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Description of our problem.

For xo € R, consider A = {a:Q x [0,T] = R L'(0,T), a.s.} and

s
X;(O’{Y = X0 — / a.ar.
0

Problem: minimize over all o € A

)
J(x0,0) = E / f (5, X207, ag) ds + g (X°)
0

Two cases:
@ Unconstrained problem (UP): no condition on X7>*.
@ Constrained problem (CP): X7»* =0 a.s. — o € A%
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Almgren & Chriss model (2000).

» Continuous-time extension of the Berisimas & Lo model (1998).

» Execution strategies have absolutely continuous paths, i.e. the remaining

position size is determined by trading rate as = X
t -
Xt = Xo +/ Xsds, Xr=0.
0

» Price impact consists of two components

t - -
Sf = S? +A / Xsds+ h(X;)
v 0 S——
Unaffected price ~——~—— temporary
permanent

» Gatheral (2010): this choice of the permanent effect rules out price
manipulation.

A. Popier Optimal targeting position. Berlin, May 18th, 2017.

6/41



Expected Revenues.

Model: ]
S =8 + A(Xe — x) + h(X)).

Revenues obtained from following X (with X7 = 0)

.
Rr(X) = — / SXdX;.
0

Assume that S° is a martingale and integrating by parts:

2 T . .
ERr(X) = xS - )\% _E /0 h(Xt)Xtdt]
—

naive book value

ts entailed by perm impact . .
cos I yPp mp costs entailed by temp impact
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(Non exhaustive) literature review.

» Mean-variance optimization:
E[R7(X)] — o6Var(R7(X)) — max

Almgren & Chriss (1999, 2000), Aimgren (2003), and Lorenz & Almgren (2011)
» Expected-Utility maximization:

E[u(R7(X))] — max
Schied & Schdneborn (2009), Schied, Schéneborn & Tehranchi (2010), ...

» Time-averaged Risk Measures:

E

;
Rr(X) — /o f(S?.,X,)dt} — max

Gatheral & Schied (2011), Ankirchner & Kruse (2012), ...

» Models including a dark pool, multi-agent models, transient impact,
non-aggresive strategies...
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The model: stochastic liquidity.

» Almgren, Hauptmann, Li & Thum (2005): h(x) ~ nsgn(x)|x|%€.
» Temporary impact n = (n;, t > 0): depends on time and is random.

hi(X¢) = msgn(Xe)| X~
with p > 1 (shape parameter of the order book (e.g. p = 1.6))

Control problem with constraint:

.
V(%) = inf, B /0 (nslrsl? + sl Xs|) ds| . X7 =0,

over all & € A such s
Xs = Xo +/ a,ar.
0
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The model: stochastic liquidity.

» Almgren, Hauptmann, Li & Thum (2005): h(x) ~ nsgn(x)|x|%€.
» Temporary impact n = (7, £ > 0): depends on time and is random.

he(Xt) = nisgn(Xe)| X[~
with p > 1 (shape parameter of the order book (e.g. p = 1.6))

Penalized version:

-
vi(x) = ing]E / (77s|a5|p+75‘XS|é) ds + L[X7[7| .
a 0

Questions: when L 7 +o0, vE(xo) 7 v(x) ? Optimal controls ?
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The control problem.

Recall thatfor xp € R, A= {a: Q x [0, T] = R e L'(0, T), a.s.} such that

S

X% = xg — / aar
JO

Value function (with or without the constraint on X7):

v(Xo) = inf J(xg,a)= inf E
(0) aeA or A0 (Oa) aeA or A0

;
/ f(s, X", as) ds + g(X7>%)
0

Assumptions (uniformly in w and t):
@ (x,a) — f(t,x,a) and x — g(x) are convex (f being strictly convex in a).

