write again the Eq. (36) for θ , n ∈ N∗, ε > 0 and t ≥ ε:

E((ξ ∧ n)θ(XT )) = E(Y n
T θ(XT )) = E(Y n

t θ(X t ))

+ E
∫ T

t
θ(Xr )(Y

n
r )

1+q dr + E
∫ T

t
Y n

r Θ(r, Xr ) dr, (40)

with

Θ(t, x) = ∇θ(x).b(t, x)−

d∑
i=1

(
(∇θ(x)σ (t, x))i

div(p(t, x)σ i (t, x))

p(t, x)

)

−
1
2

Trace(D2θ(x)σσ ∗(t, x))−

d∑
i=1

(
∇θ(x).[∇σ i (t, x).σ i (t, x)]

)
.

With the same arguments as in the case q > 2, we can prove that

ξ = lim
t→T

Yt , P-a.s. on {ξ < +∞} .

3. Minimal solution

In this section we prove Theorem 5: the solution constructed in Sections 1 and 2 is the minimal
one. Before we obtain the following estimate:

Proposition 18. With the assumptions of Theorem 5, we prove:
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∀t ∈ [0, T ], Ȳt ≤

(
1

q(T − t)

) 1
q

.

Proof. For every 0 < h < T , we define on [0, T − h]

Λh(t) =

(
1

q(T − h − t)

) 1
q

.

Λh is the solution of the ordinary differential equation: Λ′

h(t) = (Λh(t))1+q , with final condition
Λh(T − h) = +∞. But on the interval [0, T − h], (Ȳ , Z̄) is a solution of the BSDE (1) with
final condition ȲT −h . From the assumptions ȲT −h is in L2(Ω), so is finite a.s. Now we take the
difference between Ȳ and Λh for all 0 ≤ t ≤ s < T − h:

Λh(t)− Ȳt = Λh(s)− Ȳs −

∫ s

t

(
Λh(r)

1+q
−
(
Ȳr
)1+q

)
dr −

∫ s

t
Z̄r dBr

= Λh(s)− Ȳs −

∫ s

t
αr
(
Λh(r)− Ȳr

)
dr −

∫ s

t
Z̄r dBr

with

αr =


(Λh(r))1+q

− (Ȳr )
1+q

Λh(r)− Ȳr
for Ȳr 6= Λh(r)

0 if Ȳr = Λh(r).

So α is a non-negative progressively measurable process. Then we deduce:

Λh(t)− Ȳt = EFt

[(
Λh(s)− Ȳs

)
exp

(∫ s

t
−αr dr

)]
.

Moreover we know that: Ȳs ≤ EFs
(
ȲT −h

)
. Therefore

Λh(t)− Ȳt ≥ EFt

[(
Λh(s)− EFs

(
ȲT −h

))
exp

(∫ s

t
−αr dr

)]
= EFt

[(
Λh(s)− ȲT −h

)
exp

(∫ s

t
−αr dr

)]
.

Now Fatou’s lemma leads, as s goes to T − h, to: Λh(t)− Ȳt ≥ 0. This inequality is true for all
t ∈ [0, T − h] and for all 0 < h < T . So it is clear that for every t ∈ [0, T ]:

Ȳt ≤

(
1

q(T − t)

) 1
q

.

This achieves the proof of the proposition. �

In the case where ξ = +∞ a.s. this inequality and Lemma 11 give the uniqueness of the
solution. If ξ = +∞, there is a unique solution, namely

Yt =

(
1

q(T − t)

) 1
q

and Z t = 0.
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Proof of Theorem 5. We will prove that Ȳ is greater than Y n for all n ∈ N, which implies that
Y is the minimal solution.

Let (Y n, Zn) be the solution of the BSDE (1) with ξ ∧n as terminal condition. By comparison
with the solution of the same BSDE with the deterministic terminal data n:

Y n
t ≤

(
1

q(T − t)+ 1/nq

)1/q

≤ n.

Between the instants 0 ≤ t ≤ s < T :

Ȳt − Y n
t =

(
Ȳs − Y n

s

)
−

∫ s

t

(
(Ȳr )

1+q
− (Y n

r )
1+q

)
dr −

∫ s

t

(
Z̄r − Zn

r

)
dBr

=
(
Ȳs − Y n

s

)
−

∫ s

t

(
(Ȳr )

1+q
− (Y n

r )
1+q

Ȳr − Y n
r

) (
Ȳr − Y n

r

)
dr −

∫ s

t

(
Z̄r − Zn

r

)
dBr

=
(
Ȳs − Y n

s

)
−

∫ s

t
αn

r

(
Ȳr − Y n

r

)
dr −

∫ s

t

(
Z̄r − Zn

r

)
dBr (41)

with

αn
r =


(Ȳr )

1+q
− (Y n

r )
1+q

Ȳr − Y n
r

for Ȳr 6= Y n
r

0 if Ȳr = Y n
r .

The process αn is well defined, progressively measurable and verifies:

0 ≤ αn
r ≤ (1 + q)(Ȳr ∨ Y n

r )
q .

We deduce that:

Ȳt − Y n
t = EFt

[(
Ȳs − Y n

s

)
exp

(
−

∫ s

t
αn

r dr

)]
using the linearity of the BSDE (41) and the fact that the generator of this BSDE is monotone.
Then with Fatou’s lemma:

Ȳt − Y n
t = lim inf

s→T

{
EFt

[(
Ȳs − Y n

s

)
exp

(
−

∫ s

t
αn

r dr

)]}
≥ EFt

{
lim inf

s→T

[(
Ȳs − Y n

s

)
exp

(
−

∫ s

t
αn

r dr

)]}
.

It is legal to apply Fatou’s lemma because what is inside the conditional expectation has a lower
bound equal to −n: Ȳs ≥ 0 (this belongs to the hypothesis) and −Y n

s ≥ −n and

1 ≥ exp
(

−

∫ s

t
αn

r dr

)
.

