OPTIMAL SWITCHING AND REFLECTED BSDE.

B. Djehiche ${ }^{1} \quad$ S. Hamadène ${ }^{2} \quad$ A. Popier ${ }^{2}$
${ }^{1}$ Department of Mathematics, The Royal Institute of Technology, Stockholm, Sweden.
${ }^{2}$ Université du Maine, Le Mans, France

Université du Maine;
November 8, 2007.

OUTLINE

(1) Introduction

- Economical motivations
- Mathematical settings
- Snell envelope
(2) Optimal profit and strategy
- Approximation
- Optimal profit
- Optimal strategy
(3) Reflected BSDE
- Definition for one and two barriers
- Application for $M=2$ (Hamadène \& Jeanblanc)
- When $M>2$

OUTLINE

(1) Introduction

- Economical motivations
- Mathematical settings
- Snell envelope
(2) OPTIMAL PROFIT AND STRATEGY
- Approximation
- Optimal profit
- Optimal strategy
(3) Reflected BSDE
- Definition for one and two barriers
- Application for $M=2$ (Hamadène \& Jeanblanc)
- When $M>2$

EXAMPLE: ELECTRICITY PRODUCTION.

- Electricity price (spot, day-ahead, etc. price) depends on many external factors: consumer demand, weather, oil prices and so on.
- Barlow (02) (inspired by Föllmer \& Schweizer (93)): non-linear Ornstein-Uhlenbeck process

$$
P_{t}= \begin{cases}f_{\alpha}\left(S_{t}\right), & \text { if } 1+\alpha S_{t}>\varepsilon_{0}, \\ \varepsilon_{0}^{1 / \alpha}, & \text { if } 1+\alpha S_{t} \leq \varepsilon_{0},\end{cases}
$$

where $d S_{t}=-\lambda\left(S_{t}-a\right) d t+\sigma d W_{t}$ and $f_{\alpha}(x)=(1+\alpha x)^{1 / \alpha}$.

- Electricity can not be stored and is produced only when its profitability is satisfactory. Otherwise the power station is closed up to time when the profitability is coming back.

EXAMPLE: ELECTRICITY PRODUCTION.

- A power station has several turbines and for each turbine, there are several operating modes besides running at full capacity and keeping it off-line.
- Gas turbine: to run the plant, you must buy natural gas, convert it into electricity and sell the output on the market. When
- P the electricity price,
- G the gas price process,
- K_{j} the operating costs of the mode j,
- $H R_{j}$ the heat rate,
the rate of payoff is given for example by

$$
P_{t}-H R_{j} \times G_{t}-K_{j}
$$

EXAMPLE: ELECTRICITY PRODUCTION.

- Switching from a regime to another is not free and generated switching costs.

Aim: find a sequence of stopping times where one should make startup/shutdown decisions and a sequence of successive modes, in order to maximize the profitability of the station.

REVERSIBLE INVESTMENT PROBLEM.

Problem of real options type: investment decisions

- pioneering article: Brennan \& Schwarzt (85),
- Dixit \& Pindyck: Investment under uncertainty (94). In particular chapter 7.
Such problems are met in
- management of oil tankers, oil fields,....
- management of raw material mines like copper, gold, steel,...
- dividend policy,
- investment strategy.

REVERSIBLE INVESTMENT PROBLEM.

Problem of real options type: investment decisions

- pioneering article: Brennan \& Schwarzt (85),
- Dixit \& Pindyck: Investment under uncertainty (94).
- Hamadène and Jeanblanc (04): only two regimes problem called starting and stopping.
- Carmona and Ludkovski (06): several regimes; no optimal strategy.
- Hu and Tang (07): RBSDE and optimal switching.

SETTING OF THE PROBLEM.

Throughout this talk:

- T is a positive real number;
- $(\Omega, \mathcal{F}, \mathbb{P})$ is a fixed probability space;
- $B=\left(B_{t}\right)_{t \leq T}$: d-dimensional Brownian motion on $(\Omega, \mathcal{F}, \mathbb{P})$;
- $\mathbb{F}=\left(\mathcal{F}_{t}\right)_{t \leq T}$: completed filtration of the Brownian motion;

Notations:

- $\mathcal{M}^{2,1}: \mathbb{F}$-progressively measurable and \mathbb{R}-valued processes which belong to $L^{2}(\Omega \times[0, T], d \mathbb{P} \otimes d t)$;
- $\mathcal{S}^{2,1}: \mathbb{F}$-progressively measurable, continuous, \mathbb{R}-valued processes $w=\left(w_{t}\right)_{t \leq T}$ such that \mathbb{E} sup $\left|w_{t}\right|^{2}<\infty$; $t \leq T$

SETTING OF THE PROBLEM.

The number of regimes is equal to $M \geq 2$. Changing an output level is costly, requiring various overhead costs.

DEFINITION

For $(i, j) \in\{1, \ldots, M\}^{2}, C_{i, j}: \Omega \times[0, T] \rightarrow \mathbb{R} \in \mathcal{S}^{2,1}:$ the switching costs from state i to state j.

Assumptions:

- \mathbb{P}-a.s. $C_{i, j}$ is continuous,
- there exists a constant α s.t. for every ω and t, $C_{i, j}(\omega, t) \geq \alpha>0$.

Economical motivations Mathematical settings
Snell envelope

SETTING OF THE PROBLEM.

DEFINITION

Rate of payoff in regime $i \in\{1, \ldots, M\}$

$$
\psi^{i}: \Omega \times[0, T] \rightarrow \mathbb{R} \in \mathcal{M}^{2,1}
$$

In Carmona \& Ludkovski, $d X_{t}=b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d B_{t}$, $\psi^{i}=\psi^{i}\left(t, X_{t}\right),\left|\psi^{i}(t, x)\right| \leq C(1+|x|), C_{i, j}=C_{i, j}\left(t, X_{t}\right)$.

In Hu \& Tang, $C_{i, j}$ are constant, $\psi^{i}=\psi^{i}\left(t, X_{t}\right)$, but X depends also on the strategy.

We ignore time delay effect of having to gradually "ramp-up" and "ramp-down" the turbines.

STRATEGIES AND CONTROL PROBLEM

Operating strategies: double sequences $u=(\delta, \xi)$:

- $\delta=\left(\tau_{k}\right)_{k \geq 1}$ where $0 \leq \tau_{k-1} \leq \tau_{k} \leq T$: stopping times (switching times),
- $\xi=\left(\xi_{k}\right)_{k \geq 1}$ where ξ_{k} taking values in $\{1, \ldots, M\}$: successive modes chosen by the strategy u.

DEFINITION (ADMISSIBLE)

A strategy is called admissible if \mathbb{P}-a.s. $\lim _{k \rightarrow+\infty} \tau_{k}=T$. The set of admissible strategies is denoted by $\mathcal{U}(0)$.

Thus u is an \mathbb{F}-adapted rcll piecewise-constant process where u_{s} denotes the operating mode at time s.

STRATEGIES AND CONTROL PROBLEM

Operating strategies: double sequences $u=(\delta, \xi)$:

- $\delta=\left(\tau_{k}\right)_{k \geq 1}$ where $0 \leq \tau_{k-1} \leq \tau_{k} \leq T$: stopping times (switching times),
- $\xi=\left(\xi_{k}\right)_{k \geq 1}$ where ξ_{k} taking values in $\{1, \ldots, M\}$: successive modes chosen by the strategy u.