@ ar~ f(t,x,a), x — f(t,x,0) and x — g(x) attain a minimum at zero with
f(t,0,0) = g(0) = 0.
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Monotone strategies.
Recall that for xp € R, A= {a: Q x [0, T] = R € L'(0, T), a.s.} such that

S
XSXO"(Y = Xo —/ ardr
0
Value function (with or without the constraint on Xr):

v(xg) = inf J(xo,a)= inf E

T
f(s, X2 ag) ds + g(X0©
acA or A0 acA or A0 /0 ( s S) g( T )

Proposition

Let xo > 0. For any a € A there exists 3 € A such that X*-? is non-increasing
and non-negative and J(xo, 8) < J(xo, «). If « € A is optimal, then
(X3, s €0, T]) is non-increasing and non-negative.

Remark: equivalent properties hold if x, < 0.
» Coherent result with the absence of transaction-triggered price
manipulation (Gatheral & Shied (2011), Alfonsi et al. (2012)).
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Stochastic maximum principle (ismut (1973)....).

f is coercive:

V(w, t, x,a), f(t,x,a)> blaP.

Hamiltonian of our control problem:

H(t, x,a,y) =f(t x,a)— ay.

Convex conjugate of f(t, x,-): f*(, x, )

r;gg%(hx, ay)=—f(tx,y).

Optimal closure example

then
f(t,x,y) =

A. Popier

f(t7 X, a) = 77t|a|p +71‘X‘Z7

—1/ 1)\
i (pn) Y19~ wlxl’. 1/t /g =1,

Optimal targeting position. Berlin, May 18th, 2017.
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Stochastic maximum principle (ismut (1973)....).

Adjoint forward backward SDE: find adapted processes (X, Y, Z) s.t.

'S
Xs X0 — / f;‘(r, X, Yr)dr,

Ys

g (Xt) + /f rXYdrf/ZdW

Verification result

If there exists a solution (X, Y, Z) of the FBSDE (with suitable integrability
conditions), then an optimal control is given by

as = £1(8,Xs, ¥s), S€[0,T].

Remarks:
@ Monotone strategy: Xs € [0, xo], as > 0.

@ A dynamic version of this problem can be easily written.

A. Popier Optimal targeting position. Berlin, May 18th, 2017. 13/41



How to solve a FBSDE ?

Four methods:
@ Fixed-point argument. Works only for small terminal time T.

@ Four-step scheme. Based on PDE arguments and existence of smooth
solutions.

@ Continuation method. Based on a monotonicity condition. Suitable for the
unconstrained problem.

@ Decoupling field. Lipschitz assumptions on the coefficients.

Constrained case X7 = 0:
» How can we include this additional condition in the FBSDE ?

A. Popier Optimal targeting position. Berlin, May 18th, 2017.
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Homogeneous problem.

Constrained control problem: for some p > 1 and for xo > 0

-
o) = E | [ (elal? + X ) ds| . Xr =0
acA 0
where s
Xs:xo—l—/ aydu.
0
Penalized problem:
-
vi(x) = ig;E[/ (nsas|p+~,~sxs|”)ds+Lxrp]
@ 0

Heuristics: when L * +o0, vb 7 v.
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Relaxing the liquidation constraint.

Possibility for non closure: instead of Xy =0
@ Specify a set S C Fr for closure such that: X715 = 0;
@ Penalization on the non closure set S°.

» Minimize
E(¢|XT|P) = E(&1s¢|XT|P)
with 0 x co = 0 and a r.v. £ such that

e Fr-measurable and non negative ;
@ P(6=+00)>0and S = {£ = +oo} ;
o {15 € L'(Q).

Examples:
m binding liquidation: £ = +oc a.s. if and only if X7 = 0.
m excepted scenarios: ¢ = ool with e.g.
@ S = {max;cp,nmt < H} for a given threshold H,
e S= {formdt < H}.

A. Popier Optimal targeting position. Berlin, May 18th, 2017.
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Back to the FBSDE.

Control problem: for xo > 0

i
vixo) = JLE | [ (s + sl ds + x|

Here
f(t7X7a):nS|a|p+75|X‘p7 g(X):§|X|pa

1\9'
) Y19 = /[P

— 1

p
Adjoint forward backward SDE:

s 1 q—1 ]
Xs = Xp— — Y |9 'sign (Y;)dr,
e [ () o

o<
I

S

A. Popier Optimal targeting position. Berlin, May 18th, 2017.
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Control problem: for xo > 0
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vixo) = JLE | [ (s + sl ds + x|
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f(t7X7a):nS|a|p+75|X‘p7 g(X):§|X|pa

1\9'
) Y19 = /[P

1
Fitxy) =P (m

p
Adjoint forward backward SDE:

s 1 q—1
Xs = Xo —/ () |Y,|9 'sign (Y;)dr, X5 >0,
o \P7r

T T
Vo = p0P "+ [ ppdr [ Zaw.
S

S
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Back to the FBSDE.

