Optimal targeting position

and (forward) backward stochastic differential equation.

Based on joint works with

S. Ankirchner & A. Fromm (Jena), T. Kruse (Essen), C. Zhou (Singapore).

Seminar

"Stochastic Analysis and Stochastics of Financial Markets"

Berlin

May 18th, 2017.

Outline

- 1 Introduction: optimal targeting position
 - Motivation: optimal closure
 - Monotone strategy and forward backward SDE
- Homogeneous case (with T. Kruse)
- 3 Knightian uncertainty (with C. Zhou)
- 4 Non homogeneous case (with S. Ankirchner, A. Fromm & T. Kruse)

Outline

- 1 Introduction: optimal targeting position
 - Motivation: optimal closure
 - Monotone strategy and forward backward SDE
- 2 Homogeneous case (with T. Kruse)
- 3 Knightian uncertainty (with C. Zhou)
- 4 Non homogeneous case (with S. Ankirchner, A. Fromm & T. Kruse)

Description of our problem.

For $x_0 \in \mathbb{R}$, consider $\mathcal{A} = \{\alpha : \Omega \times [0, T] \to \mathbb{R} \in L^1(0, T), \text{ a.s.} \}$ and

$$X_s^{x_0,\alpha}=x_0-\int_0^s\alpha_rdr.$$

Problem: minimize over all $\alpha \in \mathcal{A}$

$$J(x_0,lpha) = \mathbb{E}\left[\int_0^T f\left(s,X_s^{x_0,lpha},lpha_s
ight) ds + g\left(X_T^{x_0,lpha}
ight)
ight].$$

Two cases:

- Unconstrained problem (UP): no condition on $X_T^{x_0,\alpha}$.
- Constrained problem (CP): $X_T^{x_0,\alpha} = 0$ a.s. $\longrightarrow \alpha \in \mathcal{A}^0$.

Plan

- 1 Introduction: optimal targeting position
 - Motivation: optimal closure
 - Monotone strategy and forward backward SDE
- 2 Homogeneous case (with T. Kruse)
- 3 Knightian uncertainty (with C. Zhou)
- 4 Non homogeneous case (with S. Ankirchner, A. Fromm & T. Kruse)

Almgren & Chriss model (2000).

- Continuous-time extension of the Bertsimas & Lo model (1998).
- **Execution strategies** have absolutely continuous paths, i.e. the remaining position size is determined by trading rate $\alpha_s = \dot{X}_s$

$$X_t = x_0 + \int_0^t \dot{X}_s ds, \quad X_T = 0.$$

Price impact consists of two components

$$S_t^X = \underbrace{S_t^0}_{\text{Unaffected price}} + \lambda \underbrace{\int_0^t \dot{X}_s ds}_{\text{permanent}} + \underbrace{h(\dot{X}_t)}_{\text{temporary}}.$$

Gatheral (2010): this choice of the permanent effect rules out price manipulation.

Expected Revenues.

Model:

$$S_t^X = S_t^0 + \lambda(X_t - x) + h(\dot{X}_t).$$

Revenues obtained from following X (with $X_T = 0$)

$$R_T(X) = -\int_0^T S_t^X dX_t.$$

Assume that S^0 is a martingale and integrating by parts:

$$\mathbb{E}\left[R_T(X)\right] = \underbrace{xS_0^0}_{\text{naive book value}} - \underbrace{\lambda \frac{x^2}{2}}_{\text{costs entailed by perm impact}} - \underbrace{\mathbb{E}\left[\int_0^T h(\dot{X}_t)\dot{X}_t dt\right]}_{\text{costs entailed by temp impact}}$$

(Non exhaustive) literature review.

Mean-variance optimization:

$$\mathbb{E}[R_T(X)] - \delta \text{Var}(R_T(X)) \to \text{max}$$

Almgren & Chriss (1999, 2000), Almgren (2003), and Lorenz & Almgren (2011)

► Expected-Utility maximization:

$$\mathbb{E}[u(R_T(X))] \to \max$$

Schied & Schöneborn (2009), Schied, Schöneborn & Tehranchi (2010), ...

► Time-averaged Risk Measures:

$$\mathbb{E}\left[R_T(X) - \int_0^T f(S_t^0, X_t) dt\right] \to \max$$

Gatheral & Schied (2011), Ankirchner & Kruse (2012), ...

Models including a dark pool, multi-agent models, transient impact, non-aggresive strategies...

The model: stochastic liquidity.

- ▶ Almgren, Hauptmann, Li & Thum (2005): $h(x) \approx \eta sgn(x)|x|^{0.6}$.
- ▶ Temporary impact $\eta = (\eta_t, t \ge 0)$: depends on time and is random.

$$h_t(\dot{X}_t) = \frac{\eta_t}{\eta_t} \operatorname{sgn}(\dot{X}_t) |\dot{X}_t|^{p-1}$$

with p > 1 (shape parameter of the order book (e.g. p = 1.6))

Control problem with constraint:

$$v(x_0) = \inf_{\alpha \in \mathcal{A}} \mathbb{E} \left[\int_0^T \left(\eta_s |\alpha_s|^p + \gamma_s |X_s|^\ell \right) ds \right], \quad \mathbf{X}_T = \mathbf{0},$$

over all $\alpha \in A$ such

$$X_s = x_0 + \int_0^s \alpha_r dr.$$

The model: stochastic liquidity.