DEFINITION (GLOBAL PROFIT)

Knowing that $u_{0}=i$, the average global profit for such a control u is

$$
J(i, u)=\mathbb{E}\left[\int_{0}^{T} \psi_{s}^{u_{s}} d s-\sum_{\tau_{k}<T} C_{u_{\tau_{k}}, u_{\tau_{k}}}\left(\tau_{k}\right)\right]
$$

StRATEGIES AND CONTROL PROBLEM

Aim: find an optimal strategy, i.e. find u^{*} such that for every admissible strategy $u \in \mathcal{U}(0)$:

$$
J^{*}(i)=J\left(i, u^{*}\right) \geq J(i, u)
$$

DEFINITION (FINITE STRATEGY)

The strategy u is finite if during the time interval $[0, T]$ it allows to the manager to make only a finite number of decisions, i.e.
$\mathbb{P}\left(\tau_{n}<T, \forall n \geq 1\right)=0$.

PROPOSTION

The supremum over admissible strategies and finite strategies are the same.

The Snell Envelope.

DEFINITION

For any stopping time $\tau \in[0, T], \mathcal{T}_{\tau}$: set of all stopping times θ s.t. a.s. $\tau \leq \theta \leq T$.

Let $X=\left(X_{t}\right)_{t \leq T}$ be an \mathbb{F}-adapted \mathbb{R}-valued rcll process which belongs to the class (D), i.e. the set of random variables $\left\{X_{\tau}, \tau \in \mathcal{T}_{0}\right\}$ is uniformly integrable.

PROPOSITION AND DEFINITION

There exists a unique \mathbb{F}-adapted rcll \mathbb{R}-valued process $Z=\left(Z_{t}\right)_{t \leq T}$, called the Snell envelope of U, such that Z is the smallest super-martingale which dominates X.

Economical motivations

The Snell envelope.

Z can be expressed as: for any \mathbb{F}-stopping time γ

$$
Z_{\gamma}=\underset{\tau \in \mathcal{T}_{\gamma}}{\operatorname{ess} \sup } \mathbb{E}\left[X_{\tau} \mid \mathcal{F}_{\gamma}\right],\left(\text { and } Z_{T}=U_{T}\right)
$$

Some properties of the Snell envelope:

- there exist $M=\left(M_{t}\right)_{t \leq T}, A=\left(A_{t}\right)_{t \leq T}$ and $B=\left(B_{t}\right)_{t \leq T}$ with M and A continuous, M martingale, A and B non-decreasing, s.t.

$$
\forall t \leq T, Z_{t}=M_{t}-A_{t}-B_{t}
$$

Economical motivations

The Snell envelope.

Z can be expressed as: for any \mathbb{F}-stopping time γ

$$
Z_{\gamma}=\underset{\tau \in \mathcal{T}_{\gamma}}{\operatorname{ess} \sup } \mathbb{E}\left[X_{\tau} \mid \mathcal{F}_{\gamma}\right],\left(\text { and } Z_{T}=U_{T}\right)
$$

Some properties of the Snell envelope:

- there exist $M=\left(M_{t}\right)_{t \leq T}, A=\left(A_{t}\right)_{t \leq T}$ and $B=\left(B_{t}\right)_{t \leq T}$ s.t.

$$
\forall t \leq T, Z_{t}=M_{t}-A_{t}-B_{t}
$$

- $\left\{\Delta_{t} B=Z_{t^{-}}-Z_{t}>0\right\} \subset\left\{\Delta_{t} X<0\right\} \cap\left\{Z_{t^{-}}=X_{t^{-}}\right\}$.

Economical motivations

The Snell envelope.

Z can be expressed as: for any \mathbb{F}-stopping time γ

$$
Z_{\gamma}=\underset{\tau \in \mathcal{T}_{\gamma}}{\operatorname{ess} \sup } \mathbb{E}\left[X_{\tau} \mid \mathcal{F}_{\gamma}\right],\left(\text { and } Z_{T}=U_{T}\right)
$$

Some properties of the Snell envelope:

- there exist $M=\left(M_{t}\right)_{t \leq T}, A=\left(A_{t}\right)_{t \leq T}$ and $B=\left(B_{t}\right)_{t \leq T}$ s.t.

$$
\forall t \leq T, Z_{t}=M_{t}-A_{t}-B_{t}
$$

- $\left\{\Delta_{t} B=Z_{t^{-}}-Z_{t}>0\right\} \subset\left\{\Delta_{t} X<0\right\} \cap\left\{Z_{t^{-}}=X_{t^{-}}\right\}$.
- If $B \equiv 0$, then for any \mathbb{F}-stopping time γ,

$$
\begin{gathered}
\tau_{\gamma}^{*}=\inf \left\{\gamma \leq t \leq T, Z_{t}=X_{t}\right\} \wedge T \text { is optimal after } \gamma, \text { i.e. } \\
Z_{\gamma}=\mathbb{E}\left[X_{\tau^{*}} \mid \mathcal{F}_{\gamma}\right]=\underset{\tau \in \mathcal{T}_{\gamma}}{\operatorname{ess} \sup } \mathbb{E}\left[X_{\tau} \mid \mathcal{F}_{\gamma}\right] .
\end{gathered}
$$

Economical motivations

Property of the Snell envelope.

Let X^{n} be a sequence of rcll processes s.t. \mathbb{P}-a.s.: $\forall t \in[0, T], X_{t}^{n} \leq X_{t}^{n+1}$. Define X by $X_{t}=\lim _{n \rightarrow+\infty} X_{t}^{n}$. We assume that X belongs to the class (D).

- Z^{n} the Snell envelope of X^{n} :

$$
\mathbb{P} \text {-a.s., } \forall t \in[0, T], Z_{t}^{n} \leq Z_{t}^{n+1}
$$

- if Z is the increasing limit of Z^{n}, then Z is the Snell envelope of X, i.e.

$$
\forall t \in[0, T], Z_{t}=\underset{\tau \in \mathcal{T}_{t}}{\operatorname{ess} \sup } \mathbb{E}\left[X_{\tau} \mid \mathcal{F}_{t}\right]
$$

OUTLINE

(1) Introduction

- Economical motivations
- Mathematical settings
- Snell envelope
(2) Optimal profit and strategy
- Approximation
- Optimal profit
- Optimal strategy
(3) Reflected BSDE
- Definition for one and two barriers
- Application for $M=2$ (Hamadène \& Jeanblanc)
- When M > 2

OPTIMAL PROFIT.

THEOREM

There exist M continuous processes $Y^{i}=\left(Y_{t}^{i}\right)_{t \leq T}$, $i=1, \ldots, M$, such that for all $i=1, \ldots, M$ and for every $t \leq T$:

$$
Y_{t}^{i}=\underset{\tau \in \mathcal{T}_{t}}{\operatorname{ess} \sup } \mathbb{E}\left[\int_{t}^{\tau} \psi_{s}^{i} d s+\max _{k \neq i}\left(Y_{\tau}^{k}-C_{i, k}\right) \mathbf{1}_{\tau<T} \mid \mathcal{F}_{t}\right] .
$$

Y_{t}^{i} will be the optimal profit, knowing that at time t the power station is in regime i. In particular, $Y_{0}^{i}=J^{*}(i)$. Moreover Y^{i} is a continuous Snell envelope, therefore we will be able to find an optimal strategy.