Control problem: for xo > 0

o) = jone

Here
f(t7X7a):nS|a|p+75|X‘p7 g(X):§|X|pa

1\9'
) Y19 = /[P

1
(t,x,y) = P=_ (m

p
Adjoint forward backward SDE:

S 1 q—1 ]
Xs = Xo— — Y9 'dr, Xs >0,
S 0 /O (PUr) ( r) s —Z

T T
Yo = &p(Xr)P '+ / (X )P~ tar — / ZdW,, Y > 0.
)

S

A. Popier Optimal targeting position.

)
/ (nslovsl? + sl Xe[P) ds + €1 X7/
0

Berlin, May 18th, 2017.

18/41



Back to the FBSDE.

Adjoint forward backward SDE:

S 1 q—1 ]
Xo — — Y, )? 'dr,
° /0 <P77r) (¥:)

Xs

Ys

)

Variable change (while Xs > 0)

Ys

_ p—1 _
Ys = pUs(X;s) @ﬁ%—pawq

[t6’s formula:

T T 1 q—1 Y,)d
U=t [ e [ (o) <77> it
——

=U7

A. Popier Optimal targeting position.
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T T
¢p(Xr)P1 +/ 'y,p(X,)p*‘dr—/ Z.dW,.

S

T =pT N (Us)T 1 Xs.

i
Z
B /s p(X;)P-T W
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Back to the FBSDE.

Control problem: for xo > 0

)
vixo) = JLE | [ (rlosl + 26l Xl?) a5+ €lx717

Decoupled forward backward SDE:

s /4 q—1
XO - / <> (U,‘)q_1)(rdr7
o \7r

T T 1 q—1 T

Us = £+/ wdr—/ (p—1)<> (U,)er—/ V.aw,
s s Nr s

Ys = u(s,Xs), u(w,s,x)=pUs(w)xP!

Xs

Last equation = decoupling field.

A. Popier Optimal targeting position. Berlin, May 18th, 2017.
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Our aim & related literature.

Value function: for x; > 0

.
vixo) = JLE | [ (rlosl + 25l l7) a5+ €717

» Related (non exhaustive) literature: £ = +oc.
@ Ankirchner, Jeanblanc & Kruse (2013). Brownian framework.

@ Schied (2013). Solves a variant of this problem in a Markovian framework
using superprocesses.

o Graewe, Horst & Qiu (2015). Analyze both Markovian and non-Markovian
dependence of the coefficients by means of BSPDEs.

@ Bank & Voss (2016). Optimal tracking problems.

» Aims:
o Relax the constraint at terminal time.
@ No assumption on the filtration (except completeness and right-continuity)
— Knightian uncertainty.
e Extension to random terminal time 7.

A. Popier Optimal targeting position. Berlin, May 18th, 2017. 19/41



Backward stochastic differential equations.

Given
@ afiltered probability space (Q, F,P, (Ft)i>0).
@ aterminal time T > 0 and a final condition ¢ s.t. £ is a Fr-measurable r.v.

Solve the ODE:

T
Vte[0,T], yi=¢&+ / V(s, ys)ds = y; is Fr — measurable.
Jt

Particular case: ¢ € L' et W = 0 = y; = £. Best adapted approximation:

Yi = EW|F)=E(|F) =M = martingale

T
& — / dMs, Y cadlag process.
Jt

A. Popier Optimal targeting position. Berlin, May 18th, 2017. 20/41



Definition of a BSDE
A BSDE is an equation of the following type:

T T
Vte[0,T], Y, = 5+/ o(r, Y,)drf/ M.
Jt Jt

Data:
@ T: (deterministic) terminal time.
@ V:Qx|[0,T] xR — R: generator.