- ► Almgren, Hauptmann, Li & Thum (2005): $h(x) \approx \eta sgn(x)|x|^{0.6}$.
- ▶ Temporary impact $\eta = (\eta_t, t \ge 0)$: depends on time and is random.

$$h_t(\dot{X}_t) = \frac{\eta_t}{\eta_t} \operatorname{sgn}(\dot{X}_t) |\dot{X}_t|^{p-1}$$

with p > 1 (shape parameter of the order book (e.g. p = 1.6))

Penalized version:

$$v^{L}(x_0) = \inf_{\alpha \in \mathcal{A}} \mathbb{E}\left[\int_0^T \left(\eta_s |\alpha_s|^p + \gamma_s |X_s|^\ell\right) ds + \frac{L|X_T|^\varrho}{}\right].$$

Questions: when $L \nearrow +\infty$, $v^L(x_0) \nearrow v(x_0)$? Optimal controls?

Plan

- 1 Introduction: optimal targeting position
 - Motivation: optimal closure
 - Monotone strategy and forward backward SDE
- 2 Homogeneous case (with T. Kruse)
- 3 Knightian uncertainty (with C. Zhou)
- 4 Non homogeneous case (with S. Ankirchner, A. Fromm & T. Kruse)

The control problem.

Recall that for $x_0 \in \mathbb{R}$, $\mathcal{A} = \{\alpha : \Omega \times [0, T] \to \mathbb{R} \in L^1(0, T), \text{ a.s.} \}$ such that

$$X_s^{x_0,\alpha} = x_0 - \int_0^s \alpha_r dr$$

Value function (with or without the constraint on X_T):

$$v(x_0) = \inf_{\alpha \in \mathcal{A} \text{ or } \mathcal{A}^0} J(x_0, \alpha) = \inf_{\alpha \in \mathcal{A} \text{ or } \mathcal{A}^0} \mathbb{E} \left[\int_0^T f\left(s, X_s^{x_0, \alpha}, \alpha_s\right) ds + g(X_T^{x_0, \alpha}) \right]$$

Assumptions (uniformly in ω and t):

- $(x, a) \mapsto f(t, x, a)$ and $x \mapsto g(x)$ are convex (f being strictly convex in a).
- $a \mapsto f(t, x, a)$, $x \mapsto f(t, x, 0)$ and $x \mapsto g(x)$ attain a minimum at zero with f(t, 0, 0) = g(0) = 0.

Monotone strategies.

Recall that for $x_0 \in \mathbb{R}$, $\mathcal{A} = \{\alpha : \Omega \times [0, T] \to \mathbb{R} \in L^1(0, T), \text{ a.s.} \}$ such that

$$X_s^{x_0,\alpha} = x_0 - \int_0^s \alpha_r dr$$

Value function (with or without the constraint on X_T):

$$v(x_0) = \inf_{\alpha \in \mathcal{A} \text{ or } \mathcal{A}^0} J(x_0, \alpha) = \inf_{\alpha \in \mathcal{A} \text{ or } \mathcal{A}^0} \mathbb{E} \left[\int_0^T f\left(s, X_s^{x_0, \alpha}, \alpha_s\right) ds + g(X_T^{x_0, \alpha}) \right]$$

Proposition

Let $x_0 \geq 0$. For any $\alpha \in \mathcal{A}$ there exists $\beta \in \mathcal{A}$ such that $X^{x_0,\beta}$ is non-increasing and non-negative and $J(x_0,\beta) \leq J(x_0,\alpha)$. If $\alpha \in \mathcal{A}$ is optimal, then $(X_s^{x_0,\alpha},\ s \in [0,T])$ is non-increasing and non-negative.

Remark: equivalent properties hold if $x_0 \le 0$.

► Coherent result with the absence of transaction-triggered price manipulation (Gatheral & Shied (2011), Alfonsi et al. (2012)).

Stochastic maximum principle (Bismut (1973),...).

f is coercive:

$$\forall (\omega, t, x, a), \quad f(t, x, a) \geq b|a|^{p}.$$

Hamiltonian of our control problem:

$$\mathcal{H}(t,x,a,y)=f(t,x,a)-ay.$$

Convex conjugate of $f(t, x, \cdot)$: $f^*(t, x, \cdot)$

$$\min_{a\in A}\mathcal{H}(t,x,a,y)=-f^*(t,x,y).$$

Optimal closure example

$$f(t, x, a) = \eta_t |a|^p + \gamma_t |x|^\ell,$$

then

$$f^*(t,x,y) = \frac{p-1}{p} \left(\frac{1}{p\eta_t}\right)^{q-1} |y|^q - \gamma_t |x|^\ell, \quad 1/p + 1/q = 1.$$

Stochastic maximum principle (Bismut (1973),...).