Finally Ȳt − Y n
t ≥ 0. As it is true for every n ∈ N∗ and every t ∈ [0, T ], we have Ȳt ≥ Yt . �

4. Parabolic PDE, viscosity solutions

In the introduction, we have said that there is a connection between BSDE whose terminal
data is a function of the value at time T of a solution of a SDE (or forward–backward system),
and solutions of a large class of semi-linear parabolic PDE. Let us make this connection precise
in our case.
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To begin with, we modify the Eq. (7). For all (t, x) ∈ [0, T ] × Rm , we denote by X t,x the
solution of the following SDE:

X t,x
s = x +

∫ s

t
b(r, X t,x

r ) dr +

∫ s

t
σ(r, X t,x

r ) dBr , for s ∈ [t, T ], (8)

and X t,x
s = x for s ∈ [0, t]. b and σ satisfy the assumptions (L) and (G), and we add that b and

σ are jointly continuous in (t, x). We consider the following BSDE for t ≤ s ≤ T :

Y t,x
s = h(X t,x

T )−

∫ T

s
Y t,x

r |Y t,x
r |

q dr −

∫ T

s
Z t,x

r dBr , (42)

where h is a function defined on Rm with values in R+ such that h is continuous and bounded.
The two Eqs. (8) and (42) are called a forward–backward system. This system is connected with
the PDE (3) with terminal condition h. This result is proved in the Theorem 3.2 of the article [5]:

Theorem 19 (Theorem 3.2 of [5]). If we solve the Eqs. (8) and (42) and if we define u(t, x)
for (t, x) ∈ [0, T ] × Rm by u(t, x) = Y t,x

t , then u is a continuous function and it is a viscosity
solution of the PDE (3).

Let us recall the definition of a viscosity solution (see [18,19] pages 80 and 99 or [20] for v
continuous). For v : [0, T ]×Rm

→ R, we define the upper and lower semi-continuous envelope
of v, namely:

v∗(t, x) = lim sup
(t ′,x ′)→(t,x)

v(t ′, x ′) and v∗(t, x) = lim inf
(t ′,x ′)→(t,x)

v(t ′, x ′).

Definition 20. In this definition, h is continuous and bounded on Rm .

1. We say that v is a subsolution of (3) on [0, T ] × Rm if v∗ < +∞, if v∗(T, x0) ≤ h(x0), and
if, for every function ϕ ∈ C1,2([0, T ] × Rm) and local maximum (t0, x0) of v∗

− ϕ,

−
∂ϕ

∂t
(t0, x0)− Lϕ(t0, x0)+ v∗(t0, x0)|v

∗(t0, x0)|
q

≤ 0.

2. We say that v is a supersolution of (3) on [0, T ] × Rm if v∗ > −∞, if v∗(T, x0) ≥ h(x0), and
if, for every function ϕ ∈ C1,2([0, T ] × Rm) and local minimum (t0, x0) of v∗ − ϕ,

−
∂ϕ

∂t
(t0, x0)− Lϕ(t0, x0)+ v∗(t0, x0)|v∗(t0, x0)|

q
≥ 0.

3. A function v is a viscosity solution if it is both a viscosity subsolution and supersolution.

Now, in our case, the function h is replaced by the function g : Rm
→ R+ which is supposed

to be continuous from Rm to R+ and such that the set F∞ = {g = +∞} is closed and non-empty.
We cannot apply the Theorem 3.2 in [5], or the previous definition, because g is unbounded on
Rm .

Definition 21 (Viscosity Solution with Unbounded Data). We say that v is a viscosity solution of
the PDE (3) with terminal data g if v is a viscosity solution on [0, T [×Rm and satisfies:

lim
(t,x)→(T,x0)

v(t, x) = g(x0).
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We take the notation of the construction of the minimal solution. For all n ∈ N and
(t, x) ∈ [0, T ] × Rm , we obtain a sequence of random variables (Y t,x,n, Z t,x,n) satisfying (1):

Y t,x,n
s =

(
g(X t,x

T ) ∧ n
)
−

∫ T

s
Y t,x,n

r |Y t,x,n
r |

q dr −

∫ T

s
Z t,x,n

r dBr ,

and (9). We know now that this sequence converges to (Y t,x , Z t,x ), which is the minimal solution
verifying the conclusions of Theorems 2 and 4. In particular, this means that either q > 2 or else
(H3), (B), (D) and (E) are satisfied by σ and b. We want to prove Theorem 6.

If we define the function un by un(t, x) = Y t,x,n
t , then from Theorem 3.2 in [5], we know

that un is jointly continuous in (t, x) and is a viscosity solution of the parabolic PDE (3) with
terminal value g ∧ n. The fact that g is supposed to be continuous implies that g ∧ n is bounded
and continuous on Rm .

By the comparison theorem for BSDE, (Y t,x,n
t = un(t, x))n∈N is a non-decreasing sequence,

and hence it converges to Y t,x
t = u(t, x) when n tends to infinity. Some remarks about the

function u. It is a non-negative function satisfying the following bound:

∀(t, x) ∈ [0, T ] × Rm, 0 ≤ u(t, x) ≤
1

(q(T − t))
1
q

. (43)

Moreover, u(T, x) = g(x) for all x ∈ Rm . At least, u is lower semi-continuous on [0, T ] × Rm

as the supremum of continuous functions (the sequence (un) is a non-decreasing sequence), and
for all x0 ∈ Rm :

lim inf
(t,x)→(T,x0)

u(t, x) ≥ g(x0).

Proof of Theorem 6. The main tool is the half-relaxed upper and lower limit of the sequence of
functions {un}, i.e.

u(t, x) = lim sup
n→+∞

(t ′,x ′)→(t,x)

un(t
′, x ′) and u(t, x) = lim inf

n→+∞

(t ′,x ′)→(t,x)

un(t
′, x ′).

In our case, u = u ≤ u = u∗ because the sequence {un} is non-decreasing and un is continuous
for all n ∈ N∗.

First, u is a supersolution of the PDE (3) on [0, T [×Rm . u = u∗ = u is lower semi-continuous
on [0, T [×Rm . From the estimate (43), for all δ > 0, n ∈ N∗ and all (t, x) ∈ [0, T − δ] × Rm ,

un(t, x) ≤ u(t, x) ≤

(
1

qδ

)1/q

.

Since un is a supersolution of the PDE (3), passing to the limit with the Lemma 6.1, page 33,
of [20], we obtain that u is a supersolution of (3) on [0, T [×Rm .

