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BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS WITH
RANDOM STOPPING TIME AND SINGULAR FINAL CONDITION

BY A. POPIER

Université de Provence

In this paper we are concerned with one-dimensional backward stochas-
tic differential equations (BSDE in short) of the following type:

Yt = ξ −
∫ τ

t∧τ
Yr |Yr |q dr −

∫ τ

t∧τ
Zr dBr , t ≥ 0,

where τ is a stopping time, q is a positive constant and ξ is a Fτ -measurable
random variable such that P(ξ = +∞) > 0. We study the link between these
BSDE and the Dirichlet problem on a domain D ⊂ R

d and with boundary
condition g, with g = +∞ on a set of positive Lebesgue measure.

We also extend our results for more general BSDE.

Introduction. Let (�,F ,P) be a probability space, B = (Bt )t≥0 a Brownian
motion defined on this space, with values in R

d . (Ft )t≥0 is the standard filtra-
tion of the Brownian motion. Also given are τ a {Ft }-stopping time, ξ a real,
Fτ -measurable random variable, called the final condition, and f :� × R

+ × R ×
R

d → R the generator.
We wish to find a progressively measurable solution (Y,Z), with values in

R × R
d , of the BSDE

Yt = ξ +
∫ τ

t∧τ
f (r, Yr,Zr) dr −

∫ τ

t∧τ
Zr dBr, t ≥ 0.(1)

Such equations, in the nonlinear case, have been introduced by Pardoux and
Peng in 1990 in [19], when τ is replaced by a constant time T > 0. They gave
the first existence and uniqueness result. Since then, BSDE have been studied with
great interest (see the references in [18]). In particular, Peng [20] describes how the
solution Y of (1) for an unbounded random terminal time is related to a semilinear
elliptic PDE. Viscosity solutions for such equations will be constructed by sto-
chastic methods (see Theorem 8 below). This generalization of the Feynman–Kac
formula is a reason for studying random terminal times.

Let us recall the definition of a solution of (1) which can be found in [4].

DEFINITION 1. A solution of the BSDE (1) is a pair {(Yt ,Zt ), t ≥ 0} of pro-
gressively measurable processes with values in R × R

d such that, P-a.s.:

Received April 2005; revised May 2006.
AMS 2000 subject classifications. 60H10, 60G40, 35J60, 49L25, 35J65.
Key words and phrases. Backward SDE, nonintegrable data.

1071

http://www.imstat.org/aop/
http://dx.doi.org/10.1214/009117906000000746
http://www.imstat.org
http://www.ams.org/msc/


1072 A. POPIER

• on the set {t ≥ τ }, Yt = ξ and Zt = 0,
• t �→ 1t≤τ f (t, Yt ,Zt ) belongs to L1

loc(0,∞), t �→ Zt belongs to L2
loc(0,∞),

• and for all 0 ≤ t ≤ T ,

Yt∧τ = YT ∧τ +
∫ T ∧τ

t∧τ
f (r, Yr,Zr) dr −

∫ T ∧τ

t∧τ
Zr dBr .

A solution is said to be an Lp-solution for some p > 1 if, moreover, for some
λ ∈ R,

E

(
sup

0≤t≤τ

epλt |Yt |p +
∫ τ

0
epλt |Yt |p dt +

∫ τ

0
epλt |Yt |p−2‖Zt‖2 dt

)
< +∞.

We assume that the generator f :� × R
+ × R × R

d → R is such that:

(H0) f (·, y, z) is progressively measurable, for all y, z;
(H1) ∃K ≥ 0, such that a.s. ∀t, y, z, z′,

|f (t, y, z) − f (t, y, z′)| ≤ K‖z − z′‖;
(H2) ∃µ ∈ R, such that a.s. ∀t, y, y′, z,

(y − y′)
(
f (t, y, z) − f (t, y′, z)

) ≤ µ|y − y′|2;
(H3) y �→ f (t, y, z) is continuous, ∀t, z, a.s.
(H4) for all r > 0 and all n ∈ N

∗, ψr(t) = sup|y|≤r |f (t, y,0)−f (t,0,0)| belongs
to L1((0, n) × �).

Now for some p > 1 we suppose that there exists λ > νp = µ + K2

2(p−1)
, such that

E

[∫ τ

0
epλt |f (t,0,0)|p dt

]
< +∞(H5)

and

E

[
epλτ |ξ |p +

∫ τ

0
epλt |f (t, e−νpt ξ t , e

−νptηt )|p dt

]
< +∞,(H6)

where ξ = eνpτ ξ , ξ t = E(ξ |Ft ) and η is predictable and such that

ξ = E(ξ) +
∫ +∞

0
ηt dBt , E

[(∫ ∞
0

|ηt |2 dt

)p/2]
< ∞.

Let us recall Theorem 5.2 of [4].

THEOREM 1. Under the conditions (H0)–(H6), there exists a unique solution
(Y,Z) of the BSDE (1), which, moreover, satisfies, for λ > νp such that (H5) and
(H6) hold:

E

(
sup

0≤t≤τ

epλt |Yt |p +
∫ τ

0
epλr |Yr |p−2(|Yr |2 + ‖Zr‖2) dr

)
(2)

≤ cE

(
epλτ |ξ |p +

∫ τ

0
epλr |f (t,0,0)|p dr

)
,
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for some constant c = c(p,λ,K,µ).

REMARK 1. The previous theorem is a generalization of the result of Darling
and Pardoux (Theorem 3.4 in [6]) or of Pardoux (Theorem 4.1 in [18]). In [6] or
[18] the result is given in the case p = 2. Here we have expressed the theorem for
the dimension one (ξ and Yt belong to R). But it is still true in higher dimensions
(see [4]; the product in (H2) must be replaced by the scalar product in R

m).
Note that if f is a Lipschitz function, the condition (H2) holds.

From now and in the rest of the paper we are concerned with the BSDE

Yt = ξ −
∫ τ

t∧τ
Yr |Yr |q dr −

∫ τ

t∧τ
Zr dBr with q > 0.(3)

Here the function f is deterministic and equal to

f (t, y, z) = −y|y|q.
f satisfies all conditions (H0)–(H4) of Theorem 1, with K = µ = 0 (which implies
νp = 0 for all p > 1). Indeed, f is a nonincreasing function, thereby,

−(y − y′)(y|y|q − y′|y′|q) ≤ 0.

Since f (t,0,0) ≡ 0, (H5) is always satisfied.
The stopping time τ is defined as follows. Let D be an open bounded subset

of R
d , whose boundary is at least of class C2 (see [12] for the definition of a

regular boundary). For all x ∈ R
d , let Xx denote the solution of the SDE:

Xx
t = x +

∫ t

0
b(Xx

r ) dr +
∫ t

0
σ(Xx

r ) dBr for t ≥ 0.(4)

The functions b and σ are defined on R
d , with values respectively in R

d and R
d×d ,

and are measurable such that:

• Lipschitz condition: there exists K ≥ 0 such that

∀(x, y) ∈ R
d × R

d ‖σ(x) − σ(y)‖ ≤ K|x − y|;(L)

• Boundedness condition:

∀x ∈ R
d |b(x)| + ‖σ(x)‖ ≤ K;(B)

• Uniform ellipticity: there exists a constant α > 0 such that

∀x ∈ R
d σσ ∗(x) ≥ αId.(E)

In the rest of this paper (L), (B) and (E) are supposed to be satisfied. Under these
assumptions, from a result of Yu Veretennikov [24] and [25], equation (4) has a
unique strong solution Xx . For each x ∈ D, we define the stopping time

τ = τx = inf{t ≥ 0,Xx
t /∈ D}.(5)
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Our stopping time satisfies the following two properties. Since D is bounded and
since the conditions (B) and (E) hold

every point x ∈ ∂D is regular.(C1)

In particular, if x ∈ ∂D, τx = 0 a.s. (see [3], Corollary 3.2). This assumption (C1)
is important to define a singular solution (see Definition 2 below). Moreover, since
(L), (B) and (E) hold, we have the following result (see [21], Theorem 2.1 and
[18], Remark 5.6): for all x ∈ D, τx < +∞ a.s. and there exists β > 0 such that

sup
x∈D

E(eβτx ) < ∞.(C2)

This property will be used to construct solutions of the BSDE (3) for bounded
terminal conditions ξ (see Proposition 2).

From the papers [6, 18] or [20], we know that the BSDE (3) with terminal time
equal to τ = τx and final data equal to ξ = h(Xx

τx
) is associated with the following

elliptic PDE with Dirichlet condition h:

−Lu + u|u|q = 0 on D,
(6)

u = h on ∂D;
where L is the second order partial differential operator: for all ϕ ∈ C2

0(Rd),

∀x ∈ R
d Lϕ(x) = 1

2 Trace(σσ ∗(x)D2ϕ(x)) + b(x)∇ϕ(x).(7)

In the rest of this paper ∇ and D2 will denote respectively the gradient and the
Hessian matrix. If (Y x,Zx) denotes the solution of the BSDE (3) with terminal
data h(Xx

τx
), the connection is given by the formula

u(x) = Yx
0 .

Le Gall [13] succeeded in describing all solutions of the equation u = u2 in
the unit disk D in R

2 by a purely probabilistic method. He established a 1–1 cor-
respondence between all solutions and all pairs (�, ν), where � is a closed subset
of ∂D and ν is a Radon measure on ∂D \ �. The set � is the set of singular points
of ∂D where the solution explodes badly: roughly speaking, near points of �, the
solution behaves like the inverse of the squared distance to the boundary. The mea-
sure ν can be interpreted as the “boundary value” of u on ∂D \ �. The solution
corresponding to (�, ν) is expressed in terms of the Brownian snake (a path-valued
Markov process). In [14] the results announced in [13] are proved in detail and are
extended to a general smooth domain in R

2.
The pair (�, ν) is called the boundary trace for positive solution of the

PDE (6). The definition of boundary trace in general was provided by Marcus and
Véron [15] who showed by analytic methods that every positive solution of (6)
possesses a unique trace. The trace can be described by a (possibly unbounded)
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positive regular Borel measure ν̃ on ∂D. The correspondence between (�, ν) and
ν̃ is given by

ν̃(A) =
{

ν(A), if A ⊆ (∂D \ �),
∞, if A ∩ � �= ∅,

for every Borel subset A of ∂D.
The corresponding boundary value problem is presented in [15] in the subcrit-

ical case 0 < q < 2/(d − 1) and in [16] in the supercritical case q ≥ 2/(d − 1).
In the subcritical case, for every pair (�, ν), the problem has a unique solution.
Remark that in [13] and [14], q = 1 and d = 2, that is, the subcritical case is stud-
ied: q = 1 < 2/(2 − 1) = 2/(d − 1). In the supercritical case Marcus and Véron
derive necessary and sufficient conditions for the existence of a maximal solution.
Similar conditions were obtained by Dynkin and Kuznetsov [8] for q ≤ 1. Their
method relies on probabilistic techniques and is not extendable to q > 1, because
the main tool is the q-superdiffusion which is not defined for q > 1.

The object of the present paper is to give a probabilistic representation of the
solution of the PDE (6) in terms of the solution of the related BSDE (3). In general,
a solution of the PDE has a “blow-up” set �. Therefore, the final data ξ of the
BSDE must be allowed to be infinite with positive probability and the set {ξ =
+∞} corresponds to �. Hence, our first problem is to find a solution of (3) when
ξ is infinite with positive probability, which implies, in particular, that (H6) is not
satisfied.

Note that there are some differences between our work and the results of Le
Gall or Dynkin and Kuznetsov. With the superprocesses (see [14] or [8]), it should
be assumed that q ≤ 1. In our case there is no restriction on q > 0.

Moreover, the Dirichlet boundary condition for the PDE (6) is not taken in the
same sense in the two approaches. With the notion of the boundary trace (see [8,
14, 15] and [16]), there always exists a maximal positive solution; if q < 2/(d −1),
this solution is unique, and if q ≥ 2/(d − 1), the problem (6) may possess more
than one positive solution. More precisely, assume that D is the unit ball in R

d ,
that q ≥ 2/(d − 1) and denote by µ∞ the Borel measure on ∂D which assigns
the value +∞ to every nonempty set. Then for every ε > 0, there exists a positive
solution of (6) such that u(0) < ε and the trace of u is µ∞ (see Proposition 5.1 of
[16]).

In our case the Dirichlet condition in (6) is taken in the viscosity sense (see
Definition 4 in Section 5). The results are rather different: there exists a minimal
positive viscosity solution. But we are unable to give conditions to ensure unique-
ness of the solution.

Main results. In the first section we will prove an a priori estimate which is a
probabilistic generalization of the Keller–Osserman inequality.

In Section 2 and in the rest of the paper we assume

ξ ≥ 0 a.s.



1076 A. POPIER

and we allow ξ to be infinite with positive probability: P(ξ = +∞) > 0. We must
modify Definition 1 of a BSDE when ξ does not satisfy the condition (H6).

In the rest of this paper ρ denotes the distance from the boundary of D. For
x ∈ D, for all positive η, let us define the stopping time

τx
η = inf{t ≥ 0, ρ(Xx

t ) ≤ η}.(8)

REMARK 2. For x ∈ D, τx
η ≤ τx a.s. and if x ∈ D, when η goes to 0, τx

η con-
verges to τx a.s. When x ∈ ∂D, for all η > 0, τx

η = τx = 0 a.s., because every point
x ∈ ∂D is regular [condition (C1)].