Adjoint forward backward SDE: find adapted processes (X, Y, Z) s.t.

$$X_{s} = x_{0} - \int_{0}^{s} f_{y}^{*}(r, X_{r}, Y_{r}) dr,$$

$$Y_{s} = g'(X_{T}) + \int_{s}^{T} f_{x}(r, X_{r}, f_{y}^{*}(r, X_{r}, Y_{r})) dr - \int_{s}^{T} Z_{r} dW_{r}.$$

Verification result

If there exists a solution (X, Y, Z) of the FBSDE (with suitable integrability conditions), then an optimal control is given by

$$\alpha_s = f_v^*(s, X_s, Y_s), \quad s \in [0, T].$$

Remarks:

- Monotone strategy: $X_s \in [0, x_0], \alpha_s \ge 0$.
- A dynamic version of this problem can be easily written.

How to solve a FBSDE?

Four methods:

- Fixed-point argument. Works only for small terminal time *T*.
- Four-step scheme. Based on PDE arguments and existence of smooth solutions.
- Ontinuation method. Based on a monotonicity condition. Suitable for the unconstrained problem.
- Decoupling field. Lipschitz assumptions on the coefficients.

Constrained case $X_T = 0$:

▶ How can we include this additional condition in the FBSDE?

Outline

- Introduction: optimal targeting position
 - Motivation: optimal closure
 - Monotone strategy and forward backward SDE
- 2 Homogeneous case (with T. Kruse)
- 3 Knightian uncertainty (with C. Zhou)
- 4 Non homogeneous case (with S. Ankirchner, A. Fromm & T. Kruse)

Homogeneous problem.

Constrained control problem: for some p > 1 and for $x_0 \ge 0$

$$v(x_0) = \inf_{\alpha \in \mathcal{A}} \mathbb{E} \left[\int_0^T (\eta_s |\alpha_s|^p + \gamma_s |X_s|^p) \, ds \right], \quad X_T = 0$$

where

$$X_s = x_0 + \int_0^s \alpha_u du.$$

Penalized problem:

$$v^{L}(x_{0}) = \inf_{\alpha \in \mathcal{A}} \mathbb{E} \left[\int_{0}^{T} (\eta_{s} |\alpha_{s}|^{p} + \gamma_{s} |X_{s}|^{p}) ds + L|X_{T}|^{p} \right]$$

Heuristics: when $L \nearrow +\infty$, $v^L \nearrow v$.

Relaxing the liquidation constraint.

Possibility for non closure: instead of $X_T = 0$

- Specify a set $S \subset \mathcal{F}_T$ for closure such that: $X_T \mathbf{1}_S = \mathbf{0}$;
- Penalization on the non closure set S^c .
- ► Minimize

$$\mathbb{E}(\xi|X_T|^p) = \mathbb{E}(\xi \mathbf{1}_{S^c}|X_T|^p)$$

with $0 \times \infty = 0$ and a r.v. ξ such that

- \mathcal{F}_T -measurable and non negative ;
- $\mathbb{P}(\xi = +\infty) > 0$ and $S = \{\xi = +\infty\}$;
- $\xi \mathbf{1}_{S^c} \in L^1(\Omega)$.

Examples:

- binding liquidation: $\xi = +\infty$ a.s. if and only if $X_T = 0$.
- **excepted scenarios:** $\xi = \infty \mathbf{1}_{\mathcal{S}}$ with e.g.
 - $S = \{ \max_{t \in [0,T]} \eta_t \leq H \}$ for a given threshold H;
 - $S = \{ \int_0^T \eta_t dt \le H \}.$

Control problem: for $x_0 > 0$

$$v(x_0) = \inf_{\alpha \in \mathcal{A}} \mathbb{E} \left[\int_0^T (\eta_s |\alpha_s|^p + \gamma_s |X_s|^p) \, ds + \xi |X_T|^p \right].$$

Here

$$f(t,x,a) = \eta_s |a|^p + \gamma_s |x|^p, \quad g(x) = \xi |x|^p,$$

$$f^*(t,x,y) = \frac{p-1}{p} \left(\frac{1}{p\eta_t}\right)^{q-1} |y|^q - \gamma_t |x|^p.$$

Adjoint forward backward SDE:

$$X_{s} = x_{0} - \int_{0}^{s} \left(\frac{1}{p\eta_{r}}\right)^{q-1} |Y_{r}|^{q-1} \operatorname{sign}(Y_{r}) dr,$$

$$Y_{s} = \xi p |X_{T}|^{p-1} \operatorname{sign}(X_{T}) + \int_{s}^{T} \gamma_{r} p |X_{r}|^{p-1} \operatorname{sign}(X_{r}) dr - \int_{s}^{T} Z_{r} dW_{r}.$$

Control problem: for $x_0 > 0$

$$v(x_0) = \inf_{\alpha \in \mathcal{A}} \mathbb{E} \left[\int_0^T (\eta_s |\alpha_s|^p + \gamma_s |X_s|^p) \, ds + \xi |X_T|^p \right].$$