The same argument shows that u∗ is a subsolution on [0, T [×Rm . As in the case of the BSDE
(1), the main difficulty is in showing that

lim sup
(t,x)→(T,x0)

u(t, x) ≤ g(x0) = u(T, x0).

We will prove that u∗ is locally bounded on a neighbourhood of T on the set {g < +∞}.
Then, we deduce u∗ is a subsolution and we apply this to demonstrate that u∗(T, x) ≤ g(x)
if x ∈ {g < +∞}, which shows the wanted inequality on u.
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We make the same calculation as in the proof of the continuity of Y at T . Let θ be a function
of class C2(Rm

; R+) with a compact support included in {g < +∞}. We will prove that unθ is
uniformly bounded on [0, T ] × Rm . On [0, T − δ] × Rm the bound (43) gives immediately the
result. It remains to treat the problem on a neighbourhood of T .

First case: q > 2: We write the equality (20) between t and T , for x ∈ Rm ;

un(t, x)θ(x) = E(Y t,x,n
T θ(X t,x

T ))− E
∫ T

t

[
θ(X t,x

r )(Y t,x,n
r )1+q

]
dr

− E
∫ T

t
Y t,x,n

r Lθ(X t,x
r ) dr − E

∫ T

t
Z t,x,n

r .∇θ(X t,x
r )σ (r, X t,x

r ) dr.

The last term is controlled by:∣∣∣∣E ∫ T

t
Z t,x,n

r .∇θ(X t,x
r )σ (r, X t,x

r ) dr

∣∣∣∣ ≤

(
E
∫ T

t
‖Z t,x,n

r ‖
2(T − r)2/q dr

)1/2

×

(
E
∫ T

t

‖∇θ(X t,x
r )σ (r, X t,x

r )‖2

(T − r)2/q
dr

)1/2

≤ C = C(q, θ, σ ).

Here, we use the fact that q > 2, θ is compactly supported, and the condition (G). Thus, we have:

E
∫ T

t
θ(X t,x

r )(Y t,x,n
r )1+q dr + E

∫ T

t
Y t,x,n

r Lθ(X t,x
r ) dr

≤ E(Y t,x,n
T θ(X t,x

T ))− E
∫ T

t
Z t,x,n

r .∇θ(X t,x
r )σ (r, X t,x

r ) dr.

The right hand side is bounded by the supremum of gθ and C . In the left hand side, the second
term is controlled by the first one raised to a power strictly smaller than 1 using Hölder’s
inequality (see (25) and (28)). Therefore, there exists a constant C independent of n, t, x :

E
∫ T

t
θ(X t,x

r )(Y t,x,n
r )1+q dr ≤ C.

We deduce that: un(t, x)θ(x) ≤ C = C(T, g, θ, q).

Second case: the assumptions (H3), (B), (D) and (E) are satisfied: For n ∈ N∗, (t, x) ∈

[0, T ] × Rm , t > 0, the Eq. (40) becomes:

un(t, x)θ(x) = E(Y t,x,n
T θ(X t,x

T ))− E
∫ T

t
θ(X t,x

r )(Y t,x,n
r )1+q dr

− E
∫ T

t
Y t,x,n

r Θ(r, X t,x
r ) dr. (44)

From Proposition 16 (or formula (36)), the function Θ is defined by:

Θ(t, x) = ∇θ(x).b(t, x)−

d∑
i=1

(
(∇θ(x)σ (t, x))i

div(p(t, x)σ i (t, x))

p(t, x)

)

−
1
2

Trace(D2θ(x)σσ ∗(t, x))−

d∑
i=1

(
∇θ(x).[∇σ i (t, x)σ i (t, x)]

)
.



A. Popier / Stochastic Processes and their Applications 116 (2006) 2014–2056 2045

As un and θ are two non-negative functions,

E
∫ T

t
θ(X t,x

r )(Y t,x,n
r )1+q dr + E

∫ T

t
Y t,x,n

r Θ(r, X t,x
r ) dr ≤ E(Y t,x,n

T θ(X t,x
T )).

The right hand side in the previous inequality is bounded by the supremum of gθ ; this supremum
is well defined because gθ is continuous with compact support. And from the calculations made
on the BSDE, we know that the absolute value of the second term in the left hand side is
controlled by the first term (which is non-negative) raised to a power strictly smaller than 1.
Thus, we deduce:

E
∫ T

0
θ(Bt,x

r )(Y t,x,n
r )1+q dr ≤ C = C(T, g, θ, q).

It is important to note that this constant is independent of n, t, x . If we come back to the inequality
(44), we deduce that for all (t, x) ∈ [0, T ] × Rm :

un(t, x)θ(x) ≤ C = C(T, g, θ, q).

Let U be an open subset s.t. U ⊂ Fc
∞ = {g < +∞}. Thus, un is uniformly bounded on

[0, T ] × U w.r.t. to n. Therefore, u∗ is bounded on [0, T ] × U . We know that un is a subsolution
of the PDE (3) restricted to [0, T ] × U , i.e.{

−
∂un

∂t
(t, x)− Lun(t, x)+ un(t, x)|un(t, x)|q = 0, (t, x) ∈ [0, T [×U ;

un(T, x) = (g ∧ n)(x), x ∈ U.

We can apply Theorem 4.1 in [19] (see also Section 4.4.5 in [19]). Since g is continuous,

g(x) = g(x) = lim sup
n→+∞

(x ′)→(x)

(g ∧ n)(x ′).

Thus u∗ is a subsolution of the PDE:
−
∂u∗

∂t
− Lu∗

+ u∗
|u∗

|
q

= 0, in [0, T [×U ;

min
[
−
∂u∗

∂t
− Lu∗

+ u∗
|u∗

|
q
; u∗

− g

]
≤ 0, in {T } × U.

Now the Theorem 4.7 (with straightforward modifications) shows that u∗
≤ g in {T } × U . �

This achieves the proof of Theorem 6. The next proposition makes precise the behaviour of
the solution u on a neighbourhood of T .

Proposition 22. The previously defined solution u satisfies for all x in the interior of {g = +∞}:

lim
t→T

[q(T − t)]1/q u(t, x) = 1.