Therefore, we suppose x to be in D and for convenience, we omit the variable x.

DEFINITION 2. For an Fτ -measurable ξ such that P(ξ ≥ 0) = 1 and
P(ξ = ∞) > 0, the process (Y,Z) is a solution of the BSDE (3) if:

(D1) for all η > 0 and all T ≥ 0,

E

(
sup

0≤t≤T

|Yt∧τη |2 +
∫ T ∧τη

0
|Zr |2 dBr

)
< +∞;

(D2) P-a.s. for all 0 ≤ t ≤ T and all η > 0,

Yt∧τη = YT ∧τη −
∫ T ∧τη

t∧τη

Yr |Yr |q dr −
∫ T ∧τη

t∧τη

Zr dBr;

(D3) on the set {t ≥ τ }, Yt = ξ and Zt = 0, and P-a.s.,

lim
t→+∞Yt∧τ = ξ.

We first construct a process {(Yt ,Zt ); t ≥ 0} satisfying the conditions (D1) and
(D2) of the previous definition. (Y,Z) is the limit of the sequence of processes
(Y n,Zn), solution (in the sense of Definition 1) of the BSDE (3) with terminal
condition ξ ∧n. From the first section we already know that there exists a constant
C such that

∀t ≥ 0 ρ2/q(Xt∧τ )Yt ≤ C.

Moreover, we prove the following:

PROPOSITION 1. On {ξ = +∞} the explosion rate of Y is in the order of
ρ−2/q(Xt∧τ ): there exists a positive constant C̃ depending on D, q , the bound on
b and σ in (B) and on the constant α in (E), such that

lim inf
t→+∞ ρ2/q(Xt∧τ )Yt∧τ ≥ C̃ a.s. on {ξ = +∞}.
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Without other assumption on ξ , we cannot prove that (Y,Z) satisfies the condi-
tion (D3) of Definition 2.

In Section 3 we first prove that P-a.s. the limit of Yt∧τ as t goes to +∞ exists
and

lim
t→+∞Yt∧τ ≥ ξ.

Then we add some assumptions on ξ and on the diffusion X to insure that the
condition (D3) holds. We prove the following:

THEOREM 2. Under the assumptions:

• the terminal data ξ satisfies

ξ = g(Xτ ),(A1)

where g : Rd → R+ is a function such that F∞ = {g = +∞} ∩ ∂D is a closed
set;

• on R
d \ F∞, g is locally bounded, that is, for all compact set K ⊂ R

d \ F∞,

g1K ∈ L∞(Rd).(A2)

• the boundary ∂D belongs to C3;

the process Y is continuous, that is, limt→+∞ Yt∧τ = ξ P-a.s.

In the next section we prove if there exists a solution (Y ,Z) of the BSDE (3) in
the sense of Definition 2, then Y ≥ Y . Therefore, if the process (Y,Z) is a solution
(e.g., if the assumptions of Theorem 2 hold), it is the minimal solution.

In the last section we show the connection between the BSDE (3) with terminal
condition g(Xx

τx
) and the PDE (6) with Dirichlet condition g. The assumptions of

Theorem 2 hold. In the previous sections we have defined a process {(Y x
t ,Zx

t ); t ≥}
which is a solution of the BSDE (3) with terminal data g(Xx

τx
). Next we define

u(x) = Yx
0 .

The main result follows:

THEOREM 3. Under the assumptions of Theorem 2, u is a viscosity solution
of the PDE (6) with Dirichlet condition g.

Here we do not suppose that a viscosity solution is continuous. But under some
stronger assumptions on the operator L, we also give some regularity properties
of the solution u. We also prove that u is the minimal solution.

In the last section we will see that these results are still true with more general
generators f .
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THEOREM 4. Assume that f is a nonincreasing and C1 function with
f (0) = 0, and such that there exists q > 0, κ > 0 s.t.,

∀y ≥ 0 f (y) ≤ −κy1+q.(9)

If ξ is a nonnegative random variable, with P(ξ = +∞) > 0, and such that the
assumptions of Theorem 2 hold, then there exists a process (Y,Z), solution of the
BSDE

Yt = ξ +
∫ τ

t∧τ
f (Yr) dr −

∫ τ

t∧τ
Zr dBr(10)

[in the sense of Definition 2, with f instead of y �→ −y|y|q in (D2)].

Moreover the conclusion of Theorem 3 is still true: there exists a minimal vis-
cosity solution for the PDE

Lu + f (u) = 0 on D,
(11)

u = g on ∂D.

Important remark on the condition (E). The condition (E) can be relaxed. In
the rest of the paper we can also work with the assumptions (L), (B) and we add
the following condition: b is continuous and satisfies the monotonicity condition:
there exists µ ∈ R such that

∀(x, y) ∈ R
d × R

d 〈x − y|b(x) − b(y)〉 ≤ µ|x − y|2;(M)

here 〈·|·〉 denotes the scalar product in R
d . Under these assumptions equation (4)

has a unique strong solution Xx . For each x ∈ D, we define the stopping time

τ = τx = inf{t ≥ 0, Xx
t /∈ D}.

We also assume that the conditions (C1) and (C2) hold.
Under the assumptions (M), (L), (B), (C1) and (C2), the results which may be

false are in Section 2, Proposition 1, and in Section 5, Propositions 11 and 12. We
are unable to control the explosion rate of Y (see Remark 5), nor to prove that the
viscosity solution u is continuous on D without the ellipticity condition.

In the rest of the paper all results (except maybe Propositions 1, 11 and 12)
could be proved without the condition (E). Indeed, we use this assumption only in
the proofs of Propositions 4 and 8, in order to control the Green function G(x, ·)
associated to the process Xx killed at τx . Under (E), this function G(x, ·) is con-
tinuous on D except at the point x, and is integrable on D. This assumption on G

can replace (E) (see, e.g., [21] for more details on G).
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1. An a priori estimate. Let (Y,Z) be the solution of the BSDE (3) with
terminal data ξ such that the hypothesis (H6) holds. We will need an a priori in-
equality in order to control Yt∧τ for t ∈ [0,+∞[. The idea comes from the Keller–
Osserman inequality which is true for any open set D ([11] and [17]). Denote by ρ

the distance to the boundary of D ⊂ R
d .

THEOREM 5 (Keller–Osserman). There exists a positive constant C = C(q, d)

such that if u is any C2(D) solution of

−u + u|u|q = 0 in D,

then for all x ∈ D,

|u(x)| ≤ C

ρ(x)2/q
.

Recall that in our case D is supposed to be bounded and ∂D ∈ C2. The process
Xx is the solution of (4), and the stopping time τx is defined by (5). We will prove
the following:

THEOREM 6 (A priori estimate). There exists a constant C [depending on the
open set D, on q and on the bound in (B) of b and σ ] such that for every x ∈ D

and every solution (Y,Z) of the BSDE (3) with terminal time τx and terminal data
ξ such that (H6) holds, we have

∀t ≥ 0 |Yt | ≤ C

(ρ(Xx
t∧τx

))2/q
.(12)

We define the signed distance d

d(x) =
{

dist(x, ∂D) = ρ(x), if x ∈ D,
−dist(x, ∂D), if x ∈ R

d \ D.

For µ > 0, let

�µ � {x ∈ R
d; |d(x)| < µ}.

The following lemma (see [9], Lemma 14.16) relates the smoothness of the dis-
tance function d in �µ to that of the boundary ∂D.

LEMMA 1. Let D be bounded and ∂D ∈ Ck for k ≥ 2. Then there exists a
positive constant µ depending on D such that d ∈ Ck(�µ).

PROOF OF THEOREM 6. Recall that D is an open bounded subset of R
d with

∂D ∈ C2. From the previous lemma we already know that there exists a positive
constant µ such that on �µ, the signed distance function d belongs to C2. And
d = ρ is continuous on D. There exists a positive constant R (depending only
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on D) such that for all x ∈ D, 0 ≤ d(x) = ρ(x) ≤ R. Let � ∈ C∞(Rd; [0,1]) such
that � is equal to 1 on R

d \ �µ and is equal to 0 on �µ/2.
For 0 < ε ≤ 1 and C > 0, we define a function �ε ∈ C2(Rd;R+) such that

on D,

�ε = C

[(1 − �)ρ + R� + ε]2/q
.

Such a function exists because (1 − �)ρ + R� + ε ≥ ε on D. Remark that if
x ∈ D,

�ε(x) ≤ C

ρ(x)2/q
.

We denote by θε the function (1 − �)ρ + R� + ε, that is, on D, �ε = Cθ
−2/q
ε .

We apply the Itô formula to �ε(X
x
t∧τx

), where x ∈ D. For convenience, we fix
ε > 0 and x ∈ D and we omit the index ε and x. For all 0 ≤ t ≤ T ,

�(Xt∧τ ) = �(XT ∧τ ) −
∫ T ∧τ

t∧τ
�1+q(Xr) dr

−
∫ T ∧τ

t∧τ
∇�(Xr)σ (Xr) dBr

(13)

−
∫ T ∧τ

t∧τ

[∇�(Xr)b(Xr)

+ 1
2 Trace(σσ ∗(Xr)D

2�(Xr)) − �(Xr)
1+q]

dr.

Now

�1+q = C1+qθ−2/q−2,

∂�

∂xi

= −2C

q
θ−2/q−1 ∂θ

∂xi

,

∂2�

∂xi∂xj

= 2C

q

(
2

q
+ 1

)
θ−2/q−2 ∂θ

∂xi

∂θ

∂xj

− 2C

q
θ−2/q−1 ∂2θ

∂xi ∂xj

.

Therefore,

(∇�)b + 1

2
Trace(σσ ∗D2�) − �1+q

= −Cθ−2/q−2
[
Cq + 2θ

q
(∇θ)b(14)

− 1

q

(
2

q
+ 1

)
‖σ∇θ‖2 + θ

q
Trace(σσ ∗D2θ)

]
;
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and b, σ , θ , ∇θ and D2θ are bounded on D. So we can choose the constant C

such that for all x ∈ D

Cq + 2θ(x)

q
(∇θ(x))b(x) − 1

q

(
2

q
+ 1

)
‖σ(x)∇θ(x)‖2

(15)

+ θ(x)

q
Trace(σ (x)σ ∗(x)D2θ(x)) ≥ 0.

The constant C depends only on D, on q and on the bound in (B) of b and σ . We
have obtained for all 0 ≤ t ≤ T ,

�(Xt∧τ ) = �(XT ∧τ ) −
∫ T ∧τ

t∧τ
∇�(Xr)σ (Xr) dBr

−
∫ T ∧τ

t∧τ
�(Xr)

1+q dr +
∫ T ∧τ

t∧τ
Ur dr;

with U a nonnegative adapted process, and on {t ≥ τ },

�(Xt∧τ ) = C

ε2/q
.

If (Y,Z) is the solution of the BSDE (3) with a final condition ξ in L∞(�,Fτ ,P)

(see Remark 4), we can find 0 < ε < 1 such that

|ξ | ≤ C

ε2/q
a.s.

Moreover, the Tanaka formula (see [10]) leads to, for all 0 ≤ t ≤ T ,

|Yt∧τ | = |YT ∧τ | −
∫ T ∧τ

t∧τ
sign(Yr)Yr |Yr |q dr −

∫ T ∧τ

t∧τ
sign(Yr)Zr dBr

+ 2
(
�t∧τ (0) − �T ∧τ (0)

)
= |YT ∧τ | −

∫ T ∧τ

t∧τ
|Yr |1+q dr −

∫ T ∧τ

t∧τ
sign(Yr)Zr dBr

+ 2
(
�t(0) − �T (0)

)
,

where � is a local time of Y . Thus, �T ∧τ (0) ≥ �t∧τ (0) a.s.
By a comparison theorem (Corollary 4.4.2 in [6]), we have a.s.

∀t ≥ 0 |Yt | ≤ �ε(Xt∧τ ) ≤ C

ρ(Xt∧τ )2/q
.

By a density argument, it is clear that, if (Y,Z) is the solution of the BSDE (3)
with a final condition ξ satisfying (H6), then

∀t ≥ 0 |Yt | ≤ C

ρ(Xt∧τ )2/q
. �
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REMARK 3. The constant C depends only on the bound in (B), on D and q .
Moreover, in the special case where D is a ball and where the drift in the SDE is
equal to 0, the constant C depends only on q and on the bound of σ and not on the
center nor the radius of the ball. For example, if X is the Brownian motion, (12) is
true for any C such that

Cq ≥ 4

q

(
2

q
+ 1

)
+ 4d

q
.

