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Description of our problem.

For x0 2 R, consider A = {↵ : ⌦⇥ [0,T ] ! R 2 L1(0,T ), a.s.} and

X x0,↵
s = x0 �

Z s

0
↵r dr .

Problem: minimize over all ↵ 2 A

J(x0,↵) = E
"Z T

0
f
�
s,X x0,↵

s ,↵s
�

ds + g
�
X x0,↵

T
�
#
.

Two cases:
Unconstrained problem (UP): no condition on X x0,↵

T .
Constrained problem (CP): X x0,↵

T = 0 a.s. �! ↵ 2 A0.
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Almgren & Chriss model (2000).

I Continuous-time extension of the Bertsimas & Lo model (1998).
I Execution strategies have absolutely continuous paths, i.e. the remaining

position size is determined by trading rate ↵s =
.
X s

Xt = x0 +

Z t

0

.
X sds, XT = 0.

I Price impact consists of two components

SX
t = S0

t|{z}
Unaffected price

+�

Z t

0

.
X sds

| {z }
permanent

+ h(
.
X t)| {z }

temporary

.

I Gatheral (2010): this choice of the permanent effect rules out price
manipulation.
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Expected Revenues.

Model:
SX

t = S0
t + �(Xt � x) + h(

.
X t).

Revenues obtained from following X (with XT = 0)

RT (X ) = �
Z T

0
SX

t dXt .

Assume that S0 is a martingale and integrating by parts:

E [RT (X )] = xS0
0|{z}

naive book value

� �
x2

2|{z}
costs entailed by perm impact

� E
"Z T

0
h(

.
X t)

.
X tdt

#

| {z }
costs entailed by temp impact
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(Non exhaustive) literature review.

I Mean-variance optimization:

E[RT (X )]� �Var(RT (X )) ! max

Almgren & Chriss (1999, 2000), Almgren (2003), and Lorenz & Almgren (2011)
I Expected-Utility maximization:

E[u(RT (X ))] ! max

Schied & Schöneborn (2009), Schied, Schöneborn & Tehranchi (2010), ...
I Time-averaged Risk Measures:

E
"

RT (X )�
Z T

0
f (S0

t ,Xt)dt

#
! max

Gatheral & Schied (2011), Ankirchner & Kruse (2012), ...
I Models including a dark pool, multi-agent models, transient impact,

non-aggresive strategies...
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The model: stochastic liquidity.

I Almgren, Hauptmann, Li & Thum (2005): h(x) ⇡ ⌘sgn(x)|x |0.6.

I Temporary impact ⌘ = (⌘t , t � 0): depends on time and is random.

ht(
.
X t) = ⌘tsgn(

.
X t)|

.
X t |p�1

with p > 1 (shape parameter of the order book (e.g. p = 1.6))

Control problem with constraint:

v(x0) = inf
↵2A

E
"Z T

0

�
⌘s|↵s|p + �s|Xs|`

�
ds

#
, XT = 0,

over all ↵ 2 A such

Xs = x0 +

Z s

0
↵r dr .

A. Popier Optimal targeting position. Berlin, May 18th, 2017. 9 / 41



The model: stochastic liquidity.

I Almgren, Hauptmann, Li & Thum (2005): h(x) ⇡ ⌘sgn(x)|x |0.6.

I Temporary impact ⌘ = (⌘t , t � 0): depends on time and is random.

ht(
.
X t) = ⌘tsgn(

.
X t)|

.
X t |p�1

with p > 1 (shape parameter of the order book (e.g. p = 1.6))

Penalized version:

vL(x0) = inf
↵2A

E
"Z T

0

�
⌘s|↵s|p + �s|Xs|`

�
ds + L|XT |%

#
.

Questions: when L % +1, vL(x0) % v(x0) ? Optimal controls ?
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The control problem.