Proof. We take the notation of Lemma 11. For all (t, x) ∈ [0, T [ × Rm ,

Y t,x,n
t ≥ EFt

(
1

q(T − t)+ 1/(ξ ∧ n)q

)1/q

.
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Thus, for all integers n:

[q(T − t)]1/q u(t, x) ≥ [q(T − t)]1/q un(t, x)

≥

(
q(T − t)

q(T − t)+ 1/nq

)1/q

EFt
(
1{g=∞}(X

t,x
T )
)

+ EFt

[
q(T − t)(ξ ∧ n)q

1 + q(T − t)(ξ ∧ n)q
1{ξ<∞}

]1/q

.

Therefore,

[q(T − t)]
1
q u(t, x) ≥ EFt

(
1{g=∞}(X

t,x
T )
)
+ EFt

[
q(T − t)(ξ ∧ n)q

1 + q(T − t)(ξ ∧ n)q
1{ξ<∞}

] 1
q

.

The last term is bounded by

EFt

[
q(T − t)(ξ ∧ n)q

1 + q(T − t)(ξ ∧ n)q
1{ξ<∞}

]1/q

≤ [q(T − t)]1/q
[

1
qT

]1/q

. (45)

Hence:

lim inf
t→T

[q(T − t)]1/q u(t, x) ≥ lim
t→T

EFt
(
1{g=∞}(X

t,x
T )
)
;

this limit is equal to 1 for x in the interior of {g = +∞}. We conclude using the bound (43). �

4.1. Minimal solution

The goal of this paragraph is to demonstrate that the viscosity solution obtained with the
BSDE is minimal among all non-negative viscosity solutions (Theorem 7). We compare a
viscosity solution v (in the sense of Definition 21) with un , for all integer n: for all (t, x) ∈

[0, T ] × Rm , un(t, x) ≤ v∗(t, x). We deduce that u ≤ v∗ ≤ v. Remark that the only used
assumptions in the proof will be (L) and (G). Recall that g : Rm

→ R+ is continuous, which
implies that g ∧ n : Rm

→ R+ is continuous.

Proposition 23. un ≤ v∗, where v is a non-negative viscosity solution of the PDE (3).

Proof. This result seems to be a direct consequence of a well-known maximum principle for
viscosity solutions (see [21,19] or [20]). But to the best of our knowledge, this principle was not
proved for solutions which can take the value +∞. Thus, following the proof of the Theorem 8.2
in [20], we just give here the main points.

Recall that un is the bounded (by n) and continuous viscosity solution associated with the
terminal condition f = g ∧ n. For ε > 0, we define un,ε(t, x) = un(t, x) −

ε
t . un,ε is bounded

by un and is a subsolution of the PDE (3) (see [20], proof of Theorem 8.2):

−
∂un,ε

∂t
− Lun,ε + un,ε|un,ε|

q
≤ −

ε

T 2 . (46)

Moreover, at T , un,ε(T, x) = un(T, x)− ε/T ≤ (g ∧ n)(x) and at 0, un,ε tends uniformly in x
to −∞. We will prove that un,ε ≤ v∗ for every ε; hence we deduce un ≤ v∗.

From now on, n and ε are fixed. We suppose that there exists (s, z) ∈ [0, T ] × Rm such that
un,ε(s, z)− v∗(s, z) ≥ δ > 0 and we will find a contradiction. First of all, it is clear that s is not
equal to 0 or T , because v∗(T, z) = g(z).
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un,ε and −v∗ are bounded from above on [0, T ] × Rm respectively by n and 0. Thus, for
(α, β) ∈ (R∗)2, if we define:

m(t, x, y) = un,ε(t, x)− v∗(t, y)−
α

2
|x − y|

2
− β

(
|x |

2
+ |y|

2
)
,

m has a supremum on [0, T ] × Rm
× Rm . Moreover, the penalization terms assure that the

supremum is attained at a point (t̂, x̂, ŷ) = (tα,β , xα,β , yα,β). Denote by µα,β this maximum.
Since

δ − 2β|z|2 ≤ un,ε(s, z)− v∗(s, z)− 2β|z|2 = m(s, z, z) ≤ µα,β ,

choosing β sufficiently small in order to have δ/2 ≤ δ − 2β|z|2, we obtain

δ/2 ≤ µα,β . (47)

From this inequality and since un,ε ≤ n and v∗ ≥ 0, we have:

0 ≤ µα,β = m(t̂, x̂, ŷ) = un,ε(t̂, x̂)− v∗(t̂, ŷ)−
α

2
|x̂ − ŷ|

2
− β

(
|x̂ |

2
+ |ŷ|

2
)

≤ n −
α

2
|x̂ − ŷ|

2
− β

(
|x̂ |

2
+ |ŷ|

2
)

and hence |x̂ |
2
+ |ŷ|

2
≤

n
β

and |x̂ − ŷ|
2

≤
2n
α

.

Now, we will prove that t̂ cannot be equal to zero, or to T . Recall that un,ε(0, .) = −∞, thus
t̂ cannot be equal to zero. Assume that t̂ is equal to T . We have:

µα,β = (g ∧ n)(x̂)−
ε

T
− g(ŷ)−

α

2
|x̂ − ŷ|

2
− β

(
|x̂ |

2
+ |ŷ|

2
)

≤ (g ∧ n)(x̂)− (g ∧ n)(ŷ).

Let γ β be a modulus of continuity of g ∧ n defined by:

∀η ≥ 0, γ β(η) = sup{|(g ∧ n)(x)− (g ∧ n)(y)|; |x − y| ≤ η, (x, y) ∈ (Bβ)
2
},

where Bβ is the closed ball with radius equal to
√

n/β. Therefore, we obtain:

δ/2 ≤ µα,β ≤ (g ∧ n)(x̂)− (g ∧ n)(ŷ) ≤ γ β
(
|x̂ − ŷ|

)
≤ γ β

(√
2n

α

)
.

Since we have supposed that g∧n is continuous, g∧n is uniformly continuous on Bβ and thereby
the limit of γ β(η) is equal to zero as η goes to 0. Hence, the previous inequality is false when α
is sufficiently large. We deduce that t̂ < T .

