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Introduction and definition of a Lévy
process

Let us mention some facts concerning financial continuous time models with continuous
trajectories. As we want to deal with jumps, here we just discuss the inconvenients of
these models. But keep in mind that they are very important and it is not possible to
understand models with jumps if the continuous models are not known.

e Black-Scholes model. This model is a benchmark, is the most used and is a
reference. Of course it has well known advantages but also inconvenients. Among
them the scale invariance of the Brownian motion implies that one month trading,
one day trading or one second tradong are almost the same.

e Local volatility models. They are natural extensions of the Black-Scholes
model. For this class of models, a perfect hedging is possible. In practice, we
know that there is always a residual risk.

e Stochastic volatility models. Here a perfect delta hedging is not possible. But
some practical facts are not catch. It is difficult to obtain heavy tails (which can
be a large risk management problem) and large sudden moves can not occur. In
practice this behaviour can be observed for short maturity options.

All these model defaults can be removed when models with discontinuous trajectories
are used. For a more detailled review of these problems, read the introduction of the
book of R. Cont and P. Tankov.

But a natural question is: why should jumps be introduce in a continuous time
models? Indeed a discrete time model naturally contains jumps ! The answer is quite
simple: in a continuous time model we can use the stochastic calculus, which is a
very powerful tool to make computations. Moreover from the works of Ait-Sahalia and
Jacod (Testing for jumps in a discrete observed process, 2007), we have statistical tests
to determine the presence of jumps in discrete time data.

To complete this introduction, we give two financial problems where jumps are re-
quired.

e Credit risk. The main difficulty here is to compute the default probability, i.e.
the probability that the default time of a company occurs after a fixed time t¢:
P(r > t). Classically there are two approachs. The reduced models give directly
the law of 7 whereas in the structural models 7 is a first pssage-time:

T=1inf{t >0, X; < H},
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where X is a stochastic process modelling for example the stock price of the
company and H is a barrier. If X has no jump, 7 is a predictable stopping time.
In practice default time are not predictable (Enron, November 2001, for example):
the default time can not be anticipated by the actors of the market.

e High-frequency trading. Since few years, intra-day trading and also intra-
minute trading have been developped. At the time scale, traders have to consider
the tick, the minimum movement by which the price of a security, option, or index
changes. Hence the price process is completely discontinuous ! At a classical
time scale, these very small jumps are not seen and continuous models can be
considered.

To finish the introduction, we briefly explain the classical model for the risk process
for an insurance company. In 1903 Lundberg proposed to modelize the revenue of an
insurance company as a process X defined by:

Ny
(1) Xt:$+0t—25i
i=1

where the company collects premiums at a fixed rate ¢ from its customers, x is the
initial capital, N is the arrival times of claims of the customers, causing the revenue to
jump downwards. The size of claims ¢; is independent and identically distributed. X
is a compound Poisson process with drift ¢. Fundamental quantities of interest are the
distribution of the time to ruin and the deficit at ruin; otherwise

10 = inf{t > 0, X; <0}, X,, on {19 < +00}.

This model has be widely studied and some extensions have been proposed where the
compound Poisson process is replaced by a general Lévy process with jumps in | — oo, 0[.
Such processes are called spectrally negative.

To finish this introduction, note that Lévy processes are used for

e Population size models, genealogy, mutations,
e Phylogenetic analysis,

e Limit of Galton-Watson trees,

e Branching processes,

e Epidemiology models,

and so on.
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Definitions and first properties

Definition 0.1 A stochastic process (X;)i>o defined on a probability space (2, F,P),
with values in RY, is a Lévy process if

1. its increments are independent: for every increasing sequence ty, . . ., t,, the random
variables Xy, Xy, — Xy, ..., Xy, — Xy, , are independents;

2. Xo=0 a.s.
3. its increments are stationnary: the law of X,y — X; does not depend on t;

4. X satisfies the property called stochastic continuity: for any e > 0,

lim P(| X¢1p — Xi| > €) = 0;
h—0

5. there exists a subset Qg s.t. P(Q) =1 and for every w € Qq, t — X;(w) is RCLL.

RCLL means right continuous with left limits. The fourth condition excludes processes
with deterministic jump times. For a fixed ¢, the probability to have a jump is zero.
Some remarks on the hypotheses:

e If we remove Assumption 5, we speak about Lévy process in law.
e If we remove Assumption 3, we obtain an additive process.
e Dropping Assumptions 3 and 5, we have an additive process in law.

If a filtration (F;);>0 is already given on (€2, F,P), then the definition becomes:

Definition 0.2 A stochastic process (X;);>o defined on (0, F,P), with values in Re ¢,
15 a Lévy process if

1. Xo=0 a.s.

2. its increments are independent: for any s < t, the r.v. X; — X, is independent of
Fs;

3. its increments are stationnary;
4. X satisfies the property called stochastic continuity;
5. a.s. t— Xy(w) is RCLL .
Let us remark that:
o If 7, = F;X, the two definitions are equivalent.

o If {F} is a larger filtration than (F;* C F;) and if X; — X is independent of F,
then {X;; 0 <t < +oo} is a Lévy process under the large filtration.
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For a process X = {X;; t > 0}, we define

e N =N the set of P-negligible events.

e For any 0 <t < oo, the augmented filtration: F; = o(F;X UN).
Theorem 0.1 Let X = {X;; t > 0} be a Lévy process. Then

e the augmented filtration {F,} is right-continuous.

o With respect to the enlarged filtration, {X;, t > 0} is still a Lévy process.

About the regularity of the paths, let us mention the next result:

Theorem 0.2 A Lévy process (or an additive process) in law has a RCLL modification.

Proof. Admitted. O

We can also prove that 2, 3 and 5 imply 4. Remenber that the law of a random
variable (r.v. in short) is characterized by its characteristic function.

Proposition 0.1 Let (X;)i>o be a Lévy process in R?.  Then there exists a function
Y : R — R called characteristic exponent of X such that:

(2) Vz € Rd’ E (ei<zrxt>) — etw(z)'

Proof. Recall that if f: R — R is a right-continuous function such that for every « and y, f(z +y) =
f(z)f(y), then there exists a € R such that for every z € R, f(z) = exp(ax). O
By definition, a Brownian motion is a Lévy process satisfying
1. for every t > 0, X, is Gaussian with mean vector zero and covariance matrix tId;
2. the process X has continuous sample paths a.s.

Id is the identity matrix of dimension d. And |z| will denote the Euclidean norm on R¢.
Its characteristic function is given by :

E(e'*P) = exp(—t[z[*/2).

In other words, its characteristic exponent v is : ¥(z) = —|z|>/2. A typical trajectory
of a Brownian motion is drawn below.
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Part 1

Lévy processes: properties and
simulation






Chapter 1

A first class: the jump-diffusion
processes

In this first part, we analyze a special class of Lévy processes : the jump-diffusion
processes. The study of the general Lévy process will be done in the second part.
Roughly speaking a jump-diffusion process is the sum of a Brownian motion and a
compound Poisson process. For the financial point of view let us recall the main features
of a jump-diffusion process.

e The prices are diffusion process, with jumps at randon times.

e The jumps are rare events. Therefore this model can be used for cracks or large
losses.

The advantages are the following:
e the price structure is easy to understand, to describe and to simulate.

e Hence efficient Monte Carlo methods can be applied to compute path-depend
prices.

e And this model is very performant to interpolate the implicit volatility smiles.
But there are some inconvenients.

e the densities are not known in closed formula,

e and statistical estimation or moments/quantiles computations are difficult to re-
alize.

1.1 Poisson process

The second classical Lévy process is the Poisson process.

Definition 1.1 A stochastic process (X)i>o0, with values in R, is a Poisson process with
intensity A > 0 if it is a Lévy process s.t. for every t > 0, X; has a Poisson law with
parameter \t.
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It means that for each t > 0, for every k € N,

(A"
k!

P(X;,=k) = exp(—At).

So in fact X is a process with values in N.

Proposition 1.1 (Construction) If (T, )nen s a random walk on R s.t. for every
n>1, T, —T,_1 is exponentially distributed with parameter \ (with To = 0), then the
process (X))o defined by

Xi=n<=T,<t<T,

15 a Poisson process with intensity .

Proof. Let us prove first that X is a Lévy process. By definition Xy = 0 and X is a RCLL process.
Moreover for any € > 0

|Xt+h_Xt| 2€<:>E|TLEN, t<Tn St—f—{f
But since

T, = iTz —Ti1
i=1

T, is a sum of n independent exponentially distributed r.v. Therefore T}, is Gamma distributed, i.e.
has the density
Anxn—l

J@) = (n—1)!

€_A$1x>0.

Hence

t+e
P(t<Tn§t+5):/ flz)de — 0 = lim P(|Xy4n — X;| > ) = 0.
t e—0 e—0

We will prove the stationnary and the independence of the increments below.
Now for t > 0 and n € N, we have

P(Ny=n) = =PI, <t<Tpi1)=P(T, <t < (Tpi1—Tn)+T)
P(T, <t, Toir —Tp >t —Tp)

t yn,.n—1 +o0
/ Le"\x (/ )\e_hydy) dx
0 (n’g'l)! t—x
tA”x”_l
_ e—Axe—A@—x)dx
A"
n!

= e
Finally X is a Poisson process. (]
Here is a typical trajectory of a Poisson process. Contrary to the Brownian motion,

it is a pure jump process !
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o

The jump distribution of a Poisson process can be completely described. If we denote
by 7T; the jump times of the process, we have the following result.

Proposition 1.2 Let n > 1 and t > 0. The conditional law of T1,...,T, knowing
Xy = n coincides with the law of the order statistics Upy,...,Uy) of n independent
variables, uniformly distributed on [0, t].

Proof. Let B a Borelian subset of R". Then
P((Uays -+ Uwy) € B)
= > P(Us)s-Usn) € B, Us(r) < .. < Usny)

oES,
1
= Z 1u”<1)<m<ua(n) 1B(ug(1), ce ,ua(n))t—ndul ce dun
oES,
n!
= tin 1u1<...<un]-B(u17'-'7un)du1 o dty,.
Now (T1,...,T,,Th+1) has for density Al Atng lo<t,<..<t,<tn.,- Hence for any Borelian B:

P((Th,Tn) € B, N; = n)
—P((Th,....T\) € B, Ty <t < Tps1)

- //An+1ei>\tn+110<t1<___<tn<tn+l 1B(t1, .« e ,tn)dtl “ e dtn_;,_l

= )\nei)\t / ]-B(th e 7tn)10<t1<...<tndt1 e dtn
(0,¢]™

Hence
P(Ty,...,T,) € B, Ny =n
P((Th'"’Tn)EBth:n) = (< 1 P(Nz:n) t )
n!
= t? 1t1<...<tnlB(t17'";tn)dtl'~'dt7la
which achieves the proof. O

This last proposition will be very useful to simulate Poisson process. For any interval
I, we denote by N (/) the number of jumps of X;, ¢t € I.

A. Popier 13



Proposition 1.3 For 0 < s <t and n > 1, the conditional law of X, knowing X; =n
is binomial with parameters n and s/t.

ForO0=ty <t; <...<tp=tandl; =|tj_1,t;], the conditional law of (N (I1), ..., N(Iy))
knowing X, = n is multmomml with parameters n, (t; —to)/t, ..., (tx — tr_1)/t.

Proof. Let us denote by Jy, ... n, a partition of the set {0,1,...,n} in k subsets Ji,..., Ji of length
ni,...,n, with ny + ...+ ng = n. Denote by J the set of all such partitions. Remember that the

!
number of elements of 7 is equal to — ™ Then
ni!...ng!
]P(N(Il) =MNi,.. ,N(Ik) = nk|Nt = n) = IP(HJTLI ,,,,, n, € ._7, Vi € Jl, ti1 < U; < tl)

> P(Vi€ i, Ui €lti,ti))
Iy, €7

)» H(“‘“ -

Tnyrong €T 1=1

n! H tl—tl,1 ™
nl!...nk.!l:l t

Now take k =1, t; = s to obtain that X, = N ([0, s]) knowing N; = n is binomial with parameters
n and s/t. 0

The last proposition allows us to finish the proof of Proposition 1.1. Indeed let
0=ty <t; <...<tyand ny,...,ng be non negative integers with n = > ny. Then

P(Xy, =n1, Xy, — Xy, =no, ..., Xy, —
= IP’(th =n)P(Xy, =n1, Xy, — Xy, =mo, ..., Xy, —
P(Xy, =n)
IP’(Tn1 <ty <Toys1s Togang <to < Toyingtts s Tngioing, < ] Xz, =n)
=P(X;, =n)P (N(Il) :nl,...N(Ik) = ng| Xy, = n)

ey (A)" L=t
¢ ol nll nkl H (

k n
H At —ti—1) (tl B tl*1>) ! )

nl!

Hence we proved that the increments are stationnary and independent.

1.2 Compound Poisson processes

The Poisson process is very simple. The jump sizes are always equal to one. Therefore
we will complicate a little bit to obtain the compound Poisson process. We consider a
Poisson process (P;):>0 with intensity A and jump times 7,,, and a sequence (Y;,)nen+ of
R%valued r.v. such that

1. Y, are i.i.d. with distribution measure 7;

14 A. Popier



2. (Py)t>0 and (Y}, )nen+ are independent.
We define

Pt +OO
(1.1) X =Y Yo=> Yilgu(T).
n=1 n=1

Definition 1.2 The process (Xi)i>o is a compound Poisson processes with intensity A
and jump distribution 7.

Let us draw an example. This is a compound Poisson processes with Gaussian jumps
used in the Merton model.

Poisson composé

L L L L L L L L
[1} 01 02 03 04 05 06 07 08 09 1
t

Proposition 1.4 The process (Xi)i>0 is a Lévy process, with piecewise constant trajec-
tories and characteristic function:

VzeR?Y, E(e=X)) = exp (t/\/ (e'®2) — 1)7T(dx)>
R4

~ exp <t /R () - 1>V<da;)) |

Proof. X satisfies all properties of Definition 0.1. Therefore it is a Lévy process. Between two jumps
of the Poisson process P, X is constant. Then the trajectories are piecewise constant. Now let us
compute the characteristic function.

P, L
E (euz,xt)) - E (exp (Z‘(Z,T;Yn>>> =E <exp (;Mz,Yn)))
+00 Ft |
= ZE (exp <Z Z'<Z,Yn>>
k=0

(1.2)

P, = k) P(P, = k)

+oo k - +oo k
= Y E (H exp (i(z,Yn>)> PP, =k) =Y _ [[Eexp(i(z,Y,)) P(P: = k)
k=0 =1 k=0n=1
+oo k
= Z (Eexp (i{z,Y1)))F 67)\75% = e Mexp [ME exp (i(z, Y1))]
k=0

— exp M (Eexp (i(z Y1) — 1)].

A. Popier 15



But Eexp (i(z,Y1)) — 1 = / (e“#*) — 1)m(dx), and we obtain the result. O
Rd

The quantity v is a finite measure defined on R? by

v(A) = Mr(A), A e BR?.

Finite measure means that v(R%) < +o0.

Definition 1.3 (Lévy measure) v is called the Lévy measure of the compound Pois-
son process. Moreover

v(A) =E[#{t€[0,1], AX,#0, AX, € A}].

Definition 1.4 The law p of X1 is called compound Poisson distribution and has a char-
acteristic function given by:

fi(z) = exp ()\ /R d(eim - 1)7r(dx)) :

Proposition 1.5 Let X be a compound Poisson process and A and B two disjointed
subsets of RY. Then:

Y, =) AXdaxea and Z=) AXaxes

s<t s<t

are two independent compound Poisson processes.