PROOF. In the case of a ball, we can give a slightly different proof because we
have an explicit expression for the distance function. We will assume that D is the
ball centered at y and with radius R. In this case the function ρ is equal to

ρ(x) = R − |x − y| ≤ R2 − |x − y|2
R

= θ(x),

if x is in the ball. The function θ is not of class C2 on the whole space. We modify
θ in order to have a C2 function. For all 0 < ε ≤ R2, on the ball G, θε will be equal
to

θε(x) = R2 + ε − |x − y|2
R

and on the whole space R
d , θε is positive and of class C2. Remark that on D, θε is

greater than θ . Now we consider the function

�ε(x) = C

θε(x)2/q

and like in the proof of Theorem 6, we prove that there exists a constant C such
that the inequality (15) with b = 0 holds. But now for x ∈ D,

∇θε(x) = − 2

R
(x − y) ⇒ ‖σ(x)∇θε(x)‖2 = 4

R2 ‖σ(x)(x − y)‖2

≤ 4K2

R2 |x − y|2 ≤ 4K2;

D2θε(x) = − 2

R
Id ⇒ Trace(σ (x)σ ∗(x)D2θε(x))

= − 2

R
Trace(σ (x)σ ∗(x)) ≥ −2K

R
.

It suffices to choose C such that

Cq ≥ 4

q

(
2

q
+ 1

)
K2 + 4K

q

in order to have (15). If X is the Brownian motion B , that is, σ = Id, Cq ≥
4
q
( 2
q

+ 1) + 4d
q

. Here C depends only on the dimension d and on q , like in the
Keller–Osserman theorem. �
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2. Approximation. We first prove a technical result which gives a sufficient
condition on ξ to insure existence and uniqueness of the solution of the BSDE (3).
In our case for all p > 1, νp = 0 and f (t,0,0) = 0.

PROPOSITION 2. Under the condition (C2) on the first exit time τ of the
diffusion X, let ξ be an Fτ -measurable random variable such that ξ ∈ Lr with
r > 2(1 + q). Hence, there exists p > 1 and λ > 0 such that the condition (H6) is
satisfied:

E

[
epλτ |ξ |p +

∫ τ

0
epλt

∣∣E(ξ |Ft )
∣∣p(1+q)

dt

]
< +∞.(H6)

PROOF. With α > 1, γ > 1 such that 1/α + 1/γ = 1, the Hölder inequality
leads to

E(epλτ |ξ |p) ≤ [E(eαpλτ )]1/α[E(|ξ |γp)]1/γ .

If ξ ∈ Lr with r > 1, there exists γ > 1 and p > 1 such that γp ≤ r . From (C2),
we can choose λ > 0 such that λαp ≤ β .

For the rest of the condition (H6), we have f (y) = −y|y|p and thus,

E

[∫ τ

0
epλt |f (EFt ξ )|p dt

]
≤ E

[∫ τ

0
epλt

E
Ft

(|ξ |p(1+q))dt

]

≤ E

[
epλτ − 1

λp
sup

t∈[0,τ ]
E

Ft
(|ξ |p(1+q))]

≤ 1

λp
[Eeαpλτ ]1/α

[
E sup

t∈[0,τ ]
E

Ft
(|ξ |γp(1+q))]1/γ

.

From the Burkholder–Davis–Gundy inequality we obtain

E sup
t∈[0,τ ]

E
Ft

(|ξ |γp(1+q)) ≤ C
[
E|ξ |2γp(1+q)]1/2

.

If r > 2(1 + q), we can choose γ > 1, p > 1 and λ > 0 sufficiently small such that
2γp(1 + q) < r and αλp ≤ β . �

REMARK 4. From the previous proposition, if ξ ∈ Lr for some r > 2(1 + q),
there exists p > 1 and λ > 0 such that the condition (H6) is satisfied. From The-
orem 1, there exists a unique Lp-solution (Y,Z) of the BSDE (3) which satisfies
the estimate (2).

For terminal data ξ , if (Y,Z) is a Lp-solution for some p > 1, then (Y,Z) is
also a Lp′

-solution for all 1 < p′ ≤ p. Therefore, if (Y ′,Z′) is a Lp′
-solution for

some p′ ≤ p, then we can easily prove that (Y,Z) = (Y ′,Z′).
If ξ ∈ L∞, from the proof of Proposition 2, (H6) holds for every p > 1 and

λ = β/p.
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We are interested in the case where ξ is a nonnegative random variable with this
new assumption:

P(ξ = +∞) > 0.

We still assume that the conditions (L), (B) and (E) hold, that τ = τx is the exit
time of the diffusion Xx from the set D, and that τ satisfies (C1) and (C2). From
Remark 2, we can suppose x to be in D and for convenience, we omit the vari-
able x. We suppose that ξ is Fτ -measurable.

Now for each n ∈ N
∗, let ξn = ξ ∧ n be our final condition. With Remark 4 we

obtain the following:

LEMMA 2. There exists a unique solution (Y n,Zn) (in the sense of Defini-
tion 1) of the BSDE (3) with terminal data ξ ∧ n.

From a comparison theorem (see Corollary 4.4.2 in [6]), we have a.s.

∀t ≥ 0, n ≤ m 0 ≤ Yn
t ≤ Ym

t .

Define the progressively measurable process Y by

Yt = lim
n→∞Yn

t ∀t ≥ 0.(16)

PROPOSITION 3. The sequence (Zn)n∈N∗ converges also to a process Z and
(Y,Z) satisfies the assumptions (D1) and (D2) of Definition 2.

PROOF. From (16), we already know that (Y n)n∈N∗ converges to Y .
From the Itô formula and the Burkholder–Davis–Gundy inequality, there exists

a constant K such that for all η > 0, n ≥ m and 0 ≤ s,

E

(
sup

t∈[0,s]
|Yn

t∧τη
− Ym

t∧τη
|2

)
+ E

∫ s∧τη

0
‖Zn

r − Zm
r ‖2 dr

≤ KE(|Yn
s∧τη

− Ym
s∧τη

|2).
See (8) for the definition of τη. But with the inequality (12),

Yn
s∧τη

≤ C

ρ(Xs∧τη)
2/q

≤ C

η2/q
,

and with the Lebesgue theorem, we conclude that (Y n·∧τη
,Zn·∧τη

)n converges to

(Y·∧τη ,Z·∧τη) in L2(�;C(R+;R+)) × L2(� × R
+) and (Y n·∧τη

) converges uni-
formly to Y·∧τη .

Hence, (Y,Z) satisfies the following equation: for all 0 ≤ t ≤ s, for all η > 0,

Yt∧τη = Ys∧τη −
∫ s∧τη

t∧τη

(Yr)
1+q dr −

∫ s∧τη

t∧τη

Zr dBr .
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From this equation, with the Itô formula and the estimate (12), we deduce that

E

(
sup

t∈[0,s]
|Yt∧τη |2

)
+ E

∫ s∧τη

0
‖Zr‖2 dr ≤ KE|Ys∧τη |2

≤ K

ρ2/q(Xs∧τη)
≤ K

η2/q
.

Therefore, (Y,Z) satisfies the conditions (D1) and (D2) of Definition 2. �

From Definition 1, we also have that on the set {t ≥ τ }, Yt = ξ and Zt = 0. With
the monotonicity of the sequence Yn, we can conclude that

lim inf
t→+∞ Yt∧τ ≥ ξ a.s.

It remains to show the converse inequality,

lim sup
t→+∞

Yt∧τ ≤ ξ,

to have the last condition (D3). Without more assumptions on ξ , we cannot prove
(D3). But we are able to give some other estimates on Y and Z.

PROPOSITION 4. For all ε > 1, there exists K such that

E

∫ τ

0
‖Zr‖2ρ(Xr)

4/q+ε dr ≤ K.

PROOF. We use again the notations �µ, the function θ = θ0 = (1−�)ρ +R�

as in the proof of Theorem 6, and τη for η < µ. Recall that θ ∈ C2(D;R) and on D,
θ = (1 − �)ρ + R� ≥ d ≥ 0. Of course, x �→ |θ(x)|4/q+ε is not in C2(Rd), but
this function belongs to C2(D \ �η) and we can define this function on the rest of
(Rd \ D) ∪ �η in order to have the required regularity. The Itô formula leads to

(Y n
t∧τη

)2θ(Xt∧τη)
4/q+ε

= (Y n
0 )2θ(X0)

4/q+ε +
∫ t∧τη

0
‖Zn

r ‖2θ(Xr)
4/q+ε dr

+ 2
∫ t∧τη

0
(Y n

r )2+qθ(Xr)
4/q+ε dr + 2

∫ t∧τη

0
Yn

r θ(Xr)
4/q+εZn

r dBr

+
(

4

q
+ ε

)∫ t∧τη

0
(Y n

r )2θ(Xr)
4/q+ε−1∇θ(Xr)

(
b(Xr) dr + σ(Xr) dBr

)

+ (4/q + ε)

2

∫ t∧τη

0
(Y n

r )2
[(

4

q
+ ε − 1

)
θ(Xr)

4/q+ε−2‖σ(Xr)∇θ(Xr)‖2

+ θ(Xr)
4/q+ε−1 Trace(σσ ∗(Xr)D

2f (Xr))

]
dr

+ 2
(

4

q
+ ε

)∫ t∧τη

0
Yn

r θ(Xr)
4/q+ε−1Zn

r ∇θ(Xr)σ (Xr) dr.
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Then

E

∫ t∧τη

0
‖Zn

r ‖2θ(Xr)
4/q+ε dr

+ 2
(

4

q
+ ε

)
E

∫ t∧τη

0
Yn

r θ(Xr)
4/q+ε−1Zn

r ∇θ(Xr)σ (Xr) dr

is bounded from above by

E((Y n
t∧τη

)2θ(Xt∧τη)
4/q+ε)

−
(

4

q
+ ε

)
E

∫ t∧τη

0
(Y n

r )2θ(Xr)
4/q+ε−1∇θ(Xr)b(Xr) dr

− 1

2

(
4

q
+ ε

)
E

∫ t∧τη

0
(Y n

r )2θ(Xr)
4/q+ε−1 Trace(σσ ∗(Xr)D

2θ(Xr)) dr(17)

− 1

2

(
4

q
+ ε

)(
4

q
+ ε − 1

)
E

∫ t∧τη

0
(Y n

r )2f (Xr)
4/qθ(Xr)

ε−2

× ‖σ(Xr)∇θ(Xr)‖2 dr.

In the proof of Theorem 6, we have obtained that there exists some constant C

such that for all n ∈ N
∗ and for all t ≥ 0,

(Y n
t∧τ )

2θ(Xt∧τ )
4/q ≤ C.(18)

Moreover b and σ are bounded [assumption (B)], and ∇θ and D2θ are also
bounded on D. Thus, the right-hand side of (17) is bounded by

K

(
1 + E

∫ τ

0
θε−1(Xr) dr + E

∫ τ

0
θε−2(Xr) dr

)
.

We denote by p(t, x, y) the density of Px(Xt ∈ dy; τ > t). Px means that the
diffusion process X starts from x ∈ D at time 0. Then

E

∫ τ

0
θε−1(Xr) dr =

∫ ∞
0

∫
D

θε−1(y)p(r, x, y) dy dr

=
∫
D

θε−1(y)G(x, y) dy,

where G is the Green function associated to the process X killed at time τ

(see [21], Section 4.2, Theorem 2.5).
We claim that the last integral is finite. Indeed, if B(x, ν) is the ball centered at

x with radius ν > 0, since x ∈ D, we can find ν > 0 such that B(x, ν) ⊂ D and
B(x, ν)∩�ν = ∅. We denote by U the set D \ (B(x, ν)∪�ν). On U , f ε−1G(x, ·)
is a continuous function and is bounded by K . On �ν [resp. on B(x, ν)], G(x, ·)
(resp. θε−1) is continuous and bounded by K . On the boundary of D, θε−1 is singu-
lar if ε < 1. Recall the definition of θ : θ = (1 − ϕ)ρ + Rϕ. Hence, θ is equivalent
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to ρ at the boundary and if ε > 0, f ε−1 is integrable on D. G has a singularity
when y → x, but with Theorem 2.8 and Exercise 4.16 in [21], this singularity is
integrable. Therefore, we split the integral into three terms:

E

∫ τ

0
θε−1(Xr) dr =

∫
D

θε−1(y)G(x, y) dy

≤
∫
B(x,ν)

θε−1(y)G(x, y) dy +
∫
�ν

θε−1(y)G(x, y) dy

+
∫
U

θε−1(y)G(x, y) dy

≤ K

∫
B(x,ν)

G(x, y) dy + K

∫
�ν

θε−1(y) dy + K Vol(D)

< +∞.

From the second integral, the same arguments show that if ε > 1,

E

∫ τ

0
θε−2(Xr) dr < +∞.(19)

Therefore, the right-hand side of (17) is bounded by a constant K which does not
depend on η, n and t . And using the Cauchy–Schwarz inequality,∣∣∣∣E

∫ t∧τη

0
Yn

r θ(Xr)
4/q+ε−1Zn

r ∇θ(Xr)σ (Xr) dr

∣∣∣∣
≤

(
E

∫ t∧τη

0
‖Zn

r ‖2θ(Xr)
4/q+ε dr

)1/2

×
(

E

∫ t∧τη

0
(Y n

r )2θ(Xr)
4/q+ε−2‖∇θ(Xr)σ (Xr)‖2 dr

)1/2

.

But since ∇θ and σ are bounded and since (18) and (19) hold, if ε > 1,

E

∫ t∧τη

0
(Y n

r )2θ(Xr)
4/q+ε−2‖∇θ(Xr)σ (Xr)‖2 dr ≤ K.