We now use the Theorem 8.3 of [20] with the un,ε subsolution and v∗ supersolution. For all
ν > 0 there exist two symmetric matrices X and Y of size m × m and two reals a and b such that(

X 0
0 −Y

)
≤ A + νA2, with A = α

(
I −I

−I I

)
+ 2β

(
I 0
0 I

)
, (48)

a − b = 0 and satisfying:

−a − F(t̂, x̂, un,ε(t, x̂), α(x̂ − ŷ)+ 2β x̂, X) ≤ −
ε

T 2

−b − F(t̂, ŷ, v∗(t, ŷ), α(x̂ − ŷ)− 2β ŷ, Y ) ≥ 0.
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We subtract the two previous inequalities:
ε

T 2 ≤ F(t̂, x̂, un,ε(t, x̂), α(x̂ − ŷ)+ 2β x̂, X)− F(t̂, ŷ, v∗(t, ŷ), α(x̂ − ŷ)− 2β ŷ, Y )

=
1
2

Trace
(
σσ ∗(t̂, x̂)X

)
−

1
2

Trace
(
σσ ∗(t̂, ŷ)Y

)
+
(
b(t̂, x̂)− b(t̂, ŷ)

)
.α(x̂ − ŷ)+ 2β

(
b(t̂, x̂).x̂ + b(t̂, ŷ).ŷ

)
− un,ε(t̂, x̂)1+q

+ v∗(t̂, ŷ)1+q .

Since b is Lipschitz and grows at most linearly, there exists a constant K such that(
b(t̂, x̂)− b(t̂, ŷ)

)
.α(x̂ − ŷ)+ 2β

(
b(t̂, x̂).x̂ + b(t̂, ŷ).ŷ

)
≤ αK |x̂ − ŷ|

2
+ 2βK (1 + |x̂ |

2
+ |ŷ|

2).

Using again the lower bound (47) of µα,β we have:

δ/2 ≤ µα,β ≤ un,ε(t̂, x̂)− v∗(t̂, ŷ) H⇒ 0 ≤ v∗(t̂, ŷ) ≤ un,ε(t̂, x̂)

and thus −un,ε(t̂, x̂)1+q
+ v∗(t̂, ŷ)1+q

≤ 0. One term remains to be controlled:

Trace
(
σσ ∗(t̂, x̂)X

)
− Trace

(
σσ ∗(t̂, ŷ)Y

)
.

From the upper bound (48), we deduce that there exists a constant κ = 1 + 2αν + 2βν such that

1
κ

(
X 0
0 −Y

)
≤ α

(
I −I

−I I

)
+ 2β

(
I 0
0 I

)
.

If we choose ν = 1/α, then the constant κ is bounded: 3 ≤ κ ≤ 3 + 2β/α. We multiply this
inequality by the following non-negative matrix:(

σσ ∗(t̂, x̂) σ (t̂, x̂)σ ∗(t̂, ŷ)
σ (t̂, ŷ)σ ∗(t̂, x̂) σσ ∗(t̂, ŷ)

)
,

and we take the trace:

Trace
(
σσ ∗(t̂, x̂)X

)
− Trace

(
σσ ∗(t̂, ŷ)Y

)
≤ 2κβ

[
σσ ∗(t̂, x̂)+ σσ ∗(t̂, ŷ)

]
+ κα

[
σ(t̂, x̂)− σ(t̂, ŷ)

] [
σ ∗(t̂, x̂)− σ ∗(t̂, ŷ)

]
.

Using the fact that σ satisfies (L) and (G), we obtain the existence of a constant K such that

Trace
(
σσ ∗(t̂, x̂)X

)
− Trace

(
σσ ∗(t̂, ŷ)Y

)
≤ Kα|x̂ − ŷ|

2
+ Kβ(1 + |x̂ |

2
+ |ŷ|

2).

Finally we have:

ε

T 2 ≤ C
(
α|x̂ − ŷ|

2
+ β(1 + |x̂ |

2
+ |ŷ|

2)
)
, (49)

where C is a constant independent of α and β. This inequality is not exactly the same as in
the proof of the Theorem 8.2 in [20], because the solutions are defined on Rm and not on some
bounded open set. Thus there is this additional term with β. Since

lim
α→+∞

lim
β→0

α

2
|x̂ − ŷ|

2
+ β

(
|x̂ |

2
+ |ŷ|

2
)

= 0,

the inequality (49) leads to a contradiction taking β sufficiently small and α sufficiently large.
Hence un,ε ≤ v∗ and it is true for every ε > 0, so the result is proved. �
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4.2. Regularity of the minimal solution

The function u is the minimal non-negative viscosity solution of the PDE (3). We know that
u is finite on [0, T [×Rm (see (43)). For δ > 0, u is bounded on [0, T − δ] × Rm by a constant
which depends only on δ.

Proposition 24. If the coefficients of the operator L satisfy (L), (B) and (E), and are Hölder
continuous in time, then u is continuous on [0, T ] × Rm , and for all δ > 0:

u ∈ C1,2([0, T − δ] × Rm
; R+). (50)

Proof. The proof of Proposition 23 shows that there is a unique bounded and continuous
viscosity solution of the Cauchy problem:{

∂tv + Lv − v|v|q = 0, on [0, T − δ] × Rm,

v(T − δ, x) = φ(x) on Rm (51)

where φ is supposed bounded and continuous on Rm .
Moreover, the Cauchy problem (51) has a classical solution for every bounded and continuous

function φ (see Lemma 25 below).
Recall that un is jointly continuous in (t, x) and on [0, T − δ] × Rm , un is bounded by:

0 ≤ un(t, x) ≤

(
1

qδ

)1/q

.

Thus, the problem (51) with condition φ = un(T − δ, .) has a bounded classical solution. Since
every classical solution is a viscosity solution and since un is the unique bounded and continuous
viscosity solution of (51), we deduce that:

∀δ > 0, un ∈ C1,2([0, T − δ[×Rm
; R+).