Proof. The reader will prove that Y and Z are two compound Poisson processes. Moreover the
intensity of Y is Am(A) and the jump size distribution of Y is given by the probability 74 defined by:

CNA)
ve cRY, ric) = TC0A)
- () =4
Now
Eexp(iuY; + ivZ;) = Eexp iUZAXslAXseA+iUZAX51AxseB
s<t s<t

Py
= Eexp <Z Y, (iuly, ca + ivlyn€3)>
n=1

= Eexp(iuY;)Eexp(ivZy).

The last equality has to be proved properly, but the trick is the same as the method used to compute

the characteristic function of a compound Poisson process. (I
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1.3 Jump-diffusion process

Definition 1.5 A jump-diffusion process X is the sum of a Brownian motion and of a
independent compound Poisson process. Therefore a jump-diffusion process is a Lévy
process.

In other words we have a k-dimensional Brownian motion (W;);>0, a d X k matrix A, a
d-dimensioinal vector v, a Poisson process (F;);>o with intensity A and jump times 7,,
and a sequence (Y;,)nen- of Ré-valued r.v. such that

1. Y, are i.i.d. with distribution measure 7;
2. (Wy)is0, (Pr)e>0 and (Y},)nen+ are independent.

And we define

P +oo
(1.3) Xp= AW 4yt + > Yo = AW+ 7t + > Vol u(Th).
n=1 n=1

The characteristic exponent of X is given for any z € R? by:

Ox(z) = —%<Z,AA*Z>+@‘¢<Z,7>+M /R (€~ 1)(da)
(1.4)

= e Ad vtz +t [ (@ - oda).

R4

A* is the transpose matrix of A.
Let us draw two examples. The first one is a jump-diffusion process with Gaussian
jumps (used in the Merton model).

Sauts-diffusion
Browmien
Foisson

Xt‘ E’l et F‘t

The second one is used in the Kou model where the jump sizes are given by a non
symmetric Laplace distribution.

A. Popier 17



Xl‘ Bl et F’t

Sauts-diffusion
Brownien
Poigson

A. Popier



1.4 Exercises

Exercice 1.1 Soit N = (N;) un processus de Poisson d’intensité A\. Montrer que
. Ny — At .

lim — = A\ p.s. et que le processus | ——— converge en loi quand ¢ tend

t—+o00 t )\ £>0

vers 400 vers une loi gaussienne centrée réduite.

Exercice 1.2 Montrer que si N = (IV;) et (]\N/t)tzo sont deux processus de Poisson
indépendants, d’intensité respective X\ et u, alors la somme est un processus de Poisson
d’intensité A + .

Exercice 1.3 Soient (IV;);>o et (Nt)tzo deux processus de Poisson indépendants, d’intensité
respective \ et .

1. Montrer que le processus (X;);>o défini par X; = NV; — Nt est un processus de Lévy
dont on déterminera le triplet caractéristique.

2. On suppose A # u. Montrer que (X;/t);>0 et (X;)i>o convergent p.s. dans R
quand ¢ tend vers +o00. Préciser la limite de X; suivant le signe de A\ — p.

Exercice 1.4 Une machine posséde une durée de vie 7; de la loi exponentielle de
parameétre A. Lorsqu’elle tombe en panne, elle est immédiatement remplacée par une
machine semblable de durée de vie 7, et ainsi de suite. On suppose les durées de vie 7;
indépendantes et identiquement distribuées. La premiére machine commence a travailler
a 'instant 0 et les instants 7} de panne forment un processus de Poisson d’intensité .

1. Pour un instant ¢ > 0 fixé, soit D, la durée écoulée depuis la mise en fonction-
nement de la machine en marche & l'instant ¢. Dans quel ensemble la variable
aléatoire D, prend-elle ses valeurs 7 Quelle est la loi de D; 7 Montrer que lorsque
t tend vers 400, cette loi admet une loi limite.

2. Soit S; la variable aléatoire positive telle que t + S; soit I'instant de défaillance
de la machine en fonctionnement a l'instant t. Quelle est la loi de S;, du couple
(Dy, S¢) 7 Quelle est la limite de cette derniére lorsque ¢ tend vers +oo 7

3. Quelle est la loi de D, + S, la durée de vie de la machine en fonctionnement a
I'instant ¢t 7 Comparer la limite de cette loi quand ¢ tend vers +oo avec la loi
commune des 7,,.

Exercice 1.5 On se donne une mesure v sur R* de densité par rapport a la mesure de

Lebesgue :
1

C2
I/(ZL‘) - ’x‘1+a1

—Xox
x1+a2 € 1Z'>07

-2
€ llx‘1w<0 +

A. Popier 19



ou ¢ et co sont des constantes positives ou nulles, Ay et Ay sont strictement positives,
tandis que a; et ap sont des réels strictement négatifs. On considére le processus de
Lévy X de triplet caractéristique (0, v, 7).

1. Montrer que X est un processus de Poisson composé avec dérive.

2. Déterminer l'intensité du processus de Poisson sous-jacent et la distribution des
sauts.

3. A quelle condition, ce méme processus est-il croissant ?

Exercice 1.6 Soit X = (X});>¢ un processus de sauts-diffusion de triplet caractéristique
(b,o,v). Déterminer la fonction caractéristique de X; pour ¢ > 0. En déduire une
condition nécessaire et suffisante sur (b, o,v) pour que

1. E|Xt|n < +OO,
2. Ee"* < 4+00.

En déduire les valeurs de EX;, Var Xy, ¢35 = puz = E(X; — E(X}))?, py = E(X; —E(X;))4,
cq4 = py — 3Var, et du skewness s(X;) = % et du kurtosis kK = &2.
Var®/ ar

20 A. Popier



Chapter 2

Theory of Lévy processes

For jump-diffusion processes, the Lévy measure v of the process is finite : v(RY) <
+00. Here we remove this condition and we will just assume a weaker assumption :

/Rd(l Alz)?)v(dz) < +oo,

with u A v = min(u, v). The Lévy measure v of a general Lévy process will satisfy this
condition and in general v(R?) = +oc.

If the prices are given by a Lévy process with a general measure v, the prices are
processes with a infinite number of jumps during any time period. This case is called
infinite activity model. Of course the price structure is less intuitive and it is often
more complicated to simulate. The advantages are:

e a more realistic description of the prices at different time scales. This property is
very important for high-frequency trading for example.

e since the process is often obtained as subordinator of a Brownian motion (time
change), there are closed formulas or more tractable than for the jump-diffusion
models.

Let us recall some definitions.

Definition 2.1 A stochastic process (Xi)i>o defined on a probability space (2, F,P),
with values in R?, is a Lévy process if

1. its increments are independent: for every increasing sequence to, . . ., t,, the random
variables Xy, Xoy — Xiy, ..., Xy, — Xy,,_, are independents;

2. Xo=0 a.s.
3. its increments are stationnary: the law of Xy, — X, does not depend on t;
4. X satisfies the property called stochastic continuity: for any ¢ > 0,

lim P(| X1 — Xi| > €) = 0;
h—0
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5. there exists a subset Qg s.t. P(Qg) =1 and for every w € Qq, t — X;(w) is RCLL.

RCLL means right continuous with left limits. The fourth condition excludes processes
with deterministic jump times. For a fixed ¢, the probability to have a jump is zero.

Remenber that the law of a random variable (r.v. in short) is characterized by its
characteristic function.

Proposition 2.1 Let (X;);>0 be a Lévy process in RY. Then there exists a function
Y : R? — R called characteristic exponent of X such that:

(2) vz eRY, E(eX0) = et

2.1 Poisson measures
Let us introduce some useful definitions for general Lévy processes.

Definition 2.2 Let (2, F,P) by a probability space, E C R*, and p a measure on (E,£).
A Poisson random measure on E with intensity p is a function with values in N:

M: OQx€& — N s.t.
(w,A) — M(w,A),

1. Yw € Q, M(w,.) is a Radon measure on E, that is, VA € & measurable and
bounded, M(A) < 400 is a r.v. with values in N;

2. VAe &, M(.,,A) = M(A) is a Poisson r.v. with parameter p(A);
3. for any Ay, ..., A, disjointed sets, the r.v. M(Ay),...,M(A,) are independents.

For a compound Poisson process X with intensity A and jump distribution 7, we
define a (random) measure on [0, +oo[xR¢\ {0} by:

(2.1)  |VBC E =[0,+00[xR*\ {0}, Jx(w,B) = #{(t, X;(w) — X, (w)) € B}|.

Proposition 2.2 (Poisson measure) Jy : Q x £ — N is a Poisson measure on E =
[0, +00[x R\ {0} with intensity

p(dt x dx) = dtv(dz) = Adtn(dx).

As a consequence, we obtain

(2.2) V(A) = E(Jx([0,1] x A)) = E[#{t € [0,1], AX, £0, AX, € A}]|

Remember that v is the Lévy measure of X (see Definition 1.3).
Proof. From Equation (2.1), Jx is an integer valued measure. Let us begin to check that Jx(B) is a
Poisson r.v. Let P be the Poisson process counting the jumps of X. Conditionally on the trajectory
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of P, the jump sizes Y; are i.i.d. and Jx ([t1,t2] X A) is a sum of P, — P;
value 1 with probability w(A). Then

, ii.d. Bernoulli r.v. taking

Eexp (iuJx ([t1,t2] x A)) = E{E [exp (iuJx ([t1,t2] X A) | P, t > 0]}
) [(ei“w(A) +1- W(A))Pff”“} — exp (A(tz — t1)m(A)(e™ — 1))
Thus Jx ([t1,t2] X A) is a Poisson r.v. with parameter A(ta — t1)7(A), which was to be shown.
Now let us check the independence of measures of disjoints sets. First let us show that if A and
B are two disjoint Borel sets in R?, then Jx ([t1,t2] x A) and Jx ([t1,t2] X B) are independent. Again

conditionally on the trajectory of P, the expression iuJx ([t1,t2] X A) + ivJx ([t1,t2] x B) is a sum of
P, — P, ii.d. r.v. taking values:

e ju with probability 7(A);
e v with probability m(B);
e 0 with probability 1 — 7(A4) — n(B).

And now it is easy to check that

Eexp (tudx ([t1,t2] X A) + ivJx([t1,12] x B)) =E [((ei“ —1)m(A) + (e" — 1)m(B) +1)

= exp [A(t2 — t1)(w(A) (™ — 1) +7(B)(e"” — 1)]
= Eexp (tuJx ([t1,t2] x A)) Eexp (iuJx ([t1,t2] x B)).

Ptfptl]

If [t1, 2] and [s1, s2] are disjoint sets, the independence of Jx ([t1,t2] x A) and Jx([s1, s2] x A) follows
directly from the independence of the increments of the process X.

The independence of jump measures of any finite number of disjoint sets of [0, +oo[xR9 follows
from the additivity of Jx and from the fact that the method used works for any finite number of sets.

Equation (2.2) comes from the fact that a Poisson r.v. with parameter p has an exceptation equal
to u. (]

Moreover we have
E(Jx([0,t] x A)) =tv(A) = tAAn(d@

and we can write X as follows:

X, = AXs:/ rJx(ds x dx).
' Z [0,t] xR X( )

s€(0,t]

It is important to note that Jx completely characterize the jumps of X. And since X
is a pure jump process, it gives the complete process X.

k

Proposition 2.3 If By, ..., By are disjointed sets s.1. U B; =]0,t] x R4\ {0}, then the
j=1

conditional law of (J(By),...,J(By)) knowing P, = n is multinomial with parameters

n, (M) p(By), ..., (\)1p(By).
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Proof. Sketch the proof of Proposition 1.3. O

Now let M be a Poisson random measure with intensity measure p and let A be a
measurable subset s.t. 0 < p(A) < +oo. Then the following two random measures on
the subsets of A have the same distribution conditionally on M (A):

e M]|4, the restriction of M to A.

o M, defined by ]/\/[\A(B) = #{X; € B} for all measurable subsets B of A, where X,

i=1,...,M(A) are independent and distributed on A with the law %.

This implies in particular that

(2.3) Eexp ( /A f(x)M(d:z:)) = exp ( /A (ef@) — 1)u(d:1:))

for any function f such that [, e/(®)p(dz) < +oo. This can be obtained by conditioning

the expectation on p(A) and by the previous result on M|, and M.

This equation allows to establish a one-to-one correspondence between compound
Poisson processes and Poisson random measures with intensity measures of the form
v(dx)dt with v finite. Indeed, let v be a finite measure on R? and let M be a Poisson
random measure on R? x [0, +o00[ with intensity measure v(dz)dt. Then one can show
that the last equation defines a compound Poisson process with Lévy measure v.

2.2 Infinitely divisible distributions

Here we study a wide family of probability distributions. This family is related to
the law of Lévy process.
Let i be a probability measure on RY. Denote by u" the convolution product of u n
times p with herself:
W=k Lk
—_——
n times
Remenber that if Xy,..., X, are i.i.d. r.v. with law p, the law of X; + ...+ X, is given

by u".

Definition 2.3 A probability measure on R is infinitely divisible if for every n € N*,
there exists a probability i, s.t. p = p.

In other words if X is a r.v. with law u, there exists Yi,...,Y,, ii.d. r.v. such that for
any positive function f,

E(f(X) =E(f(M1+...+Yn)).

The law of Y] is denoted p,,.
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Denote by ji the Fourier transform (or the characteristic function) of x. Then pu is
infinitely divisible if /i has a n-th root, which is a characteristic function: for any z € R,

fu(z) = (fin(2))" -

Gaussian, Cauchy, Poisson, compound Poisson, exponential, gamma, geometric distri-
butions are all infinitely divisible distributions. Moreover an immediate consequence of
Definition 2.1 is the following.

Proposition 2.4 If X is a Lévy processs in law, the law of X, is infinitely divisible.
For a jump-diffusion process we have:
1 .
() = exp |5 (2, A42) +i(3,2) + [ (@5 = Do(da)
R4

Now let us give some technical results concerning this family.

Lemma 2.1 The convolution product between two infinitely divisible distributions is
infinitely divisible.

Proof. Straightforward if we recall that the Fourier transform of a convolution product is the product

of the Fourier transforms. O

Lemma 2.2 (Technical properties)
1. If p is infinitely divisible, then fi has no zero on R,

2. The limit in law of a sequence of infinitely divisible distributions is infinitely di-
wisible.

3. If p is infinitely divisible, then u' is well defined and is infinitely divisible for any
t € [0,+o00[ (1 = & is the Dirac mass).

Proof. The proof is rather technical and based on complex analysis. Therefore we admit the result. [J

As an exercise, use the first property of this lemma to prove that the uniform law is
not infinitely divisible.

The next result is the key point of this paragraph. Denote by D = {z € R¢, |z| < 1}
the unit ball in R?,

Theorem 2.1 (Lévy—Khintchine decomposition) If i is infinitely divisible on R,
then [i has the following representation:

24) | i) = exp —%(z,Az>+i<’y,z>+ / (%) — 1 — ilz, 2V p())(de)

R4

with
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e Ac SS(R) a symetric positive matriz;

e v a measure on R% s.t.

(2.5) v({0}) =0 and /Rd(\x]? A Dv(dx) < +oo;

o v € R q vector.

Moreover this representation of i is unique.

Conversely if A € 8§ (R), if v is a measure satisfying (2.5), and v € R, then there
exists an infinitely divisible law 1 on RY with characteristic function given by the formula
(2.4).

Definition 2.4 (A,v, ) is called the characteristic triple of u. A is the Gaussian covari-
ance matrix, v the Lévy measure.

Proposition 2.5 If u is given by its triple (A,v,v), the characteristic triple of p' is
(tA, tv, ty).

Proof. Left as an exercise. O

We admit the proof of the theorem 2.1. But let us make some remarks on 7. Let
c:R? — R be a bounded function s.t.

c(x) =1+ o(|z|]) when |z| — 0,
(2:6) { c(x) =0(1/]z|) when |z| = +o0.

Then we can also give the following representation for ji:
1 ‘
) = exp |5z A2 it ) + [ (@ < 1= it oot
Rd
with

o=+ [ alelo) = p(a)vldo)

Definition 2.5 The triple is denoted by (A, v,~.). and the previous formula is also a
Lévy-Khintchine decomposition of .