Recall that for x0 2 R, A = {↵ : ⌦⇥ [0,T ] ! R 2 L1(0,T ), a.s.} such that

X x0,↵
s = x0 �

Z s

0
↵r dr

Value function (with or without the constraint on XT ):

v(x0) = inf
↵2A or A0

J(x0,↵) = inf
↵2A or A0

E
"Z T

0
f
�
s,X x0,↵

s ,↵s
�

ds + g(X x0,↵
T )

#

Assumptions (uniformly in ! and t):
(x , a) 7! f (t , x , a) and x 7! g(x) are convex (f being strictly convex in a).
a 7! f (t , x , a), x 7! f (t , x , 0) and x 7! g(x) attain a minimum at zero with
f (t , 0, 0) = g(0) = 0.
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Monotone strategies.
Recall that for x0 2 R, A = {↵ : ⌦⇥ [0,T ] ! R 2 L1(0,T ), a.s.} such that

X x0,↵
s = x0 �

Z s

0
↵r dr

Value function (with or without the constraint on XT ):

v(x0) = inf
↵2A or A0

J(x0,↵) = inf
↵2A or A0

E
"Z T

0
f
�
s,X x0,↵

s ,↵s
�

ds + g(X x0,↵
T )

#

Proposition
Let x0 � 0. For any ↵ 2 A there exists � 2 A such that X x0,� is non-increasing
and non-negative and J(x0,�)  J(x0,↵). If ↵ 2 A is optimal, then
(X x0,↵

s , s 2 [0,T ]) is non-increasing and non-negative.

Remark: equivalent properties hold if x0  0.

I Coherent result with the absence of transaction-triggered price
manipulation (Gatheral & Shied (2011), Alfonsi et al. (2012)).
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Stochastic maximum principle (Bismut (1973),...).
f is coercive:

8(!, t , x , a), f (t , x , a) � b|a|p.
Hamiltonian of our control problem:

H(t , x , a, y) = f (t , x , a)� ay .

Convex conjugate of f (t , x , ·): f ⇤(t , x , ·)
min
a2A

H(t , x , a, y) = �f ⇤(t , x , y).

Optimal closure example

f (t , x , a) = ⌘t |a|p + �t |x |`,
then

f ⇤(t , x , y) =
p � 1

p

✓
1

p⌘t

◆q�1

|y |q � �t |x |`, 1/p + 1/q = 1.
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Stochastic maximum principle (Bismut (1973),...).

Adjoint forward backward SDE: find adapted processes (X ,Y ,Z ) s.t.

Xs = x0 �
Z s

0
f ⇤y (r ,Xr ,Yr )dr ,

Ys = g0(XT ) +

Z T

s
fx(r ,Xr , f ⇤y (r ,Xr ,Yr ))dr �

Z T

s
Zr dWr .

Verification result
If there exists a solution (X ,Y ,Z ) of the FBSDE (with suitable integrability
conditions), then an optimal control is given by

↵s = f ⇤y (s,Xs,Ys), s 2 [0,T ].

Remarks:
Monotone strategy: Xs 2 [0, x0], ↵s � 0.
A dynamic version of this problem can be easily written.
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How to solve a FBSDE ?

Four methods:
1 Fixed-point argument. Works only for small terminal time T .

2 Four-step scheme. Based on PDE arguments and existence of smooth
solutions.

3 Continuation method. Based on a monotonicity condition. Suitable for the
unconstrained problem.

4 Decoupling field. Lipschitz assumptions on the coefficients.

Constrained case XT = 0:
I How can we include this additional condition in the FBSDE ?
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Homogeneous problem.

Constrained control problem: for some p > 1 and for x0 � 0

v(x0) = inf
↵2A

E
"Z T

0
(⌘s|↵s|p + �s|Xs|p) ds

#
, XT = 0

where
Xs = x0 +

Z s

0
↵udu.

Penalized problem:

vL(x0) = inf
↵2A

E
"Z T

0
(⌘s|↵s|p + �s|Xs|p) ds + L|XT |p

#

Heuristics: when L % +1, vL % v .
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Relaxing the liquidation constraint.
Possibility for non closure: instead of XT = 0

Specify a set S ⇢ FT for closure such that: XT 1S = 0;
Penalization on the non closure set Sc .