@ ¢: terminal condition: an Fr-measurable random variable, with values in
R.

Unknowns: (Y:, M)g<;<7-
In our case:

qg—1
V(ty)=-(p-— 1)(|7})/,|)‘7‘ y+v and P({=+)>0.

A. Popier Optimal targeting position. Berlin, May 18th, 2017. 21/41



Assumptions.

Singular BSDE: for £ > 0 with P({ = +00) >0

Us—g+/sT

-
dr—/ am,.
S
Assumptions:

» Positivity. 0 < 1 < 400, 0 < At < 400, 0 < v < 400.

1\9
-1 (n) U U+

r

» Integrability. For some ¢ > 1

T T
E [/0 (ne+ (T — t)p'yt)"dtl <o and E [/0 udt] < 0.

0

e First condition: sufficient to obtain a priori estimate.
@ Second condition: necessary to ensure existence of a optimal control.

» Left continuity of the filtration at time T (avoid thin time case).

A. Popier Optimal targeting position. Berlin, May 18th, 2017.
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Existence and verification result k. & ap, sPa 2016).

Theorem

There exists a minimal (super-)solution of the singular BSDE (U, M), in the
sense that (U, M) satisfies the dynamics and some integrability conditions on
[0, T —¢] for any € > 0 and

P—a.s. liminfU; > &.
t—T

Then the value function is given by:
V(xo0) = Uo|xo|”,

and an optimal control is given by:

s q—1 s q—1
X; =X0— / (U’) X dr = Xp exp [—/ <U,> dr} .
0 Nr o \7r

X* belongs to A(xp), satisfies the terminal state constraint X71.—,. = 0.

A. Popier Optimal targeting position. Berlin, May 18th, 2017. 23/41



Extensions.

@ Dark-pool trading. BSDE with unknows (U, ¢, M)

T Uq T T
Uu = ¢- (p - 1)/ [ :| ds +/ ~sds — / 79(3¢ U5a¢s)ds
t t Jt

7]5

/ / ¢s(e)w(ds, de) — / dMs.

@ Random terminal time T = exit time of a continuous diffusion.
o Existence of an a priori estimate ~ Keller-Osserman inequality.

e Example: T =inf{t >0, 8? < H}.

@ U cadlag on [0, T]. The left limit at time T exists (A.P, ESAIM P&S, '16).

A. Popier Optimal targeting position. Berlin, May 18th, 2017.

24/ 41



0 Introduction: optimal targeting position
@ Motivation: optimal closure
@ Monotone strategy and forward backward SDE

e Homogeneous case (with T. Kruse)
6 Knightian uncertainty (with C. Zhou)

e Non homogeneous case (with S. Ankirchner, A. Fromm & T. Kruse)



Knightian uncertainty.

@ An old concept : Knight (1921). Distinction between risk vs uncertainty.

From a single probability P to a set of probability P.

o Quantitative finance: model risk. Given recent market behaviour, this has
become a very acute and concrete problematic for practitioners and risk
managers.

e Economics: theory of decision under uncertainty, monetary policy,
psychology and behaviour of investors during period of stress.

» Triggered development of new mathematical tools.

e Quasi-sure stochastic analysis, non-linear expectations, G-Brownian
motions, second order BSDE.

@ See among many others Peng (2010-2011), Denis and Martini (2006),
Soner et al. (2011), ...

A. Popier Optimal targeting position. Berlin, May 18th, 2017.
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Uncertainty and expected utility.

How to model and represent preferences of agents under uncertainty ?
@ von Neumann and Morgenstern (1947):

sup Ep, U(X).
X

Po is the objective probability (fixed). Allais Paradox.

@ Savage (1954): supy Ep,U(X). Ps is a subjective probability. Ellsberg
Paradox.

@ Gilboa and Schmeidler (1989): supy infpep EpU(X). P range of all
possible subjective beliefs : worst case expected utility.

How do we model uncertainty ?
A set of probability P on a measurable space (2, F) which is non-dominated
(different models do not agree on null-event).

Warning: several classical tools may be false !

A. Popier Optimal targeting position. Berlin, May 18th, 2017. 27/41



Typical example.