Here

$$f(t,x,a) = \eta_s |a|^p + \gamma_s |x|^p, \quad g(x) = \xi |x|^p,$$

$$f^*(t,x,y) = \frac{p-1}{p} \left(\frac{1}{p\eta_t}\right)^{q-1} |y|^q - \gamma_t |x|^p.$$

Adjoint forward backward SDE:

$$X_{s} = x_{0} - \int_{0}^{s} \left(\frac{1}{p\eta_{r}}\right)^{q-1} |Y_{r}|^{q-1} \operatorname{sign}(Y_{r}) dr, \quad X_{s} \geq 0,$$

$$Y_{s} = \xi p(X_{T})^{p-1} + \int_{s}^{T} \gamma_{r} p(X_{r})^{p-1} dr - \int_{s}^{T} Z_{r} dW_{r}.$$

Control problem: for $x_0 > 0$

$$v(x_0) = \inf_{\alpha \in \mathcal{A}} \mathbb{E} \left[\int_0^T (\eta_s |\alpha_s|^p + \gamma_s |X_s|^p) \, ds + \xi |X_T|^p \right].$$

Here

$$f(t,x,a) = \eta_s |a|^p + \gamma_s |x|^p, \quad g(x) = \xi |x|^p,$$

$$f^*(t,x,y) = \frac{p-1}{p} \left(\frac{1}{p\eta_t}\right)^{q-1} |y|^q - \gamma_t |x|^p.$$

Adjoint forward backward SDE:

$$X_{s} = x_{0} - \int_{0}^{s} \left(\frac{1}{p\eta_{r}}\right)^{q-1} (Y_{r})^{q-1} dr, \quad X_{s} \geq 0,$$

$$Y_{s} = \xi p(X_{T})^{p-1} + \int_{s}^{T} \gamma_{r} p(X_{r})^{p-1} dr - \int_{s}^{T} Z_{r} dW_{r}, \quad Y_{s} \geq 0.$$

Adjoint forward backward SDE:

$$X_{s} = x_{0} - \int_{0}^{s} \left(\frac{1}{p\eta_{r}}\right)^{q-1} (Y_{r})^{q-1} dr,$$

$$Y_{s} = \xi p(X_{T})^{p-1} + \int_{s}^{T} \gamma_{r} p(X_{r})^{p-1} dr - \int_{s}^{T} Z_{r} dW_{r}.$$

Variable change (while $X_s > 0$)

$$Y_s = pU_s(X_s)^{p-1} \Longleftrightarrow U_s = \frac{Y_s}{p(X_s)^{p-1}} \Longleftrightarrow (Y_s)^{q-1} = p^{q-1}(U_s)^{q-1}X_s.$$

Itô's formula:

$$U_s = \xi + \int_s^T \gamma_r dr - \int_s^T (p-1) \left(\frac{1}{\eta_r}\right)^{q-1} \underbrace{\frac{(Y_r)^q}{p^q(X_r)^p}}_{=U_r^q} dr - \int_s^T \frac{Z_r}{p(X_r)^{p-1}} dW_r$$

Control problem: for $x_0 > 0$

$$v(x_0) = \inf_{\alpha \in \mathcal{A}} \mathbb{E} \left[\int_0^T (\eta_s |\alpha_s|^p + \gamma_s |X_s|^p) \, ds + \xi |X_T|^p \right]$$

Decoupled forward backward SDE:

$$X_{s} = X_{0} - \int_{0}^{s} \left(\frac{1}{\eta_{r}}\right)^{q-1} (U_{r})^{q-1} X_{r} dr,$$

$$U_{s} = \xi + \int_{s}^{T} \gamma_{r} dr - \int_{s}^{T} (p-1) \left(\frac{1}{\eta_{r}}\right)^{q-1} (U_{r})^{q} dr - \int_{s}^{T} V_{r} dW_{r}$$

$$Y_{s} = u(s, X_{s}), \quad u(\omega, s, x) = pU_{s}(\omega) x^{p-1}$$

Last equation = decoupling field.

Our aim & related literature.

Value function: for $x_0 \ge 0$

$$v(x_0) = \inf_{\alpha \in \mathcal{A}} \mathbb{E} \left[\int_0^T (\eta_s |\alpha_s|^p + \gamma_s |X_s|^p) \, ds + \xi |X_T|^p \right]$$

- ▶ Related (non exhaustive) literature: $\xi = +\infty$.
 - Ankirchner, Jeanblanc & Kruse (2013). Brownian framework.
 - Schied (2013). Solves a variant of this problem in a Markovian framework using superprocesses.
 - Graewe, Horst & Qiu (2015). Analyze both Markovian and non-Markovian dependence of the coefficients by means of BSPDEs.
 - Bank & Voss (2016). Optimal tracking problems.
- ► Aims:
 - Relax the constraint at terminal time.
 - No assumption on the filtration (except completeness and right-continuity)
 Knightian uncertainty.
 - Extension to random terminal time τ .

Backward stochastic differential equations.

Given

- a filtered probability space $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t \geq 0})$,
- a terminal time T > 0 and a final condition ξ s.t. ξ is a \mathcal{F}_T -measurable r.v.