I Minimize
E(⇠|XT |p) = E(⇠1Sc |XT |p)

with 0 ⇥1 = 0 and a r.v. ⇠ such that
FT -measurable and non negative ;
P(⇠ = +1) > 0 and S = {⇠ = +1} ;
⇠1Sc 2 L1(⌦).

Examples:
binding liquidation: ⇠ = +1 a.s. if and only if XT = 0.
excepted scenarios: ⇠ = 11S with e.g.

S = {maxt2[0,T ] ⌘t  H} for a given threshold H;
S = {

R T
0 ⌘t dt  H}.
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Back to the FBSDE.

Control problem: for x0 > 0

v(x0) = inf
↵2A

E
"Z T

0
(⌘s|↵s|p + �s|Xs|p) ds + ⇠|XT |p

#
.

Here
f (t , x , a) = ⌘s|a|p + �s|x |p, g(x) = ⇠|x |p,

f ⇤(t , x , y) =
p � 1

p

✓
1

p⌘t

◆q�1

|y |q � �t |x |p.

Adjoint forward backward SDE:

Xs = x0 �
Z s

0

✓
1

p⌘r

◆q�1

|Yr |q�1sign (Yr )dr ,

Ys = ⇠p|XT |p�1sign (XT ) +

Z T

s
�r p|Xr |p�1sign (Xr )dr �

Z T

s
Zr dWr .
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Back to the FBSDE.
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v(x0) = inf
↵2A

E
"Z T

0
(⌘s|↵s|p + �s|Xs|p) ds + ⇠|XT |p

#
.
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f (t , x , a) = ⌘s|a|p + �s|x |p, g(x) = ⇠|x |p,

f ⇤(t , x , y) =
p � 1

p

✓
1

p⌘t

◆q�1

|y |q � �t |x |p.

Adjoint forward backward SDE:

Xs = x0 �
Z s

0

✓
1

p⌘r

◆q�1

|Yr |q�1sign (Yr )dr , Xs � 0,

Ys = ⇠p(XT )
p�1 +

Z T

s
�r p(Xr )

p�1dr �
Z T

s
Zr dWr .

A. Popier Optimal targeting position. Berlin, May 18th, 2017. 18 / 41



Back to the FBSDE.

Control problem: for x0 > 0

v(x0) = inf
↵2A

E
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0
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#
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f (t , x , a) = ⌘s|a|p + �s|x |p, g(x) = ⇠|x |p,

f ⇤(t , x , y) =
p � 1
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✓
1

p⌘t

◆q�1

|y |q � �t |x |p.

Adjoint forward backward SDE:

Xs = x0 �
Z s

0

✓
1

p⌘r

◆q�1

(Yr )
q�1dr , Xs � 0,

Ys = ⇠p(XT )
p�1 +

Z T

s
�r p(Xr )

p�1dr �
Z T

s
Zr dWr , Ys � 0.
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Back to the FBSDE.

Adjoint forward backward SDE:

Xs = x0 �
Z s

0

✓
1

p⌘r

◆q�1

(Yr )
q�1dr ,

Ys = ⇠p(XT )
p�1 +

Z T

s
�r p(Xr )

p�1dr �
Z T

s
Zr dWr .

Variable change (while Xs > 0)

Ys = pUs(Xs)
p�1 () Us =

Ys

p(Xs)p�1 () (Ys)
q�1 = pq�1(Us)

q�1Xs.

Itô’s formula:

Us = ⇠ +

Z T

s
�r dr �

Z T

s
(p � 1)

✓
1
⌘r

◆q�1 (Yr )q

pq(Xr )p
| {z }

=Uq
r

dr �
Z T

s

Zr

p(Xr )p�1 dWr
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Back to the FBSDE.