Brownian motion with drift and volatility

Xe=Xo+oWi+put, lawof X =P, ,.

@ For a given o > 0, Girsanov theorem: X; = xo + aVNVt
Yu € R, Pﬂyg << ]PO,U~

® P, . [quadratic variation of (X;, 0 < t < T) = 0?T| = 1.
Monotone convergence theorem: counter example

P ={Po, 5, PEN"} Y, = (W;)?/n.

® Y,|0,P-as., forany P € P and EP>(Y,) = &.
@ Hence suppcp EF(Y)) = +o0.

A. Popier Optimal targeting position. Berlin, May 18th, 2017.
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Liquidation under uncertainty

Minimize the expected execution costs under P

]
J(t, X, P) = E? / (nslasl? + 7| Xs[P) ds + €1 XrP
t

|

where A%(t, xo) the set of admissible controls X € A(t, xo) such that

Define

v(t, xo) = essmf esssup J(t, X,P)
€At x0) Pep;

s
Xs = Xo + / agds, Xr1ls=0, P—q.s.
t

Idea: consider

esssup essinf J(t, X, P) = |xo|P esssup U, < v(t,xo)
PeP; XEAY(tX0) PeP;

where UF solution of the related singular BSDE under P.

A. Popier Optimal targeting position. Berlin, May 18th, 2017.
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Second order BSDE: setting

Setting: Q = C([0, T],R9) and

» long and boring description ! But important to be able to control the
negligible sets.

Example: P = {P?} with:

Pa:]poo(xa)A? xta:/ 1/2d:{5
0

for all processes a of the form

ZZa 1En1[7-n .,-n+1)(S)

n=0 i=1

@ (a')in are deterministic mappings such that 0 < a < aj(t) for any t > 0,
@ (mn)n is @ nondecreasing sequence of stopping times with o = 0
e foreach n, {E, i > 1} C F,, forms a partition of .
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Second order BSDE (2BSDE).

We consider the 2BSDE

T T T T
Y,:g+/ V(u, X. a0, Ywaf/zzu,awbﬁ)du—/ Zudxf,’P—/ dM}E’+/ dKE.
t t t Jt

Definition

(Y,Z,M®, KF) is a solution if
@ the 2BSDE is satisfied P-q.s., that is P-a.s. forany P € P.
@ the family (K*, P € P) satisfies some minimality condition.

Roughly speaking:
Y; = essuppcp, Vi -
Literature for square integrable ¢:
@ Soner, Touzi & Zhang (2011-2013). Lipschitz generator.
@ Possamai (2013). Monotone generator with linear growth.
@ Possamai, Tan & Zhou (2016).
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Control problem with uncertainty.

2BSDE: U; = esssup U} solvesforanyPe Pand0<s<t< T:
PeP:

t
US:u,/(p1)(n‘;q 1o/u+/ %drf/ dM? + / dK?
S

where
@ MF is a martingale,

@ KT is non decreasing under P and with a minimality condition on the
family (K¥, P € P) (~ Skorokhod condition).

Quasi surely,
liminf Uy > &.
t—T

Optimality: v(t, xo) = |xo|PU; with an optimal state process:

s q—1
X; = Xo —/ (ljr) Xr*dr.
t Nr

A. Popier Optimal targeting position. Berlin, May 18th, 2017.
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Back to the general case.

Forx >0, A={a:Qx[0,T] =R < L'(0, T) a.s.} such that

S

X% = xg — / a,dr
JO

And

o) = o

;
/ f(s, X", ag) ds + g(XﬁW)]
0
Adjoint forward backward SDE:
S
Xs = Xp— / fy(r, X, Yr)dr, Xs €[0,x], non increasing,
0

T T
Y, — g’(XT)+/ fo(r, Xe, £ (r, X, Y,))dr—/ Zaw,
S S
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Decoupling field: definition.