Solve the ODE:

$$\forall t \in [0, T], \quad y_t = \xi + \int_t^T \Psi(s, y_s) ds \Rightarrow y_t \text{ is } \mathcal{F}_T - \text{measurable.}$$

Particular case: $\xi \in L^1$ et $\Psi \equiv 0 \Rightarrow y_t = \xi$. Best adapted approximation:

Definition of a BSDE

A BSDE is an equation of the following type:

$$\forall t \in [0, T], \quad Y_t = \xi + \int_t^T \phi(r, Y_r) dr - \int_t^T dM_s.$$

Data:

- T: (deterministic) terminal time.
- $\Psi : \Omega \times [0, T] \times \mathbb{R} \to \mathbb{R}$: generator.
- ξ : terminal condition: an \mathcal{F}_T -measurable random variable, with values in \mathbb{R} .

Unknowns: $(Y_t, M_t)_{0 \le t \le T}$.

In our case:

$$\Psi(t,y)=-(p-1)rac{|y|^{q-1}}{(n_t)^{q-1}}y+\gamma_t \quad ext{ and } \quad \mathbb{P}(\xi=+\infty)>0.$$

Assumptions.

Singular BSDE: for $\xi \ge 0$ with $\mathbb{P}(\xi = +\infty) > 0$

$$U_s = \xi + \int_s^T \left[-(p-1) \left(\frac{1}{\eta_r} \right)^{q-1} |U_r|^{q-1} U_r + \gamma_r \right] dr - \int_s^T dM_r.$$

Assumptions:

- ▶ Positivity. $0 < \eta_t < +\infty$, $0 \le \lambda_t \le +\infty$, $0 \le \gamma_t < +\infty$.
- ▶ Integrability. For some $\ell > 1$

$$\mathbb{E}\left[\int_0^T (\eta_t + (T-t)^p \gamma_t)^\ell dt\right] < \infty \quad \text{ and } \quad \mathbb{E}\left[\int_0^T \frac{1}{\eta_t^{q-1}} dt\right] < \infty.$$

- First condition: sufficient to obtain a priori estimate.
- Second condition: necessary to ensure existence of a optimal control.
- ▶ Left continuity of the filtration at time *T* (avoid thin time case).

Existence and verification result (T.K. & A.P., SPA 2016).

Theorem

There exists a minimal (super-)solution of the singular BSDE (U, M), in the sense that (U, M) satisfies the dynamics and some integrability conditions on $[0, T - \varepsilon]$ for any $\varepsilon > 0$ and

$$\mathbb{P}$$
 – a.s. $\liminf_{t\to T} U_t \geq \xi$.

Then the value function is given by:

$$v(x_0)=U_0|x_0|^p,$$

and an optimal control is given by:

$$X_s^* = x_0 - \int_0^s \left(\frac{U_r}{\eta_r}\right)^{q-1} X_r^* dr = x_0 \exp\left[-\int_0^s \left(\frac{U_r}{\eta_r}\right)^{q-1} dr\right].$$

 X^* belongs to $A(x_0)$, satisfies the terminal state constraint $X_T^* \mathbf{1}_{\xi=+\infty} = 0$.

A. Popier

Extensions.

• Dark-pool trading. BSDE with unknows (U, ϕ, M)

$$\begin{array}{rcl} \textit{U}_t & = & \xi - (p-1) \int_t^T \left[\frac{\textit{U}_s^q}{\eta_s^{q-1}} \right] ds + \int_t^T \gamma_s ds - \int_t^T \vartheta(s, \textit{U}_s, \phi_s) ds \\ & - \int_t^T \int_{\mathcal{E}} \phi_s(e) \widetilde{\pi}(ds, de) - \int_t^T dM_s. \end{array}$$

- Random terminal time T = exit time of a continuous diffusion.
 - ullet Existence of an a priori estimate pprox Keller-Osserman inequality.
 - Example: $T = \inf\{t \geq 0, S_t^0 \leq H\}$.
- U càdlàg on [0, T]. The left limit at time T exists (A.P., ESAIM P&S, '16).

Outline

- Introduction: optimal targeting position
 - Motivation: optimal closure
 - Monotone strategy and forward backward SDE
- 2 Homogeneous case (with T. Kruse)
- Mnightian uncertainty (with C. Zhou)
- 4 Non homogeneous case (with S. Ankirchner, A. Fromm & T. Kruse)

Knightian uncertainty.

- An old concept : Knight (1921). Distinction between risk vs uncertainty. From a single probability \mathbb{P} to a set of probability \mathcal{P} .
 - Quantitative finance: model risk. Given recent market behaviour, this has become a very acute and concrete problematic for practitioners and risk managers.
 - Economics: theory of decision under uncertainty, monetary policy, psychology and behaviour of investors during period of stress.

- ► Triggered development of new mathematical tools.
 - Quasi-sure stochastic analysis, non-linear expectations, G-Brownian motions, second order BSDE.
 - See among many others Peng (2010-2011), Denis and Martini (2006), Soner et al. (2011), ...

Uncertainty and expected utility.