Control problem: for x0 > 0

v(x0) = inf
↵2A

E
"Z T

0
(⌘s|↵s|p + �s|Xs|p) ds + ⇠|XT |p

#

Decoupled forward backward SDE:

Xs = x0 �
Z s

0

✓
1
⌘r

◆q�1

(Ur )
q�1Xr dr ,

Us = ⇠ +

Z T

s
�r dr �

Z T

s
(p � 1)

✓
1
⌘r

◆q�1

(Ur )
qdr �

Z T

s
Vr dWr

Ys = u(s,Xs), u(!, s, x) = pUs(!)xp�1

Last equation = decoupling field.
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Our aim & related literature.
Value function: for x0 � 0

v(x0) = inf
↵2A

E
"Z T

0
(⌘s|↵s|p + �s|Xs|p) ds + ⇠|XT |p

#

I Related (non exhaustive) literature: ⇠ = +1.
Ankirchner, Jeanblanc & Kruse (2013). Brownian framework.

Schied (2013). Solves a variant of this problem in a Markovian framework
using superprocesses.

Graewe, Horst & Qiu (2015). Analyze both Markovian and non-Markovian
dependence of the coefficients by means of BSPDEs.

Bank & Voss (2016). Optimal tracking problems.

I Aims:
Relax the constraint at terminal time.
No assumption on the filtration (except completeness and right-continuity)
�! Knightian uncertainty.
Extension to random terminal time ⌧ .
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Backward stochastic differential equations.

Given
a filtered probability space (⌦,F ,P, (Ft)t�0),
a terminal time T > 0 and a final condition ⇠ s.t. ⇠ is a FT -measurable r.v.

Solve the ODE:

8t 2 [0,T ], yt = ⇠ +

Z T

t
 (s, ys)ds ) yt is FT � measurable.

Particular case: ⇠ 2 L1 et  ⌘ 0 ) yt = ⇠. Best adapted approximation:

Yt = E(yt |Ft) = E(⇠|Ft) = Mt = martingale

= ⇠ �
Z T

t
dMs, Y càdlàg process.
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Definition of a BSDE
A BSDE is an equation of the following type:

8t 2 [0,T ], Yt = ⇠ +

Z T

t
�(r ,Yr )dr �

Z T

t
dMs.

Data:
T : (deterministic) terminal time.
 : ⌦⇥ [0,T ]⇥ R ! R: generator.
⇠: terminal condition: an FT -measurable random variable, with values in
R.

Unknowns: (Yt ,Mt)0tT .

In our case:

 (t , y) = �(p � 1)
|y |q�1

(⌘t)q�1 y + �t and P(⇠ = +1) > 0.
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Assumptions.

Singular BSDE: for ⇠ � 0 with P(⇠ = +1) > 0

Us = ⇠ +

Z T

s

"
�(p � 1)

✓
1
⌘r

◆q�1

|Ur |q�1Ur + �r

#
dr �

Z T

s
dMr .

Assumptions:
I Positivity. 0 < ⌘t < +1, 0  �t  +1, 0  �t < +1.

I Integrability. For some ` > 1

E
"Z T

0
(⌘t + (T � t)p�t)

`dt

#
< 1 and E

"Z T

0

1
⌘q�1

t

dt

#
< 1.

First condition: sufficient to obtain a priori estimate.
Second condition: necessary to ensure existence of a optimal control.

I Left continuity of the filtration at time T (avoid thin time case).
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Existence and verification result (T.K. & A.P., SPA 2016).

Theorem
There exists a minimal (super-)solution of the singular BSDE (U,M), in the
sense that (U,M) satisfies the dynamics and some integrability conditions on
[0,T � "] for any " > 0 and

P� a.s. lim inf
t!T

Ut � ⇠.