DEFINITION OF A SEQUENCE OF PROCESSES $\left(Y^{i, n}\right)_{n \in \mathbb{N}}$.

First consider a restricted situation: fixed upper bound on the total number of switches allowed.

$$
\mathcal{U}_{n}(t)=\left\{(\xi, \delta) \in \mathcal{U}(t), \tau_{l}=T \text { for } I \geq n+1\right\}
$$

the set of all admissible strategies on $[t, T]$, with at most n switches.

DEFINITION

$$
Y_{t}^{i, n}=\underset{u \in u_{n}(t), u_{t}=i}{\operatorname{ess} \sup } \mathbb{E}\left[\int_{t}^{T} \psi_{s}^{u_{s}} d s-\sum_{\mid \geq 1, t \leq \tau_{1} \leq T} C_{u_{\tau_{l}}-u_{\tau_{T}}} \mid \mathcal{F}_{t}\right] .
$$

$Y^{i, n}$ is the value function when we optimize over $\mathcal{U}_{n}(t)$.

Approximation
Optimal profit
Optimal strategy

PROPERTIES OF THE PROCESSES $Y^{i, n}$.

Proposition

The processes $Y^{i, n}$ are continuous, $Y_{T}^{i, n}=0$, there exists a constant C s.t.

$$
\mathbb{E} \sup _{t \in[0, T]}\left|Y_{t}^{i, n}\right|^{2} \leq C \max _{k \in\{1, \ldots, M\}} \mathbb{E} \int_{0}^{T}\left|\psi_{s}^{k}\right|^{2} d s
$$

and
$Y_{t}^{i, n+1}=\underset{\tau \in \mathcal{T}_{t}}{\operatorname{ess} \sup } \mathbb{E}\left[\int_{t}^{\tau} \psi_{s}^{i} d s+\max _{k \neq i}\left(Y_{\tau}^{k, n}-C_{i, k}\right) \mathbf{1}_{\tau<T} \mid \mathcal{F}_{t}\right]$.

PROOF OF THE a priori estimate.

First remark: $Y_{t}^{i, 0}=\mathbb{E}\left[\int_{t}^{T} \psi_{s}^{i} d s \mid \mathcal{F}_{t}\right], \forall i \in\{1, \ldots, M\}$. Hence

$$
\mathbb{E} \sup _{t \in[0, T]}\left|Y_{t}^{i, 0}\right|^{2} \leq C \mathbb{E} \int_{0}^{T}\left|\psi_{s}^{i}\right|^{2} d s
$$

Approximation

PROOF OF THE a priori estimate.

First remark: $Y_{t}^{i, 0}=\mathbb{E}\left[\int_{t}^{T} \psi_{s}^{i} d s \mid \mathcal{F}_{t}\right], \forall i \in\{1, \ldots, M\}$. For $n \geq 1$,

$$
Y_{t}^{i, n}=\operatorname{ess}_{u \in \mathcal{u}_{n}(t), u_{t}=i} \mathbb{E}\left[\int_{t}^{T} \psi_{s}^{u_{s}} d s-\sum_{\mid \geq 1, t \leq \tau_{\tau} \leq T} C\left(u_{\tau_{l}^{-}}, u_{\tau_{l}}\right) \mid \mathcal{F}_{t}\right]
$$

$$
\geq \mathbb{E}\left[\int_{t}^{T} \psi_{s}^{i} d s \mid \mathcal{F}_{t}\right] \text { (no switching) and }
$$

$$
\leq \underset{u \in \mathcal{U}_{n}(t), u_{t}=i}{\text { ess sup }} \mathbb{E}\left[\int_{t}^{T} \psi_{s}^{u_{s}} d s \mid \mathcal{F}_{t}\right]
$$

$$
\leq \max _{k \in\{1, \ldots, M\}} \mathbb{E}\left[\int_{t}^{T}\left|\psi_{s}^{k} d s\right| \mid \mathcal{F}_{t}\right]
$$

IDEA OF THE PROOF.

For $i \in\{1, \ldots, M\}$, for every $t \in[0, T]$:

$$
\begin{aligned}
& Y_{t}^{i, n}=\underset{u \in \mathcal{u}_{n}(t), u_{t}=i}{\operatorname{ess} \sup }\left[\int_{t}^{T} \psi_{s}^{u_{s}} d s-\sum_{1 \geq 1, t \leq \tau_{\tau} \leq T} C\left(u_{\tau_{l}^{-}}, u_{\tau_{l}}\right) \mid \mathcal{F}_{t}\right] \\
& =\underset{u \in u_{n}(t), u_{t}=i}{\operatorname{ess} \sup } \mathbb{E}\left\{\int_{t}^{\tau_{1}} \psi_{s}^{j} d s+\left[\left(\int_{\tau_{1}}^{T} \psi_{s}^{u_{s}} d s\right.\right.\right. \\
& \left.\left.\left.-\sum_{1 \geq 2, \tau_{1} \leq \tau_{1} \leq T} C\left(u_{\tau_{l}}, u_{\tau_{1}}\right)\right)-C\left(i, u_{\tau_{1}}\right)\right] \mathbf{1}_{\tau_{1}<T} \mid \mathcal{F}_{t}\right\} \\
& \leq \text { ess sup } \mathbb{E}
\end{aligned}
$$

IDEA OF THE PROOF.

For $i \in\{1, \ldots, M\}$, for every $t \in[0, T]$:

$$
\begin{aligned}
& Y_{t}^{i, n}=\underset{u \in \mathcal{U}_{n}(t), u_{t}=i}{\operatorname{ess} \sup } \mathbb{E}\left[\int_{t}^{T} \psi_{s}^{u_{s}} d s-\sum_{l \geq 1, t \leq \tau_{1} \leq T} C\left(u_{\tau_{1}}, u_{\tau_{1}}\right) \mid \mathcal{F}_{t}\right] \\
&=\underset{u \in \mathcal{U}_{n}(t), u_{t}=i}{\operatorname{ess} \sup } \mathbb{E}\left\{\int_{t}^{\tau_{1}} \psi_{s}^{i} d s+\left[\left(\int_{\tau_{1}}^{T} \psi_{s}^{u_{s}} d s\right.\right.\right. \\
&\left.\left.\left.-\sum_{1 \geq 2, \tau_{1} \leq \tau_{1} \leq T} C\left(u_{\tau_{l}}, u_{\tau_{1}}\right)\right)-C\left(i, u_{\tau_{1}}\right)\right] \mathbf{1}_{\tau_{1}<T} \mid \mathcal{F}_{t}\right\} \\
& \leq \underset{\tau_{1} \geq t}{\operatorname{ess} \sup } \mathbb{E}\left[\int_{t}^{\tau_{1}} \psi_{s}^{i} d s+\underset{k \neq i}{\max }\left(Y_{\tau_{1}}^{k, n-1}-C_{i, k}\right) \mathbf{1}_{\tau_{1}<T} \mid \mathcal{F}_{t}\right] .
\end{aligned}
$$

IDEA OF THE PROOF.