It is very important to note that A and v are intrinsic values of u. But the vector 7.
depends on the choice of the function ¢, called the truncation function. We can take
c(x) = Lig<e(z) with e > 0, ¢(x) = 1/(1 + |z|?), or ¢(z) = (sinz)/z in dimension 1. If
c(x) = 1p(z) then we remove the subscript ¢ on 7.

In some particular cases we can relax the assumptions on c.

1. If/ |z|v(dz) < oo, with ¢ =0,
lz|<1
1 4
() = exp |~ (5 42) + i) + [ (@05~ ()
Rd

26 A. Popier



Definition 2.6 ~y is the drift of p.
2. If/ |z|v(dz) < oo, with ¢ =1,
z[>1

f(z) = exp {—%(z, Az) + iy, 2) + /Rd(ei<z’x> — 1 —i(z,z))v(dr)

Definition 2.7 ~; is the center of . And v = [p. xp(dz).

Now let us give some examples.

Properties 2.1
e v =0 if and only if pu is Gaussian.
o If 1 is a compound Poisson measure, A =0, v = A1 and vy = 0.

o [fd=1 and p is the Poisson distribution, A =0, v = Xy, v = 0.

If p is the I' distribution with parameters ¢ and «

c

xc—le—ale . (ZL‘),

density: a
I'(c) €+

—Qx

then A =0, v9 =0 and v(dz) = c<

T 1R€ :(l‘)

If  is the stable distribution with index 1/2,

density: 6_52/(275)37_3/21}36 jr(x),

21
c

then A =0, v =0 and v(dz) =

x_3/21Re jr(x)

Proof. See the exercises 2.2 and 2.3. |

2T

Now define the set C* = {f € C,(R%R), f = 0 around 0} and denote by ¢ €
Cy(R4, R) a truncation function satisfying (2.6).

Theorem 2.2 Let pu,, be a sequence of infinitely divisible laws with triple (An, Vn,Yn)e-
Ly converges to p if and only if p infinitely divisible with triple (A, v,~y). with

o if fECt lim [ f(x)va(de)= | flzx)v(dz);
R¢ Rd

n—-+0o0o

o if A, . is defined by: (z, A, .2) = (2, Apz) +/ (z,2)?v,(dx), then:

|z|<e

vz € RY  limlimsup|(z, A,.2) — (2, Az)| = 0;

e=0 nstoo
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® v, — .

Corollary 2.1 Any infinitely divisible law (with A = 0) is a limit of a sequence of
compound Poisson distributions.

Corollary 2.2 Ift, | 0, and if v is the Lévy measure of an infinitely divisible law u,
then for all f € C¥,

lim = [ fla)u(de) = [ Fawtn).

n—+o0o t, JRrd
Let us finish this paragraph with the link with Lévy processes.
Theorem 2.3

1. If X is a Lévy process (in law), the law of X, is given by pu' where u is the law of
X1.

2. If u is infinitely divisible on RY, then there exists a Lévy process in law s.t. Px, = p.

This theorem says that there is a bijection between the family of infinitely divisible laws
and the Lévy processes. Since we know the Fourier transform of an infinitely divisible
law, we can apply the Lévy-Khintchine decomposition to a Lévy process.

Proposition 2.6 Let (X;);>0 be a Lévy process in law. Then there exists ¢ : R4 — R,
the characteristic exponent of X s.t.:

VzeRY E (ei<z,Xt>) — )

with characteristic triple (A, v,7) s.t.

(2.7) P(z) = —%(Z,Az) + (v, 2) +/ (e'*® — 1 —i(z, 2)1p(z))v(dzx).

Rd

And a triple (A, v, ) s.t. v satisfies the condition (2.5), is the “law” of a Lévy process.
This proposition allows us to classify the Lévy processes.

Definition 2.8 Let X be a Lévy process with triple (A,v,7). X is called of

o type A if A =0 and v(RY) < oo,

e type B if A=0, v(R?) = o0 and/ |z|v(dz) < 400,

lz|<1

o type Cif A#0 07“/ |z|v(dz) = +o0.

|z]<1

Remark that for a type A or B Lévy process, the drift v is well defined.
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2.3 Decomposition of a Lévy process

We have seen that a compound Poisson process Y can be represented by a Poisson
measure with intensity v(ds)dt where v is a finite measure defined by:

v(A) =E[#{t €[0,1], AY,;#0, AY, € A}, A< BR%.

Now if we add a Brownian motion with drift bt + W;, independent of Y, then the sum
Xy, =bt + W, 4+ Y, is a Lévy process which can be written as follows:

X, = bt+W,+ Z AY, = bt + W, + Z AX,
s€[0,¢] s€[0,1]

= bt—I—Wt—O—/ xJx(ds x dx).

[0,t] xR

The characteristic exponent of this process X is then:

0(2) = =5 la 4 itz + [ (€6~ u(da),
2 i
Therefore we obtain almost the formula (2.7), except that the condition on v is more
restrictive than (2.5).
Let us come to the general case. Let E = [0, +oo[xR%\ {0} and X a Lévy process
with characteristic triple (A, v,v). We define:

VB C B(E), Jx(w,B)=#{(t X,(w) — X,-(w)) € B}.

The definition of Jx is the same as for a compound Poisson process (see equation (2.1)).
But here since v satisfies only (2.5), and thus is not necessary finite, we have to remove
0 from R?. Nevertheless Jx satisfies the same properties.

Proposition 2.7 The jumps measure Jx is a Poisson measure on E with intensity
dtv(dx). And v satisfies (2.5).

Proof. Indeed since X is RCLL, then the set {t, |X; — X;-| = |AXy| > ¢ > 0} is finite and the
Poisson random measure (of any closed set not containing 0) can be constructed as Proposition 2.2.
The intensity measure of Jx is homogeneous and equal to v(dx)dt.

We admit the following lemma:

Lemma 2.3 Let (X;,Y}:) be a Lévy process. If (Y;) is compound Poisson and (X;) and (Yy) never jump
together, then they are independent.

Now we prove that v satisfies the condition (2.5). In fact since the Lévy measure of any closed set

not containing zero is finite, it is sufficient to prove that for some § > 0, / |z[?v(dz) < +o00. Let

x| <8
us define
Yi= Z AX 1 oo ([AXS]) = / xJx(ds x dx),
0<s<t 1<]|=|, 0<s<t
and
(2.8) Xf= 3 AXa.(ax.) - | o (ds x dz).
0<s<t e<|z|<1, 0<s<t
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Y and X°¢ are compound Poisson processes. Moreover from Proposition 1.5, Y and X¢ are independent.
Now we define R® = X — Y — X¢. (X¢, R?) is a Lévy process and from the previous lemma, X¢ and
R? are independent. Therefore

Eexpi(z, X;) = (Eexpi(z, Y;)) (Eexpi(z, X7)) (Eexpi<z,1?z§>) .

And we can find some z and some ¢ such that |Eexpi(z, X;)| > 0. This means that | (Eexpi(z, X;)) |
is bounded from below by a positive number which does not depend on e. By the formula (2.3), we

obtain
exp t/ (e** — 1)v(dx)
e<|z|<1

/ (1 = cos(zx))v(der) < C < +oc.
e<|z|<1

>C >0,

which implies that

Letting € tend to zero, we obtain the desired result. (I

Definition 2.9 The Lévy measure v satisfies
v(A) =E[#{t €[0,1], AX,ec A}, AecBR"\{0}).

In particular E(Jx([0,t] x A)) = tv(A). Define D(a,b] = {z € RY, a < |z| < b} and
D(a,+o0) = {z € R, |z] > a}.

Theorem 2.4 (Lévy-Khintchine decomposition) Let (X;):>o be a Lévy process with
characteristic triple (A, v, 7).

1. There exists 0y s.t. P(Q) =1 and s.t. for any w € Qy,

X} (w) = lim [zJx (w, dsdz) — xdsv(dz))
€0 J10,)x D(e,1]

+ / rJx(w, dsdz)
10,t]x D(1,+00)

1s defined for every t € Ry with uniform time convergence in time on any compact
set.

The process X' is a Lévy process with triple (0,v,0).

2. Denoting X? = X; — X}, there exists a set Qg s.t. P(Qy) = 1 and s.t. for any
w € Oy, X? is a continuous Lévy process with characteristic triple (A,0,7).

3. X? is a Brownian motion with covariance matrix A and drift .

4. The processes X' and X? are independent.

Definition 2.10 X! is the jump part and X? the continuous part of X .
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We can X! in an other way:

X} (w) = lim [zJx (w, dsdz) — zdsv(dz))

0 J10,)x D(e,1]

+ / rJx(w, dsdr)
10,t]x D(1,+00)

= lim X7+ Y};
el0

where

e X°isa compound Poisson process with jumps size (in norm) between ¢ and 1,
compensated: E(XF) = 0 (see paragraph 2.4.2 on the moments of a Lévy process);

e Y is a compound Poisson process with jumps size greater than 1.

If we compare with the simple case of the above introduction, we see that the novelty

is that we add to X the limit of compensated compound Poisson processes.
Proof. We just sketch the proof. We have seen that

X =Yi+ X + R,

where Y is a compound Poisson process with jump size greater than 1, X¢ is a compound Poisson process
with jump size between € and 1, and R® is defined by X — Y — X¢. Since v can have a singularity
at zero, there can be infinitely many small jumps and their sum does not necessarily converge. This
prevents us from making ¢ go to 0 directly in Equation (2.8). In order to obtain convergence we have
to center the remainder term:

Xf =X —E(X{)=X¢ —/ xdsv(dx).
10,¢] x D(e,1]
Let us consider a sequence (g,,)nen and define

Zm = Xt Xen,

(Z™)n>0 is a sequence of centered random variables and (2.5) ensures that Z Var (Z") < +oo. Hence,
n

by Kolmogorov’s three series Theorem, Z Z™ converges almost surely, which means that Xf converges

n
almost surely as ¢ — 0. Using Kolmogorov’s maximum inequality, one can show that the convergence
is uniform in .

To complete the proof, consider the process X; = X; — Y; — lim Xf . It is a Lévy process which is
independent from Y; + lim, Xf. It is continuous, because lim Xf converges uniformly in ¢ and therefore
one can interchange the limits. Finally, the Feller central limit Theorem implies that it is also Gaussian.
O

Moreover one can prove that Xf is a martingale, converging as ¢ — 0 in L? to a
martingale. Now let us consider the following particular case.

Theorem 2.5 (Lévy process with drift) Let X be a Lévy process with triple (A, v, )
s.t. / |z|v(dz) < +00. Let o be the drift of X.
2] <1
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1. There exists a set Q3 s.t. P(Q3) = 1 and for any w € Qg, the process
X3 (w) :/ rJx(w, dsdzr)
10,¢] xR\ {0}

is well defined for every t > 0. It is a Lévy process on RY s.t.

Rd

2. Moreover X}' = Xy — X} continuous Lévy process s.t.
i{z, X} 1 .
E (e o ) = exp —tﬁ(z,Az) + it{70, 2) | -

3. X3 and X* are independent.

The difference between this theorem and theorem 2.4 is that if / |z|v(de) < +oo,
|lz|<1
there is no more limit in the decomposition of the process X. In other words, we can

integrate x w.r.t. Jx on the entire set R?\ {0}. But be careful: X3 is not a compound
Poisson process because we do not have v(R?\ {0}) < +occ in general.

2.4 Properties of a Lévy process

2.4.1 Sample path properties

The main application of theorem 2.4 (or theorem 2.5) is that from the decomposition
we can deduce the properties of the trajectories of a Lévy process X. Moreover since
the decomposition is given when the characteristic triple is specified, we can “read” the
properties of the trajectories directly on the triple.

Let us begin with two extreme cases.

Proposition 2.8 A Lévy process is continuous if and only if v = 0. In that case it is a
Brownian motion with drift.

Proof. Remark that the jumps of X are counted by the jumps measure Jx. X is continuous if and
only if Jx =0, if and only if the intensity of Jx defined by v is zero. (]

Proposition 2.9 A Lévy process is piecewise constant if and only if it is a compound
Poisson process or if it is of type A with vy = 0, i.e.

1. A=0 and/ v(dx) < 400,
Rd

2. v = wal rv(dr);

32 A. Popier



or

Y(z) = /Rd(ei“x — Dv(dz), with v(R?) < 4o00.

Proof. A compound Poisson process is piecewise constant. Conversely if X is piecewise constant, then
we define the process N by
N, =8{0 < s <t, AX,#0}.

We can easily prove that N is a Poisson process. Now we compute the jump sizes Y,, = Xg, — Xg-
where S,, = inf{t > 0, N; > n}. To prove that X is a compound Poisson process it remains to prove
that the random variables Y,, are i.i.d.

First we would like to show that the increments of X conditionally on the trajectory of N are
independent. Let ¢t > s and consider the following four sets:

Ay €0(Xs), By €o(N.,r<s), Ase€o(X;—Xs), Bsco(N,.— Ng,r>53).

such that P(B;) > 0 and P(Bz) > 0. The independence of increments of X implies that processes
(X, — Xs,7 > s) and (X,,r < s) are independent. Hence,

P[Al N Bl N A2 N BQ] = ]P)[Al n Bl]IP[AQ N BQ}

Moreover
e Ay and B are independent from Bs;
e A, and Bs are independent from By;
e B; and B, are independent from each other.

Therefore, the conditional probability of interest can be expressed as follows:

P[A; N B1|P[Ay N Bo]

P(B1)P(B2)
_ P[A; N By N By]P[A; N By N By
a P(B1)*P(B2)?

P[Al N A2|B1 n Bg] =

= P[A,|B) N ByP[As| By N By).

This proves that X; — X, and X, are independent conditionally on the trajectory of N. In particular,
choosing B; = {N; = 1} and By = {N; — Ny = 1}, we obtain that ¥; and Y> are independent. Since
we could have taken any number of increments of X and not just two of them, this proves that (Y;,)n>1
are independent.

Finally, to prove that the jump sizes have the same law, observe that the two-dimensional process
(X¢, N¢) has stationary increments. Therefore, for every n > 0 and for every s > h > 0,

E[f(Xh”Nh =1,N;—Np = n] = E[f(Xs+h - XS)|Ns+h - Ns=1,N;, — N, = n]v
where f is any bounded Borel function. This entails that for every n > 0, Y7 and Y, 12 have the same

law which completes the proof of the first part.
To finish the proof, remark that the characteristic function of a Lévy process is given by (1.2):

E (ei<z’X‘>> = exp (t /]Rd (e'=@) — l)z/(dx)) = exp(ty(2)).
Compare this with (2.7):
b(z) = f%<z,Az> +ily,z) + /W(e“w> —1—i(z,2)1p(z))v(dz),
Therefore v(R?) < 400, A =0, and

1= [ @l@)wids) =0,
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which achieves the proof.

Remark that if we remove the second condition, we obtain a piecewise affine trajec-
tory because X will be a compound Poisson process with drift.

Theorem 2.6 (Jumps repartition)
1. If v(RY) = 400, then a.s. the jumping times are countable and dense in R, .

2. If 0 < v(RY) < +oo, there is an infinite countable jumping times, but only a
finite number on any bounded interval. Moreover the first jumping time has an
exponential distribution with parameter v(R?).

Proof. We admit the result in the case v(R?) = 4+occ. In the other case, X is the sum of a Brownian
motion with drift and a compound Poisson process with intensity A = v(R?). Hence the first jumping
time 7 satisfies

P(r<t)=P(N; >1)=1-P(N; =0)=1—-¢ M.