Then the value function is given by:

v(x0) = U0|x0|p,

and an optimal control is given by:

X ⇤
s = x0 �

Z s

0

✓
Ur

⌘r

◆q�1

X ⇤
r dr = x0 exp

"
�
Z s

0

✓
Ur

⌘r

◆q�1

dr

#
.

X ⇤ belongs to A(x0), satisfies the terminal state constraint X ⇤
T 1⇠=+1 = 0.
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Extensions.

Dark-pool trading. BSDE with unknows (U,�,M)

Ut = ⇠ � (p � 1)
Z T

t


Uq

s

⌘q�1
s

�
ds +

Z T

t
�sds �

Z T

t
#(s,Us,�s)ds

�
Z T

t

Z

E
�s(e)e⇡(ds, de)�

Z T

t
dMs.

Random terminal time T = exit time of a continuous diffusion.
Existence of an a priori estimate ⇡ Keller-Osserman inequality.

Example: T = inf{t � 0,S0
t  H}.

U càdlàg on [0,T ]. The left limit at time T exists (A.P., ESAIM P&S, ’16).
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Knightian uncertainty.

An old concept : Knight (1921). Distinction between risk vs uncertainty.
From a single probability P to a set of probability P.

Quantitative finance: model risk. Given recent market behaviour, this has
become a very acute and concrete problematic for practitioners and risk
managers.
Economics: theory of decision under uncertainty, monetary policy,
psychology and behaviour of investors during period of stress.

I Triggered development of new mathematical tools.
Quasi-sure stochastic analysis, non-linear expectations, G-Brownian
motions, second order BSDE.
See among many others Peng (2010-2011), Denis and Martini (2006),
Soner et al. (2011), ...
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Uncertainty and expected utility.

How to model and represent preferences of agents under uncertainty ?
von Neumann and Morgenstern (1947):

sup
X

EPO U(X ).

PO is the objective probability (fixed). Allais Paradox.
Savage (1954): supX EPS U(X ). PS is a subjective probability. Ellsberg
Paradox.
Gilboa and Schmeidler (1989): supX infP2P EPU(X ). P range of all
possible subjective beliefs : worst case expected utility.

How do we model uncertainty ?
A set of probability P on a measurable space (⌦,F) which is non-dominated
(different models do not agree on null-event).

Warning: several classical tools may be false !
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Typical example.

Brownian motion with drift and volatility

Xt = x0 + �Wt + µt , law of X = Pµ,�.

For a given � > 0, Girsanov theorem: Xt = x0 + �fWt

8µ 2 R, Pµ,� << P0,�.

Pµ,�

⇥
quadratic variation of (Xt , 0  t  T ) = �2T

⇤
= 1.

Monotone convergence theorem: counter example

P = {P0,
p

p, p 2 N⇤}, Yn = (W1)
2/n.

Yn # 0, P-a.s., for any P 2 P and EPp(Yn) =
p
n .

Hence supP2P EP(Yn) = +1.
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Liquidation under uncertainty

Minimize the expected execution costs under P

J(t ,X ,P) = EP
"Z T

t
(⌘s|↵s|p + �s|Xs|p) ds + ⇠|XT |p

����Ft

#

Define
v(t , x0) = essinf

X2A0(t,x0)
esssup

P2Pt

J(t ,X ,P)

where A0(t , x0) the set of admissible controls X 2 A(t , x0) such that

Xs = x0 +

Z s

t
↵sds, XT 1S = 0, P � q.s.

Idea: consider

esssup
P2Pt

essinf
X2A0

P(t,x0)
J(t ,X ,P) = |x0|p esssup

P2Pt

UP
t  v(t , x0)

where UP solution of the related singular BSDE under P.
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Second order BSDE: setting

Setting: ⌦ = C([0,T ],Rd ) and
I long and boring description ! But important to be able to control the

negligible sets.
Example: P = {Pa} with:

Pa = P0 � (Xa)�1, Xa
t =

Z t

0
a1/2

s dXs

for all processes a of the form

as =
1X

n=0

1X

i=1

an
i (s)1En

i
1[⌧n,⌧n+1)(s),

(an
i )i,n are deterministic mappings such that 0 < a  an

i (t) for any t � 0,
(⌧n)n is a nondecreasing sequence of stopping times with ⌧0 = 0
for each n, {En

i , i � 1} ⇢ F⌧n forms a partition of ⌦.
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Second order BSDE (2BSDE).
We consider the 2BSDE

Yt = ⇠+

Z T

t
 (u,X·^u,Yu, a

1/2
u Zu, au, bP

u )du�
Z T

t
ZudXc,P

u �
Z T

t
dMP

u +

Z T

t
dK P

u .