How to model and represent preferences of agents under uncertainty?

• von Neumann and Morgenstern (1947):

$$\sup_X \mathbb{E}_{\mathbb{P}_O} U(X).$$

 \mathbb{P}_{O} is the objective probability (fixed). Allais Paradox.

- Savage (1954): $\sup_X \mathbb{E}_{\mathbb{P}_S} U(X)$. \mathbb{P}_S is a subjective probability. Ellsberg Paradox.
- Gilboa and Schmeidler (1989): $\sup_X \inf_{\mathbb{P} \in \mathcal{P}} \mathbb{E}_{\mathbb{P}} U(X)$. \mathcal{P} range of all possible subjective beliefs : worst case expected utility.

How do we model uncertainty?

A set of probability \mathcal{P} on a measurable space (Ω, \mathcal{F}) which is non-dominated (different models do not agree on null-event).

Warning: several classical tools may be false!

Typical example.

Brownian motion with drift and volatility

$$X_t = x_0 + \sigma W_t + \mu t$$
, law of $X = \mathbb{P}_{\mu,\sigma}$.

• For a given $\sigma > 0$, Girsanov theorem: $X_t = x_0 + \sigma \widetilde{W}_t$

$$\forall \mu \in \mathbb{R}, \quad \mathbb{P}_{\mu,\sigma} \ll \mathbb{P}_{0,\sigma}.$$

• $\mathbb{P}_{\mu,\sigma}$ [quadratic variation of $(X_t, \ 0 \le t \le T) = \sigma^2 T] = 1$.

Monotone convergence theorem: counter example

$$\mathcal{P} = \{\mathbb{P}_{0,\sqrt{p}}, \quad p \in \mathbb{N}^*\}, \qquad Y_n = (W_1)^2/n.$$

- $Y_n \downarrow 0$, \mathbb{P} -a.s., for any $\mathbb{P} \in \mathcal{P}$ and $\mathbb{E}^{\mathbb{P}_p}(Y_n) = \frac{p}{n}$.
- Hence $\sup_{\mathbb{P} \subset \mathcal{D}} \mathbb{E}^{\mathbb{P}}(Y_n) = +\infty$.

Liquidation under uncertainty

Minimize the expected execution costs under $\ensuremath{\mathbb{P}}$

$$J(t, X, \mathbb{P}) = \mathbb{E}^{\mathbb{P}}\left[\int_{t}^{T} (\eta_{s} |\alpha_{s}|^{p} + \gamma_{s} |X_{s}|^{p}) ds + \xi |X_{T}|^{p} \middle| \mathcal{F}_{t}\right]$$

Define

$$v(t, x_0) = \underset{X \in \mathcal{A}^0(t, x_0)}{\operatorname{esssup}} J(t, X, \mathbb{P})$$

where $A^0(t, x_0)$ the set of admissible controls $X \in A(t, x_0)$ such that

$$X_s = x_0 + \int_t^s \alpha_s ds, \quad X_T \mathbf{1}_S = 0, \quad \mathcal{P} - q.s.$$

Idea: consider

$$\underset{\mathbb{P}\in\mathcal{P}_t}{\text{essinf}} \underset{X\in\mathcal{A}^0_{\mathbb{P}}(t,x_0)}{\text{essinf}} J(t,X,\mathbb{P}) = |x_0|^p \underset{\mathbb{P}\in\mathcal{P}_t}{\text{esssup}} \ U_t^{\mathbb{P}} \leq v(t,x_0)$$

where $U^{\mathbb{P}}$ solution of the related singular BSDE under \mathbb{P} .

Second order BSDE: setting

Setting: $\Omega = C([0, T], \mathbb{R}^d)$ and

long and boring description! But important to be able to control the negligible sets.

Example: $\mathcal{P} = \{\mathbb{P}^a\}$ with:

$$\mathbb{P}^a = \mathbb{P}_0 \circ (\mathfrak{X}^a)^{-1}, \quad \mathfrak{X}_t^a = \int_0^t a_s^{1/2} d\mathfrak{X}_s$$

for all processes a of the form

$$a_s = \sum_{n=0}^{\infty} \sum_{i=1}^{\infty} a_i^n(s) \mathbf{1}_{E_i^n} \mathbf{1}_{[\tau_n, \tau_{n+1})}(s),$$

- $(a_i^n)_{i,n}$ are deterministic mappings such that $0 < \underline{a} \le a_i^n(t)$ for any $t \ge 0$,
- $(\tau_n)_n$ is a nondecreasing sequence of stopping times with $\tau_0 = 0$
- for each n, $\{E_i^n, i \ge 1\} \subset \mathcal{F}_{\tau_n}$ forms a partition of Ω .

Second order BSDE (2BSDE).