Now

$$
\overline{Y_{t}^{i, n}}=\underset{\tau \geq t}{\operatorname{ess} \sup } \mathbb{E}\left[\int_{t}^{\tau} \psi_{s}^{i} d s+\max _{k \neq i}\left(Y_{\tau}^{k, n-1}-C_{i, k}\right) \mathbf{1}_{\tau<T} \mid \mathcal{F}_{t}\right] .
$$

Thus $Y^{i, n} \leq \overline{Y^{i, n}}$ and $\overline{Y^{i, n}}$ is the Snell envelope of the process

$$
Z_{r}^{i}=\int_{t}^{r} \psi_{s}^{i} d s+\max _{k \neq i}\left(Y_{r}^{k, n-1}-C_{i, k}\right) \mathbf{1}_{r<T} .
$$

Z^{i} is continuous, except maybe at time T. But $Z_{T}^{i}-Z_{T^{-}}^{i}=\min _{k \neq i} C_{i, k}>0$. Since the jump is non negative, $\overline{Y^{i, n}}$ is continuous, and the stopping time $\tau^{*}=\inf _{s \geq t}\left\{\bar{Y}^{i, n_{s}}=Z_{s}^{i}\right\}$ is optimal.

IDEA OF THE PROOF.

Therefore

$$
\overline{Y_{\tau^{*}}^{i, n}}=\mathbb{E}\left[\int_{t}^{\tau^{*}} \psi_{s}^{i} d s+\max _{k \neq i}\left(Y_{\tau^{*}}^{k, n-1}-C_{i, k}\right) \mathbf{1}_{\tau^{*}<T} \mid \mathcal{F}_{t}\right] .
$$

Choosing ξ s.t. $\xi=\underset{k \neq i}{\operatorname{argmax}}\left(Y_{\tau^{*}}^{k, n-1}-C_{i, k}\right)$, we have

$$
\overline{Y_{\tau^{*}}^{i, n}}=\mathbb{E}\left[\int_{t}^{\tau^{*}} \psi_{s}^{i} d s+\left(Y_{\tau^{*}}^{\xi, n-1}-C_{i, \xi}\right) \mathbf{1}_{\tau^{*}<T} \mid \mathcal{F}_{t}\right] .
$$

Finally recursively $\overline{Y^{i, n}}=Y^{i, n}$.
Hence $Y^{i, n}$ is continuous and $Y_{T}^{i, n}=0$.

CONSTRUCTION OF Y^{i}.

Since $\mathcal{U}_{n}(t) \subset \mathcal{U}_{n+1}(t)$, \mathbb{P}-a.s. for every $t \in[0, T], Y_{t}^{i, n} \leq Y_{t}^{i, n+1}$. Thus

$$
Y_{t}^{i}=\lim _{n \rightarrow+\infty} Y_{t}^{i, n} .
$$

Recall that for every t

$$
Y_{t}^{i, n+1}=\underset{\tau \in \mathcal{T}_{t}}{\operatorname{ess} \sup } \mathbb{E}\left[\int_{t}^{\tau} \psi_{s}^{i} d s+\max _{k \neq i}\left(Y_{\tau}^{k, n}-C_{i, k}\right) \mathbf{1}_{\tau<T} \mid \mathcal{F}_{t}\right] .
$$

Control of $Y^{i, n}$ control: $Y^{i} \in \mathcal{S}^{2,1}$.

Passing to the limit:

CONSTRUCTION OF Y^{i}.

Since $\mathcal{U}_{n}(t) \subset \mathcal{U}_{n+1}(t)$, \mathbb{P}-a.s. for every $t \in[0, T], Y_{t}^{i, n} \leq Y_{t}^{i, n+1}$. Thus

$$
Y_{t}^{i}=\lim _{n \rightarrow+\infty} Y_{t}^{i, n} .
$$

Recall that for every t

$$
Y_{t}^{i, n+1}=\underset{\tau \in \mathcal{T}_{t}}{\operatorname{ess} \sup } \mathbb{E}\left[\int_{t}^{\tau} \psi_{s}^{i} d s+\max _{k \neq i}\left(Y_{\tau}^{k, n}-C_{i, k}\right) \mathbf{1}_{\tau<T} \mid \mathcal{F}_{t}\right] .
$$

Control of $Y^{i, n}$ control: $Y^{i} \in \mathcal{S}^{2,1}$.

Passing to the limit:

$$
Y_{t}^{i}=\underset{\tau \in \mathcal{T}_{t}}{\operatorname{ess} \sup } \mathbb{E}\left[\int_{t}^{\tau} \psi_{s}^{i} d s+\max _{k \neq i}\left(Y_{\tau}^{k}-C_{i, k}\right) \mathbf{1}_{\tau<T} \mid \mathcal{F}_{t}\right] .
$$

CONTINUITY OF THE OPTIMAL PROFIT.

Recall

$$
\begin{aligned}
Y_{t}^{i} & =\underset{\tau \in \mathcal{T}_{t}}{\operatorname{ess} \sup } \mathbb{E}\left[\int_{t}^{\tau} \psi_{s}^{i} d s+\max _{k \neq i}\left(Y_{\tau}^{k}-C_{i, k}\right) \mathbf{1}_{\tau<T} \mid \mathcal{F}_{t}\right] \\
& =\underset{\tau \in \mathcal{T}_{t}}{\operatorname{ess} \sup } \mathbb{E}\left[Z_{\tau}^{i} \mid \mathcal{F}_{t}\right]-\int_{0}^{t} \psi_{s}^{i} d s,
\end{aligned}
$$

with

$$
Z_{t}^{i}=\int_{0}^{t} \psi_{s}^{i} d s+\max _{k \neq i}\left(Y_{t}^{k}-C_{i, k}\right) \mathbf{1}_{t<T .}
$$

Therefore Y^{i} is the Snell envelope of Z^{i} minus a continuous process.

THEOREM

The processes Y^{i} are continuous.

PROOF WHEN $M=2$.

If $M=2$, we have for every $t \in[0, T]$

$$
\begin{aligned}
Y_{t}^{1} & =\underset{\tau \in \mathcal{T}_{t}}{\operatorname{ess} \sup } \mathbb{E}\left[\int_{t}^{\tau} \psi_{s}^{1} d s+\left(Y_{\tau}^{2}-C_{1,2}\right) \mathbf{1}_{\tau<T} \mid \mathcal{F}_{t}\right] . \\
Y_{t}^{2} & =\underset{\tau \in \mathcal{T}_{t}}{\operatorname{ess} \sup } \mathbb{E}\left[\int_{t}^{\tau} \psi_{s}^{2} d s+\left(Y_{\tau}^{1}-C_{2,1}\right) \mathbf{1}_{\tau<T} \mid \mathcal{F}_{t}\right] .
\end{aligned}
$$

Assume that for $t<T, \Delta Y_{t}^{1} \neq 0$. Since Y^{1} is a Snell envelope, then Y^{2} has a jump at time t. Cumpinte Snell Envelope

PROOF WHEN $M=2$.