We deduce the law of 7. O

We recall that the total variation of a function f : [a,b] — R? is defined by

TV(f) = supZ |f(t:) — f(tioa)],

where the supremum is taken over all finite partitions a =ty <t; < ... <t,_1 <t,=0b
of the interval [a,b]. If TV (f) < 400, f is of finite variation. In particular, in one
dimension every increasing or decreasing function is of finite variation and every function
of finite variation is a difference of two increasing functions. A Lévy process is said to
be of finite variation if its trajectories are functions of finite variation with probability
1.

Theorem 2.7 (Finite variations) A Lévy process is of bounded variation if and only
if it is of type A or B.

In this case:
AXs£0

X; = ot +/ xJx(ds x dx) = ot + Z AX,.
[0,t] xR

s€[0,¢]

The characteristic function becomes:

E (ei<Z'Xt)) =expt [i(%,z) +/ (e'@®) — 1)I/(d$):| .
Rd
Proof. Assume that X is of type A or B:

A=0, / |z|v(dz) < +oo.
lz|<1
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Then we use Theorem 2.5. X can be written as follows
X, = bt + / xJx(ds x dx) + lim X7
lz|>1,5€[0,t] =0

with

Xf:/ xJx(ds x dx).
e<|z|<1,s€[0,t]

The first two terms are of finite variation, therefore we only need to consider the third term. Its
variation on the interval [0,¢] is

TV(XE) = / ([ Jx (ds x dz).
e<|z|<1,s€[0,t]
Since the integrand in the right-hand side is positive, we obtain, using Fubini’s theorem

E(TV(X£)) = t/< | Jelam),

which converges to a finite value when ¢ — 0. Therefore E[TV (lim._,o Xf )] < oo, which implies that
the variation of X; is almost surely finite.

Conversely consider the Lévy decomposition of X;. Since the variation of any cadlag function is
greater or equal to the sum of its jumps, we have for every € > 0:

V(X)) > / (| Jx (ds x d)
e<|z|<1,s€[0,t]
—y / e lp(dz) + / (j2|(Jx (ds x dz) — v(dz)ds).
e<|z|<1 e<|z|<1,s€[0,t]

Using the exponential formula (2.3) one can show that the variance of the second term is equal to

t |x|2u(dac). Hence, by the same argument that was used in the proof of Lévy decomposition, the
e<|z|<1

second term converges almost surely to something finite. Therefore, if the condition / (lz]Al)v(dz) < oo

is not satisfied, the first term will diverge and the variation of Xt will be infinite. Suppose now that
this condition is satisfied. This means that X; may be written as

Xt:Xf—i—/ xJx(ds X dx),
[0,t] x R4

where the second term is of finite variation. Since trajectories of Brownian motion are almost surely of
infinite variation, if A is nonzero, X; will also have infinite variation. Therefore we must have A = 0.

O

Proposition 2.10 (Monotone process) A Lévy process is non-decreasing if and only

of
1. X; >0, a.s. forallt;
2. if and only if

e A=0 and v(] —o0,0]) =0,
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1
o / zv(dx) < 400 avec vy > 0.
0

Proof. If X is non decreasing, since Xy = 0, X; > Xg = 0. Now assume that X; > 0 for some
t > 0. For every n, X is the sum of n i.i.d. random variables X/, Xo1/n — X¢/n, -+, Xe — X(n—1)t/n-
This means that all these variables are almost surely nonnegative. With the same logic we can prove
that for any two rationals p and ¢ such that 0 < p < ¢, X4+ — X,+ > 0 a.s. Since the trajectories are
right-continuous, this entails that they are nondecreasing.

Since the trajectories are nondecreasing, they are of finite variation. Therefore, A = 0 and / (z A

1)v(dx) < oo. For trajectories to be nonincreasing, there must be no negative jumps, hence v(]—o0, 0]) =
0. If a function is nondecreasing then after removing some of its jumps, we obtain another nondecreasing
function. When we remove all jumps from a trajectory of X;, we obtain a deterministic function 7ot
which must therefore be nondecreasing. This allows to conclude that vo > 0.

Conversely under the conditions on (A4, v, ) the process is of finite variation, therefore equal to the
sum of its jumps plus an increasing linear function. For every trajectory the number of negative jumps
on any fixed interval is a Poisson random variable with intensity 0, hence, almost surely zero. This
means that almost every trajectory is nondecreasing.

O

1
The surprising fact is that if A = 0, v(] — 00,0]) = 0 and / zv(dx) = 400, the

0
process has just non-negative jumps, but whatever ~, it is not non-decreasing. It has
infinite negative drift !

Definition 2.11 A non-decreasing Lévy process is called a subordinator.

In this case the Laplace transform of X can be written: for u > 0

“+oo
E(eXt) = exp {t/ (e™" = D(dzr) — tyou
0
As an example we can cite the following result.

Proposition 2.11 Let (X;);>0 be a Lévy process on R and let f : R? — [0,00[ be a
positive function such that f(z) = O(|z|*) when x — 0. Then the process (S;)i>o defined

by
St = Z f(AXS)v

s<t,AXs#0

is a subordinator.
For f(x) = |z|?, the sum of the squared jumps
Se= > |AX
s<t,AXs#0

is a non decreasing Lévy process.
Proof. We will just proved that the sum converges. Indeed we can write:

S = > FIAX,) + > F(AX,).

s<t,AX#0,|AX|<n s<tAX#0,|AX | >n
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The second term is in fact a finite sum, hence converges. The first one can be bounded by

or =K > |AX[%.
s<t,AX.#0,|AX |<n

But
Eoy = Kt/ |z|?v(dx) < 4o0.
s<t,|z|<n

Therefore o is finite almost surely.

2.4.2 Moments

It is well known that a Brownian motion with drift X; = bt + AW, has exponential
moment:
Vu € R, Eexp((u, X;)) < +oo.

So by independance between the continuous part and the jump part of a Lévy process,
integrability problem can just arise because of the Lévy measure v.

Proposition 2.12 Let (X;)>o be a Lévy process in R? with triple (A,v,~). If v is of
bounded support, then X has an exponential moment, thus moments of all orders.

Proof. Let C be a bound for the jumps pf X. Define the stopping times

T1 == 1nf{t, |Xt| Z 0}7 Tn+1 = Hlf{t > Tn7 |Xt — XT,L

> CY.
Since the paths are right continuous, the stopping times (7},),>1 form a increasing sequence. Moreover
|AX 7| < C for any stopping time T'. Therefore by recursion sup | Xsar, | < 2nC. From the independence

S
of the increments, T,, —T},—1 is independent of o(X, 0 < s < T;,) and from the stationnarity 7,, — T, —1
has the same law as T;. Therefore
Ee 1n = (Be )" = o™
for some o < 1. And

P(| X, > 2nC) < P(T,, < t) <

This implies that Eexp(A|X¢|) < +oo for A < —In(1/a). O

Definition 2.12 A function on R? is under-multiplicative if it is non-negative and if
there exists a constant a > 0 s.t.

V(z,y) € (RY)?, g(x +y) < ag(x)g(y).
Lemma 2.4
1. The product of two submultiplicative functions is submultiplicative.

2. If g is submultiplicative on R?, then so is g(cx+v)* withc € R, v € R? and o > 0.
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3. Let 0 < 8 < 1. Then the following functions are submultiplicative.

|‘(L'|\/1 :max(|x|,1), |$]|\/17 93']'\/1, eXp(|ZL’|/B>, eXp(|xj|/B)v

exp((z; v 0)%),  In(lz| v e), I(lzy] V), In(z; v e),
InIn(|z| Ve°), Inln(|z;| V €°), Inln(z; Vv €°).

Here x; is the jth component of x.

4. 1If g is submultiplicative and locally bounded, then g(z) < becl®! for some b > 0 and

c>0.

Theorem 2.8 (Moments of a Lévy process) Let g be a under-multiplicative func-

tion, locally bounded on R?. Then there is an equivalence between
e there exists t > 0 s.t. E(g(X})) < o0

o foranyt >0, E(g(X;)) < +o0.
Moreover E(g(X:)) < +oo if and only if g(x)v(dr) < +o0.
|z[>1

Hence E(| X;|™) < oo if and only if f|;n\>1 |z|"v(dx) < oo. In particular

(2.9) E(X,) =t <7—|— /| >1xu(dm)) = by,
and

(2.10) (Var X,);; = t (AU + /R d xile/(dx)> .

Theorem 2.9 (Exponential moments) Let X be a Lévy process with triple (A, v, 7).

Let
C= {c € R¢, / e y(dr) < —|—oo} :
] >1

1. C is convex and contains 0.

2. ¢ € C if and only if E(e!®X)) < 400 for some t > 0 or equivalently for any t > 0.

3. Ifwe C4is s.t. Re(w) € C, then

w(w) = gl Aw) + (o + [ (€0 = 1= (u,a) ()

R4

has a sense, E(e<w’Xf>) < 400 and E(e@ﬂvXt)) — et¥(w)
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2.4.3 Densities

A first problem is the continuity of the law. Now clearly

Lemma 2.5 If X is a compound Poisson process, then P(X; = 0) = e > 0.
So a compound Poisson process can not have a density (w.r.t. the Lebesgue measure).
Theorem 2.10 Let X be a Lévy process with triple (A,v,v). Equivalence between:
1. P(X}) is continuous for every t > 0,
2. P(X,) is continuous for one t > 0,
3. X is of type B or C (i.e. A#0 or v(R?) = +00).
Corollary 2.3 Let X be a Lévy process with triple (A, v,~y). Equivalence between:
1. P(Xy) is discrete for every t > 0,
2. P(X,y) is discrete for one t > 0,
3. X is of type A and v discrete.

Now to prove that X has a density w.r.t. Lebesgue measure, it is not easy.

Proposition 2.13 Let X be a d-dimensional Lévy process with triple (A,v,v) with A
of rank d. Then the law of Xy, t > 0, is absolutely continuous.

In the previous proposition, the density is “given” by the Brownian part of X. There is
no result in general, except in dimension 1.

Theorem 2.11 (Sufficient conditions for d = 1) Let X be a Lévy process with triple
(A7 V? fy) ‘

1. If A# 0 or if v(R) = +o0, X; has a continuous density on R.

2. If the Lévy measure satisfies:
35 €)0,2], n%nfgﬁ/ 2 2u(dz) > 0

then for every t > 0, X; has a density of class C* and all derivatives of this
density go to zero when |x| goes to +o0.

A. Popier 39



2.5 Lévy processes, martingales and Markov processes.

Theorem 2.12 (Markov property) Let ui be an infinitely divisible distribution on R?
and X the associated Lévy process. Then X is a Markov process with transition function

Pi(z,B) = p'(B — x).

Conversely one can prove that every time homogeneous Markov process, with space
homogeneous transition function, is a Lévy process in law.

Proposition 2.14 Let (X;)i>0 be a Lévy process (in law). Then for every s > 0, the
process (Xirs — Xs)i>o0 is a Lévy process with the same distribution as (Xy)i>o. And the
two processes are independent.

Remember that a strong technical assumption in the stochastic calculus is the right-
continuity of the filtration generated by a Brownian motion. The same holds for a Lévy
process in general.

Theorem 2.13 (Lévy filtration) Let X be a Lévy process in law and F its completed
filtration. Then F is right-continuous.

Theorem 2.14 (Strong Markov) Let X be a Lévy process in law and F its completed
filtration. Let T be a a.s. finite F-stopping time. Then the process (Xiyr — X;)i>o s
independent of F, and with the same law as X.

Since a Lévy process X is a strong Markov process, X has a infinitesimal generator.
If (A, v, ) is the characteristic triple of X, then the infinitesimal generator of X is given
by:

(2.11) Z A]kaaj (x) + (7, V f(2))

+ /R [t y) = f@) — (4. V@) L] v(dy).

V is the gradient of f. Remark that the two first terms are the generator of the Brownian
motion with covariance matrix A and a drift 4. The novelty is the third non local term.
Now let us come to the martingale property.

Proposition 2.15 Let X be a process with independent increments. Then
€i<u,X,«,>

d -
1. for every u € R%, (E(ei<u,Xt>)

) 1s a martingale.
>0

e<u7Xt>

(U,Xt> -
2. IfE(e ) < 00, Vt >0, then (]E(€<U’Xt>)

) 18 a martingale.
t>0

3. If E(|X¢]) < oo, Vt >0, then My = X; — E(X}) is a martingale (with independent

increments).
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4. In dimension 1, if Var(X;) < +oo, Vt > 0, then (M;)* —E((M;)?) is a martingale.

Proof. Left to the reader. O

Proposition 2.16 (Martingales) A Lévy process is a martingale if and only if

/ |z|v(dr) < 400, and ’y+/ zv(dz) = 0.
|lz[>1

|z[>1

In dimension 1, exp(X) is a martingale if and only if ev(dr) < 400 and
lz[>1

A +o0
B) +b +/ (" =1 —aly<)v(de) = 0.

—00

Proof. Use the previous proposition, Equation (2.9) and Theorem 2.9. (]

2.6 Exercises

Lois infiniment divisibles

Exercice 2.1 1. Calculer la fonction caractéristique de la loi de Laplace de paramétre
A
A > 0 de densité f(z) = §exp(—)\\xl).

2. Par transformée de Fourier inverse, calculer la fonction caractéristique d’une loi
c

de Cauchy de parametre ¢ > 0 de densité = ——.
uchy de parameétre ¢ nsité g(x) &1 2

3. En déduire que la loi de Cauchy est infiniment divisible.

Exercice 2.2 Soit X v.a. de loi I de paramétres ¢ et a donnée par sa densité :
C

a e 1 ().

fealz) = m ol

1. Calculer la transformée de Laplace de X : E(e “X) avec u > 0.
2. En déduire sa fonction caractéristique.
3. Montrer alors que les lois I' et exponentielles sont infiniment divisibles.

4. Calculer leurs triplets caractéristiques.
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Exercice 2.3 Soit X variable aléatoire de loi de densité :

fc(x) — Le—c2/(2:c)x—3/21mr (I)

V2r

1. Calculer la transformée de Laplace de X : L(u) = E(e™*¥) avec v > 0. On pourra
chercher une équation différentielle satisfaite par £ en faisant dans la dérivée de
L le changement de variable uz = ¢*/(2y).

2. En déduire sa fonction caractéristique :
Vz € R, u(z) =exp (—c|z]1/2(1 —isgn (2))) .

On pourra se contenter de vérifier qu’elle coincide avec la transformée de Laplace
sur le bon ensemble.

3. Montrer alors que la loi de X est infiniment divisible.

4. Prouver que

/ (e7 — 1) dx = —2¢/7u.
0

On rappelle que I'(1/2) = / sV 3ds = /met que e ™ —1 = —u/ e~ dy.
0 0

5. En déduire le triplet caractéristique de cette loi. Est-ce une loi de Poisson composé
?

Processus de Lévy

Exercice 2.4 On se donne une mesure v sur R* de densité par rapport a la mesure de

Lebesgue :
€1

Ca
V(:L') - |x|1+o¢1

$1+012

- -\
€ 1|x\1$<0 + € 2$1x>07

ol ¢q et ¢y sont des constantes positives ou nulles, A; et Ay sont strictement positives,
tandis que a; et g sont des réels strictement inférieurs a 2.

1. Montrer que v est une mesure de Lévy.

2. A quelle condition sur oy et as, le processus de Lévy de triplet caractéristique
(A, v,~) est-il un processus de Poisson composé 7 Dans ce cas déterminer I'intensité
du processus de Poisson sous-jacent et la distribution des sauts.

3. A quelle condition sur a; et as, ce méme processus est-il a variation finie ?
4. A quelle condition, ce méme processus est-il croissant ?

5. Montrer qu’un processus ayant pour mesure de Lévy peut étre représenté comme
un mouvement brownien changé de temps par un subordinateur si et seulement si
co=ceta; =ayg=a > —1.
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6. A quelle condition sur v, peut-on affirmer que X admet une densité de classe C*
?