Inequality (17) can be written as follows: An + Bn ≤ Cn with

0 ≤ An = E

∫ t∧τη

0
‖Zn

r ‖2θ(Xr)
4/q+ε dr,

|Bn| = 2
(

4

q
+ ε

)∣∣∣∣E
∫ t∧τη

0
Yn

r θ(Xr)
4/q+ε−1Zn

r ∇θ(Xr)σ (Xr) dr

∣∣∣∣ ≤ KA1/2
n

and |Cn| ≤ K . Thus, for all n ∈ N
∗ and for all t ≥ 0,

E

∫ t∧τη

0
‖Zn

r ‖2θ(Xr)
4/q+ε dr ≤ K,
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which implies, by Fatou’s lemma,

E

∫ τ

0
‖Zr‖2θ(Xr)

4/q+ε dr ≤ K.

Since θ ≥ ρ on D, we obtain the announced result. �

The condition ε > 1 is required in order to insure that

E

∫ τ

0
θε−2(Xr) dr < ∞.

But this integral is equal to
∫
D θε−2(y)G(x, y) dy, where G(x,y) is the Green

function associated with the process Xx killed at τ . And if, for example, the in-
finitesimal generator of the diffusion X is self-adjoint in L2(Rd), that is, L =
(1/2)div(σσ ∗∇), then G(x,y) ≤ Kρ(y) (see [7], Theorem 9.5) and the previous
integral is finite for any ε > 0. Hence, we obtain that, for any ε > 0,

E

∫ τ

0
‖Zr‖2ρ(Xr)

4/q+ε dr < ∞.

In the next proposition we find an adapted process smaller than Y . This process
will give us a lower bound on the explosion rate of Y on the blow-up set {ξ = ∞}.

PROPOSITION 5 (Lower bound on Y ). We define the following process:

�t = E
Ft

[(
1

q(τ − τ ∧ t) + 1/ξq

)1/q]
.

Then for all t ≥ 0, �t ≤ Yt .

PROOF. Denote by αt the quantity

αt =
(

1

q(τ − τ ∧ t) + 1/ξq

)1/q

,

if t < τ and αt = ξ on {t ≥ τ }. The process α solves the equation

αt = αT −
∫ T

t
α1+q

r 1[0,τ ](r) dr.

Note that �t = E(αt |Ft ). Thanks to Jensen’s inequality,

�t ≤ E
Ft

(
�T −

∫ T

t
�1+q

r 1[0,τ ](r) dr

)

and the comparison theorem (Corollary 4.4.2 in [6]) achieves the proof. �

We now want to find a lower bound for ρ(Xt∧τ )
2/q�t when t goes to ∞ on

{ξ = ∞}.
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LEMMA 3. Let ρ(x) denote the distance of x ∈ D to the boundary ∂D and τ

be the exit time from D of the diffusion X. Let the conditions (L), (B) and (E) hold.
Then there exist two positive constants C1 and C2 which depend on D, q , σ and b

such that for all x ∈ D,

C1 ≤ ρ(x)2/q
Ex

[(
1

τ

)1/q]
≤ C2.

PROOF. Recall that if x ∈ D, Px(τ > 0) = 1 and

Ex

(
1

τ 1/q

)
=

∫ +∞
0

Px

(
τ <

1

yq

)
dy.

If τ < h, then supt∈[0,h] |Xt − x| > ρ(x). Therefore, we can apply Theorem 4.2.1,
page 87 of [23] to obtain

Px(τ < h) ≤ Px

(
sup

t∈[0,h]
|Xt − x| > ρ(x)

)
≤ K1e

K2he−K2ρ(x)2/h.

We apply this inequality with h = 1/yq and y ≥ 1:

Ex

(
1

τ 1/q

)
≤ 1 +

∫ +∞
1

K1e
K2/y

q

e−K2ρ(x)2yq

dy

≤ 1 + K1e
K2

∫ +∞
1

e−K2ρ(x)2yq

dy

= 1 + K1e
K2

qρ(x)2/q

∫ +∞
ρ(x)2

e−K2uu1/q−1 du

≤ 1 + K1e
K2

qρ(x)2/q

∫ +∞
0

e−K2uu1/q−1 du.

Since −1 + 1/q > −1, we deduce

ρ(x)2/q
Ex

(
1

τ 1/q

)
≤ C2.

For the other inequality remark that

∫ +∞
0

Px

(
τ <

1

yq

)
dy ≥

∫ 1/ρ(x)2/q

0
Px

(
τ <

1

yq

)
dy

and Px(τ < 1/yq) ≥ Px(X1/yq /∈ D). We just have to find a lower bound to

ρ(x)2/q
∫ 1/ρ(x)2/q

0
Px(X1/yq /∈ D)dy =

∫ +∞
1

Px(
Xρ(x)2uq /∈ D

)du

u2 .
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Let x be the set (Rd \D)∩B(x,2ρ(x)) which is not empty, and Vol(x) denotes
the volume of the set x . Using the Aronson estimates of [22], we have, for u ≥ 1,

Px(
Xρ(x)2uq /∈ D

)
≥ K3

∫
Rd\D

(
1

2πuqρ(x)2

)d/2

× exp
(
−K4u

qρ(x)2 − K4
|y − x|2

2uqρ(x)2

)
dy

≥ K3

∫
x

(
1

2πuqρ(x)2

)d/2

× exp
(
−K4u

qρ(x)2 − K4
|y − x|2

2uqρ(x)2

)
dy

≥ K3

(
1

2πuqρ(x)2

)d/2

exp(−K4u
qρ(x)2)

∫
x

exp(−2K4u
−q) dy

≥ K3e
−2K4

(
1

2πuq

)d/2

exp(−K4u
qρ(x)2)

Vol(x)

ρ(x)d

because u ≥ 1. Thus,

ρ(x)2/q
∫ 1/ρ(x)2/q

0
Px(X1/yq /∈ D)dy

≥ K5

[∫ +∞
1

exp(−K4u
qρ(x)2)

du

u2+dq/2

]
Vol(x)

ρ(x)d

with

K5 = K3e
−2K4

(
1

2π

)d/2

.

The integral has a lower bound because the open set D is bounded and the domi-
nated convergence theorem shows that

lim
ρ(x)→0

∫ +∞
1

exp(−K4uρ(x)2)
du

u2+d/2 =
∫ +∞

1

du

u2+d/2 = K6.

We have supposed that ∂D ∈ C2 (which was important in the proof of Theorem 6).
Therefore, the curvature is continuous on ∂D which is compact; so the curvature
is bounded. There exists r > 0 such that each point y ∈ ∂D lies on the boundary
of a ball with radius r and this ball is contained in the complementary of D (see
Figure 1).

Instead of calculating the volume of (Rd \ D) ∩ B(x,2ρ(x)), our problem is
reduced to the following: we find the volume of the intersection of two balls in
that case; see Figure 2.
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FIG. 1.

If r < x < 3r , the volume is equal to

V (x) = Crd
∫ α(x)

0
(sin θ)d dθ + C2d(x − r)d

∫ β(x)

0
(sin θ)d dθ,

where C is the volume of the unit ball in R
d−1,

α(x) = Arccos
(

x2 + r2 − 4(x − r)2

2xr

)

and

β(x) = Arccos
(

5x − 3r

4x

)
.

Now we must prove that V (x)

(x−r)d
≥ K1. We split V (x) in two parts. For the first part,

C2d(x − r)d
∫ β(x)

0 (sin θ)d dθ , the result is clear because if r ≤ x ≤ 2r ,

0 < Arccos(7/8) ≤ β(x) ≤ π

3
.

FIG. 2.
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For the second part, Crd
∫ α(x)

0 (sin θ)d dθ , if r ≤ x ≤ 4+√
7

3 r ,

x2 + r2 − 4(x − r)2

2xr
∈ [0,1] �⇒ α(x) ∈ [0, π/2]

and we use the fact that sin is an increasing function on [0, π/2[; so

∫ α(x)

0
(sin θ)d dθ ≤ α(x)

(
1 −

(
x2 + r2 − 4(x − r)2

2xr

)2)d/2

≤ 2d/2α(x)

(
1 − x2 + r2 − 4(x − r)2

2xr

)d/2

=
(

3

xr

)d/2

α(x)(x − r)d .

Therefore, if r < x ≤ 4+√
7

3 r ,

V (x)

(x − r)d
≥ C2d

∫ Arccos(7/8)

0
(sin θ)d dθ > 0.

This proves that V (x)

(x−r)d
≥ K̃ and therefore, ρ(x)2

Ex(
1
τ
) ≥ C1 = K5K̃ . This

achieves the proof in the uniformly elliptic case. �

REMARK 5. If the diffusion matrix is degenerate, the result on the lower
bound may be false. Suppose that σ ≡ 0 and b is bounded by k. If the exit time τ

is smaller than 1/yq ,

k

yq
≥

∫ 1/yq

0
|b(Xr)|dr ≥ sup

[0,1/yq ]

∣∣∣∣
∫ t

0
b(Xr) dr

∣∣∣∣ = sup
[0,1/yq ]

|Xt − x| > ρ(x)

and thus,

ρ(x)2/q
Ex

(
1

τ 1/q

)
≤ kρ(x)1/q

and the limit, as ρ(x) goes to zero, is zero.

From the inequality (12), we already know that there exists a constant C such
that

∀t ≥ 0 Yt ≤ C

(ρ(Xt∧τ ))2/q
.

Now we prove Proposition 1:
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PROOF OF PROPOSITION 1. From Proposition 5, we work on the process
� = (�t)t≥0. For all t ≥ 0,

ρ2/q(Xt∧τ )�t = ρ2/q(Xt∧τ )E
Ft

[(
1

q(τ − τ ∧ t) + 1/ξq

)1/q]

= ρ2/q(Xt∧τ )E
Ft

[(
ξq1ξ<∞

1 + qξq(τ − τ ∧ t)

)1/q]

+ ρ2/q(Xt∧τ )E
Ft

[(
1

q(τ − τ ∧ t)

)1/q

1ξ=∞
]
.

The first term in the right-hand side is nonnegative. Let τ̃ = τ − τ ∧ t : it is the first
exit time of the diffusion starting at Xt∧τ . Hence,

ρ2/q(Xt∧τ )E
Ft

[(
1

q(τ − τ ∧ t)

)1/q

1ξ=∞
]

=
(

1

q

)1/q

E
Ft

{
ρ2/q(Xt∧τ )E

Xt∧τ

[(
1

τ̃

)1/q]
1ξ=∞

}
≥ C1

(
1

q

)1/q

E
Ft (1ξ=∞),

where C1 is the lower bound of Lemma 3. Thus, we obtain

ρ2/q(Xt∧τ )�t ≥ C1

(
1

q

)1/q

E
Ft (1ξ=∞)

and we deduce the announced result. �

3. Continuity. Recall that we have constructed a couple of processes (Y,Z)

which satisfy for all η > 0 and all 0 ≤ t ≤ T , Yt ≥ 0 and

Yt∧τη = YT ∧τη −
∫ T ∧τη

t∧τη

(Yr)
1+q dr −

∫ T ∧τη

t∧τη

Zr dBr .

Moreover, on the set {t ≥ τ }, Yt = ξ , Zt = 0 and lim inft→+∞ Yt∧τ ≥ ξ a.s. We
now want to prove the converse inequality, namely, lim supt→+∞ Yt∧τ ≤ ξ a.s.
Remark that we just have to show this estimate on the set {ξ < +∞}.

3.1. Existence of the limit. We first prove that the limit of Yt∧τ , as t goes
to +∞, exists a.s. In the proof we will distinguish the two cases: ξ is greater than
a positive constant and ξ is nonnegative.

3.1.1. The case where ξ is bounded away from zero. We can show that
(Yt∧τ )t≥0 has a limit as t → +∞ by using Itô’s formula applied to the process
1/(Y n)q . We prove the following result:
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PROPOSITION 6. Let the conditions (B) and (E) hold. Suppose there exists a
real α > 0 such that ξ ≥ α > 0, P-a.s. Then

Yt∧τ =
[
E

Ft

(
q(τ − t ∧ τ) +

(
1

ξq

))
− �t

]−1/q

, 0 ≤ t,(20)

where � is a nonnegative supermartingale such that on the set {t ≥ τ }, �t = 0.

PROOF. From Proposition 5, for every n ∈ N
∗ and every 0 ≤ t ,

Yn
t ≥ �n

t = E
Ft

[(
1

q(τ − τ ∧ t) + (1/(ξ ∧ n))q

)1/q]
.

Since ξ ≥ α, we have

�n
t ≥ E

Ft

[(
1

q(τ − τ ∧ t) + (1/α)q

)1/q]
≥ αE

Ft

[(
1

1 + qταq

)1/q]

≥ α

(
1

1 + qαqEFt (τ )

)1/q

.

Therefore,

∀t ≥ 0 0 ≤ 1

(Y n
t )q

≤ 1

αq

(
1 + qαq

E
Ft (τ )

)
< +∞(21)

because the conditions (B) and (E) hold, which implies, in particular, that
τ ∈ L1(�). Thus, for all t ≥ 0, (Y n

t )−q belongs to L1(�). We want to apply the
Itô formula to the semi-martingale Yn with the function 0 < x �→ x−q . But we just
have that a.s. for all t ≥ 0, Yn

t > 0. For ε > 0, we define a C2 function fε : R → R

such that on R+,

fε(x) =
(

1

x + ε

)q

.