Definition
(Y ,Z ,MP,K P) is a solution if

the 2BSDE is satisfied P-q.s., that is P-a.s. for any P 2 P.
the family (K P, P 2 P) satisfies some minimality condition.

Roughly speaking:
Yt = essupP2Pt

Y P
t .

Literature for square integrable ⇠:
Soner, Touzi & Zhang (2011-2013). Lipschitz generator.
Possamaï (2013). Monotone generator with linear growth.
Possamaï, Tan & Zhou (2016).
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Control problem with uncertainty.
2BSDE: Ut = esssup

P2Pt

UP
t solves for any P 2 P and 0  s  t < T :

Us = Ut �
Z t

s
(p � 1)

Uq
r

(⌘r )q�1 du +

Z t

s
�r dr �

Z t

s
dMP

r +

Z t

s
dK P

r

where
MP is a martingale,
K P is non decreasing under P and with a minimality condition on the
family (K P, P 2 P) (⇡ Skorokhod condition).

Quasi surely,
lim inf

t!T
Ut � ⇠.

Optimality: v(t , x0) = |x0|pUt with an optimal state process:

X ⇤
s = x0 �

Z s

t

✓
Ur

⌘r

◆q�1

X ⇤
r dr .
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Outline

1 Introduction: optimal targeting position
Motivation: optimal closure
Monotone strategy and forward backward SDE

2 Homogeneous case (with T. Kruse)

3 Knightian uncertainty (with C. Zhou)

4 Non homogeneous case (with S. Ankirchner, A. Fromm & T. Kruse)
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Back to the general case.

For x0 � 0, A = {↵ : ⌦⇥ [0,T ] ! R 2 L1(0,T ) a.s.} such that

X x0,↵
s = x0 �

Z s

0
↵r dr

And

v(x0) = inf
↵2A

E
"Z T

0
f
�
s,X x0,↵

s ,↵s
�

ds + g(X x0,↵
T )

#

Adjoint forward backward SDE:

Xs = x0 �
Z s

0
f ⇤y (r ,Xr ,Yr )dr , Xs 2 [0, x ], non increasing,

Ys = g0(XT ) +

Z T

s
fx(r ,Xr , f ⇤y (r ,Xr ,Yr ))dr �

Z T

s
Zr dWr
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Decoupling field: definition.

From A. Fromm & P. Imkeller and J. Ma et al. (2015).

Definition
Let t 2 [0,T ]. u : [t ,T ]⇥ ⌦⇥ R ! R with u(T , ·) = ⇠(·) a.e. is a decoupling
field for the FBSDE (⇠, (µ,�, f )) on [t ,T ] if:

for all t1, t2 2 [t ,T ] with t1  t2
and any Ft1 -measurable Xt1 : ⌦! R

there exist progressively measurable processes (X ,Y ,Z ) on [t1, t2] such that

Xs = Xt1 +

Z s

t1
b(r ,Xr ,Yr ,Zr )dr ,

Ys = Yt2 +

Z t2

s
F (r ,Xr ,Yr ,Zr )dr �

Z t2

s
Zr dWr ,

and Ys = u(s,Xs) for all s 2 [t1, t2].
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Existence and uniqueness result of a decoupling field.