If $M=2$, we have for every $t \in[0, T]$

$$
\begin{aligned}
& Y_{t}^{1}=\underset{\tau \in \mathcal{T}_{t}}{\operatorname{ess} \sup } \mathbb{E}\left[\int_{t}^{\tau} \psi_{s}^{1} d s+\left(Y_{\tau}^{2}-C_{1,2}\right) \mathbf{1}_{\tau<T} \mid \mathcal{F}_{t}\right] . \\
& Y_{t}^{2}=\underset{\tau \in \mathcal{T}_{t}}{\operatorname{ess} \sup } \mathbb{E}\left[\int_{t}^{\tau} \psi_{s}^{2} d s+\left(Y_{\tau}^{1}-C_{2,1}\right) \mathbf{1}_{\tau<T} \mid \mathcal{F}_{t}\right] .
\end{aligned}
$$

Assume that for $t<T, \Delta Y_{t}^{1} \neq 0$. Since Y^{1} is a Snell envelope, then Y^{2} has a jump at time t.

Moreover $Y_{t^{-}}^{1}=Y_{t^{-}}^{2}-C_{1,2}$ and $Y_{t^{-}}^{2}=Y_{t^{-}}^{1}-C_{2,1}$. Hence $C_{2,1}+C_{1,2}=0$, which is impossible. Y^{1} and Y^{2} have no jump before T.

PROOF WHEN $M=3$.

For every $t \in[0, T]$
$Y_{t}^{1}=\underset{\tau \in \mathcal{T}_{t}}{\operatorname{ess} \sup } \mathbb{E}\left[\int_{t}^{\tau} \psi_{s}^{1} d s+\max \left(Y_{\tau}^{2}-C_{1,2}, Y_{\tau}^{3}-C_{1,3}\right) \mathbf{1}_{\tau<T} \mid \mathcal{F}_{t}\right]$.
$Y_{t}^{2}=\underset{\tau \in \mathcal{T}_{t}}{\operatorname{esssup}} \mathbb{E}\left[\int_{t}^{\tau} \psi_{s}^{2} d s+\max \left(Y_{\tau}^{1}-C_{2,1}, Y_{\tau}^{3}-C_{2,3}\right) \mathbf{1}_{\tau<T} \mid \mathcal{F}_{t}\right]$.
$Y_{t}^{3}=\underset{\tau \in \mathcal{T}_{t}}{\operatorname{esss} \sup } \mathbb{E}\left[\int_{t}^{\tau} \psi_{s}^{3} d s+\max \left(Y_{\tau}^{1}-C_{3,1}, Y_{\tau}^{2}-C_{3,2}\right) \mathbf{1}_{\tau<T} \mid \mathcal{F}_{t}\right]$.

OPTIMAL STRATEGY.

If at time 0 , the station is in its operating mode i, then an optimal strategy is given by

$$
\begin{aligned}
\tau_{1}^{*} & =\inf \left\{s \geq 0, Y_{s}^{i}=\max _{k \neq i}\left(Y_{s}^{k}-C_{i, k}\right)\right\} \wedge T \\
\xi_{1}^{*} & =\underset{k \neq i}{\operatorname{argmax}}\left(Y_{\tau_{1}^{*}}^{k}-C_{i, \tau_{1}^{*}}\right) .
\end{aligned}
$$

Indeed
$Y_{t}^{i}+\int_{0}^{t} \psi_{s}^{i} d s=\underset{\tau \in \mathcal{T}_{t}}{\operatorname{ess} \sup } \mathbb{E}\left[\int_{0}^{\tau} \psi_{s}^{i} d s+\max _{k \neq i}\left(Y_{\tau}^{k}-C_{i, k}\right) \boldsymbol{1}_{\tau<T} \mid \mathcal{F}_{t}\right]$.

OPTIMAL STRATEGY.

If at time 0 , the station is in its operating mode i, then an optimal strategy is given by

$$
\begin{aligned}
\tau_{1}^{*} & =\inf \left\{s \geq 0, Y_{s}^{i}=\max _{k \neq i}\left(Y_{s}^{k}-C_{i, k}\right)\right\} \wedge T \\
\xi_{1}^{*} & =\underset{k \neq i}{\operatorname{argmax}}\left(Y_{\tau_{1}^{*}}^{k}-C_{i, \tau_{1}^{*}}\right) .
\end{aligned}
$$

Indeed
$Y_{t}^{i}+\int_{0}^{t} \psi_{s}^{i} d s=\underset{\tau \in \mathcal{T}_{t}}{\operatorname{ess} \sup } \mathbb{E}\left[\int_{0}^{\tau} \psi_{s}^{i} d s+\underset{k \neq i}{\max }\left(Y_{\tau}^{k}-C_{i, k}\right) \mathbf{1}_{\tau<T} \mid \mathcal{F}_{t}\right]$.

- Optimal stopping time ThUS

$$
Y_{0}^{i}=\mathbb{E}\left[\int_{0}^{\tau_{1}^{*}} \psi_{s}^{i} d s+\left(Y_{\tau_{1}^{*}}^{\xi_{i}^{*}}-C_{i, \xi_{1}^{*}}\right) \mathbf{1}_{\tau_{1}^{*}<T}\right] .
$$

Approximation
Optimal strategy

OPTIMAL STRATEGY.

And after this first switch

$$
\begin{aligned}
& \tau_{2}^{*}=\inf \left\{s \geq \tau_{1}^{*}, Y_{s}^{\xi_{1}^{*}}=\max _{k \neq \xi_{1}^{*}}\left(Y_{s}^{k}-C_{\xi_{1}^{*}, k}\right)\right\} \wedge T \\
& \xi_{2}^{*}=\underset{k \neq \xi_{1}^{*}}{\operatorname{argmax}}\left(Y_{\tau_{2}^{*}}^{k}-C_{\xi_{1}^{*}, k}\right) . \\
& Y_{\tau_{1}^{*}}^{\xi_{*}^{*}}=\underset{\tau \in \mathcal{T}_{\tau_{1}^{*}}^{*}}{\operatorname{ess} \sup }\left[\int_{\tau_{1}^{*}}^{\tau} \psi_{s}^{\xi_{1}^{*}} d s+\max _{k \neq \xi_{1}^{\xi_{1}}}\left(Y_{\tau}^{k}-C_{\xi_{1}^{*}, k}\right) \mathbf{1}_{\tau<T} \mid \mathcal{F}_{\tau_{1}^{*}}\right] \\
& =\mathbb{E}\left[\int_{\tau_{1}^{*}}^{\tau_{2}^{*}} \psi_{s}^{\xi_{s}^{*}} d s+\left(Y_{\tau_{2}^{*}}^{\xi_{*}^{*}}-C_{\xi_{1}^{*}, \xi_{2}^{*}}\right) \mathbf{1}_{\tau_{2}^{*}<T} \mid \mathcal{F}_{\tau_{1}^{*}}\right] .
\end{aligned}
$$

Approximation

Optimal strategy

OPTIMAL STRATEGY.