We consider the 2BSDE

$$Y_t = \xi + \int_t^T \Psi(u, \mathfrak{X}_{\cdot \wedge u}, Y_u, a_u^{1/2} Z_u, a_u, b_u^{\mathbb{P}}) du - \int_t^T Z_u d\mathfrak{X}_u^{c, \mathbb{P}} - \int_t^T dM_u^{\mathbb{P}} + \int_t^T dK_u^{\mathbb{P}}.$$

Definition

 $(Y, Z, M^{\mathbb{P}}, K^{\mathbb{P}})$ is a solution if

- the 2BSDE is satisfied \mathcal{P} -q.s., that is \mathbb{P} -a.s. for any $\mathbb{P} \in \mathcal{P}$.
- the family $(K^{\mathbb{P}}, \mathbb{P} \in \mathcal{P})$ satisfies some minimality condition.

Roughly speaking:

$$Y_t = \operatorname{essup}_{\mathbb{P} \in \mathcal{P}_t} Y_t^{\mathbb{P}}.$$

Literature for square integrable ξ :

- Soner, Touzi & Zhang (2011-2013). Lipschitz generator.
- Possamaï (2013). Monotone generator with linear growth.
- Possamaï, Tan & Zhou (2016).

Control problem with uncertainty.

2BSDE: $U_t = \underset{\mathbb{P} \in \mathcal{P}_t}{\mathsf{esssup}} \ U_t^{\mathbb{P}} \ \mathsf{solves} \ \mathsf{for} \ \mathsf{any} \ \mathbb{P} \in \mathcal{P} \ \mathsf{and} \ 0 \leq s \leq t < T$:

$$U_s = U_t - \int_s^t (p-1) \frac{U_r^q}{(\eta_r)^{q-1}} du + \int_s^t \gamma_r dr - \int_s^t dM_r^{\mathbb{P}} + \int_s^t dK_r^{\mathbb{P}}$$

where

- $M^{\mathbb{P}}$ is a martingale,
- $K^{\mathbb{P}}$ is non decreasing under \mathbb{P} and with a minimality condition on the family $(K^{\mathbb{P}}, \mathbb{P} \in \mathcal{P})$ (\approx Skorokhod condition).

Quasi surely,

$$\liminf_{t\to T} U_t \geq \xi.$$

Optimality: $v(t, x_0) = |x_0|^p U_t$ with an optimal state process:

$$X_s^* = x_0 - \int_t^s \left(\frac{U_r}{\eta_r}\right)^{q-1} X_r^* dr.$$

Outline

- Introduction: optimal targeting position
 - Motivation: optimal closure
 - Monotone strategy and forward backward SDE
- 2 Homogeneous case (with T. Kruse)
- 3 Knightian uncertainty (with C. Zhou)
- 4 Non homogeneous case (with S. Ankirchner, A. Fromm & T. Kruse)

Back to the general case.

For $x_0 \ge 0$, $\mathcal{A} = \{\alpha : \Omega \times [0, T] \to \mathbb{R} \in L^1(0, T) \text{ a.s.} \}$ such that

$$X_s^{x_0,\alpha} = x_0 - \int_0^s \alpha_r dr$$

And

$$v(x_0) = \inf_{\alpha \in \mathcal{A}} \mathbb{E} \left[\int_0^T f(s, X_s^{x_0, \alpha}, \alpha_s) ds + g(X_T^{x_0, \alpha}) \right]$$

Adjoint forward backward SDE:

$$X_s = x_0 - \int_0^s f_y^*(r, X_r, Y_r) dr, \quad X_s \in [0, x], \quad \text{non increasing},$$
 $Y_s = g'(X_T) + \int_s^T f_x(r, X_r, f_y^*(r, X_r, Y_r)) dr - \int_s^T Z_r dW_r$

Decoupling field: definition.

From A. Fromm & P. Imkeller and J. Ma et al. (2015).

Definition

Let $t \in [0, T]$. $u: [t, T] \times \Omega \times \mathbb{R} \to \mathbb{R}$ with $u(T, \cdot) = \xi(\cdot)$ a.e. is a decoupling field for the FBSDE $(\xi, (\mu, \sigma, f))$ on [t, T] if:

- for all $t_1, t_2 \in [t, T]$ with $t_1 \le t_2$
- and any \mathcal{F}_{t_1} -measurable $X_{t_1}:\Omega\to\mathbb{R}$

there exist progressively measurable processes (X,Y,Z) on $[t_1,t_2]$ such that

$$X_s = X_{t_1} + \int_{t_1}^{s} b(r, X_r, Y_r, Z_r) dr,$$

 $Y_s = Y_{t_2} + \int_{s}^{t_2} F(r, X_r, Y_r, Z_r) dr - \int_{s}^{t_2} Z_r dW_r,$

and $Y_s = u(s, X_s)$ for all $s \in [t_1, t_2]$.

Existence and uniqueness result of a decoupling field.

Assumption (SLC):

- \bullet (μ, σ, f) are Lipschitz continuous in (x, y, z) with Lipschitz constant L,
- $\|(|\mu|+|f|+|\sigma|)(\cdot,\cdot,0,0,0)\|_{\infty}<\infty,$
- \bullet $\xi: \Omega \times \mathbb{R} \to \mathbb{R}$ is measurable such that $\|\xi(\cdot,0)\|_{\infty} < \infty$ and $L_{\xi,x} < +\infty$.