From the construction of the classical solution un , we also know that the sequence {un} is
locally bounded in Cα,1+α([0, T − δ/2]×Rm). The bound is given by the L∞ norm of un which
is smaller than (T − δ/4)−1/q . Therefore u is continuous on [T − δ/2] × Rm and if we consider
the problem (51) with continuous terminal data u(T − δ, .), with the same argument as for un ,
we obtain that u is a classical solution, i.e. u ∈ C1,2([0, T − δ] × Rm

; R+).
In particular, u is continuous on [0, T [×Rm . And the terminal condition in Theorem 6 shows

that u is continuous at time T . �

Lemma 25. For every bounded and continuous function φ, the Cauchy problem (51) has a
classical solution v.

Proof. If L can be written in divergence form, the conclusion is given by the Theorem 8.1
and Remark 8.1, Section V, in [17]. More precisely, there exists a unique continuous and
bounded solution v such that, for all δ′ > δ, v belongs to H1+β/2,2+β([0, T − δ′] × Rm).
H1+β/2,2+β([0, T − δ′] × Rm) is the set of functions which are (1 + β/2)-Hölder continuous in
time and (2 + β)-Hölder continuous in space. Remark that if the assumption (D) holds, then L
can be written in divergence form.

In general, we use a “bootstrap” method. If v denotes the unique bounded and continuous
viscosity solution of (51), if f = v|v|q ∈ L∞, from the theorem 3.1 of [22], the linear Cauchy
problem:
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∂tw + Lw = f, on [0, T − δ] × Rm,

w(T − δ, x) = φ(x) on Rm .
(52)

has a unique solution w in the class C([0, T − δ] × Rm
; R+) ∩

⋂
p>1 W 1,2

p,loc([0, T − δ[×Rm).
Now we define two processes:

∀s ≥ t, Y
t,x
s = w(s, X t,x

s ), and Z
t,x
s = ∇w(s, X t,x

s )σ (s, X t,x
s ).

We can apply the Itô formula to the function w (see [23], Section 2.10). We have for
all s ≥ t :

Y
t,x
s = Y

t,x
T −δ +

∫ T −δ

s
f (r, X t,x

r ) dr −

∫ T −δ

s
Z

t,x
r dBr

= φ(T − δ, X t,x
T −δ)+

∫ T −δ

s
(v|v|q)(r, X t,x

r ) dr −

∫ T −δ

s
Z

t,x
r dBr .

Let (Y t,x , Z t,x ) be the unique solution of the BSDE (1) with final time T − δ and terminal
condition φ(X t,x

T −δ). From the uniqueness of the viscosity solution, we have Y t,x
t = v(t, x). And

also for all s ≥ t , Y t,x
s = v(s, X t,x

s ) (see [14], Section 4). Therefore for all s ≥ t :

Y t,x
s = Y t,x

T −δ +

∫ T −δ

s
Y t,x

s |Y t,x
s |

q dr −

∫ T −δ

s
Z t,x

r dBr

= φ(X t,x
T −δ)+

∫ T −δ

s
(v|v|q)(r, X t,x

r ) dr −

∫ T −δ

s
Z t,x

r dBr .

From the uniqueness of the solution of the BSDE, we obtain that v = w. Since w ∈⋂
p>1 W 1,2

p,loc([0, T − δ[×Rm), v belongs to the space Hβ,1+β , for all β < 1, and the Hölder
norm of v depends just on the L∞ bound of v. Thus f is also Hölder continuous, and from the
existence result of [17] (see section IV, Theorems 5.1 and 10.1), v is a classical solution. �

5. Sign assumption on the terminal condition ξ

In the previous sections, we have chosen ξ non-negative with the generator f (y) = −y|y|
q .

But of course, we can prove the same results when ξ ≤ 0. In fact, if ξ ∈ L∞(Ω) is non-positive
and if (Y, Z) is the solution of the BSDE (1), it is obvious that (U, V ) = (−Y,−Z) is the solution
of

Ut = (−ξ)+

∫ T

t
f (Ur ) dr −

∫ T

t
Vr dBr .

Thus if ξ is non-positive and satisfies (H1): ξ = g(XT ), where g : Rm
→ [−∞, 0] is such

that {g = −∞} is closed and that the assumptions (H2), (L) and (G) are verified, and with either
q > 2 or (B), (D), (E) and (H3), there exists a maximal solution of the BSDE (1), among all
negative solutions. We can also work without sign assumption and prove Theorem 8.

For (n,m) ∈ (N∗)2, we define ξn
m by ξn

m = ξ ∧ n ∨ (−m). As ξn
m is in L∞(Ω), there exists a

unique solution (Y n,m, Zn,m) for the BSDE (1) with terminal condition ξn
m . With the comparison

Theorem 2.4 in [5], we have for 0 ≤ n ≤ n′ and 0 ≤ m ≤ m′, and for all t ∈ [0, T ]:

−

(
1

q(T − t)+
1

(m′)q

) 1
q

≤ Y n,m′

t ≤ Y n,m
t ≤ Y n′,m

t ≤

(
1

q(T − t)+
1

(n′)q

) 1
q

. (53)
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We define the following process: for (n,m) ∈ (N∗)2 and for all t ∈ [0, T ]

Y ↑,m
t = lim

n→+∞
Y n,m

t and Y n,↓
t = lim

m→+∞
Y n,m

t .

Therefore with the inequalities (53) we have:

−

(
1

q(T − t)

) 1
q

≤ Y n,↓
t ≤ Y ↑,m

t ≤

(
1

q(T − t)

) 1
q

.

As in the first section we can easily prove that:

(1) the limit Z↑,m of (Zn,m)n∈N as n goes to +∞, exists in L2(Ω × [0, t]; Rd) for all t < T ;
(2) (D1) and (D2) are satisfied (see Definition 1): for all t < T

E

(
sup

s∈[0,t]
|Y ↑,m

s |
2
+

∫ t

0
‖Z↑,m

r ‖
2 dr

)
≤

(
1

q(T − t)

) 2
q

; (54)

and P-p.s., for all 0 ≤ s ≤ t ,

Y ↑,m
s = Y ↑,m

t −

∫ t

s
Y ↑,m

r |Y ↑,m
r |

q dr −

∫ t

s
Z↑,m

r dBr ; (55)

(3) P-p.s.