And after this first switch

$$
\begin{aligned}
& \tau_{2}^{*}=\inf \left\{s \geq \tau_{1}^{*}, Y_{s}^{\xi_{1}^{*}}=\max _{k \neq \xi_{1}^{*}}\left(Y_{s}^{k}-C_{\xi_{1}^{*}, k}\right)\right\} \wedge T \\
& \xi_{2}^{*}=\underset{k \neq \xi_{1}^{*}}{\operatorname{argmax}}\left(Y_{\tau_{2}^{*}}^{k}-C_{\xi_{1}^{*}, k}\right) . \\
& Y_{\tau_{1}^{*}}^{\xi_{*}^{*}}=\mathbb{E}\left[\int_{\tau_{1}^{*}}^{\tau_{2}^{*}} \psi_{s}^{\xi_{s}^{*}} d s+\left(Y_{\tau_{2}^{*}}^{\xi_{*}^{*}}-C_{\xi_{1}^{*}, \xi_{2}^{*}}\right) \mathbf{1}_{\tau_{2}^{*}<T} \mid \mathcal{F}_{\tau_{1}^{*}}\right] . \\
& Y_{0}^{i}=\mathbb{E}\left[\int_{0}^{\tau_{1}^{*}} \psi_{s}^{i} d s+\left(Y_{\tau_{1}^{*}}^{\xi_{1}^{*}}-C_{i, \xi_{1}^{*}}\right) \mathbf{1}_{\tau_{1}^{*}<T}\right] \\
&=\mathbb{E}\left[\int_{0}^{\tau_{1}^{*}} \psi_{s}^{i} d s+\int_{\tau_{1}^{*}}^{\tau_{2}^{*}} \psi_{s}^{\xi_{s}^{*}} d s+\left(Y_{\tau_{2}^{*}}^{\xi_{*}^{*}}-C_{\xi_{1}^{*}, \xi_{2}^{*}}-C_{i, \xi_{1}^{*}}\right) \mathbf{1}_{\tau_{2}^{*}<T}\right]
\end{aligned}
$$

OPTIMAL STRATEGY.

Recursively we obtain a sequence of stopping times τ_{k}^{*} and of modes ξ_{k}^{*}. And

$$
Y_{0}^{i}=\mathbb{E}\left[\int_{0}^{\tau_{n}^{*}} \psi_{s}^{u_{s}} d s-\sum_{1 \leq k \leq n}\left(C_{\left.\left.u_{\left.\tau_{k}^{*}\right)}^{*}, u_{\tau_{k}} \mathbf{1}_{\tau_{k}^{*}<T}\right)+Y_{\tau_{n}^{*}}^{\xi_{n}^{*}} \boldsymbol{1}_{\tau_{n}^{*}<T}\right]}\right]\right.
$$

The strategy δ^{*} is finite: $\mathbb{P}(A)=\mathbb{P}\left(\left\{\omega ; \tau_{n}^{*}<T, \forall n\right\}\right)=0$.

OPTIMAL STRATEGY.

Recursively we obtain a sequence of stopping times τ_{k}^{*} and of modes ξ_{k}^{*}. And

$$
Y_{0}^{i}=\mathbb{E}\left[\int_{0}^{\tau_{n}^{*}} \psi_{s}^{u_{s}} d s-\sum_{1 \leq k \leq n}\left(C_{\left.\left.u_{\left.\left.\tau_{k}^{*}\right)^{*}\right)}, u_{\tau_{k}} \mathbf{1}_{\tau_{k}^{*}<T}\right)+Y_{\tau_{n}^{*}}^{\xi_{n}^{*}} 1_{\tau_{n}^{*}<T}\right]}\right]\right.
$$

The strategy δ^{*} is finite: $\mathbb{P}(A)=\mathbb{P}\left(\left\{\omega ; \tau_{n}^{*}<T, \forall n\right\}\right)=0$.
Y_{0}^{i} is the optimal profit. Indeed τ_{1}^{*} is optimal, hence

$$
\begin{aligned}
Y_{0}^{i} & \geq \mathbb{E}\left[\int_{0}^{\tau_{1}} \psi_{s}^{i} d s+\max _{k \neq i}\left(Y_{i}^{k}-C_{i, k}\right) \mathbf{1}_{\tau_{1}<T}\right] \\
& \geq \mathbb{E}\left[\int_{0}^{\tau_{1}} \psi_{s}^{i} d s+Y_{i}^{\xi_{1}}-C_{i, \xi_{1}} \mathbf{1}_{\tau_{1}<T}\right] .
\end{aligned}
$$

OUTLINE

(1) Introduction

- Economical motivations
- Mathematical settings
- Snell envelope
(2) OpTIMAL PROFIT AND STRATEGY
- Approximation
- Optimal profit
- Optimal strategy
(3) Reflected BSDE
- Definition for one and two barriers
- Application for $M=2$ (Hamadène \& Jeanblanc)
- When $M>2$

ONE BARRIER.

Data:

- $\xi \in L^{2}(\Omega), \mathcal{F}_{T}$-mesurable and \mathbb{R}-valued;
- $f: \Omega \times[0, T] \times \mathbb{R} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ GENERATOR s.t.
- for every $(y, z), f(., y, z) \in \mathcal{M}^{2,1}$,
- there exists K s.t.

$$
\left|f(t, y, z)-f\left(t, y^{\prime}, z^{\prime}\right)\right| \leq K\left(\left|y-y^{\prime}\right|+\left|z-z^{\prime}\right|\right) ;
$$

- $L=\left(L_{t}\right)_{t \in[0, T]}$ a \mathbb{R}-valued \mathbb{F}-adapted continuous process s.t. $L_{T} \leq \xi$ a.s. and $L \in \mathcal{S}^{2,1}$.

ONE BARRIER.

DEFINITION

A process (Y, Z, K) is a solution of the RBSDE if:
(1) the process $\left(Y_{t}, Z_{t}, K_{t}\right)_{0 \leq t \leq T}$ is $\underline{\mathbb{F}}$-adapted;
(2) $(Y, Z, K) \in \mathcal{S}^{2,1} \times \mathcal{M}^{2,1} \times \mathcal{S}^{2,1}$;
(3) $Y_{t}=\xi+\int_{t}^{T} f\left(r, Y_{r}, Z_{r}\right) d r+K_{T}+K_{r}-\int_{t}^{T} Z_{r} d B_{r}$,

$$
\forall t \in[0, T], \mathbb{P} \text {-a.s }
$$

(9) $\forall t \in[0, T], Y_{t} \geq L_{t}$;
(3) K is continuous and non decreasing, $K_{0}=0$ and $\int_{0}^{T}\left(Y_{r}-L_{r}\right) d K_{r}$.

PROPERTY OF A SOLUTION.

PROPOSITION

If (Y, Z, K) is a solution,

- A priori estimate:

$$
\begin{aligned}
& \mathbb{E}\left[\sup _{t \in[0, T]}\left|Y_{t}\right|^{2}+K_{T}^{2}+\int_{0}^{T}\left|Z_{s}\right|^{2} d s\right] \\
& \quad \leq C \mathbb{E}\left[\xi^{2}+\int_{0}^{T}|f(t, 0,0)|^{2} d t+\sup _{t \in[0, T]}\left|L_{t}\right|^{2}\right]
\end{aligned}
$$

- and for every $t \in[0, T]$

$$
Y_{t}=\underset{\tau \in \mathcal{T}_{t}}{\operatorname{ess} \sup } \mathbb{E}\left[\int_{t}^{\tau} f\left(s, Y_{s}, Z_{S}\right) d s+L_{\tau} \mathbf{1}_{\tau<T}+\xi \mathbf{1}_{\tau=T} \mid \mathcal{F}_{t}\right]
$$

EXISTENCE AND UNIQUENESS.