Note that for a fixed x ∈ R+, (fε(x))ε>0 is increasing and the limit is equal to
f (x) = x−q . By the Itô formula, for all 0 ≤ t ≤ T ,

fε(Y
n
t∧τ ) = fε(Y

n
T ∧τ ) −

∫ T ∧τ

t∧τ
f ′

ε(Y
n
r )Zn

r dBr −
∫ T ∧τ

t∧τ
f ′

ε(Y
n
r )(Y n

r )1+q dr

− 1
2

∫ T ∧τ

t∧τ
f ′′

ε (Y n
r )‖Zn

r ‖2 dr

(22)

= E
Ft fε(Y

n
T ∧τ ) − E

Ft

∫ T ∧τ

t∧τ
f ′

ε(Y
n
r )(Y n

r )1+q dr

− 1
2E

Ft

∫ T ∧τ

t∧τ
f ′′

ε (Y n
r )‖Zn

r ‖2 dr.
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Now for x ≥ 0, f ′
ε(x)x1+q = −q( x

x+ε
)1+q , thus, −q ≤ f ′

ε(x)x1+q ≤ 0, and

f ′′
ε (x) = q(1 + q)

(
1

x + ε

)2+q

.

Thereby, a.s. and in L1(�) for all 0 ≤ t ≤ T ,

lim
ε→0

E
Ft

∫ T ∧τ

t∧τ
f ′

ε(Y
n
r )(Y n

r )1+q dr = −qE
Ft (T ∧ τ − t ∧ τ).

From (21), we have that a.s. and in L1(�)

lim
ε→0

E
Ft fε(Y

n
T ∧τ ) = E

Ft
1

(Y n
T ∧τ )

q

and

lim
ε→0

fε(Y
n
t∧τ ) = 1

(Y n
t∧τ )

q
.

For the last term in (22), we use the monotone convergence theorem and hence,
we have proved that, for all 0 ≤ t ≤ T ,

1

(Y n
t∧τ )

q
= E

Ft
1

(Y n
T ∧τ )

q
+ qE

Ft (T ∧ τ − t ∧ τ)

− q(q + 1)

2
E

Ft

∫ T ∧τ

t∧τ

‖Zn
r ‖2

(Y n
r )2+q

dr.

Let T go to +∞:
1

(Y n
t∧τ )

q
= E

Ft
1

(ξ ∧ n)q
+ qE

Ft (τ − t ∧ τ)

(23)

− q(q + 1)

2
E

Ft

∫ τ

t∧τ

‖Zn
r ‖2

(Y n
r )2+q

dr.

Let n ≥ m. Since ξ ∧ n ≥ ξ ∧ m, we obtain, for all 0 ≤ t ,

0 ≤ 1

(Ym
t∧τ )

q
− 1

(Y n
t∧τ )

q

= E
Ft

(
1

(ξ ∧ m)q
− 1

(ξ ∧ n)q

)

− q(q + 1)

2

(
E

Ft

∫ τ

t∧τ

‖Zm
s ‖2

(Ym
s )q+2 ds − E

Ft

∫ τ

t∧τ

‖Zn
s ‖2

(Y n
s )q+2 ds

)
.

Now
q(q + 1)

2

∣∣∣∣EFt

∫ τ

t∧τ

‖Zm
s ‖2

(Ym
s )q+2 ds − E

Ft

∫ τ

t∧τ

‖Zn
s ‖2

(Y n
s )q+2 ds

∣∣∣∣
≤

[
E

Ft

(
1

(ξ ∧ m)q
− 1

(ξ ∧ n)q

)]
∨

[
1

(Ym
t∧τ )

q
− 1

(Y n
t∧τ )

q

]
.
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For a fixed t ≥ 0, the sequences (EFt 1
(ξ∧n)q

)n≥1 and ( 1
(Y n

t∧τ )q
)n≥1 converge a.s. and

in L1 (dominated convergence theorem). Then the sequence (EFt
∫ τ
t∧τ

‖Zn
s ‖2

(Y n
s )q+2 ds)n≥1

converges a.s. and in L1 and we denote by � the limit

�t = lim
n→+∞

q(q + 1)

2
E

Ft

∫ τ

t∧τ

‖Zn
s ‖2

(Y n
s )q+2 ds.

On the set {t ≥ τ }, �t = 0 a.s. and we have

q(q + 1)

2
E

Ft

∫ τ

t∧τ

‖Zn
s ‖2

(Y n
s )q+2 ds

≤ qE
Ft (τ − t ∧ τ) + E

Ft

(
1

(ξ ∧ n)q

)

≤ qE
Ft (τ ) + 1

αq
.

Thus,

�t ≤ qE
Ft (τ ) + 1

αq
.

For r ≤ t , ∫ τ

r∧τ

‖Zn
s ‖2

(Y n
s )q+2 ds ≥

∫ τ

t∧τ

‖Zn
s ‖2

(Y n
s )q+2 ds,

�⇒ E
Fr

∫ τ

r∧τ

‖Zn
s ‖2

(Y n
s )q+2 ds ≥ E

Fr E
Ft

∫ τ

t∧τ

‖Zn
s ‖2

(Y n
s )q+2 ds,

�⇒ �r ≥ E
Fr �t .

We deduce that (�t)0≤t is a nonnegative supermartingale. Now for all n ∈ N
∗,

1

(Y n
t )q

= qE
Ft (τ − t ∧ τ) + E

Ft

(
1

(ξ ∧ n)q

)
− q(q + 1)

2
E

Ft

∫ τ

t∧τ

‖Zn
s ‖2

(Y n
s )q+2 ds.

Fix t ≥ 0. Taking the limit as n → +∞, we deduce

1

(Yt∧τ )q
= qE

Ft (τ − t ∧ τ) + E
Ft

(
1

ξq

)
− �t.

This achieves the proof of Proposition 6. �

� being a nonnegative supermartingale, the limit of �t∧τ as t goes to +∞
exists P-a.s. and this limit �τ− is finite P-a.s. The L1-bounded martingale E

Ft ( 1
ξq )

converges a.s. to 1/ξq as t goes to +∞, then the limit of Yt∧τ as t → +∞ exists
and is equal to

lim
t→+∞Yt∧τ = 1

(1/ξq − �τ−)1/q
.
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If we were able to prove that � is continuous (or �τ− is zero a.s.), we would have
shown that Y is a continuous process.

3.1.2. The case ξ nonnegative. Now we just assume that ξ ≥ 0. We cannot
apply the same arguments because Yn may to equal to zero with positive probabil-
ity, which implies, in particular, that (Y n

t )−q /∈ L1(�). We will approach Yn in the
following way. We define for n ≥ 1 and m ≥ 1, ξn,m by

ξn,m = (ξ ∧ n) ∨ 1

m
.

This random variable is in L2 and is greater or equal to 1/m a.s. The BSDE (3)
with ξn,m as terminal condition has a unique solution (Ỹ n,m, Z̃n,m). It is immediate
that if m ≤ m′ and n ≤ n′, then

Ỹ n,m′ ≤ Ỹ n′,m.

As for the sequence Yn, we can define Ỹ m as the limit when n grows to +∞
of Yn,m. That limit Ỹ m is greater than Y = limn→+∞ Yn. But for m ≤ m′ for
0 ≤ t ≤ T ,

Ỹ
n,m
t∧τ − Ỹ

n,m′
t∧τ = Ỹ

n,m
T ∧τ − Ỹ

n,m′
T ∧τ −

∫ T ∧τ

t∧τ
[(Ỹ n,m

r )q+1 − (Ỹ n,m′
r )q+1]dr

−
∫ T ∧τ

t∧τ
[Z̃n,m

r − Z̃n,m′
r ]dBr

≤ Ỹ
n,m
T ∧τ − Ỹ

n,m′
T ∧τ −

∫ T ∧τ

t∧τ
[Z̃n,m

r − Z̃n,m′
r ]dBr

and taking the conditional expectation given Ft ,

0 ≤ Ỹ
n,m
t∧τ − Ỹ

n,m′
t∧τ ≤ E

Ft (Ỹ
n,m
T ∧τ − Ỹ

n,m′
T ∧τ ) ≤ 1

m
.

Letting first T → +∞ and then m′ → +∞ in the last estimate leads to

0 ≤ Ỹ
n,m
t∧τ − Yn

t∧τ ≤ 1

m
.

Therefore, P-a.s.,

sup
t≥0

|Ỹ m
t∧τ − Yt∧τ | ≤ 1

m
.

Since for each m ≥ 0, (Ỹ m
t∧τ )t≥0 has a limit on the left at +∞, so does Y .
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3.2. Continuity of Y . We know now that

lim inf
t→+∞ Yt∧τ = lim

t→+∞Yt∧τ ≥ ξ(24)

and on the set {t ≥ τ }, Yt = ξ . In this part we give sufficient conditions to ensure
that the process Y is continuous, that is,

lim
t→+∞Yt∧τ = ξ.

It suffices to prove the result on the set {ξ < ∞}. In the rest of this section, we will
suppose that (A1) and (A2) hold, and P(ξ < ∞) > 0 ⇒ F∞ �= ∂D.

3.2.1. A first step. In the first section we have proved the following estimate:

P-a.s. ∀t ≥ 0 |Yt | ≤ C

(ρ(Xx
t∧τx

))2/q
,(12)

where ρ is the distance to the boundary of D. The constant C depends on q , D and
the bound on b and σ in (B). Here we want to construct another estimate which
depends also on the function g. Our result is the following:

PROPOSITION 7. Suppose that the boundary of D belongs to C3. If U is an
open set such that U ∩ F∞ = ∅ and U ∩ ∂D �= ∅, then there exists a constant
C = C(U,g, q, b, σ,D) and an open set DU such that D ⊂ DU and if ρU denotes
the distance to the boundary of DU , we have

P-a.s. ∀n ∈ N, ∀t ≥ 0 Yn
t ≤ C

(ρU(Xt∧τ ))2/q
.(25)

Recall that τ is always the first exit time from D.

PROOF. We suppose that the set F∞ = {g = +∞} is not equal to ∂D. Hence,
if we define for all ε ≥ 0 the set

Fε = {y ∈ ∂D; dist(y,F∞) ≤ ε},
there exists ε′ > 0 such that Fε′ �= ∂D. Moreover, if U is an open subset of R

d such
that F∞ ∩ U = ∅ and U ∩ ∂D �= ∅, there exists 0 < ε < ε′ such that U ∩ ∂D ⊂
∂D \ Fε .

Recall that D is a bounded open set of R
d with a boundary ∂D ∈ C3. Thus, there

exists r > 0 such that on �r = {y ∈ R
d; dist(y, ∂D) < r}, the signed distance d

d(x) =
{

dist(x, ∂D) = ρ(x), if x ∈ D,
−dist(x, ∂D), if x ∈ R

d \ D,

belongs to C3(�r). Moreover, for all y ∈ �r , there exists a unique x ∈ ∂D such
that y = x − d(y)−→n (x), where −→n (x) is the outward normal vector at the point
x ∈ ∂D. We have ‖y − x‖ = |d(y)| = dist(y, ∂D). The result can be found in [9].
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We take a function ψε : Rd → [0,1] such that ψε is of class C2(Rd) and ψε = 0
on Fε and ψε = 1 on ∂D \F2ε . With this function we define the set Dε as follows:

Dε = D ∪ {y ∈ R
d; ∃x ∈ ∂D,∃ν ∈ [0, r/2[ s.t. y = x + νψε(x)−→n (x)},

where −→n (x) always denotes the outward normal vector at the point x ∈ ∂D. We
can easily prove that Dε is included in D ∪ �r , and that

Fε ⊂ ∂Dε and ∂D \ F2ε ⊂ Dε.

If ∂D ∈ C3, then the boundary of Dε is of class C2, and from our construction, the
distance to the boundary of Dε , denoted by ρε , is also a C2 function on the set �r .
Moreover, if y ∈ ∂D \ F2ε , then ρε(y) = r/2 > 0.

Now the proof of (25) is similar to the proof of Theorem 6. Let � be a C∞(Rd)

function such that � = 1 on D \ �r and � = 0 on �r/2. For all 0 < η < r/2 and
C > 0, we define a function � = �η ∈ C2(Rd;R+) such that on D,

� = �η = C

[(1 − �)ρε + Rε� + η]2/q
= C

[θη]2/q
.

The constant Rε is the supremum of ρε on Dε and we can easily see that Rε ≤
supρ + r/2 and that θη ≥ ρε for all η > 0. Remark also that � is of class C2 on D.
We apply the Itô formula to �(Xt∧τ ) and by the same arguments as in the proof
of Theorem 6, we can choose the constant C [depending only on D, on q and on
the bound of b and σ in (B)], such that for all 0 ≤ t ≤ T ,

�(Xt∧τ ) = �(XT ∧τ ) −
∫ T ∧τ

t∧τ
∇�(Xr)σ (Xr) dBr

−
∫ T ∧τ

t∧τ
�(Xr)

1+q dr +
∫ T ∧τ

t∧τ
Ur dr;

with U a nonnegative adapted process. The constant C must satisfy (15), that is,

Cq + 2θη

q
(∇θη)b − 1

q

(
2

q
+ 1

)
‖σ∇θη‖2 + θη

q
Trace(σσ ∗D2θη) ≥ 0.