Exercice 2.5 (Probléme de ’examen de 2010-2011) Au début des années 2000,
W. Schoutens a proposé de modéliser des cours d’actifs via le processus de Meixner
(avec application au Nikkei-225 ou S&P 500). Celui-ci, noté X = (X;, ¢ > 0) dans
la suite, a une structure simple, stable par changement de probabilité, et donne des
formules semi-fermées, comme pour le modeéle de Black-Scholes.

Le processus de Meixner est déterminé par sa fonction caractéristique :

2t
, b/2 :
V>0, @) = B = [ SO e
Les paramétres de ce modéle vérifient :
a>0, d>0, —7m<b<m, meR.

La loi de X est appelée loi de Meixner et notée M (a,b,d, m).
Partie 1 : propriétés de ces lois.

1. Montrer que la loi M(a,b,d, m) est infiniment divisible.

X1 —p
o

3
2. Calculer la moyenne i, la variance o2, son skewness E ( ) et son kurtosis

4

X, —
L7 On rappelle que le skewness de la loi normale est toujours

défini par E (
nul tandis que son kurtosis vaut toujours 3. Que constate-t-on ici 7

Indication : une fois la moyenne x calculée, on pourra poser f(u) = E(e?(X1=#) et constater
que f'(u) = f(u)g(u) avec g(0) = 0.
On note (A, v,7) le triplet de Lévy-Khintchine de cette loi et on pose

U(u) = 2d1n <mb/2))) +mu, ue}_ﬂ_b,ﬂ_b{.

cos(2utb a a

U est la fonction génératrice des cumulants : &, (—iu) = exp(tW(u)).

3. Montrer que

U (u) = d/+<>0 Me”dm.
—o Sh (%x)

On utilisera les propriétés de la fonction I' d’Euler données a la fin de 1’énoncé.

4. En déduire que A = 0 et que v admet une densité par rapport a la mesure de

Lebesgue donnée par
exp( x) i
x sh ( :L‘) '

|o

VeeR, o #0, v(dr)= (d

FIERE
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5. Vérifier que v satisfait bien les conditions pour étre une mesure de Lévy.

b > ch ¥
6. Montrer qu’alors : v = m + ad tan 3~ Qd/ Chw‘; dx.
1 Sh -

Partie 2 : propriétés du processus X.

1. Montrer que c’est un processus de type C et en déduire qu’il est a variations
infinies.

&g
2. Montrer qu'il existe 5 €]0, 2] tel que lim&)nf 55/ |z|*v(dz) > 0. En déduire que
€ —&
X; admet une densité de classe C* pour tout ¢t > 0.

3. En utilisant la fonction caractéristique de X, ainsi que la relation (2.12) (cf. fin
de I’énoncé), montrer que X; a pour densité :

 (2cos ) b x—mt
V.TGR, ¢(t,l’) —WGXP a(l’—mt) ' dt+q a

2

4. Montrer que pour u > 0, E(exp(uX)) < oo si et seulement si u < =2,
Rappels : ch (resp. sh) désigne le cosinus (resp. sinus) hyperbolique :
ch (z) = (e"+e7")/2, sh(z) = (" —e™")/2.

De plus . . . A
cos(z) = (e + e ) /2, sin(z) = (" — e ") /(249).

Propriétés de la fonction I' d’Euler :

(2.12)
+oo . 1 26
/ (8 + iz) |*e* dx = 27T (26) (QCh Z> : >0, ze€C, —7m<Im(z)<m;
o 3
T(1 + iz)? = ———.
IP(1 +ix)| h(n7)
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Chapter 3

Simulation of Lévy processes

For the simulation, the dimension can 1 or d, the simulation is the same. For the
Brownian part X; = oW, + ~t, one simulation is based on the fact that W is a sum of
Gaussian increments. Thus the procedure is the following;:

1. split the interval [0,¢] by a grid to =0 <t < ... <t, =t,
2. simulate n standard Gaussian r.v. Z;,

3. define AXZ = O'\/ti - ti_lZZ- + b(tz — ti—l)u

(2
4. put X; =Y AX;.
k=1
The simulation is exact on the grid in the sense that X; has the same law as X;,. Between
X, and X1, one can used a linear interpolation. Of course, other methods exist to
simulate W (Brownian bridges, Fourier decomposition, random walk approximations,
etc.).

The simulation of the compound Poisson process is based on Proposition 1.2. The
jump times of a Poisson process knowing the value at time t have the same distribution
as the order statistics of uniform r.v. on [0, ¢]. Hence to simulate the compound Poisson
part on the interval [0, T, the algorithm is:

1. simulate a Poisson r.v. N with parameter AT,
2. simulate N independent r.v. U; with uniform law on [0, 77,

3. simulate the jumps: N independent r.v. Y; with distribution v(dx)/A,

N
4. put Xt = Z 1U¢<t}/;'
i=1

As before Xy, t € [0,T7], has the asked law without any error.

Hence for jump-diffusion processes we know how to simulate exactly the process on a
time grid. Let us concentrate now on infinite activity models. The underlying Lévy
measure v is infinite.
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3.1 Approximation

For a general Lévy process, we can proceed by approximation. Indeed if X = (X})¢>0
is a Lévy process with infinite activity and triple (0, v, ), then

Xt = ’}/t + ZAXS]'\AXs\Zl + 1&}%]\[5,
s<t

where

N; = Z AXsloqiax, <1 — t/ zv(dz).

s<t e<|z|<1

Therefore if we define the process X¢ by

X; =7t + > AXIjax,1 + N,

s<t

X¢ is a compound Poisson process, and

lim X7 = X,

e—0

uniformly w.r.t. . Moreover X¢ is easy to simulate. The residual term:
R; = —N; + laiﬁ)l N
is a Lévy process
e with characteristic triple (0, 1;<.v(dz),0),
e with infinite activity, with bounded jumps, thus with finite variance,
o E(RY) =0,

e Var R; = t/ 2?v(dr) = to*(e).
lx|<e

For example for the Gamma process, ona can prove that o(e) ~ e.

Proposition 3.1 If f is a differentiable function s.t. |f'(z)| < C, then
[Ef(X5 + Ry) —Ef(X5)| < Co(e)VT.

Proof. The difference in question can be estimated as follows:

1
Ef(X%+RET)—Ef(X%)|=’E (R; / f/(X%+uRfT>du) < CEIR3|

For any random variable Z, Jensen’s inequality yields: E[|Z|]*> < E[|Z|?] = E[Z?]. Applying this to R%.,
we conclude that E|R%.| < o(e)VT . O
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The only problem with this approximation is the term v/7 in the previous inequality.
If we deal with long maturity contract, the approximation with compound Poisson
processes is not enough.

To remove this dependence, we give a new approximation:

X: =X 4 o(e)W,,

where W is a Brownian process independant of X°. This is just justified by the following
theorem.

Theorem 3.1 (Asmussen and Rosinski) lim o(¢) ' R* = W in law if and only if for

e—0

every k >0

o6

Since the condition is not easy to prove, we often work with the following sufficient
condition:
o(e)

lim —% = +o0.
e—0 €

Let us give some examples.

e The condition is satisfied for a process X with Lévy measure v(z) ~ 1/[z[*"!.

=0
Indeed o(g) ~ e17%/2,

e For a compound Poisson processes, () = o(¢).

e For a Gamma process o(e) ~ e.
Proposition 3.2 If f is a differentiable function s.t. |f'(z)| < C, then

[Ef(X7 + R7) = Ef (X7 + 0(e)Wr)| < Ap(e)Coa(e),

with A < 16,5 and p(e) = %{5)/ lz|*v(dz) < =Bk

Proof. Admitted here. (]

3.2 Exact simulation on a grid

The approximation method works with a general Lévy process. But for some pro-
cesses, a exact simulation on a grid can be done. Let us give a time grid ¢,,...,t,. We
want to compute X (¢1),..., X (t,) without any error (at least in law). We have done
this for a jump-diffusion process.
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3.2.1 Stable processes

A process X is called stable if the Lévy measure is given by

A B

v(z) = Wlwo + |$|T+1]-x<0

with 0 < o < 2 and the characteristic function is:

Vx(z) = exp{—c®|z|* +inz},

with 0 < @« <2, 0 > 0, and p € R (the shift). The law of such process is denoted by

Sa(o, ).
We admit that if X is distributed like S, (1,0), then 0 X + p has law S, (o, ). The
algorithm for a S, (1,0) process is the following:

1. simulate n i.i.d. r.v. U; with uniform law on [—7/2,7/2] and n i.i.d. r.v. E; with
exponential distribution with parameter 1;

2. define

in(al;) [ cos((1—a)U;)\ "~/
AX/L — tz _ tl'f 1/& S1n<a 1 1
( 1) (cos U;)V/e E;
with tg = 0;
3. put X, = > AX.
k=1

Let us draw the stable process in three cases.

30

25+

20+

Stable avec alpha=05

L L L L L L L L
1] 0z 04 0B 08 1 12 14 16 18 2
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Stable avec alpha =1

Stable avec alpha =158

24
0

L L I L L L I L
0z 04 0B s 1 1.2 1.4 1.6 18 2

3.2.2 Subordinated processes.

Let us begin with the following time-change result.

Theorem 3.2 Let (X;);>0 be a Lévy process on RY with characteristic triple (A, v, )
and characteristic exponent V. Let (S¢)i>0 be a subordinator with Lévy measure p, drift
Bo > 0, and Laplace transform L. Then the process Y (t,w) = X (S(t,w),w) is a Lévy
process s.t. E(e!Y0)) = (W) - Moreover the triple of Y is

o AY = A,

e vV (B) = Bov(B) + /0 "X (B)plds), VB € BRY),

o Y = - d X(d
y ﬂow/o ol s>/|x§a:ps<w>,

where pX is the distribution of X;.
If Bo =0 and f]o 1 s'2p(ds) < oo, then Y is of type A or B.

Definition 3.1 (Subordination) The previous transform is called subordination with
the subordinator S. FEvery process equal in law to 'Y is called subordinated at X .
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Remark that a subordinated subordinator is a subordinator (we can “compose” or iterate
the subordination).

Moreover as an immediate consequence of this result, it allows us to create multidi-
mensionnal Lévy processes. Indeed using X a d-dimensional Brownian motion, we just
have to subordinate it to a process S.

The following result can be extended in dimension n > 2.

Theorem 3.3 Let v be a Lévy measure on R and p € R. There exists (X;)i>0 with
Lévy measure v s.t. Xy = W(S;) + Sy for some subordinator (St)i>o and a Brownian
motion (Wy)i>o, independent of S if and only if:

1. v is absolutely continuous with density v — v(x),
2. v(x)e " = p(—x)el”,
3. f:uwr v(y/u)e ™ is completely monotone on |0, +o0].

Completely monotone means that all derivatives exist and for any k& > 1, (—1)k£—£(u) >
0. The jump structure is described as a time changed Brownian motion with drift. If

S is a subordinator without drift and Lévy measure p, then X = W (S) + uS has the

following Lévy measure:
+o0o
o) = [t 2,
0 2rt

If X = W(S) is a Brownian motion with volatility o, drift b, with the time change
induced by the subordinator S, the algorithm to simulate X on a grid is the following.

1. simulate the increments of subordinator AS; = S;, — S, , where Sy =0,

1

2. simulate n standard Gaussian r.v. Ny,..., N,,

3. define AX; = o N;/AS; + bAS;,

4. put Xy, = ZAXk.

k=1

3.2.3 Tempered stable processes.

Definition 3.2 A tempered stable process X is a Lévy process with Lévy measure:

c- A
I/(x) = |x|1+a,

—A_|x iz
e ! |1z<0+ [ PN

x1+a+

with oy < 2 and a_ < 2, the other parameters are positive.

The characteristic exponent can be calculated as a function of I'.

Proposition 3.3 It is subordinated Brownian motion if c. = cy and a_ = ay > —1.
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Such processes are used in finance to modelize some risks (scaling property) or stochastic
volatility.
A tempered stable subordinator S has a Lévy measure given by:

Cef)\z

p(z) = Igs (z), ¢>0,A>0,0<a<l.

xotl
e ¢ controls the intensity of all jumps,
e )\ is the rate of decrease of the big jumps,
e « detemines the importance of the small jumps.

The Laplace exponent of S'is

L(u) = —cl'(@){(N+u)* — X}

if @ # 0 and L(u) = —cIn(1 4+ u/A) si @ = 0. The density of X is explicitely known if
a = 1/2 (inverse Gaussian subordinator) or a = 0 (gamma subordinator).

Lemma 3.1 If (Si(a, A\, ¢)) is tempered stable subordinator, then for every r > 0,
(rSi(a, A, ¢)) has the same distribution as (Syat(a, A/1,C)).

This scaling property and the scaling property of the Brownian motion allow us to just
consider the subordinators s.t. E(S;) = t. Indeed if v > 0 is the expectation of Sy, we
have

X = W(Sy) = W((Se/7) = VAW (Se/v),

and we define S; = S,/ such that ES, = E(S;/v) =t and X; = W(S,). t + Sa, is still
a tempered stable subordinator and X; = ﬁf(t.

Now it is well known that E(S;) = £/(0) = —c['(a)aA*~!. Therefore c is a function
of A and «, and if we put kK = (1 — «)/\, k is the variance at time 1 and we define S
with the new parameters:

1 1—a e e—(l—a)a;/n
p(x)_f‘(l—a)( K ) xlte

where
e « is still the stability index,

e x is equal to the subordinator variance at time 1.

Definition 3.3 (Normal tempered stable process) A normal tempered stable pro-
cess is a Brownian motion (with variance o* and drift 0) subordinated by a tempered
stable subordinator.
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Proposition 3.4 The characteristic exponent of a normal tempered stable process is

given by:
1 - 262/2 —if) “
W(u) = “{1— (1+’f”(“0/ ! “)> } if a % 0;
Ko 1l—«a

and

1 2 2

U(u) = ——ln{l—i—u or —i@/iu}, if = 0.

K 2

Proof. Apply Theorem 3.2 with ¥(u) = u?02/2 — ifu. O

Let us detail the two cases a = 0 and o = 1/2. Recall that these are the only cases
with known density. Let us start with a = 0.

Gamma process The subordinator S is a gamma process with density at time ¢

1

t/k—1 —m/ml . ]
T ¢ @)

pe(x) =
The other parameters are:
e o and 6 resp. volatility and drift of the Brownian motion,
e x variance of the subordinator.
The resulting normal process X = W(9) is called a variance gamma process and
e is of bounded variation with infinite activity (but relatively weak),

e has a Lévy measure:

1 el 9 p_ vtk

v(x) =

K|l ’ o?’ o2 ’
e and a characteristic exponent:
1 2 2
Y(u) = ——In(1 + vor i0Kku).

K

e Moreover E(X;) = 0t and Var X; = o2t + 0*xt.

If we draw the gamma process and the variance gamma process we obtain the fol-
lowing pictures.
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processus gamma

L L L L L L L L
i 0.1 0z 03 04 05 0B 07 08 089 1

processus wariance gamma

L L I L I L L I L
01 Dz 03 04 05 0B 07 08 089 1

Inverse Gaussian process Now we take v = 1/2. Thus the subordinator S is an

inverse Gaussian process with density

o) = | 2L ey (5 ) 1 o)

As before the otherp arameters are:
e o0 and 6 resp. volatility and drift of the Brownian motion,

e x variance of the subordinator.

The subordinated process X = W(S) is

e of unbounded variation with stable behaviour of the small jumps.

e The Lévy measure can be written with the Bessel functions:

2 2 2 2 2
vw) = St g (Blap), ¢ = YEXTTE 40 VO TR0k
|| 2ok o2 o2
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e The characteristic exponent is:

1 1
V(u) = = — —V1 +u202k — 2i0ku.
K K

e Finally E(X;) = 6t and Var X; = 0%t + 6°xt.