- El Karoui, Kapoudjian, Pardoux, Peng, Quenez (1997):

THEOREM

Under the above assumptions, there exists a unique solution (Y, Z, K) of the reflected BSDE.

Idea of the proof: when f does not depend of y and z :
$Y_{t}+\int_{0}^{t} f(s) d s=\underset{\tau \in \mathcal{T}_{t}}{\operatorname{ess} \sup } \mathbb{E}\left[\int_{0}^{\tau} f(s) d s+L_{\tau} \mathbf{1}_{\tau<T}+\xi \mathbf{1}_{\tau=T} \mid \mathcal{F}_{t}\right]$
(Doob-Meyer decomposition)

$$
=M_{t}-K_{t}=\int_{0}^{t} Z_{s} d B_{s}-K_{t}
$$

+ Picard iteration.

APPLICATION TO AMERICAN OPTIONS.

An American put option allows to choose the exercise time at any time within the horizon:

$$
Y_{t}=\underset{\tau \in \mathcal{T}_{t}}{\operatorname{ess} \sup } \mathbb{E}^{\mathbb{Q}}\left[e^{-r(T-\tau)}\left(k-P_{\tau}\right)^{+} \mid \mathcal{F}_{t}\right] .
$$

The reflected BSDE is described by

$$
Y_{t}=\left(k-P_{T}\right)^{+}+\int_{t}^{T}\left(r Y_{s}+(\mu-r) Z_{s}\right) d s-\int_{t}^{T} \sigma Z_{s} d B_{s}+K_{T}-K_{t},
$$

subject to the constraints

$$
\text { - } Y_{t} \geq\left(k-P_{t}\right)^{+}=L_{t}
$$

$$
\text { - } \int_{0}^{T}\left(Y_{t}-L_{t}\right) d K_{t}=0
$$

Two BARRIERS.

- Cvitanic, Karatzas (1996): two barriers: another continuous process $U=\left(U_{t}\right)_{t \in[0, T]}$ s.t. $U \in \mathcal{S}^{2,1}$ with $\xi \leq U_{T}$ a.s.
- Mokobodsky's condition: location of the difference of non-negative super-martingales between S and U.
- Solution ($Y, Z, K^{ \pm}$) s.t.

$$
Y_{t}=\xi+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) d s+\left(K_{T}^{+}-K_{t}^{+}\right)-\left(K_{T}^{-}-K_{t}^{-}\right)-\int_{t}^{T} Z_{s} d B_{s} ;
$$

with

- $L_{t} \leq Y_{t} \leq U_{t}, t \in[0, T]$;
- K_{+}^{+}and K^{-}are non-decreasing continuous processes s.t.

$$
\int_{0}^{T}\left(Y_{t}-L_{t}\right) d K_{t}^{+}=0 \text { and } \int_{0}^{T}\left(U_{t}-Y_{t}\right) d K_{t}^{-}=0 .
$$

- Hamadène \& Lepeltier (2000).
- Hamadène \& Hassani (2005 and 2006).
- ...

NUMERICAL SCHEME AND PDE.

With the penalization method (approximation by a solution (Y^{n}, Z^{n}) of a "Lipschitz" BSDE):

- numerical scheme for reflected BSDE:
- Bally, Pagès (2003) (Markovian case);
- Bouchard, Touzi (2004);
- Gobet, Lemor, Warin (2006).
- link with (viscosity) solution of the related obstacle problem for non linear parabolic PDE.
- El Karoui, Kapoudjian, Pardoux, Peng, Quenez (1997), etc.

Definition for one and two barriers
Application for $M=2$ (Hamadène \& Jeanblanc) When $M>2$

OPTIMAL PROFIT FOR $M=2$.

There exists $\left(Y, Z, K^{ \pm}\right)$s.t. for every $s \in[0, T]$:

- $Y_{t}=\int_{t}^{T}\left(\psi_{s}^{1}-\psi_{s}^{2}\right) d s+\left(K_{T}^{+}-K_{t}^{+}\right)-\left(K_{T}^{-}-K_{t}^{-}\right)-\int_{t}^{T} Z_{s} d B_{s}$,
- $L_{t}=-C_{1,2} \leq Y_{t} \leq C_{2,1}=U_{t}$,

$$
\int_{0}^{T}\left(Y_{s}+C_{1,2}\right) d K_{s}^{+}=\int_{0}^{T}\left(C_{2,1}-Y_{s}\right) d K_{s}^{-}=0 .
$$

Recall: if $M=2$, for every $t \in[0, T]$

$$
\begin{aligned}
Y_{t}^{1} & =\underset{\tau \in \mathcal{T}_{t}}{\operatorname{ess} \sup } \mathbb{E}\left[\int_{t}^{\tau} \psi_{s}^{1} d s+\left(Y_{\tau}^{2}-C_{1,2}\right) \mathbf{1}_{\tau<T} \mid \mathcal{F}_{t}\right] . \\
Y_{t}^{2} & =\underset{\tau \in \mathcal{T}_{t}}{\operatorname{ess} \sup } \mathbb{E}\left[\int_{t}^{\tau} \psi_{s}^{2} d s+\left(Y_{\tau}^{1}-C_{2,1}\right) \mathbf{1}_{\tau<T} \mid \mathcal{F}_{t}\right] .
\end{aligned}
$$

Introduction
Optimal profit and strategy Reflected BSDE

Definition for one and two barriers
Application for $M=2$ (Hamadène \& Jeanblanc) When $M>2$

OPTIMAL PROFIT FOR $M=2$.

Proposition

For $t \leq T$,

$$
\begin{aligned}
& Y_{t}^{1}=\mathbb{E}^{\mathcal{F}_{t}}\left[\int_{t}^{T} \psi_{s}^{1} d s+K_{T}^{+}-K_{t}^{+}\right] . \\
& Y_{t}^{2}=\mathbb{E}^{\mathcal{F}_{t}}\left[\int_{t}^{T} \psi_{s}^{2} d s+K_{T}^{-}-K_{t}^{-}\right] .
\end{aligned}
$$

Hence $Y_{t}=Y_{t}^{1}-Y_{t}^{2}$ and the stopping times of the optimal strategy are the ones where the process Y reaches successively the barriers $-C_{1,2}$ and $C_{2,1}$.

NUMERICAL EXAMPLES.

With the penalization method (approximation by a solution (Y^{n}, Z^{n}) of a "Lipschitz" BSDE), numerical schemes for reflected BSDE:

- Bally, Pagès (2003) (Markovian case);
- Bouchard, Touzi (2004);
- Gobet, Lemor, Warin (2006).

Moreover if $C_{1,2}$ and $C_{2,1}$ are constant, the rate of convergence of $\left(Y^{n}, Z^{n}\right)$ is known (of order $1 / n$).