Theorem (Fromm & Imkeller (2015))

Let $(\xi, (\mu, \sigma, f))$ satisfy SLC. Then there exists a unique strongly regular decoupling field u on some interval $I_{\text{max}} \subset [0, T]$.

Furthermore, either $I_{max} = [0, T]$ or $I_{max} = (t_{min}, T]$, where $0 \le t_{min} < T$. In the latter case we have

$$\lim_{t\downarrow t_{\min}}L_{u(t,\cdot),x}=+\infty.$$

For our FBSDE in the unconstrained case.

For $x_0 \geq 0$

$$X_s = x_0 - \int_0^s f_y^*(r, X_r, Y_r) dr, \quad X_s \in [0, x], \quad \text{non increasing},$$

$$Y_s = g'(X_T) + \int_s^T f_x(r, X_r, f_y^*(r, X_r, Y_r)) dr - \int_s^T Z_r dW_r$$

Assumptions:

- $f_y^*(t, x, y)$, g'(x) and $f_x(t, x, f_y^*(t, x, y))$ uniformly Lipschitz continuous in $(x, y) \in [0, \infty) \times [0, \infty)$,
- $g'(0) = f_X(t, 0, 0) = 0$ for all ω, t ,
- $\sup_{x>0} |f_{xx}(t,x,a)|$ is bounded uniformly in (ω,t) .

Proposition

- ► There exists a unique regular decoupling field u on $I_{max} = [0, T]$ s.t. u(t, x) = 0 for all x < 0 and $t \in [0, T]$.
- ▶ The solution (X, Y, Z) with $Y_s = u(s, X_s)$ is s.t. X and Y are both bounded and $X_s > 0$ for all $s \in [0, T]$.

For the constrained case?

Extension in two cases: let *L* be a fixed parameter.

- Quadratic setting:
 - The whole Hessian matrix $D^2 f(s, x, a)$ of f w.r.t. $(x, a) \in [0, \infty) \times A_+$ is uniformly bounded independently of (ω, s, x, a) .
 - $g(x) = Lx^2$.

Examples:

$$f(t,x,a) = \eta_t \frac{|a|^3 + 2|a|^2}{|a| + 1} + \gamma_t |x|^2, \qquad f(t,x,a) = \eta_t |a|^2 + \gamma_t |x|^2.$$

Additive power setting: for $p \le 2$ and $\ell \ge 2$

$$f(t, x, a) = \eta_t |a|^p + \gamma_t |x|^\ell, \qquad g(x) = L|x|^p.$$

Note that g is not Lipschitz continuous on $[0, +\infty[$.

The scheme.

First step: there exists a solution (X^L, Y^L, Z^L) with decoupling field u^L .

Second step: the decoupling field u^L is non decreasing w.r.t. L. Let u^{∞} its limit.

Third step: regularity of u^{∞} :

- Quadratic case: u^{∞} is Lipschitz continuous on $[0, T \varepsilon] \times [0, x_0]$ for any $\varepsilon > 0$.
- Additive case (p < 2): $u^{\infty}(t, x) = |x|^{p-1}v^{\infty}(t, x)$ and v^{∞} is Lipschitz continuous on $[0, T \varepsilon] \times [0, x_0]$ for any $\varepsilon > 0$.

Fourth step: the sequence X^L is non increasing w.r.t. L and its limit X^{∞} satisfies:

$$X_s^{\infty} = x_0 + \int_0^s f_y^*(r, X_r^{\infty}, u^{\infty}(r, X_r^{\infty})) dr, \qquad X_T^{\infty} = 0.$$

 X^{∞} is an optimal state process.

The scheme.

First step: there exists a solution (X^L, Y^L, Z^L) with decoupling field u^L .

Fourth step: the sequence X^L is non increasing w.r.t. L and its limit X^{∞} satisfies:

$$X_s^{\infty} = x_0 + \int_0^s f_y^*(r, X_r^{\infty}, u^{\infty}(r, X_r^{\infty})) dr, \qquad X_T^{\infty} = 0.$$

 X^{∞} is an optimal state process.

Fifth step: the sequence (Y^L, Z^L) converges on $[0, T) \times \Omega$ and its limit (Y^{∞}, Z^{∞}) satisfies for any $0 \le s \le t < T$:

$$Y_s^{\infty} = u^{\infty}(s, X_s^{\infty})$$

$$Y_s^{\infty} = Y_t^{\infty} + \int_s^t f_x(r, X_r^{\infty}, f_y^*(r, X_r^{\infty}, Y_r^{\infty})) dr - \int_s^t Z_r^{\infty} dW_r.$$

Thank you for your attention!

References.

- T. Kruse, A.P.. Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting. Stochastic Processes and their Applications, 2016, 126.
- A.P.. Limit behaviour of BSDE with jumps and with singular terminal condition. ESAIM P&S, 2016. 20.
- S. Ankirchner, A. Fromm, T. Kruse, A.P.. Optimal position targeting via decoupling fields. Available on HAL (hal-01500311).
- A.P., C. Zhou. Second order BSDE under monotonicity condition and liquidation problem under uncertainty. Available on Arxiv as soon as possible.