Moreover, on {t ≥ τ },
�(Xτ ) = C

η2/q
if Xτ ∈ Fε,

because on ∂D, � = 0, and on Fε , ρε = 0;

�(Xτ ) ≥ C

(η + r/2)2/q
if Xτ ∈ ∂D \ Fε,

because on ∂D, 0 ≤ ρε ≤ r/2. Recall that for all n ∈ N, (Y n,Zn) is the solution
of the BSDE (3) with terminal time τ and terminal data g ∧ n. On the compact set
∂D \ Fε , by (A2), the function g is bounded by a constant K = Kε . We choose
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C > 0 and 0 < η < r/2 such that
C

η2/q
≥ n and

C

(η + r/2)2/q
≥ K.

We can take C > Kr2/q satisfying (15), and η < r/2 ∧ Cq/2/nq/2. Note that C

does not depend on η. Therefore, if we define, for t ≥ 0,

Ỹt = �(Xt∧τ ) and Z̃t = ∇�(Xt)σ (Xt)1t<τ ,

the process (Ỹ , Z̃) satisfies P-a.s., for all 0 ≤ t ≤ T ,

Ỹt∧τ = ỸT ∧τ −
∫ T ∧τ

t∧τ
Ỹ 1+q

r dr +
∫ T ∧τ

t∧τ
Ur dr −

∫ T ∧τ

t∧τ
Z̃r dBr,

U being a nonnegative process, and on the set {t ≥ τ }: Ỹt ≥ g(Xτ ) ∧ n. From the
comparison theorem (Corollary 4.4.2 in [6]) for solutions of a BSDE, we obtain

P-a.s. ∀t ≥ 0 Yn
t ≤ �η(Xt∧τ ) ≤ C

(ρε(Xt∧τ ))2/q
.

Since this inequality holds for all n, we have proved the proposition. �

The main interest of Proposition 7 is that if h ∈ C0(U) (h has a compact support
included in U ) with U ∩F∞ = ∅ and U ∩ ∂D �= ∅, then the sequence h(X·∧τ )Y

n

is bounded in L∞([0,+∞[×�): there exists a constant K = KU such that

P-a.s. ∀t ≥ 0 h(Xt∧τ )Y
n
t ≤ K.

We can also prove the following:

PROPOSITION 8. For all ν > 1, there exists a constant K = KU,ν > 0 such
that

E

∫ τ

0
‖Zt‖2ρ

4/q+ν
U (Xt) dt ≤ K.

PROOF. Using Proposition 7, the proof is the same as the proof of Proposi-
tion 4. �

3.2.2. Continuity: the conclusion. Recall that F∞ = {g = +∞} ∩ ∂D is a
closed set, that U is an bounded open set such that U ∩F∞ = ∅ and U ∩ ∂D �= ∅.

Now we take a function ϕ : Rd → R+ of class C2 and with a compact support
included in U . For β > 0, we apply the Itô formula to the process e−βtY n

t ϕ(Xt):

E
(
e−βτ (g ∧ n)(Xτ )ϕ(Xτ )

)
= E

(
e−β(t∧τ)Y n

t∧τ ϕ(Xt∧τ )
)

(26)
− βE

∫ τ

t∧τ
e−βrϕ(Xr)Y

n
r dr + E

∫ τ

t∧τ
e−βrϕ(Xr)Y

n
r |Yn

r |q dr

+ E

∫ τ

t∧τ
e−βrY n

r Lϕ(Xr) dr + E

∫ τ

t∧τ
e−βrZn

r ∇ϕ(Xr)σ (Xr) dr,
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where L is defined by (7). In (26), every term, except maybe the last one, is
well defined because β > 0, ϕ is a C2 function with compact support, and Yn

is bounded by n. Now using the Cauchy–Schwarz inequality, we obtain, for all
η > 1,

E

∫ τ

0
e−βr |Zn

r · ∇ϕ(Xr)σ (Xr)|dr

≤
[
E

∫ τ

0
‖Zn

r ‖2ρ
4/q+η
U (Xr) dr

]1/2

(27)

×
[
E

∫ τ

0
e−2βrρ

−4/q−η
U (Xr)‖∇ϕ(Xr)σ (Xr)‖2 dr

]1/2

.

We already know that σ is bounded on D. The support of ∇ϕ is included in U .
In our previous construction of DU , we have U ∩ D ⊂ DU and on U ∩ D,
ρU ≥ r/2 > 0. Therefore, ρ

−4/q−η
U ∇ϕ is a continuous and bounded function. With

Proposition 8, we deduce

E

∫ τ

0
e−βr |Zn

r · ∇ϕ(Xr)σ (Xr)|dr ≤ K.(28)

It is important to remark that the constant K does not depend on n.
We want to pass to the limit when n → +∞ in (26). With the monotone con-

vergence theorem, we obtain, for all 0 ≤ t ,

lim
n→+∞E

(
e−βτ (g ∧ n)(Xτ )ϕ(Xτ )

) = E(e−βτ g(Xτ )ϕ(Xτ ));

lim
n→+∞ E

∫ τ

t∧τ
e−βrϕ(Xr)Y

n
r dr = E

∫ τ

t∧τ
e−βrϕ(Xr)Yr dr;

lim
n→+∞ E

∫ τ

t∧τ
e−βrϕ(Xr)(Y

n
r )1+q dr = E

∫ τ

t∧τ
e−βrϕ(Xr)(Yr)

1+q dr.

The support of the function Lϕ is included in U . Therefore, from Proposition 7,
YnLϕ(X) is a.s. bounded. From the dominated convergence theorem, we deduce
that, for all t ≥ 0,

lim
n→+∞E

∫ τ

t∧τ
e−βrY n

r Lϕ(Xr) dr = E

∫ τ

t∧τ
e−βrYrLϕ(Xr) dr.

The last term in (26) is equal to

E

∫ τ

t∧τ
e−βrZn

r · ∇ϕ(Xr)σ (Xr) dr

= E

∫ τ

t∧τ
e−βrρ

2/q+η/2
U (Xr)Z

n
r · ρ−2/q−η/2

U (Xr)∇ϕ(Xr)σ (Xr) dr.

From Proposition 8, the sequence ρ
2/q+η/2
U (X)Zn1τ>· is bounded in L2([0,

+∞[×�) for all η > 1. Therefore, after extraction of a suitable subsequence,
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which we omit as an abuse of notation, ρ
2/q+η/2
U (X)Zn1τ>· converges weakly

in L2([0,+∞[×�). The process

e−β·ρ−2/q−η/2
U (X)∇ϕ(X)σ(X)1τ>·

is in L2([0,+∞[×�) because σ is bounded, and from our construction,
ρ

−2/q−η/2
U (X)∇ϕ(X)1τ>· is also bounded. Using Proposition 3, we obtain

lim
n→+∞E

∫ τ

t∧τ
e−βrZn

r · ∇ϕ(Xr)σ (Xr) dr = E

∫ τ

t∧τ
e−βrZr · ∇ϕ(Xr)σ (Xr) dr.

Finally, letting n → +∞ in (26), we have, for all 0 ≤ t ,

E(e−βτ g(Xτ )ϕ(Xτ ))

= E
(
e−β(t∧τ)Yt∧τ ϕ(Xt∧τ )

)
(29)

− βE

∫ τ

t∧τ
e−βrϕ(Xr)Yr dr + E

∫ τ

t∧τ
e−βrϕ(Xr)(Yr)

1+q dr

+ E

∫ τ

t∧τ
e−βrYrLϕ(Xr) dr + E

∫ τ

t∧τ
e−βrZr · ∇ϕ(Xr)σ (Xr) dr.

From Proposition 7, we know that

E

∫ τ

0
e−βrϕ(Xr)Yr dr ≤ K,

E

∫ τ

0
e−βrϕ(Xr)(Yr)

1+q dr + E

∫ τ

0
e−βrYr |Lϕ(Xr)|dr ≤ K.

For the last term, using the Cauchy–Schwarz inequality [see (27)] and Proposi-
tion 4, we obtain

E

∫ τ

0
e−βr |Zr · ∇ϕ(Xr)σ (Xr)|dr ≤ K.

Therefore, when t goes to +∞ in the equation (29), we obtain, using Fatou’s
lemma,

E(e−βτ g(Xτ )ϕ(Xτ )) = lim
t→+∞E

(
e−β(t∧τ)Yt∧τ ϕ(Xt∧τ )

)
(30)

≥ E

[
e−βτϕ(Xτ )

(
lim

t→+∞Yt∧τ

)]
.

But recall that we already know that

lim
t→+∞Yt∧τ ≥ g(Xτ ).(24)

Hence, the inequality in (30) is in fact an equality, that is,

E(e−βτ g(Xτ )ϕ(Xτ )) = E

[
e−βτϕ(Xτ )

(
lim

t→+∞Yt∧τ

)]
.

And using again (24), we conclude that

lim
t→+∞Yt∧τ = g(Xτ ), P-a.s. on {g(Xτ ) < ∞}.
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4. Minimal solution. In the third section we have constructed a process
(Y,Z) which satisfies the conditions (D1) and (D2) of Definition 2. We will prove
now that, if this process is a solution of the BSDE (3), that is, if it satisfies also the
condition (D3), then it is the minimal nonnegative solution.

THEOREM 7. Let the conditions (L), (B) and (E) hold and let (Y ,Z) be a
nonnegative solution of the BSDE (3) (solution in the sense of Definition 2). Then
P-a.s. for all t ≥ 0,

Y t ≥ Yt .

PROOF. Recall that τη is the first exit time of D \ �η and we have, for all
0 ≤ t ≤ T ,

Y t∧τη = YT ∧τη −
∫ T ∧τη

t∧τη

(Y r)
1+q dr −

∫ T ∧τη

t∧τη

Zr dBr .

For n ∈ N
∗, (Y n,Zn) is the solution (in the sense of Definition 1) of the BSDE (3)

with terminal data ξ ∧ n. We compare Y with Yn:

Y t∧τη − Yn
t∧τη

= YT ∧τη − Yn
T ∧τη

∫ T ∧τη

t∧τη

(Y r)
1+q − (Y n

r )1+q dr

−
∫ T ∧τη

t∧τη

(Zr − Zn
r ) dBr

= YT ∧τη − Yn
T ∧τη

−
∫ T ∧τη

t∧τη

αn
r (Y r − Yn

r ) dr

−
∫ T ∧τη

t∧τη

(Zr − Zn
r ) dBr,

where the process αn
r is defined by

αn
r = (Y r)

1+q − (Y n
r )1+q

Y r − Yn
r

, if Y r �= Yn
r ,

αn
r = (1 + q)(Y n

r )q, if Y r = Yn
r .

αn is a nonnegative process and we have a linear BSDE whose solution is

Y t∧τη − Yn
t∧τη

= E
Ft

[
(Y T ∧τη − Yn

T ∧τη
) exp

(
−

∫ T ∧τη

t∧τη

αn
r dr

)]
.(31)

From the hypothesis of the theorem, Y is nonnegative and Yn is bounded by n.
Indeed, on the set {t ≥ τ }, Yn

t = ξ ∧ n ≤ n and for all 0 ≤ t ≤ T ,

Yn
t∧τ = Yn

T ∧τ −
∫ T ∧τ

t∧τ
(Y n

r )1+q dr −
∫ T ∧τ

t∧τ
Zn

r dBr

≤ Yn
T ∧τ −

∫ T ∧τ

t∧τ
Zn

r dBr,
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thus,

Yn
t∧τ ≤ Yn

τ −
∫ τ

t∧τ
Zn

r dBr = ξ ∧ n −
∫ τ

t∧τ
Zn

r dBr ≤ n −
∫ τ

t∧τ
Zn

r dBr .

Taking the conditional expectation, we deduce that, for all t ≥ 0, Yn
t ≤ n.

We now pass to the limit in (31) first as η → 0, then as T → +∞ and with the
Fatou lemma, we obtain for all t ≥ 0,

Y t∧τ − Yn
t∧τ ≥ 0.

Therefore, Y is greater than Yn for all n ∈ N
∗ and thus greater than Y . �

Moreover, we obtain the following result:

PROPOSITION 9. There exists a constant C (the same constant as in Theo-
rem 6) such that P-a.s., for all t ≥ 0,

Y t ≤ C

ρ2/q(Xt∧τ )
.

PROOF. For all sufficiently small η > 0, we denote by ρη the distance from
the boundary of Dη = D \ �η, that is,

Dη = {x ∈ D,ρ(x) ≥ η}.
If x ∈ Dη, ρ(x) − η ≤ ρη(x) ≤ ρ(x). We consider the first exit time

τη = inf{t ≥ 0,Xt /∈ Dη}.
From Theorem 6 we deduce

∀t ≥ 0 Y t∧τη ≤ C

ρ
2/q
η (Xt∧τη)

≤ C

ρ2/q(Xt∧τη) − η
.