The typical trajectory of S and X are:

07 T T T T T T T T T

054 Processus inverse gaussien 4

04r q

03r q

02r &

01rF q

processus normal inverse gaussien
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Part 11

Stochastic calculus for Lévy processes
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Chapter 4

Stochastic integral

We consider a filtered probability space (2, F,P,F = (F;, t > 0)). The filtration is
supposed to be right-continuous and complete. All processes are supposed to be adapted
to this filtration.

First we know that if W is a Brownian motion and if ¢ is a predictable process
verifying

T
E/ |¢t|2dt < +OO,
0

then the It6 integral fot o.dW, is a square integrable martingale and
T T
/ GudW,| = ]E/ |bu|*du.
0 0

e ¢ cannot be interpreted as a trading strategy because it is not LCRL (i.e. left
continuous with right limits);

2

T
IE/ $udW, =0, E
0

But remark that:

e its integral cannot necessarily be represented as a limit of Riemann sums.

4.1 Stochastic integral w.r.t. a pure-jump process

Definition 4.1 (Pure jump process) A pure jump process is a process with
e precewise constant trajectories,
e and a finite number of jumps on every finite time interval.

Proposition 4.1 A pure jump Lévy process is a compound Poisson process.

Definition 4.2 (Stochastic integral) Let J be a right-continuous pure-jump process
and ® an adapted process in L. The stochastic integral of ® w.r.t. J is defined by

/t b.dJ, = Z DNJ,.

0 0<s<t
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Proof. We consider in Section 4.2 the general case. Here J is a semi martingale. Therefore if ® is in
L, the stochastic integral of ® w.r.t. J is well defined. The only thing to prove is that if & € S,

(I)t = QSO]-t:O + Z ¢i1]Ti,Ti+1](t)7
1=0

then

t n
[ oan = 0Xo+ Y 6ilnan—Jnn) = Y A
0

i=0 0<s<t

Proposition 4.2 (Martingale property) Assume that J is a martingale, that the
t

integrand ® is adapted and left-continuous. Then the stochastic integral (/ CDstS)
0 >0

is a (local) martingale.

Example. Let us finish with an example.
e X; = N; — Mt is a compensated Poisson process;
o &, = AN, is the jump at time ¢;
o U, = 1,5,(t) where Sy is the time of the first jump of N.

Then X is a square integrable martingale,

t t
I = / d,dX, = N,,  J,= / U dX, = 1ig, 4o (£) — At A Sy).
0 0

Hence I is not a martingale, but .J is a martingale. Remark that if we take ©, = 1 g,((%),

t
then / ©:dXs = —A(t A S1) is not a martingale.
0
Second let us consider a jump-diffusion process:
t t
Xt = XO + / FSdWS +/ @st + Jt,
0 0

with

1. Xy a deterministic initial condition;

t
2. I, = / ['sdW, the It6’s integral of I' w.r.t. to the Brownian motion W,
0

t
3. Ry = / O.ds the Lebesgue’s integral of a process O;
0
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4. J a right-continuous pure-jump process.

If ® is an adapted process in IL, the stochastic integral of ® w.r.t. J is defined by

t t t
/ @sdjs:/ @srdes+/ P,0,ds + Z O NI,
0

0 0 0<s<t

4.2 Stochastic integral w.r.t. a semi-martingale

Definition 4.3 (Simple process) A stochastic process (¢1)i>o s called a simple (pre-
dictable) process if it can be represented as

1 = Poli—o + Z idyr, 1,0 (1),
i—0

where Ty =0< T, < ... < T, <T,i1 are non-anticipating random times and each ¢; is
bounded Fr,-measurable random variable.
The set of simple processes is denoted by S.

Let X = (X; = (X},..., X))o be a d-dimensional adapted RCLL process. We define
for 0 <t,and jst. T; <t <Tj,y

7—1
Gt(‘b) = ¢0X0 + Z ¢i(XTi+1 - XTi) + ¢j (Xt - XTj)

=0

= ¢0X0 + Z ¢i(XTi+1/\t - XTZ‘/\t)'
=0

Definition 4.4 (Integral of simple processes) The process Gi(¢) is the stochastic
integral of ¢ w.r.t. X and is denoted by:

Gi(9) = /Ot Pud X,y

Proposition 4.3

1. If X s a martingale, then for any simple process ¢, the stochastic integral G is
also a martingale.

2. Assume that X is a real-valued RCLL process. Let ¢ and v be real-valued simple
processes. Then'Y;, = f(f Gud X, 1s an adapted RCLL process and

/Ot Y, dY, = /Ot Yy Py d X,
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Proof. For the first part, for 0 < s < t, we have

E(G(¢)|Fs)

E <¢0X0 + ) 6i(Xrne — X1ont)

=0

fs)
7).

= ¢oXo+ ) E (@(XTMM — Xr,pt)
=0

For any i = 0,...,n, we have to distinguish four cases.

i IfT’i-‘rl < S,

E(¢i(X1pint — XTind)|Fs) = E(di( X1y, — X1,)|Fs)
= ¢i(XT1:+1 - XTl) = ¢i(XTi+1/\s - XTi/\s)~

%]

fs:| = E(¢l X 0|FS) = 0 = ¢i(XTi+1/\S - XT;,/\S)

e If s < T;, then

E (¢i(XTi+1At - XTiAt)|fs) =E [E (¢i(XTi+1/\t - XTi/\t)|]:Ti)

= E (ZSZE ((XT,H_l/\t - XT7/\t)“FT7_)

because the stopped martingale X ,; is still a martingale.

o If T <5 < Ty,

E (¢i(XT¢+1/\t - XTi/\t)LFS) = E(¢i(XTH,1/\t - XT1)|‘7:S) = ¢ZE ((XT1+1/\t - XTZ)

%)

= (bl I:]E(XTi+1At|FS) - XT,J = ¢Z(XS - XT,,) = ¢i(XTi+1/\8 - XTi/\S)‘

Hence in every case

E(Gt(¢)|}—5) = ¢0X0 + Z¢i(XTi+1/\s - XTi/\s) - Gs(¢)-

=0

The second part can be proved as above and is left to the reader. ([l

Definition 4.5 (Semi-martingale) A adapted RCLL process X is a semi-martingale
if the stochastic integral of simple processes w.r.t. X wverifies the following continuity
property: for every ¢™ and ¢ in S if

(4.1) lim  sup |¢}(w) — ¢(w)| =0,

n=+00 (1 w)eR, xQ

then in probability:
T T
| ewixs = [ oux,=Gro)
0 n—+0o00 0
Denote by

e S, the set S with uniform convergence w.r.t. (¢,w);

e L0 the set of finite random variables with convergence in probability.
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The definition is equivalent to: X is a semi-martingale if G : S, — LY is continuous.

Lemma 4.1 The set of semi-martingales is a vector space.
Let us start with examples.

Proposition 4.4
e A finite variation process,
e a (locally) square integrable (local) martingale

are a semi-martingale.

Proof. Assume that X is of finite variation. Then for any simple process ¢ we have

Gi(9)] < <(Stup) (2, w)) TVi(X),

where TV, (X) is the total variation of X on the interval [0, ¢].
If X is a square integrable martingale, then

n 2
E(Gi(¢)®) = E <¢0X0 +> 6 X an— XTmt))

=0

= E

P X5 + Z ¢ (X1 nt — XTi,/\t)2‘|
i=0

+2 ZE¢Z¢] (XT1+1/\t - XTL'/\t)(XTj+1/\t - XTj/\t)

i<j
The second term on the right-side is equal to zero. Indeed for i < j:
E [¢id; (X1, it — X1oat) (X100 — X1yn0)]

=E [E <¢i¢j(XT1;+1/\t - XTZ-/\t)(XTjHAt - XTj/\t)

)
)

= E {¢i¢j(XTg+1At - XTL'/\t)E ((XTj+1/\t - XTj/\t)
=0.

Hence

E(Gi(¢)?) = E ngﬁLZ@Z(XTiH/\t XTi/\t)2‘|
i=0

(sup |¢(t,w)|2> E
(t.w)

<Sup |¢(t7W)I2> E(X?).

(t.w)

IN

X3+ Z(XTiH/\t - XTiAt)zl
i=0

Now if X is a locally square integrable local martingale, just use the following lemma.

Lemma 4.2 Let (T),)n>0 a sequence of non negative random variables such that T, =+ a.s.

lim
n——+oo
and for every n, X™ = X™ is a semi martingale. Then X is a semi martingale.
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Definition 4.6 (Decomposable process) An adapted RCLL process X is decompos-
able if X; = Xo+M;+ A;, where My = Ay = 0, M is locally square integrable martingale,
and A is RCLL, adapted, with paths of finite variation on compacts.

Proposition 4.5 A decomposable process is a semi-martingale. Hence all Lévy pro-
cesses are semi-martingales.

Proof. Use Proposition 4.4. The second part comes from the Lévy-Khintchine decomposition of a

Lévy process X. O

Now we give some technical results. We denote by

e DD the set of adapted RCLL processes;

e L (resp. bL), the set of adapted RLLC (resp. RLLC and bounded) processes.

d ¢;5k = Ssup |¢S|

0<s<t

Definition 4.7 (Ucp topology) A sequence (¢™) of processes converges uniformly on
compact sets in probability (ucp in short) to ¢ if:

Vt>0, (¢"—¢); =7, 0 in probability.

Lemma 4.3

1. The set'S is dense in I for the ucp topology.

2. For X semi-martingale, G': Sycp — Dyep 15 continuous.

Proof. Let Y be in L and R,, = inf{t > 0, |Y;| > n}. Then R, is a stopping time and the process
Y = YR, atlr,>o0 is in bL and converges ucp to Y: for every € > 0

P(Y"-Y) >e)<P(R,=0)+P < sup |V —Ygr,|> 5) <P(R, <t).
0<R, <s<t
Now if Y € blL, then the process Z; = lim tY“ is in D. For ¢ > 0, we define the sequence 7§ = 0,

u—t, u>
and

To o =inf{t>0, t >T5, |Z, — Zr:| > €}.
Since Z € D, this sequence of stopping times is increasing and a.s. liIJ1r1 Ty = 4o00. Let Z¢ define by
n—-+0oo
Zi =) Il ((0):
neN

This process is bounded (because Y and Z are bounded), is in I, and converges uniformly to Z as e
goes to zero. In order to obtain Y, we put

Y =Yoliop () + Y Zrglyre e (8 —2 Yolqoy(t) + Z,- = Yi.

n—-+oo
neN
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Finally if we define

N
YV = Yolio) () + ) Zre rean,rs, a0,
n=0
YN isin S and converges to Y.

For the second part, assume first that ¢™ is in S, converges to 0 uniformly in S and is uniformly
bounded. Let 6 > 0 and T" = inf{t > 0, |G¢(¢")| > 0}. Then ¢"1jg ) is in S and converges to 0.
Moreover

)

because X is a semi-martingale. We have proved that G is a continuous mapping from S with the
uniform convergence w.r.t. ¢t and w to the set D. Now for the general case, for any 1 > 0, we define
R, = inf{t > 0, (¢"™); > n and o = #"1j0,r,)1Rr,>0- Then ¢" € S and by the left continuity, ¢" is
uniformly bounded by 7. If R, > T, then G¢(¢")* = G;(¢™)*, and we obtain

BG(¢") >58) < P (‘ [ e ax,

— 0

P(Gi(¢™)* > 0) < P(Gy(¢™)* > 0) + P(R, < t)

< P(Gu(¢")" > 8) + P((¢"); > n)
< ¢

for any € > 0 and n large enough, because lirf P((¢™); > n) = 0. This achieves the proof. O
n—-—+0o0

Definition 4.8 (Stochastic integral for LCRL process) Let X be a semi-martingale.
The continuous linear mapping G = Gx : Ly — Dyep obtained as the extension of
G :S — D is called the stochastic integral.

Recall that X7 is the stopped process X = Xrpp;.

Theorem 4.1

1. Let'T be a stopping time. Then
G(¢)T = (G(¢)tAT)tZO = G(¢1[0,T]) = GXT(¢)-

2. The jump process A(G(¢)) is indistinguishable from ¢p(AX).

Proof. These two properties can be proved for ¢ € S and then extended to the general case. O

Theorem 4.2 If X is a semi-martingale, and if ¢ is an adapted LCRL process then
t
o Y, :/ 0, d X, 15 a semi-martingale.
0

e [f is another adapted LCRL process, then

/0 pdY, - / pududX.
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o If X is a (locally) square-integrable (local) martingale, Y is a (locally) square-
integrable (local) martingale.

Proof. Same trick: prove it for simple processes and in the general case troncate with adequate
stopping times and pass to the limit. O

Let us make some remarks on these two theorems. The jumps of the stochastic
integral only occur at jump times of the process X. Therefore if X is continuous,
whatever is ¢, G(¢) = [ ¢dX is a continuous process. Moreover if X is a martingale
and if ¢ € L, then G(¢) is a local martingale. We will see in the next section that this
can be false if ¢ is in D.

Proposition 4.6 Let X be a semi-martingale, ¢ be an adapted LCRL process and 11" =
Iy =0 <1IP < ... < TPy =T) a sequence of random partitions of [0,T] s.t.
|II"|| = sup [T} — T 1| = 0 a.s. when n — oco. Then in probability

¢OSO+Z¢W TP, A ) — X(TP A L) —» /0¢(u)qu.

T =50

4.3 Integral w.r.t. a Poisson random measure

Let us detail the notion of integration w.r.t. a Poisson measure. It is sometimes
convenient to write processes as a stochastic integral w.r.t. a Poisson measure. In fact
it is a particular case of integration w.r.t. a semi martingale. .

If M is a Poisson measure on [0, 7] x R? with intensity p(dt, dz), the process M =

M([0,4] x A) — u(]0,] x A) is a martingale for any A. And if AN B = () then M* and
MP are independent. In this framework a simple predictable process ¢ is

Z Z ¢zg 1T TZ+1] (y)
i=1 j=1
where
o 11 <T, <...<T, are adapted random times,
e ¢;; bounded Fr,-measurable random variables,
e A; disjoint subsets with p([0,7] x A;) < +o0.
The stochastic integral of ¢ w.r.t. M or M is defined by:

/ Rdfb s, y)M(ds, dy) = Z Gij [Mrini(Aj) — Mypi(Aj)]

1,j=1

/Rd¢sy (ds,dy) = Z%[ Tyt )—MTZ,M(AJ.)]

1,7=1
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Proposition 4.7 For any simple process ¢, the process (Xi)icjo1]

X, = / o(s, y) M (ds, dy)
0 Rd

1s a square integrable martingale and verifies the isometry formula

E!XtI—E[// o(s,y)|*p(ds, dy) | -

T
For a random function ¢ s.t. E/ / |p(s,y)|*u(ds, dy) < oo, there exists a sequence
0 Jre

of simple processes ¢" s.t.

T
E / 16(s, ) — & (s, ) Pralds, dy) — 0.
0 Rd n

—+00

Proposition 4.8 For any RLLC process ¢ s.t.

T
2
B[ [ o) Putds.y) < o0

Xo= [ [ otsnitas.an)

1 a square integrable martingale and verifies the isometry formula

B =] [ olutsa).

If M is the Poisson measure Jx of some Lévy process X

the process (Xi)iejo,r]

AX;#0
M=Jxw,.)= Y Suax)
te[0,T]
then
AX#£0
/ o(s,y)M(ds,dy) = Z o(t, AXy).
Re t€[0,7]
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Chapter 5

The 1t6 formula

The construction follows the same scheme as the stochastic calculus for the Brownian
motion or for a continuous square integrable martingale.
5.1 Quadratic variation

The framework is the following:
e X is a semi-martingale, adapted RCLL process with X, = 0,
e we have a time grid m = {tp =0<t; <ty <...<t,.1 =T}

The realized variance is:

n

VX<7T) = Z(Xti+1_Xti)2

1=0

= X’% —2 Z Xti (Xti+1 - th‘)
=0
Hence if the mesh a the time grid goes to zero, Vx(m) converges in probability to:
T
(X, X]r = X3 — 2/ X,-dX,.
0

Definition 5.1 (Quadratic variation) The quadratic variation process of a semi-martingale
X s the adapted RCLL process defined by:

t
(X, X], = |Xt|2—2/ X,-dX,.
0

[X, X] can be denoted also [X].