ξ ∨ (−m) ≤ lim inf
t→T

Y ↑,m
t . (56)

The same results are still true for the sequence (Y n,m, Zn,m)m∈N, i.e. the limit Zn,↓ of
(Zn,m)m∈N as m goes to +∞, exists in L2(Ω×[0, t]; Rd) for all t < T , and the limit (Y n,↓, Zn,↓)

satisfies (54) and (55) and P-p.s.

lim sup
t→T

Y n,↓
t ≤ ξ ∧ n.

Suppose now we have proved the following proposition:

Proposition 26.

lim
t→T

Y ↑,m
t = ξ ∨ (−m) and lim

t→T
Y n,↓

t = ξ ∧ n P−a.s. (57)

Recall that (Y n,↓)n∈N and (Y ↑,m)m∈N are respectively a non-decreasing and a non-increasing
sequence. Let us define:

Y ↓
= lim

n→+∞
Y n,↓ and Y ↑

= lim
m→+∞

Y ↑,m .

We have:

−

(
1

q(T − t)

) 1
q

≤ Y ↓

t ≤ Y ↑

t ≤

(
1

q(T − t)

) 1
q

and for all (n,m) ∈ N2, ξ ∧ n ≤ lim inft→T Y ↓

t , and lim supt→T Y ↑

t ≤ ξ ∨ (−m). Then it is easy
to prove that (Y, Z) = (Y ↓, Z↓) or (Y, Z) = (Y ↑, Z↑) satisfy (54) and (55) and

P-a.s. lim
t→T

Yt = ξ.

This achieves the proof of Theorem 8.
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In order to prove Proposition 26, we define x+
= x∨0, x−

= −(x∧0). We need the following
lemma:

Lemma 27. If ζ is a real-valued random variable, with ζ ∈ L2(Ω), if (Y, Z) and (Ỹ , Z̃) denote
the solution of the BSDE:

Yt = ζ −

∫ T

t
Yr |Yr |

q dr −

∫ T

t
Zr dBr and Ỹt = ζ+

−

∫ T

t
Ỹr |Ỹr |

q dr −

∫ T

t
Z̃r dBr ,

then P-a.s. for all t ∈ [0, T ], Y +
t ≤ Ỹt .

Proof of the lemma. The process Y is a continuous semi-martingale, i.e. we write Y as follows

Yt = Y0 + At + Mt

with M a continuous martingale and A a process of bounded variations. Therefore there exists a
semi-martingale local time for Y (see [10], Theorem 7.1, page 218), i.e. a non-negative process
Λ = {Λt (ω); t ∈ [0, T ], ω ∈ Ω} such that

Y +
t = ζ+

−

∫ T

t

(
1R∗

+
(Yr )

)
Yr |Yr |

q dr −

∫ T

t

(
1R∗

+
(Yr )

)
Zr dBr + (Λt − ΛT )

= ζ+
−

∫ T

t
Y +

r |Y +
r |

q dr −

∫ T

t

(
1R∗

+
(Yr )

)
Zr dBr + (Λt − ΛT ).

Moreover t 7→ Λt is non-decreasing a.s. Thus applying the comparison theorem 2.4 in [5], we
obtain the announced result and this achieves the proof of the lemma.

Remark that by the same arguments Y − satisfies:

Y −
t = ζ−

+

∫ T

t

(
1R∗

−
(Yr )

)
Yr |Yr |

q dr +

∫ T

t
1R∗

−
(Yr )Zr dBr + (Λt − ΛT )

= ζ−
−

∫ T

t
|Y −

r |
1+q dr +

∫ T

t
1R∗

−
(Yr )Zr dBr + (Λt − ΛT ).

Proof of Proposition 26. Remark that it is enough to show the first limit in (57). Indeed for all
(n,m), (−Y n,m,−Zn,m) is the solution of the BSDE (1) with terminal condition (−ξ) ∧ m ∨

(−n). Hence, if the result concerning the first limit holds, then

lim
t→T

−Y n,↓
t = (−ξ) ∨ (−n);

which proves the result about the second limit.
Now for the rest of this proof, we fix an integer m. We can give the same proof as in Sections 1

and 2: we show that the limit, when t goes to T , of Y ↑,m
t exists and then that this limit is ξ∨(−m),

by multiplying Y n,m with some test process ϕ(X) and passing through the limit when n goes to
+∞. Let us explain the main parts.

From the previous lemma, we have for all n ∈ N, for all t ∈ [0, T ]

(Y n,m
t )+ ≤ U n

t ≤ Ut and (Y ↑,m
t )+ ≤ Ut

with

U n
t = ξ+

∧ n −

∫ T

t
U n

r |U n
r |

q dr −

∫ T

t
V n

r dBr ,
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and (U, V ) is the minimal solution of:

Ut = ξ+
−

∫ T

t
Ur |Ur |

q dr −

∫ T

t
Vr dBr .

Since we already know (Section 2) that limt→T Ut = ξ+, we have lim supt→T (Y
↑,m
t )+ ≤ ξ+.

Moreover from (56), we obtain

ξ ∨ (−m) ≤ lim inf
t→T

(Y ↑,m
t )+ and 0 ≤ lim inf

t→T
(Y ↑,m

t )+.

Therefore

lim
t→T

(Y ↑,m
t )+ = ξ+. (58)

For the negative part, recall that for all n ∈ N and all t ∈ [0, T ]:

Y n,m
t ≥ −

(
1

q(T − t)+
1

mq

) 1
q

≥ −m. (59)

Let us prove that the limit, when t goes to T , of (Y ↑,m
t )− exists. We have:

Y n,m,−
t = (ξ ∨ (−m) ∧ n)− −

∫ T

t
Y n,m,−

s |Y n,m,−
s |

q ds

− (Λn,m
T − Λn,m

t )+

∫ T

t
Zn,m,−

s dBs,

where:

Y n,m,−
t =

(
Y n,m

t
)−
, Zn,m,−

s = 1]−∞,0[(Y
n,m
t )Zn,m

t

and Λn,m is the local time of Y n,m (see the proof of the previous lemma). We apply Itô’s formula
to the process (Y n,m,−)2 and because of the monotonicity of f we obtain:

1
2

E
∫ T

0

∥∥Zn,m,−
r

∥∥2 dr ≤ E
(

Y n,m,−
T

)2
− 2E

∫ T

0
Y n,m,−

r dΛn,m
r ≤ E

(
Y n,m,−

T

)2
≤ m2.