The constant C which appears in the previous inequality may depend on η. In the
proof of Theorem 6 we use the fact that there exists µ > 0 such that on �µ, the
signed distance function is of class C2. But if η < µ, it is also true that ρη is of
class C2 on �µ. So in the proof of the theorem we can use the same function ϕ

and the same bound R for ρη and ρ. Moreover, on �µ, |∇ρ| = 1 and D2ρ depends
only on the curvature of ∂D. Therefore, we can choose a constant C independent
of η if η < µ.

To conclude, let η → 0 and we obtain the desired inequality. �
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5. Viscosity solution of the associated elliptic PDE. Recall that D is a
bounded open subset of R

d with a C3 boundary. For all x ∈ D, {Xx
t ; t ≥ 0} is

the solution of the SDE (4):

Xx
t = x +

∫ t

0
b(Xx

r ) dr +
∫ t

0
σ(Xx

r ) dBr for t ≥ 0.(4)

The functions b and σ are defined on R
d , with values respectively in R

d and R
d×d ,

and such that b and σ are continuous on R
d and satisfy the conditions (M), (L)

and (B). For each x ∈ D, we define the stopping time τx = inf{t ≥ 0,Xx
t /∈ D}. We

assume that

P(τx < ∞) = 1 for all x ∈ D,(32)

that the set of singular points

� = {x ∈ ∂D;P(τx > 0) > 0} is empty,(C1)

and that for some β > 0 and all x ∈ D,

Eeβτx < ∞.(C2)

Let us recall the following result (cf. Proposition 5.2. in [18]):

PROPOSITION 10. Under the conditions (C1) and (C2), the mapping x �→ τx

is a.s. continuous on D.

Let g : ∂D → R+ be a continuous function and for all n ∈ N, we define
gn = g ∧ n. Hence, gn is a continuous function. For all n ∈ N, from Remark 4,
{(Y x,n

t ,Z
x,n
t ); t ≥ 0} is the unique solution (in the sense of Definition 1) of the

BSDE (3)

Y
x,n
t = gn(X

x
τx

) −
∫ τx

t∧τx

Y x,n
r |Yx,n

r |q dr −
∫ τx

t∧τx

Zx,n
r dBr .(33)

We denote by un the function defined on D by

un(x) � Y
x,n
0 .

For h ∈ C(∂D,R), we consider the elliptic PDE (6) with boundary condition h:

−Lv + v|v|q = 0 on D;
v = h on ∂D.

The following definition can be found in [1] and [2] (or [5] and [18] for v contin-
uous). If v is a function defined on D, we denote by v∗ (resp. v∗) the upper- (resp.
lower-) semicontinuous envelope of v: for all x ∈ D,

v∗(x) = lim sup
x′→x,x′∈D

v(x′) and v∗(x) = lim inf
x′→x, x′∈D

v(x′).
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DEFINITION 3 (Viscosity solution).

• v :D → R is called a viscosity subsolution of (6) if v∗ < +∞ on D and if for
all φ ∈ C2(Rd), whenever x ∈ D is a point of local maximum of v∗ − φ,

−Lφ(x) + v∗(x)|v∗(x)|q ≤ 0 if x ∈ D;
min

(−Lφ(x) + v∗(x)|v∗(x)|q, v∗(x) − h(x)
) ≤ 0 if x ∈ ∂D.

• v :D → R is called a viscosity supersolution of (6) if v∗ > −∞ on D and if for
all φ ∈ C2(Rd), whenever x ∈ D is a point of local minimum of v∗ − φ,

−Lφ(x) + v∗(x)|v∗(x)|q ≥ 0 if x ∈ D;
max

(−Lφ(x) + v∗(x)|v∗(x)|q, v(x) − h(x)
) ≥ 0 if x ∈ ∂D.

• v :D → R is called a viscosity solution of (6) if it is both a viscosity sub- and
supersolution.

Let us recall the following result (cf. Theorem 5.3. in [18]):

THEOREM 8. Under the assumptions (M), (L), (B), (C1) and (C2), since g∧n

is continuous on ∂D, un is continuous on D and it is a viscosity solution of the
elliptic PDE (6) with boundary data g ∧ n.

REMARK 6. Since g ∧ n is continuous on ∂D, from Theorem 3.3 in [5], it
follows that un is the unique continuous viscosity solution of the PDE (6) with
terminal data g ∧ n.

From now on we add the uniformly elliptic condition: there exists a constant
α > 0 such that, for all x ∈ R

d ,

σσ ∗(x) ≥ αId.(E)

With this assumption, (C1) and (C2) hold if (B) is true. In the previous sections we
have constructed a process {(Y x

t ,Zx
t ); t ≥ 0} which is a solution of the BSDE (3)

with terminal data g(Xx
τx

) (in the sense of Definition 2). Yx is the limit of Yx,n:
for all t ≥ 0,

Yx
t = lim

n→+∞Y
x,n
t .(16)

If we define

u(x) � Yx
0 ,

then u is the limit of the sequence un. Thus, u is nonnegative. Since u is the supre-
mum of continuous functions un, u is lower-semicontinuous on D and satisfies

∀x ∈ D u(x) ≤ C

ρ2/q(x)
.(34)
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Recall that ρ is the distance from the boundary ∂D and C is a constant which does
not depend on g. Moreover, u(x) = g(x) on ∂D. Since g is not bounded on ∂D,
we cannot apply Theorem 8. Moreover, the condition v∗ < +∞ in Definition 3
cannot be satisfied on D. Therefore, we change the definition of a solution.

DEFINITION 4 (Unbounded viscosity solution). We say that v is a viscosity
solution of the PDE

−Lv + v|v|q = 0 on D,
(6)

v = g on ∂D,

with unbounded terminal data g if v is a viscosity solution on D in the sense of
Definition 3 and if

g(x) ≤ lim
x′→x

x′∈D,x∈∂D

v∗(x′) ≤ lim
x′→x

x′∈D,x∈∂D

v∗(x′) ≤ g(x).

Remark that this definition implies that v∗ < +∞ and v∗ > −∞ on D.

5.1. u is a viscosity solution.

LEMMA 4. The function u is a viscosity solution of the PDE (6) on D.

PROOF. We will use the half-relaxed upper- and lower-limit of the sequence
of functions un:

ū(x) = lim sup
n→+∞
x′→x

un(x
′) and u(x) = lim inf

n→+∞
x′→x

un(x
′).

Since {un} is a nondecreasing sequence of continuous functions, we have

∀x ∈ D u(x) = u∗(x) = u(x) ≤ u∗(x) = ū(x).

We fix η > 0 and we prove that on D̃ = D \ {x ∈ D,ρ(x) ≤ η}, u is a viscosity
solution. We already know that

∀x ∈ D̃ ū(x) ≤ C

η2/q
.

Recall that un is a continuous viscosity solution and from the Lemma 6.1 of [5],
we deduce that u is a viscosity solution of (6) on D̃ and this holds for all η > 0.
Therefore, the lemma is proved. �

Since un is a nondecreasing sequence of C0(D) functions, we have,

∀x ∈ ∂D lim inf
x′→x, x′∈D

u(x′) ≥ g(x) = u(x).(35)

Hence, u∗ is a supersolution of (6) because u∗ ≥ g on ∂D.
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LEMMA 5. The solution u satisfies the boundary condition, that is,

lim
x′→x

x′∈D, x∈∂D

u∗(x′) ≤ g(x) = u(x).

PROOF. We already know that

lim inf
x′→x

x′∈D,x∈∂D

u(x′) ≥ g(x) = u(x).

So we just have to prove the converse inequality on the set {g < +∞}. If U is an
open set such that U ∩F∞ = ∅ and U ∩ ∂D �= ∅, there exists an open set DU and
a constant CU such that, for all n ∈ N,

P-a.s. ∀t ≥ 0 Y
x,n
t ≤ CU

ρ
2/q
U (Xx

t∧τx
)
.

Recall that ρU is the distance to the boundary of DU . From the proof of Proposi-
tion 7, the choice of the set DU and of the constant CU does not depend on x ∈ D.

We write again equation (26):

E
(
e−βτx (g ∧ n)(Xx

τx
)ϕ(Xx

τx
)
)

= un(x)ϕ(x)
(36)

− βE

∫ τx

0
e−βrϕ(Xx

r )Y x,n
r dr + E

∫ τx

0
e−βrϕ(Xx

r )Y x,n
r |Yx,n

r |q dr

+ E

∫ τx

0
e−βrY x,n

r Lϕ(Xx
r ) dr + E

∫ τx

0
e−βrZx,n

r · ∇ϕ(Xx
r )σ (Xx

r ) dr.

The function ϕ : Rd → R+ is of class C2 and has a compact support included
in U . The constant β is positive. From Proposition 7, there exists a constant KU

such that, for all n ∈ N,∣∣∣∣E
∫ τx

0
e−βr [ϕ(Xx

r )Y x,n
r + ϕ(Xx

r )Y x,n
r |Yx,n

r |q + Yx,n
r Lϕ(Xx

r )]dr

∣∣∣∣
≤ KUE

∫ τx

0
e−βr dr.

Moreover, using (27), we have

E

∫ τx

0
e−βr |Zx,n

r ∇ϕ(Xx
r )σ (Xx

r )|dr

≤
[
E

∫ τx

0
‖Zx,n

r ‖2ρ
4/q+η
U (Xx

r ) dr

]1/2

×
[
E

∫ τx

0
e−2βrρ

−4/q−η
U (Xx

r )‖∇ϕ(Xx
r )σ (Xx

r )‖2 dr

]1/2

.
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Recall that ρ
−4/q−η
U ∇ϕ is a continuous and bounded function on D. With Propo-

sition 8, we obtain that

E

∫ τx

0
e−βr |Zx,n

r · ∇ϕ(Xx
r )σ (Xx

r )|dr ≤ KUE

∫ τx

0
e−βr dr.

Since x �→ τx is a continuous function on D and since τx = 0 if x ∈ ∂D, we
have

lim
x′→x

x′∈D,x∈∂D

E

∫ τx′

0
e−βr dr = 0.

If x ∈ ∂D and if (xm)m∈N is a sequence of elements of D which converges to x,
we replace in (36) n by m and x by xm and we take the limit as m → +∞. We
obtain, by Fatou’s lemma,

lim sup
m→+∞

um(xm)ϕ(xm) = lim sup
m→+∞

E
(
e−βτxm (g ∧ m)(Xxm

τxm
)ϕ(Xxm

τxm
)
)

≤ E

(
lim sup
m→+∞

[e−βτxm (g ∧ m)(Xxm
τxm

)ϕ(Xxm
τxm

)]
)
,

because gϕ is a bounded function. By continuity of x �→ Xx
τx

and of gϕ, we have

lim sup
m→+∞

um(xm)ϕ(x) = lim sup
m→+∞

um(xm)ϕ(xm) ≤ g(x)ϕ(x).

Finally, on {g < ∞}, we have

lim sup
x′→x

x′∈D, x∈∂D

u∗(x′) ≤ g(x).

With inequality (35), this achieves the proof of the lemma. �

5.2. Some regularity results on u. We want to prove now that u is continuous
on D. Here it seems to be necessary to assume the condition (E).

First we prove that, under stronger assumptions on b and σ , u belongs to
C0(D;R+) ∩ C2(D;R+).

PROPOSITION 11. Recall that b and σ satisfy always (L), (B), (E) and
∂D ∈ C3. We assume that b and σ belong to C1(D). Then u is in C2(D;R+).

In order to prove this result, we need the following lemma:

LEMMA 6. The assumptions of Proposition 11 hold. We consider a contin-
uous function h : ∂D → R. Suppose that (Y,Z) is the solution (in the sense of
Definition 1) of the BSDE

Yt = h(Xτ ) −
∫ τ

t∧τ
Yr |Yr |q dr −

∫ τ

t∧τ
Zr dBr .
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Then there exists a function v :D → R
+ of class C0(D) ∩ C2(D) such that

∀t ≥ 0 Yt = v(Xt∧τ ) and Zt = ∇v(Xt∧τ )σ (Xt∧τ )1t<τ .

Moreover, v is solution of the PDE (6) with boundary condition h.

PROOF. Since h is continuous and since b and σ belongs to C1(D), from
the Theorem 15.18 in [9], there exists a unique solution v ∈ C0(D) ∩ C2(D) of
the PDE (6) (see also [15]). We prove that, for all t ≥ 0, Yt = v(Xt∧τ ) and Zt =
∇v(Xt∧τ )σ (Xt∧τ )1t<τ . We want to apply the Itô formula to the process v(X).
But we just have v ∈ C2(D) and we do not know if we can define a function
ṽ ∈ C2(Rd) such that ṽ = v on D.

We will use some arguments of the proof of Theorem 15.18 in [9]. We define
a sequence {hm} of functions such that {hm} approximates h uniformly on ∂D

and hm ∈ C2,γ (D). From Theorem 15.10 in [9], there exists a function vm such
that vm solves the Dirichlet problem (6) with condition hm on the boundary and
vm ∈ C2,γ (D). We apply the Itô formula to the process vm(X): for all 0 ≤ t ≤ T ,

vm(Xt∧τ ) = vm(XT ∧τ ) −
∫ T ∧τ

t∧τ
(Lvm)(Xr) dr

−
∫ T ∧τ

t∧τ
∇vm(Xr)σ (Xr) dBr

(37)

= vm(XT ∧τ ) −
∫ T ∧τ

t∧τ
vm(Xr)|vm(Xr)|q dr

−
∫ T ∧τ

t∧τ
∇vm(Xr)σ (Xr)1r<τ dBr .