Properties 5.1

i Xg + Z(Xt'“rl - Xt‘)2 — [Xa X]T mn ucp.

1
— [|7]|—0
1=0
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o ([X,X])iepm is a non-decreasing process with [X, X]o = X§.
o The jumps of [X, X] are: A[X, X]; = |AX,|%.
o [f X is continuous and has paths of finite variation, then [X, X] = 0.

Proof. The first property is a consequence of the definition of the stochastic integral w.r.t. a semi
martingale. Moreover from this convergence, we immediately obtain the second one. Now

|AX15|2 = |Xt - Xt*|2 = |Xt|2 + |Xff|2 —2X: X~
|Xe? = | X- P +2X- (X — Xy) = A(X?)y — 2X,- AX,.

AJ, = A (/ XSdXs> = X,_AX,.
t

Therefore
IAX]? = A(X? —2J); = A([X, X]):.

If X is continuous and has paths of finite variation, then

Z(XtH—I - Xti)2 < ( sup |th+1 - th|) Z |th’+1 - Xti
i=0

Pt 0<k<n

< ( sup [ Xor., —th|) TV,(X).
0<k<n

Using Heine Theorem, X is uniformly continuous on [0, ], hence

lim ( sup | Xy, —th|) =0=[X,X]; =0.
I7]| =0 \o<k<n

Now if we precise that X is given by:

t t
Xt = Xtc -+ Jt = XO —|—/ FdeS + / @Sds + Jt,
0 0

T
where J is a pure-jump process, then [X|r = [X, X]|r = / [2ds + Z (AJ,)2.

0 0<s<T
Proof. We compute
n n n
Z(XtHJ - Xti)Q = ( tci+1 - Xtci)Q + Z(Jti+1 - Jti)2
i=0 i=0 i=0

+ 2 Z(Xt(;+l - Xtci)(‘]ti+1 - Jti)’
0

i=

and
n

Z(Xtciﬂ - Xtci>(Jti+1 - Jti)
1=0

< [ sup |Xt°'i+1 —Xfll
0<i<n

> 1AWl

0<s<t
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Now

> Uy,
=0 =0 =0
+ 2> (L, = 1) (Re,, — Ry,
=0

with .

S s~ )P R < |5 Iy 1| TVCR)

pn <
and

n

Z(Rti+1 - Rti )2

=0

Letting the mesh going to zero, we have

n n T
Xlp =lm Y (L, = L,)? +1m Y (i, — )" = / T2ds+ Y (AJ,)?
i=0 i=0 0

Definition 5.2 (Cross variation) Given two semi-martingales X and Y, the cross
variation process [X,Y] is:

t t
X, Y] = XY — XoYo — / X, dY, — / Y, dX,.
0 0
Proposition 5.1

o [X,Y] is an adapted RCLL process with paths of finite variations.

e Polarization identity:

X,¥] = %([X+Y,X+Y] _ X, X] - [V, V).
o [X,Y]o = XoYo and A[X,Y] = AXAY.

e Ucp convergence: XoYy + Z<Xti+1 - X)) (Y, —Y) — (X, Y.

— [|r]|—0
=0

Proof. Indeed, one can write

2XoYo +2 Z(th,-H - Xti)(i/ti-f—l - }/tz)
=0
n

= (XO + Y0)2 - Xg - YE)2 + Z(Xti+1 + Yti+1 - (Xti + Yti))Q

=0
- Z(Xti+1 - th‘)2 - Z(Y;zwrl - YVtz)Q
i=0 =0
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If we pass to the limit, we obtain for the right-hand side: [X +Y, X + Y], — [X, X]; — [V, Y];. This
process is the difference of RCLL adapted and non decreasing processes, therefore is of finite variations.
Moreover

XOYO + Z(Xti+1 - Xtv:)(Y%Hd - Y%1)

1=0
n n n
= XoYp — Z Xti (}/ti+1 - }/tb) - Z Y;fz (Xti+1 - Xt'i) + Z(Xti+1 YtH»l - Xt'i}/ti)
=0 =0 1=0

= X;Y; — ZXti (Y;fi+1 - Y;fl) - Z Y;‘/L (XtH»l - th‘)'
=0 =0

Then passing though the limit, we have
t t
XY) = XY= Xo¥o - [ X,avi- [ Yo ax.,
0 0

This achieves the proof. O

Theorem 5.1 Consider X, i = 1,2, two jump processes:

XD =X+ 1+ RY + P = x§ + / rOdw, + / 0Wds + J".
0 0

Then .
o0, [0 s Y aan
0

0<s<T

Corollary 5.1 Let W be a Brownian motion and M = N — X. a compensated Poisson
process, relative to the same filtration. Then [W, M|, = 0 for every t > 0.

Proof. M is a pure jump martingale: [M, M]; = N, hence

(W, M), = WoMo + Y AW,AM, =0.

0<s<t

Now for the stochastic integral we can extend the previous results. For i = 1,2 let
X be jump processes: X = X + 1 + RV + J9. Let X{” be two constants and
®) adapted processes. We define

. ~ 3 t . .
X0 = X(gz>+/ B GX )
0

= X0+ / SOTO W, + / oelds + > VAJY.
0 0

0<s<t
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Then we have

t
XV, X@)], = / YOI ®ds + 3 1 eV AJVAIP)
0

0<s<t

S S

t
_ /q)(l)q)@)d[X(l)?‘)((?)]s'
0

Definition 5.3 For a semi-martingale X, the process [ X, X|¢ denotes the path-by-path
continuous part of [ X, X].
X is called quadratic pure jump if [X, X]° = 0.

Proposition 5.2 If X s adapted, RCLL, with paths of finite variations on compacts,
then X 1s a quadratic pure jump semi-martingale.

Proof. With the Stieltjes-Lebesgue integral, we can write
t t t
X2 :/ Xsdeﬁ/ X, dX, :2/ X, dX, + [X, X]s,
0 0 0

and

t t t t
/ X dX, = | Xy-dX,+ | AX)dX, = / X, dX, + Z(A(X)S)Q.
0 0 0 0

By identification
XX = ) (A(X),)?
which finishes the proof. O

Proposition 5.3 Let X be a local martingale with continuous paths that are not ev-
erywhere constant. Then [X, X| is not the constant process X2 and X* — [X, X] is a
continuous local martingale. Moreover if [X, X]|, = 0 for all t, then X; =0 for all t.

Proof. Note that a continuous local martingale is a semimartingale. We have X2 — (X, X] =
2 / X,-dX,, and by the martingale preservation property (Theorem 4.2) we have that 2 [ X - dX;

is a local martingale. Moreover

A (2/Xs_dXs> = 2X,- A(X),,
t

and since X is continuous, A(X); = 0, and thus 2 sz_dXS is a continuous local martingale, hence
locally square integrable. Thus X2 — [X, X] is a locally square integrable local martingale.

By stopping, we can suppose X is a square integrable martingale. Assume further Xy = 0. Next
assume that [X, X] actually were constant. Then [X,X]; = [X,X]o = X2 = 0, for all t. Since
X? — [X, X] is a local martingale, we conclude X? is a non-negative local martingale, with Xo = 0.
Thus X; = 0, for all ¢£. This is a contradiction. If X is not identically 0, we set X; = X; — X, and the

result follows. O
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Corollary 5.2 Let X be a continuous local martingale, and S < T < 400 be stopping
times. If X has paths of finite variation on the stochastic interval (S,T), then X is
constant on [S,T]. Moreover if [ X, X| is constant on [S,T]N[0, +00) then X is constant
there too.

Corollary 5.3 Let X andY be two locally square integrable martingales. Then [X, Y] is
the unique adapted RCLL process A with paths on finite variation on compacts satisfying
the two properties:

1. XY — A s a local martingale;
2. AA=AXAY, Ay = XY

Corollary 5.4 Let M be a local martingale. Then M is a martingale with B(M;)? < oo,
t >0 if and only if E([M, M];) < oo. In that case BE(M?) = E([M, M],).

The next theorem and the following results will be admitted.

Theorem 5.2 (Kunita-Watanabe inequality) Let X andY be two semi-martingales
and ¢, P be two measurable processes. Then one has a.s.

[Tlodwdae i< ([T oraxx) ([ eavn,).

Proposition 5.4 Let X be a quadratic pure jump semi-martingale. Then for any semi-
martingale Y,
(X, V], =XoYo+ > AX,AY,.

0<s<t

Proposition 5.5 Let X, Y be two semi-martingales and let ¢, 1 be in L. Then

[ Joix. [ deL - / Gund(X, Y],

Proposition 5.6 Let ¢ be in D and let X, Y be two semi-martingales. Let o, be a
sequence of random partitions tending to the identity. Then

Sy (KT Xy ot

Examples.

Method 5.1 Consider a stochastic integral w.r.t. a Poisson random measure:

Xt:/ot/RqS(s,y)J(ds,dy).

[X]T—XXT—// (s5,9))2](ds, dy).

Then
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Method 5.2 If X is a Lévy process with characteristic triplet (o2, v,7), then
(X, X], = 0%t + Z |AX, |2_a2t+/ /y Jx(ds, dy).
0<s<t

Moreover [ X, X] is a subordinator.

Proof. Remember that X can be decompose into two independent parts: X; = X! + X?, where
X? is a Brownian motion with variance o2 and drift v and X! is the jump part of X. Therefore
[X,X]; = 0%t + [X', X'];. Moreover X' is the sum of a compound Poisson process with jump size
greater than one and of a limit of compound Poisson processes with jump size between € > 0 and 1.
Thus using Proposition 2.11, Proposition 5.2 and Corollary 5.3, we obtain

XL X = ) JAX

0<s<t

We deduce that the quadratic variation of a Lévy process is again a non decreasing Lévy process: it is

a subordinator. O

Remark that in particular, if X is a symmetric a-stable Lévy process, which has infi-
nite variance, the quadratic variation is a well-defined process, even though the variance
is not defined.

5.2 The It6 formula

Recall that for I' and © adapted, if:
t t
Xf:X0+It+Rt:X0+/ FSdWs+/ O,ds,
0 0
and if f is a function of class C?(R), then the It6 formula gives:
P = 0+ [ rooaxs s [,
1 t
= f(Xo) / F(XHT . dW, —1—/ /! Xc®ds+2/ f(XOT2ds
0
or in differential notation

df(XE) = f/(XOTdW, + f/(XC)O,ds + % F(XE)T2ds.

5.2.1 For a jump-diffusion process

Let us extend the It6 formula to jump-diffusion processes, that is when there is a
finite number of jumps in a finite time interval.
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Theorem 5.3 Let X be a jump-diffusion process and f of class C*(R):

t t
Xt:Xf+Jt:X0+/ FSdWSJr/ O.ds + J.
0 0

Then

5.1) JR) = 7+ / Fx ch)]. / f1(XTids

+ ) f(X) — f(Xe-

0<s<t

Proof. Let us fix w and 0 < Th <Tj < ... < T,_1 < t the jump times of X in the interval [0,¢[. We
note Top = 0 and T;, = ¢ (T} is not a jump size, but T;, can be). Now we apply the It6 formula between
the times v and v with T; < u < v < Tj45:

1) = oo+ [ reaaxss g [ o,

Letting u tend to T; and v to T;41 and using X RCLL, we obtain

Tit1 Tita

£ (¥a,) = 1)+ [ pgaxs+ 5 [ procoape),.

Note that if we put dXg instead of dX§ we would have
v Tit1
[ pax. £ [ p)ax
u

vITiv1 Jy

Therefore

Tit1 Tit1
f) =50y = [ peaxs g [ i,

T;

To finish we just have to sum over i
F0X0) - £(X0) = / F(X)dXE + /Otf”(Xs)d[Xc]s
+Z[ )= £ (X )]
= [ rxgaxs vy [ soa s X u X))

0<s<t

As two applications, we have the two propositions.

Proposition 5.7 We consider the geometric Poisson process
Sy = Spexp (N;log(o + 1) — Aat) = See (o + 1),

where N is a Poisson process with intensity X\ and o > —1. Then S is a martingale:
t t
S, = S —i—a/ S(u)dM, = S(0) +o—/ S(u)d(N, — u).
0 0
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Proposition 5.8 Let W be a Brownian motion and N a Poisson process with intensity
A > 0, defined on the same probability space (2, F,P) relative to the same filtration
{Fi, t >0}. Then W and N are independent.

In the multidimensional framework

Theorem 5.4 Let X = (XU, ..., X@D) with X© i =1,...,d, be jump-diffusion pro-
cesses and f of class CY2(Ry x RY). Then

t d ‘
flt,Xy) = f(07X0)+/0 g—{(s,Xs)dS—l—Z/o g—i(s,xs)d(x(i))g

33 [ s X0y, (e,

The integration by parts formula becomes:

Proposition 5.9 Consider Xy, Xy two jump processes. Then

Xi1(t)Xao(t) = / X1 (s)dX5(s / Xo(s)dXE(s
+H[XT, X5+ Z [X1(8)Xa(s) — X1 (57) Xa(s7)]
0<s<t
= X, (0 / X1 (5—)dXo(s / Xo(s—)dXy(s)
+[X1,X2

Proposition 5.10 (Doléans-Dade exponential) Let X be a jump-diffusion process.
The Doléans-Dade exponential of X is defined by

ZX = exp {Xf - l[XC, Xc]t} IT a+2ax,).

2
0<s<t

This process is solution of the following stochastic differential equation with initial con-
dition ZX(0) = 1:

t
Z§:1+/ ZX dX,.
0

Proof. Let X and X be two jump-diffusion processes, and J() and J®) their pure jump parts. We
apply the multidimensional It6 formula with f(x7,z5) = x122 or the definition of the cross variation:

t t
xPx® = x{WxP + / xWax®@ 4 / XPax® 4 (xO, x®,.
0 0
But
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/Xu)dX /X dxM 4+ [x M, x@)1,

/X(l)d X /Xz)d xMye /Xl)dj(2)+/X2)dJ(l)

HEXO)E (X)) + 3 ATDAID

0<s<t

t t
= [ xDaex®s+ [ xPdas - ((xO), (x )
0 0
+ 3 [xPax® 4 xPAx® £ axPax®|.
0<s<t
Remark that
XYAXD 4 XPAXD  AXDAXE = xWx® - xUx®,

Hence
t t
XOxP = XX+ [ xPax @)+ [ XPa ey ey,
0 0
(1) y(2)
+ Y [x0x® - xOx®).
0<s<t

t t
Now X is a jump-diffusion process written: X; = X; + J; = Xo + 0sds + / I'sdBs + J;. We
0 0

define
t t 1t
Y; = exp (/ 95ds—|—/ I'sdBg — 7/ Fids) .
0 0 2 Jo

Then the It6 formula for continuous process shows that
dY, = YidX; =Y,-dX7;.

We put
K= [] 1+AXx,)

0<s<t

with K; = 1 before the first jump. Moreover
AKt == Kt — th == th(l + AXt) — th == th AXt

By definition Z; = Y; K; and from the previous result

Zt:YOKO+/K dY,+ > VoK, - Y- K]

0<s<t

— 1+/KYdXC+ZYAK

0<s<t

- 1+/KYdXC+ZYKAX

0<s<t

t
= 1+/ ststdstqu/ Z.-dX,.
0 0

From this, we can conclude that if X is a martingale, Z is a local martingale.
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Definition 5.4 (Doléans-Dade exponential) Z = £(X) is called the Doléans-Dade
exponential (or stochastic exponential) of X.