From A. Fromm & P. Imkeller and J. Ma et al. (2015).
Definition

Lette[0,T]. u: [t,T] x Q2 xR — R with u(T,-) =&(-) a.e. is a decoupling
field for the FBSDE (&, (u, o, f)) on[t, T] if:

@ forallti,tb e [t, T|withty < b
@ and any F -measurable X;, : Q2 — R

there exist progressively measurable processes (X, Y,Z) on [t, 2] such that

s
Xo=Xy + | b(r,X;,Y;,Z)ar,
t

tg t2
Ys — Ytz + / F(r, Xr, Yr7Zr)dr - / Z/"(er7
) )

and Ys = u(s, X;) for all s € [t, to].
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Existence and uniqueness result of a decoupling field.

Assumption (SLC):
@ (u, 0, f) are Lipschitz continuous in (x, y, z) with Lipschitz constant L,
Q [[(|ul +f[ +o]) (-,0,0,0)[|, < oo,
Q ¢: QxR — Ris measurable such that ||£(+,0)[|s < o0 and L¢ x < +oo.

Theorem (Fromm & Imkeller (2015))

Let (&, (u, o, f)) satisfy SLC. Then there exists a unique strongly regular
decoupling field u on some interval Inax C [0, T].

Furthermore, either Imax = [0, T] or lnax = (tmin, 7], Where 0 < fin < T. In the
latter case we have

lim Lyt .y x = +o0.
toty U)X
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For our FBSDE in the unconstrained case.

For xo >0
S
Xs = X —/ fy(r, X, Yr)dr, Xs €[0,x], non increasing,

Ys = 9(Xr)+ /f fy(r, X, Yr)) dr—/ Z.dW,

Assumptions:
e f(t,x,y), 9'(x) and (¢, x, f;(t, x, y)) uniformly Lipschitz continuous in
(xy)e[o 20) % [0,00),
@ g'(0) =1£(t0,0) =0 forall w, t,
@ SUP,~0, aca, |Tx(l, X, )] is bounded uniformly in (w, t).

Proposition

» There exists a unique regular decoupling field u on Inax = [0, T] s.t.
u(t,x)=0forallx <0andte [0, T].

» The solution (X, Y,Z) with Ys = u(s, X;) is s.t. X and Y are both
bounded and Xs > 0 for all s € [0, T].
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For the constrained case ?

Extension in two cases: let L be a fixed parameter.

@ Quadratic setting:

e The whole Hessian matrix D?f(s, x, a) of f w.r.t. (x, a) € [0,00) x A is
uniformly bounded independently of (w, s, x, a).
e g(x) = Lx%
Examples:

|a® +2]aP
f(t,x,a) = n o019
( ) =t EES
© Additive power setting: for p <2 and ¢ > 2

f(t,x,a) = melalP + wlx|’,  g(x) = L|x[P.

Note that g is not Lipschitz continuous on [0, 4o0].

A. Popier Optimal targeting position. Berlin, May 18th, 2017.

+%|X|2» f(tvxva):nt|a|2+7f|x|2'

38/41



The scheme.

First step: there exists a solution (X*, Yt, Z%) with decoupling field ut.

Second step: the decoupling field u* is non decreasing w.r.t. L. Let u™ its
limit.
Third step: regularity of u*°:

@ Quadratic case: u* is Lipschitz continuous on [0, T — €] x [0, Xo] for any
e>0.

@ Additive case (p < 2): u™(t,x) = |x[P~'v>(t, x) and v is Lipschitz
continuous on [0, T — ¢] x [0, xo] for any € > 0.

Fourth step: the sequence X’ is non increasing w.r.t. L and its limit X
satisfies:

S
X< = Xo +/ fy(r, XPo, u>(r, XP°))dr, X7 =0.
0

X is an optimal state process.
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The scheme.

First step: there exists a solution (X*, Yt, Z%) with decoupling field ut.

Fourth step: the sequence X’ is non increasing w.r.t. L and its limit X°°
satisfies:

S
X2 = % +/ ££(r, X2 U (r, X)) dr, X3 =0,
0
X is an optimal state process.

Fifth step: the sequence (Y*, ZL) converges on [0, T) x Q and its limit
(Yo°,Z%) satisfiesforany 0 < s <t < T:

YO = ue(s, X)

t
% Yo 4+ /f (r, X2, £i(r x,OO,Y:O))dr—/ Z=dW,.
S
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Thank you for your attention !
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