We denote by (Ym,Zm) the solution of the BSDE (3) with terminal data hm(Xτ ) ∈
L∞(�). Uniqueness of solution of this BSDE implies

∀t ≥ 0 Ym
t = vm(Xt∧τ ) and Zm

t = ∇vm(Xt)σ (Xt)1t<τ .

From (C2) and Remark 4, we know that there exists a constant C such that, for all
m ∈ N,

0 ≤ Ym
0 = vm(x) ≤ E

[
sup

t∈[0,τ ]
eβt |Ym

t |2
]

≤ CE[eβτ |hm(Xτ )|2].

Since hm converges uniformly to h on ∂D, hm is a bounded sequence in L∞(∂D).
Therefore, the sequence {vm} is uniformly bounded on D.

From Theorems 6.1, 13.1 and 15.3 in [9], the sequence {vm} converges uni-
formly on compact subsets of D, together with its first and second derivatives, to
the function v.

Since {vm} is uniformly bounded on D and converges to v, for all 0 ≤ t ≤ T ,

lim
m→+∞Ym

t = lim
m→+∞vm(Xt∧τ ) = v(Xt∧τ ),(38)
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lim
m→+∞

∫ T ∧τ

t∧τ
vm(Xr)|vm(Xr)|q dr =

∫ T ∧τ

t∧τ
v(Xr)|v(Xr)|q dr.

Using Itô’s formula and the Burkholder–Davis–Gundy inequality, we obtain, for a
constant c independent of m,

E

[
sup

0≤t≤τ

|Ym
t − Yt |2 +

∫ τ

0
‖Zm

t − Zt‖2 dt

]
≤ cE|hm(Xτ ) − h(Xτ )|2.

Therefore, with (38), we conclude that a.s. Yt = v(Xt∧τ ) for all t ≥ 0. Moreover,
there exists a constant K such that

E

∫ τ

0
‖∇vm(Xr)σ (Xr)1r<τ‖2 dr = E

∫ τ

0
‖Zm

r ‖2 dr ≤ K < +∞;
and with (37) and (38), for all 0 ≤ t ≤ T ,

lim
m→+∞

∫ T ∧τ

t∧τ
∇vm(Xr)σ (Xr)1r≤τ dBr =

∫ T ∧τ

t∧τ
Zr dBr .

Let K be a compact subset of D. Since the first derivatives of vm converge uni-
formly on K , from the dominated convergence theorem, we deduce

lim
m→+∞

∫ T ∧τ

t∧τ

∥∥(∇vm(Xr)σ (Xr) − ∇v(Xr)σ (Xr)
)
1r<τ 1K(Xr)

∥∥2
dr = 0.

Therefore, for all compact subset K of D, P-a.s.,

Zt1K(Xt) = ∇v(Xt)σ (Xt)1t<τ 1K(Xt).

If {Km} is an increasing sequence of compact subsets of D such that
⋃

m Km = D,
for all m,

E

∫ τ

0
‖∇v(Xt)σ (Xt)1t<τ 1Km(Xt)‖2 dt ≤ E

∫ τ

0
‖Zt‖2 dt < +∞

and since τ > t implies Xt ∈ D, with the monotone convergence theorem, we
deduce

E

∫ τ

0
‖∇v(Xt)σ (Xt)1t<τ‖2 dt < ∞.

Then

E

∫ τ

0
‖∇v(Xt)σ (Xt)1t<τ − Zt‖2 dt = 0.

This achieves the proof of the proposition. �

From Lemma 6, we can deduce that un belongs to C0(D) ∩ C2(D) if σ and b

belong to C1(D).

PROOF OF PROPOSITION 11. We fix η > 0 and we consider the set Dη =
D \ {x ∈ D, ρ(x) ≤ η} for all η > 0. From Lemma 6, un ∈ C2(D) and satisfies
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−Lun + u
1+q
n = 0 on D. And on Dη, un is bounded by C/η2/q . Therefore, from

Theorem 15.5 in [9], we obtain that ∇un is bounded on D2η. The sequence is
bounded in C1(D2η), thus the limit u is continuous on D2η, that is, u is continuous
on D. Moreover, we already know that u is continuous on the boundary. Therefore,
we deduce that u belongs to C0(D,R+).

Now if we consider the PDE,

−Lv − v|v|q = 0 on Dη,

v = u on ∂Dη,

from Theorem 15.18 in [9], the equation has a regular solution v ∈ C0(Dη) ∩
C2(Dη). But this solution is also a continuous viscosity solution. Since u is now a
continuous viscosity solution of the same PDE, from the comparison result in [5],
we deduce that v = u, that is, u ∈ C2(Dη). Hence, u belongs to C2(D). �

Now we want to prove that u is continuous on D without the regularity condi-
tions on b and σ of the Proposition 11. We just assume that (M), (L), (E) and (B)
hold.

PROPOSITION 12. The viscosity solution u is continuous on D and is locally
Hölder continuous on D.

PROOF. We will show that for all open sets D′ ⊂ D such that D′ ⊂ D, there
exists 0 < α < 1 such that the sequence of functions un is bounded in the space
Cα(D′). Cα(D′) is the set of functions v such that

‖v‖α = sup
{ |v(x) − v(y)|

|x − y|α , (x, y) ∈ D′
}

< +∞.

Since un converges to u, we deduce that u belongs to Cα(D′) and thus is continu-
ous on D.

In order to prove that un is a bounded sequence in Cα(D′), we will construct a
sequence vm which will belong to Cα(D′) and such that there exists a constant K

such that, for all m ∈ N, ‖vm‖α ≤ K . Let bm and σm be two sequences of functions
such that:

1. bm and σm belong to C1(D) and bm and σm are bounded in L∞(D);
2. bm (resp. σm) converges to b (resp. σ ), uniformly on D;
3. σm satisfies the condition (E).

Let vm be the unique solution in C0(D) ∩ C2(D) (see Lemma 6 or [9]) of the
equation

−Lmvm + vm|vm|q = 0 on D,
(6)

vm = g ∧ n on ∂D,
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where Lm is the operator:

∀x ∈ R
d Lmϕ(x) = 1

2 Trace(σmσ ∗
m(x)D2ϕ(x)) + bm(x)∇ϕ(x).

For x ∈ D, let Xx,m be the solution of the SDE

∀t ≥ 0 X
x,m
t = x +

∫ t

0
bm(Xx,m

r ) dr +
∫ t

0
σm(Xx,m

r ) dBr,

τm is the first exit time from D of the diffusion Xx,m, (Y x,n,m,Zx,n,m) is the
solution of the BSDE:

Y
x,n,m
t = (g ∧ n)(Xx,m

τm
) +

∫ τm

t
Y x,n,m

r |Yx,n,m
r |q dr −

∫ τm

t
Zx,n,m dBr.

From classical results on the SDE, Xx,m converges to Xx solution of the
SDE (4) and the process (Y x,n,m,Zx,n,m) converges to (Y x,n,Zx,n) solution of
the BSDE (33) (see Proposition 4.4 in [6]).

From Lemma 6, we have

vm(x) = Y
x,n,m
0 and un(x) = Y

x,n
0 .

Therefore, vm converges to un. Moreover, we know that vm is a bounded sequence
in L∞(D).

Let D′ be a open subset of D such that D′ ⊂ D. We apply Theorem 8.24 in [9].
The function vm is the solution of

Lvm = vm|vm|q = g ∈ L∞.

Therefore, there exists a real 0 < α < 1 and a constant K such that

‖vm‖α ≤ K‖vm‖L∞ .

The constants depend on the ellipticity constant of σm, on the bound on bm and
σm in L∞ and on the distance between D′ and ∂D. We deduce that un belongs to
Cα(D′) and the norm ‖un‖α is bounded w.r.t. n ∈ N.

Finally, u belongs to Cα(D′). �

5.3. Minimal viscosity solution. We prove the following:

THEOREM 9. If v is another nonnegative viscosity solution of the PDE (6) (in
the sense of Definition 4), and if v∗ ≥ g on ∂D, then u ≤ v on D.

PROOF. We show that for all n ∈ N
∗, un ≤ v∗. The proof is the same as the

proof of Theorem 3.3 in [5]. We fix n, we assume that there exists z ∈ D such
that δ = un(z) − v∗(z) > 0 and we will find a contradiction. The main tool is
Theorem 3.2 in [5]. �



1114 A. POPIER

6. Other generators f . We have considered the generator f (y) = −y|y|q .
The main properties of this function are it is nonincreasing and allows the explo-
sion at time τ [see (5) for the definition of this stopping time]. But we can also
consider more general generators. Let f : R → R be a nonincreasing function of
class C1, such that there exists q > 0, κ > 0 s.t.

∀y ≥ 0 f (y) ≤ −κy1+q.(9)

The BSDE (10) has a unique solution if ξ satisfies the condition (H6). From Re-
mark 4, if ξ ∈ L∞, then (H6) holds. We also assume that f (0) = 0; thus, if ξ ≥ 0,
then Yt ≥ 0 for all t ≥ 0.

First of all, the conclusion of Theorem 6 holds: there exists a constant C such
that for every solution (Y,Z) of the BSDE (10),

∀t ≥ 0 |Yt | ≤ C

(ρ(Xt∧τ ))2/q
.

Indeed, with the notation of the proof of Theorem 6, equality (13) becomes

�(Xt∧τ ) = �(XT ∧τ ) +
∫ T ∧τ

t∧τ
f (�(Xr)) dr

−
∫ T ∧τ

t∧τ
∇�(Xr)σ (Xr) dBr

−
∫ T ∧τ

t∧τ

[∇�(Xr)b(Xr)

+1
2 Trace(σσ ∗(Xr)D

2�(Xr)) + f (�(Xr))
]
dr.

With assumption (9), equation (14) becomes

−(∇�)b − 1

2
Trace(σσ ∗D2�) − f (�)

≥ Cθ−2/q−2
[
κCq + 2θ

q
(∇θ)b

− 1

q

(
2

q
+ 1

)
‖σ∇θ‖2 + θ

q
Trace(σσ ∗D2θ)

]
;

and we can choose C such that the right-hand side is nonnegative. The rest of the
proof remains the same.

Now we suppose that ξ is a nonnegative, Fτ -measurable random variable such
that P(ξ = +∞) > 0. As in Section 2, we construct a process (Y,Z) satisfying the
conditions (D1) and (D2) of Definition 2: (Y,Z) is the limit of the sequence of
solutions (Y n,Zn) of the BSDE (10) with terminal condition ξ ∧ n.

For the continuity of Y [condition (D3) of Definition 2], Section 3.2 remains
unchanged, if we have already proved that the limit of Yt∧τ when t goes to +∞
exists.
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We define the following function F on R
∗+:

F(y) = −
∫ +∞
y

1

f (x)
dx.

With (9) and since f is of class C1 and nonincreasing, F is a positive, decreas-
ing and convex function such that limy→0 F(y) = +∞, and limy→+∞ F(y) = 0.
Moreover, for ε > 0, Fε is defined by Fε(y) = F(y + ε).

Now if α is a constant such that ξ ≥ α > 0, for all n ∈ N, all t ≥ 0, Yn
t > 0 a.s.

We can apply the Itô formula to Fε(Y
n): for all 0 ≤ t ≤ T ,

Fε(Y
n
t∧τ ) = E

Ft Fε(Y
n
T ∧τ ) + E

Ft

∫ T ∧τ

t∧τ
F ′

ε(Y
n
r )f (Y n

r ) dr

(39)

− 1
2E

Ft

∫ T ∧τ

t∧τ
F ′′

ε (Y n
r )‖Zn

r ‖2 dr.

Now F ′′
ε ≥ 0 and 0 ≤ F ′

ε(y)f (y) = f (y)
f (y+ε)

≤ 1. Let T go to +∞:

Fε(Y
n
t∧τ ) ≤ E

Ft Fε(ξ ∧ n) + E
Ft (τ − t ∧ τ) ≤ Fε(α) + E

Ft (τ − t ∧ τ)

≤ F(α) + E
Ft (τ − t ∧ τ).

Recall that from (C2), τ ∈ L1(�). Hence, for all t ≥ 0, supn F (Y n
t ) belongs to L1.

With (39) and the same ideas as in the proof of Proposition 6, we deduce that, for
t ≥ 0,

F(Yt∧τ ) = E
Ft

(
F(ξ) + τ − t ∧ τ

) − �t,

where � is a nonnegative supermartingale.
Finally, if f is a nonincreasing and C1 function with f (0) = 0, such that

(9) holds, and if ξ is a nonnegative, Fτ -measurable random variable such that
P(ξ = +∞) > 0, then the BSDE (10) has a minimal solution (in the sense of Def-
inition 2). And the associated PDE (11) has also a minimal viscosity solution.

The only thing which we cannot describe just with inequality (9), is the behavior
of Y on the set {ξ = +∞} (see Proposition 1).
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enne Pardoux for the attention they paid to this article.
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