We deduce that the sequence (Zn,m,−)n∈N converges weakly in L2(Ω × [0, T ]; Rd) to Z̃ , and
thus that the stochastic integral

∫ T
.

Zn,m,−
r dBr also converges weakly to

∫ T
.

Z̃r dBr (see [5],
Proposition 2.4). Moreover a straightforward calculation proves that for all δ > 0, (Zn,m,−)n∈N
converges in L2(Ω × [0, T − δ]; Rd) to Z↑,m,−

= 1]−∞,0[(Y ↑,m)Z↑,m . Hence Z̃ is a.s. equal to
Z↑,m,−. Now:

Λn,m
t = Y n,m,−

t − Y n,m,−
0 −

∫ t

0
Y n,m,−

s |Y n,m,−
s |

q ds +

∫ t

0
Zn,m,−

s dBs . (60)

With (59) and the Burkholder–Davis–Gundy inequality, it emerges easily that:

E
∫ T

0

∣∣Λn,m
r

∣∣2 dr ≤ C.

Therefore the sequence (Λn,m)n∈N converges weakly in L2(Ω × [0, T ]; Rd) to Λ̃. Now taking
the weak limit in (60) we obtain:

Λ̃t = Y ↑,m,−
t − Y ↑,m,−

0 +

∫ t

0
Y ↑,m,−

s |Y ↑,m,−
s |

q ds +

∫ t

0
Z↑,m,−

s dBs . (61)
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With (55) and (61), we deduce that on the interval [0, T − δ] for δ > 0, the process Λ̃ is the local
time of the semi-martingale Y ↑,m . Hence it is a non-decreasing process and the limit as t goes
to T of Λ̃t exists. We deduce that the limit as t goes to T of Y ↑,m,−

t exists, and with (58), we
conclude that there exists a limit as t goes to T for Y ↑,m

t .
Moreover with (59) we can prove that Lemma 14 holds, i.e. if Φ is a non-negative function of

class C2, with compact support included in Rm
\ {|g| = +∞}, and if α > 2(1 + 1/q), then there

exists a constant C such that

∀n ∈ N, E
∫ T

0

∣∣Y n,m
r

∣∣1+q Φα(Xr ) dr ≤ C.

Then as in Section 2.3 or 2.4.2, we have limt→T Y ↑,m
t = ξ ∨ (−m) and thus (57). �

If ξ is either non-negative or non-positive, it is obvious that (Y ↓, Z↓) = (Y ↑, Z↑) is
respectively either the minimal non-negative solution or the maximal non-positive solution. But
in general we are unable to prove the uniqueness of the solution.

For the related PDE recall that for (t, x) ∈ [0, T ] × Rm X t,x is the solution of the SDE (8).
For every (n,m) ∈ N2Y n,m,t,x is the solution of the BSDE (1) with g(X t,x ) ∧ n ∨ (−m) as
terminal condition. As in Section 4, if the function un,m is defined by un,m(t, x) = Y n,m,t,x

t , un,m
is a viscosity solution of the PDE (3) with final condition g ∧ n ∨ (−m). We can give the same
demonstration as in Section 4 to show that

u↑(t, x) = lim
m→+∞

lim
n→+∞

un,m(t, x) and u↓(t, x) = lim
n→+∞

lim
m→+∞

un,m(t, x)

are two viscosity solutions of the PDE (3) with g as terminal condition. In fact we just have to
bound un,m on the complementary of {g = +∞ or g = −∞}. We use the following lemma:

Lemma 28. Assume that v is a viscosity solution of the PDE (3) s.t. v(T, .) = h. The function h
is bounded and continuous on Rm . Then |v| is a subsolution of the same PDE with |v|(T, x) =

|h(x)|.

Proof. The definition of a subsolution was given in the Section 4, Definition 20. Since v is
continuous, |v| is also continuous. Let φ : [0, T ]× Rm

→ R be a C1,2 function such that |v|−φ

has a local maximum at (t, x). Moreover we can always suppose that |v(t, x)| = φ(t, x).
If t = T we already know that |v(T, x)| = |h(x)|. If t < T then there exists a neighbourhood

U =]t − ε, t + ε[× {y, |y − x | ≤ η} of (t, x), such that for (s, y) ∈ U , 0 ≤ |v(s, y)| ≤ φ(s, y).
If v(t, x) = 0, φ is a non-negative function on U and attains its minimum at (t, x). Therefore
∇φ(t, x) = 0, ∂tφ(t, x) = 0 and D2φ(t, x) ≥ 0. We deduce:

−∂tφ(t, x)− Lφ(t, x)+ |v(t, x)|1+q
= −

1
2

Trace(σσ ∗(t, x)D2v(t, x)) ≤ 0.

If v(t, x) > 0, then we can suppose that v is positive on U :

∀(s, y) ∈ U, 0 < v(s, y) = |v(s, y)| ≤ φ(s, y) and v(t, x) = φ(t, x).

We apply the definition of a subsolution to v and deduce:

−∂tφ(t, x)− Lφ(t, x)+ v(t, x)|v(t, x)|q = −∂tφ(t, x)− Lφ(t, x)+ |v(t, x)|1+q
≤ 0.

In the last case v(t, x) < 0, we suppose that on U , v is negative. Thus v − (−φ) has a local
minimum at (t, x) and we apply the definition of a supersolution:

−∂t (−φ)(t, x)− L(−φ)(t, x)+ v(t, x)|v(t, x)|q ≥ 0;
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H⇒ −∂tφ(t, x)− Lφ(t, x)+ (−v(t, x))|v(t, x)|q

= −∂tφ(t, x)− Lφ(t, x)+ |v(t, x)|1+q
≤ 0.

Finally |v| is a subsolution and this achieves the proof of the lemma. �

By a standard comparison argument (see [20], theorem 8.2 page 48), the solution un,m is
bounded by the viscosity solution ũ of the PDE (3) with terminal argument |g| ∧ n ∧ m and we
can use our previous results on ũ (Theorem 4, Section 4).
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