Assumption (SLC):
1 (µ,�, f ) are Lipschitz continuous in (x , y , z) with Lipschitz constant L,
2 k(|µ|+ |f |+ |�|) (·, ·, 0, 0, 0)k1 < 1,
3 ⇠ : ⌦⇥ R ! R is measurable such that k⇠(·, 0)k1 < 1 and L⇠,x < +1.

Theorem (Fromm & Imkeller (2015))
Let (⇠, (µ,�, f )) satisfy SLC. Then there exists a unique strongly regular
decoupling field u on some interval Imax ⇢ [0,T ].

Furthermore, either Imax = [0,T ] or Imax = (tmin,T ], where 0  tmin < T . In the
latter case we have

lim
t#tmin

Lu(t,·),x = +1.
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For our FBSDE in the unconstrained case.
For x0 � 0

Xs = x0 �
Z s

0
f ⇤y (r ,Xr ,Yr )dr , Xs 2 [0, x ], non increasing,

Ys = g0(XT ) +

Z T

s
fx(r ,Xr , f ⇤y (r ,Xr ,Yr ))dr �

Z T

s
Zr dWr

Assumptions:
f ⇤y (t , x , y), g0(x) and fx(t , x , f ⇤y (t , x , y)) uniformly Lipschitz continuous in
(x , y) 2 [0,1)⇥ [0,1),
g0(0) = fx(t , 0, 0) = 0 for all !, t ,
supx�0, a2A+

|fxx(t , x , a)| is bounded uniformly in (!, t).

Proposition
I There exists a unique regular decoupling field u on Imax = [0,T ] s.t.

u(t , x) = 0 for all x  0 and t 2 [0,T ].
I The solution (X ,Y ,Z ) with Ys = u(s,Xs) is s.t. X and Y are both

bounded and Xs > 0 for all s 2 [0,T ].
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For the constrained case ?

Extension in two cases: let L be a fixed parameter.

1 Quadratic setting:
The whole Hessian matrix D2f (s, x , a) of f w.r.t. (x , a) 2 [0,1)⇥ A+ is
uniformly bounded independently of (!, s, x , a).
g(x) = Lx2.

Examples:

f (t , x , a) = ⌘t
|a|3 + 2|a|2
|a|+ 1

+ �t |x |2, f (t , x , a) = ⌘t |a|2 + �t |x |2.

2 Additive power setting: for p  2 and ` � 2

f (t , x , a) = ⌘t |a|p + �t |x |`, g(x) = L|x |p.

Note that g is not Lipschitz continuous on [0,+1[.
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The scheme.
First step: there exists a solution (X L,Y L,Z L) with decoupling field uL.

Second step: the decoupling field uL is non decreasing w.r.t. L. Let u1 its
limit.

Third step: regularity of u1:
Quadratic case: u1 is Lipschitz continuous on [0,T � "]⇥ [0, x0] for any
" > 0.
Additive case (p < 2): u1(t , x) = |x |p�1v1(t , x) and v1 is Lipschitz
continuous on [0,T � "]⇥ [0, x0] for any " > 0.

Fourth step: the sequence X L is non increasing w.r.t. L and its limit X1

satisfies:

X1
s = x0 +

Z s

0
f ⇤y (r ,X

1
r , u1(r ,X1

r ))dr , X1
T = 0.

X1 is an optimal state process.
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The scheme.

First step: there exists a solution (X L,Y L,Z L) with decoupling field uL.

Fourth step: the sequence X L is non increasing w.r.t. L and its limit X1

satisfies:

X1
s = x0 +

Z s

0
f ⇤y (r ,X

1
r , u1(r ,X1

r ))dr , X1
T = 0.

X1 is an optimal state process.

Fifth step: the sequence (Y L,Z L) converges on [0,T )⇥ ⌦ and its limit
(Y1,Z1) satisfies for any 0  s  t < T :

Y1
s = u1(s,X1

s )

Y1
s = Y1

t +

Z t

s
fx(r ,X1

r , f ⇤y (r ,X
1
r ,Y1

r ))dr �
Z t

s
Z1

r dWr .
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Thank you for your attention !
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