In the following, X is a geometric Brownian motion with parameters μ and σ, and ψ^{1} and ψ^{2} are functions of x only.

NUMERICAL EXAMPLES.

$$
\begin{aligned}
& X_{0}=1, \mu=1, \sigma=-3, C_{2,1}=1, C_{1,2}=0.5 \\
& \left(\psi^{1}-\psi^{2}\right)(x)=0.1 x \geq 0
\end{aligned}
$$

Definition for one and two barriers
Application for $M=2$ (Hamadène \& Jeanblanc) When $M>2$

NUMERICAL EXAMPLES.

$$
\begin{aligned}
& X_{0}=1, \mu=1, \sigma=2, C_{2,1}=1, C_{1,2}=0.3 \\
& \left(\psi^{1}-\psi^{2}\right)(x)=0.1 x-6
\end{aligned}
$$

Introduction

Definition for one and two barriers
Application for $M=2$ (Hamadène \& Jeanblanc) When $M>2$

NUMERICAL EXAMPLES.

$$
\begin{aligned}
& x_{0}=1, \mu=0.5, \sigma=-3, C_{2,1}=1, C_{1,2}=0.4, \\
& \left(\psi^{1}-\psi^{2}\right)(x)=0.7 x-11
\end{aligned}
$$

Optimal switching and reflected BSDE.

When $M>2$...

Here for every $i \in\{1, \ldots, M\}$

$$
Y_{t}^{i}=\underset{\tau \in \mathcal{T}_{t}}{\operatorname{ess} \sup } \mathbb{E}^{\mathcal{F}_{t}}\left[\int_{t}^{\tau} \psi_{s}^{i} d s+\max _{k \neq i}\left(Y_{\tau}^{k}-C_{i, k}\right) \mathbf{1}_{\tau<T}\right] .
$$

We can re-formulated as

- $Y_{t}^{i}=\int_{t}^{T} \psi_{s}^{i} d s+A_{T}^{i}-A_{t}^{i}-\int_{t}^{T} Z_{s}^{i} d B_{s}$;
- $Y_{t}^{i} \geq \max _{k \neq i}\left(Y_{t}^{k}-C_{i, k}\right)$;
- $\int_{t}^{T}\left(Y_{t}^{i}-\max _{k \neq i}\left(Y_{t}^{k}-C_{i, k}\right)\right) d A_{t}^{i}=0$.

We proved that this system of RBSDE has a unique solution.

LINK BETWEEN OUR SYSTEM OF RBSDES AND PDE.

For $(t, x) \in[0, T] \times \mathbb{R}^{k}$, let $X^{t, x}$ be the solution of

$$
d X_{s}^{t, x}=b\left(s, X_{s}^{t, x}\right) d s+\sigma\left(s, X_{s}^{t, x}\right) d B_{s}, t \leq s \leq T,
$$

with $X_{s}^{t, x}=x$ for $s \leq t$. Its infinitesimal generator \mathcal{L} is given by

$$
\mathcal{L}=\frac{\partial}{\partial t}+\frac{1}{2} \sum_{i, j=1}^{d}\left(\sigma . \sigma^{*}\right)_{i j}(t, x) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{d} b_{i}(t, x) \frac{\partial}{\partial x_{i}} .
$$

Assumption $[\mathrm{H}]$.

(H1) $\psi_{i}, i=1, \ldots, M$, are continuous and

$$
\left|\psi_{i}(t, x)\right| \leq C\left(1+|x|^{\delta}\right), \quad(t, x) \in[0, T] \times \mathbb{R}^{k} .
$$

(H2) For any $1 \leq i, j \leq M, C_{i, j}$ are deterministic functions of t.

Link between our system of RBSDEs And PDE.

Let now $\left(Y_{s}^{1, t, x}, \ldots, Y_{s}^{M, t, x}\right)_{0 \leq s \leq T}$ be the vector of optimal profits associated with $\left(\psi_{i}\left(s, X_{s}^{t, x}\right)\right)_{0 \leq s \leq T}$ and $C_{i, j}(t)$.

Theorem

There exist M deterministic functions $v^{1}(t, x), \ldots, v^{M}(t, x)$ defined on $[0, T] \times \mathbb{R}^{k}$ and \mathbb{R}-valued s.t.:
(i) v^{1}, \ldots, v^{M} are continuous in (t, x), are of polynomial growth and satisfy, for each $t \in[0, T]$, and for every

$$
s \in[t, T], Y_{s}^{i, t, x}=v^{i}\left(s, X_{s}^{t, x}\right), \text { for every } 1 \leq i \leq M
$$

Link between our system of RBSDEs And PDE.

Let now ($\left.Y_{s}^{1, t, x}, \ldots, Y_{s}^{M, t, x}\right)_{0 \leq s \leq T}$ be the vector of optimal profits associated with $\left(\psi_{i}\left(s, X_{s}^{t, x}\right)\right)_{0 \leq s \leq T}$ and $C_{i, j}(t)$.

THEOREM

There exist M deterministic functions $v^{1}(t, x), \ldots, v^{M}(t, x)$ defined on $[0, T] \times \mathbb{R}^{k}$ and \mathbb{R}-valued s.t.:
(i) $Y_{s}^{i, t, x}=v^{i}\left(s, X_{s}^{t, x}\right)$, for every $1 \leq i \leq M$.
(ii) The vector of functions $\left(v^{1}, \ldots, v^{M}\right)$ is a viscosity solution for the system of variational inequalities:

$$
\left\{\begin{array}{l}
\min _{i=1, \ldots, M^{2}}\left\{v^{i}(t, x)-\max _{j \neq i}\left(-C_{i, j}(t)+v^{j}(t, x)\right),\right. \\
v^{i}(T, x)=0, \quad 1 \leq i \leq M,
\end{array}\right.
$$

NUMERICAL ASPECTS.

For any $n \in \mathbb{N}$, for all $1 \leq i \leq M$ and $t \in[0, T]$:

$$
Y_{t}^{i, n}=\int_{t}^{T} \psi_{i}\left(s, X_{s}\right) d s+n \int_{t}^{T}\left(L_{s}^{i, n}-Y_{s}^{i, n}\right)^{+} d s-\int_{t}^{T} Z_{s}^{i, n} d B_{s}
$$

where for every $1 \leq i \leq M$,

$$
\forall t \in[0, T], L_{t}^{i, n}=\max _{k \neq i}\left(-C_{i, k}(t)+Y_{t}^{k, n}\right) .
$$

Theorem

For every $1 \leq i \leq M$ and all $t \in[0, T]$, the sequence $\left(Y_{t}^{i, n}\right)_{n \in \mathbb{N}}$ is non decreasing, $Y_{t}^{i, n} \leq Y_{t}^{i}$ and $Y_{t}^{i, n}$ converges to Y^{i}.

CONCLUSION.

- Positive answer to the question of Carmona \& Ludkovski. Extension in the non Markovian case.
- Hu \& Tang: existence and uniqueness of the system of RBSDEs "directly" when ψ_{i} also depends on Y^{i} and Z^{i} (but for constant switching costs). Application to optimal switching in the Markovian case, but with X depending on the strategy.
- Some open questions
- Time delay?
- Infinitely many regimes?
- Numerical schemes: rate of convergence?