5.2.2 The general case
If

o X; = oW, + ut+ J; where J is a compound Poisson process and W is a Brownian
motion;

o [€C*(R),

then the It6 formula (5.1) can be written:

FX) = f(Xo)+ /f dXC+—/f”
+ ) IS X

0<s<t

= f(Xo)+ /f dX+—/f”

+ Y U Xo-) = AXf(X-)]

0<s<t

This last expression can be extended to semi-martingales.

Theorem 5.5 Let X be an n-tuple of semi-martingales, and f : [0, T] x R" — R a C1?
function. Then f(.,X) is again a semi-martingale, and the following formula holds:

ft, X)) = f(O,Xo)—i-/ %(S,Xs)ds—i-Z/o %(S,XS—)dXz
(5.2) - Z/ o axj Xo)d[ X", X7
+ ) [f(s,Xs) ZAXZ af )] .

0<s<t

Proof. We make the proof in dimension 1 with f depending only on z. The general case is a straight-
forward extension.
Remember that from Propositon 2.11 for any ¢ > 0, a.s.

> JAX? < [X, Xy < 4oo.

0<s<t

Let € > 0 and ¢ > 0. We define two sets A = A(e, t) and B = B(e, t) such that
e AU B is the set of all jump times of X on the interval ]0, ¢];
e ANB=10;
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° Z |AXS\2 <e?

seB
e A is a.s. finite.

Then for any 0 =15 <1I7" < ... <TP =t,

n—1
f(X) = F(Xo)+ Z f(Xrp ) = f(Xp)
(5.3) = f(Xo)+ Zf (Xrp ) — f(X7p) + Zf(XTZ;l) — f(Xap),
i A B

)

where Z o = Z ;L amyr 7 140 When n tends to +oo,

L+1

ngl—&l:loo Z f XT:Lrl XT" Z f )

seA

For the second sum, we use Taylor’s expansion to obtain:

MRS

n—1 n—1
1
=2 P X)Xz, = Xa) + 5 30" (Xa) (X, = X
i=0 =0

_ ;; |:f’(XTi”)(XTZ'Jr1 - XT,L_n) + %f/(XT?)(XT:Lrl _ XT;L)2:|

+> R(TITH).

i,B

t
The first two sums converge respectively to / f(Xs-)dX, and = / F"(X,-)d[X, X]s. The third will
0

converge to
Z[ )AX + f”( )(AXS)Q].
sEA

Now if for some constant K, |X;| < K for any 0 < s < ¢, since f” is uniformly continuous on any
compact set, and since X is RCLL, we have:

hmsupz |R(T], T )| < r(eM)[X, X]s,

n—-+o0o i.B

where
r(e™) =limsupr(d), r:R, — R,, increasing with ;ir% r(9) =0.
—

dle
Coming back to (5.3), we obtain:

A0 + 31X = 1)+ [ 1

s€eA

f(X)

T / (XX, X~ 3 [f’<X5>AXs+ SFXBX) | +6(e)

seA

— f(X0) + /f( )dX, 4 /f“ X]¢
+ ) (X)) = f(Xe-) = FI(X - )AX] + (o).

sEA
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Now let £ go to zero. Of course ¢(¢) — 0 and on [—-K, K], |f(y) — f(z) — (y — 2)f'(x)| < C(y — x)?,
thus

S TIFX) - f(X-) = (X )AX] < C ) (AXL)? < O[X, X],.

sEA 0<s<t
Hence
FX) = f(Xo) / F(X\)dX, + 2 / F(X,)dIX, XS
+ > U X,-) — (X2 )AX,].
0<s<t

To finish the proof, for any K, we define 7x = inf{s > 0, |Xs| > K} At and we apply the previous

result on the semi-martingale X1y ;.| and we let K going to +oo. (I

When X = (X1!,..., X%) is a d-dimensional Lévy process with characteristic triplet
(A,v,7), the continuous quadratic variation is given by the matrix A. Hence we have
for any C'2 function f: [0,T] x R? — R

¢ d ¢
fex) = f0.x0+ [ Shexgas+ Y [ ol i

From this formula, we deduce

Proposition 5.11 Let X be a Lévy process with characteristic triplet (o2, v,v) and
f:R =R aC? function such that f and its two derivatives are bounded by a constant
C. Then Y, = f(X;) = My + V; where M is the martingale part given by:

F(X0) + /f JodW, +/ /JX (ds, dy) (F(Xo+ ) — F(X,0),

and V' a continuous finite variation process:

o [t t
= i/of(Xs)dS"i"Y/of(X ds

n / / (F(Xo- ) — F(Xe) — gf (X110 )dsw(dy).

Proof. Indeed remember that X can be written as follows

Xt:7t+aWt+}Q+)~ft:yt+aWt+}Q+liﬁ})~(§,
£
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where W is a Brownian motion, Y is a compound Poisson process with jump size greater that 1, X© is
a compensated Poisson process with jump size between € and 1. And W, X¢ and X are martlngales
Thus

fX) = f(Xo)+ / F(X )W, + / F/(Xo s + /0 (X, )dY, + /O F(Xo
4= U/f” Jds+ > [f (Xy-) — AX f (X,-)].

0<s<t

Since Y and X are independent, they do not jump at the same time. Thus in the previous equality,
since Y is a compound Poisson process, we have

/f’(Xr)dYs: ST AYfI(X,-)
0 0<s<t

and

f(Xy) = f(Xo)+ a/ 1( ds—l—v/f )ds—i—/of’(X_
+ > [f(Xe +AYy) o)l

0<s<t, AY,#0

+ FXa%o+ Y [F(X AR - (X,) - AR S(X)]

0<s<t, AX.#0

Remark that

S [f(X, +AY) / LU )= 1) s ).

0<s<t, AY;#0

Define jy(ds,dy) = Jy(ds,dy) — dsljy>1v(dy). Jy is a compensated Poisson measure, and for any
subset A, the process Jy ([0,#] x A) is a martingale. Therefore

> (X +AYL) = f(X,-)]

0<s<t, AY;#0

/0 /R[f(Xr +y) — f(X,-)] Jy (ds, dy)
+ /0 /R[f(Xs— +y) = f(Xs-)]dslyy>1v(dy).

The first integral is a martingale (see Proposition 4.8). The same trick can be done for X. Indeed for
any € > 0, X¢ is a compound Poisson process with a continuous drift. Hence we have

/ PR Y A AR - F(X) - AKX

0<s<t, AX#0

/ / F(Xo- < (dy)ds + / / F(Xa- +9) = F(X,-)] T (ds, dy)
" / X ) = FX sty v
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Here the compensation is already done in X. We conclude:
1 t t t
X)) = f(Xo)+ =02 "(X4)d "(X,-)d "(X - )dW,
f00) = 0+ g0t [ ds e [ s [
[0 )~ 1 Retasdn) + [ ] U ) = 1) dsty i)
t » t
[0 49 = 1 Telassdn) + [ [ 1 +) = S8l ds1y a0t

- /ot /R F (X )yl <av(dy)ds.

The decomposition of f(X;) follows. O

5.3 Stochastic exponentials vs. ordinary exponentials

From the It6 formula, we obtain the following result.

Proposition 5.12 Let X be a (02, v,v) Lévy process s.t. / e!v(dy) < oo. Then
ly|>1
Y, = exp(X}) is a semi-martingale with decomposition Y, = My+ A, where the martingale

part is given by

¢ ¢
M, =1 +/ Y- odWj +/ /Ys— (e* — 1) Jx(ds, dz);
0 o Jr

and the continuous finite variation drift part by

t 2 00
A= / Y- [7 + % +/ (e =1 =21 <1)v(dz) | ds.
0 00

Proof. We apply Proposition 5.11 with f(x) = e*. |

This shows again that Y is a martingale if and only if

2 o]
")/‘i‘%"‘/ (€Z— 1_Zl\z|§1)l/(dz) =0.

Proposition 5.13 Let X be a (0%,v,7) Lévy process. There exists a unique RCLL
process Z such that:

(5.4) dZ, = Z-dX,, Zo=1.

Z is given by:

2
(55) Zt = exXp (Xt — %t) H (1 + AXS)Q_A)Q‘

0<s<t
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1

If |z|v(dx) < oo, the jumps of X have finite variation and the stochastic expo-
-1
nential of X can be expressed as

. 0%t
Zy=exp | Xf— IT a+ax,).

0<s<t

Proof. Let
Vi= J[ @+AaX)e 2%,

0<s<t

The first step is to show that this process exists and is of finite variation. We decompose V into a
product of two terms: V; = V/V}”, where

V) = 11 (1+AX)e 2% V= 11 (1+AX,)e 2%,
0<s<t, |AX4|<1/2 0<s<t, |AXs|>1/2

V" for every t is a product of finite number of factors, so it is clearly of finite variation and there are
no existence problems. V' is positive and we can consider its logarithm.

InV, = > In(1+AX,) - AX,].
0<s<t, |AX,|<1/2

Note that each term of this sum satisfies
0>1In(l+AX,) - AX, > —(AX,)%.

Therefore, the series is decreasing and bounded from below by — >, _,(AX )2, which is finite which
is finite for every Lévy process (see Proposition 2.11). Hence, (InV}/) exists and is a decreasing process.
This entails that V' exists and has trajectories of finite variation.

The second step is to apply the Itd formula for semi-martingales to the function

Zy = f(t, X;, V) = X7 12y,

This yields

t 2 t t
Zy = 1—/ %sts—k/ Zsdes—F/ eXs*7”25/2dVg
0 0 0

2 t
* %/o Zids+ Y [Z= 2o = (Zo)AX, - X720V,

0<s<t

Now observe that since V; is a pure jump process,
AV, = AV, = Vi- (e2% (1 4+ AXy) - 1).

Thus: AZ; = 1+ AX,. Substituting this into the above equality and making all the cancellations
yields the Equation (5.4). O

Definition 5.5 (Doléans-Dade exponential) Z = £(X) is called the Doléans-Dade
exponential (or stochastic exponential) of X.

Remark that the previous proof works for semi-martingales too. We can prove the next
result.
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Proposition 5.14 If X is a Lévy process and a martingale, then its stochastic expo-
nential Z = E(X) is also a martingale.

Until now we have two different exponentials. And therefore two ways to modelize
market prices. But let X be a Lévy process with triplet (6%, v,7) and Z = £(X) its
stochastic exponential. If Z > 0 a.s., there exists another Lévy process L such that
7 = exp(L) where:

ot
(5.6) Li=InZ, =X, — —+ (In(1 + AX,) — AX,).

2
0<s<t
Its characteristic triplet (0%, vr,7r) is given by:
gy =0,

vi(A) = / 1a(In(1 + 2))0(dz),

=y — % n / [In(1+ )11y (In(1 + 2)) — 21y ()] v(dz).

Indeed if Z > 0, then AX, > —1 for all s a.s., so taking the logarithm is justified here.
In the proof of Proposition 5.13 we have seen that the sum Z In(1 +AX,) — AX;

0<s<t
converges and is a finite variation process. Then it is clear that L is a Lévy process and

that o, = 0. Moreover, AL, = In(1 + AX) for all s. This entails that
T(0,4] x A) = / La(In(1 + 7))y (dsdz),
[0,t] xR

and also vy (dx) = 14(In(1+x))v(dz). It remains to compute 7. Substituting the Lévy
decomposition for L; and X; into (5.6), we obtain

Qt -
vt —yt+ 25 4 / v Jp(dsdzr) + / v Jp(dsdz)
s€[0,¢],|x|<1

2 s€[0,t],|x|>1

- / ij(dsdx)—/ xJx(dsdx)
s€[0,t],|z|<1 s€[0,t],|z|>1

— ) [n(l+AX,) - AX,]=0.

0<s<t

Observe that
/ x(Jx(dsdx) — Jp(dsdz))
s€[0,t],]z|<1

=Y [AXIL(AX,) = In(1+ AX) 1 g (In(l + AX,))]

0<s<t

converges, we can split the above expression into jump part and drift part, both of which
must be equal to zero. For the drift part we obtain:

v — Y+ % — /_1 [zvr(dx) — zv(dz)] = 0,
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which yields the correct formula for 7, after a change of variable.

Conversely if L is a Lévy process with triple (0%, vr,v.) and Sy = exp(Ly) its ex-
ponential. The jumps of S; are given by AS; = S;-(exp(AL;)?1). If there exists a
Lévy process X such that S is the stochastic exponential of X: S = £(X), then since
dS; = Si-d Xy, AS; = Si-AXy, so AX; = exp(AL;)?1. Hence v is given by:

v(A) = /1,4(6”” — vy (dx).

In particular AX; > —1 a.s. and it is easily verified that In £(X) is a Lévy process with
characteristics matching those of L only if X has characteristics given by

g =20gp,

v(A) = /1,4(6”" — 1)y (dx)

Y=+ L / (¢ — D1iiy(e — 1) — elpyy(2)] vi(de).

Moreover )
ot
Xt:Lt—l-T—l- Z [1+ALS—€ALS].

0<s<t

Conversely if X is a Lévy process with the previous characteristics, using (5.5) we
can verify as above that £(X); = exp L.

This shows that the choice of one exponential to modelize a market price is not
important and in both cases, one speaks about exponential Lévy model.

To finish this part, let us prove Proposition 5.14.
Proof. Let (X;);>0 be a Lévy process with characteristic triplet (o2, v, ) such that ’er/ zv(dzr) =
|z|>1
0 (this is the martingale condition). First, suppose that [AX | < e < 1 a.s. Then there exists a Lévy
process L such that e’ = Z,. Moreover, this process has bounded jumps and therefore admits all
exponential moments. Again we can write:

2

et T [ -1 =+ [ i) - e

+/OO (e =1 — 21, <1)vr(dz) = /Oo [(e* — Vv (dz) — zv(dz)] = 0,

— 00 —0o0

because AX, = e~Ls — 1 for all s. Therefore by Proposition 5.12, Z; = el is a martingale.
The second step is to prove the proposition when X is a compensated compound Poisson process.
In this case, the stochastic exponential has a very simple form:

Zy=e" J[ 1+ AaX,),

0<s<t

where b = —/ +oozv(dr). Denoting the intensity of X by A, we obtain

E(Z;) = e MT0t i %(1 +E(AX))" =1.

n=0
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Together with the independent increments property of X this proves that Z is a martingale.

Now let X be an arbitrary martingale Lévy process. It can be decomposed into a sum of a compen-
sated compound Poisson process X’ and an independent martingale Lévy process with jumps smaller
than e, denoted by X”. Since these two processes never jump together, £(X' + X") = E(X)E(X").
Moreover, each of the factors is a martingale and they are independent, therefore we conclude that
E(X'+ X") is a martingale.

|
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5.4 Exercises

Exercice 5.1 Soit (N;):>o un processus de Poisson d’intensité A, et soient (Y},),>1 une
suite de v.a.r indépendantes et identiquement distribuées définies sur le méme espace

de probabilité filtré (2, F, (Fi)i>0,P). On suppose aussi que les v.a.r Yy, Ys, ... sont
N¢

indépendantes du processus (Ny);>o. On définit par @ := Z Y.

=1

1. Quelle est la nature du processus ((Q¢)r>o ? Donner I'expression de son saut a
I'instant ¢ > 0.

On suppose dans la suite que pour tout ¢ > 1, chaque v.a.r. Y; prend ses valeurs dans
{y1, Y2, ..., ym} ot m € N*. On note par p(y;) la probabilité que le saut est de taille y
c’est-a~dire p(yx) := P(Y; = yx) pour k = 1,..., m. Cette probabilité ne dépend pas de ¢
car les v.a. Y; sont identiquement distribuées. On suppose que p(yx) > 0 pour tout k et
on rappelle qu'on a > ;- p(yx) = 1. On note par N} le nombre de sauts du processus
Q; de taille y; sur I'intervalle de temps [0, ¢], ce qui permet d’écrire

m m
Ny = ZNtk et Q= ZZ/thk-
k=1 k=1
2. Justifier que Nt, N2,..., N™ sont des processus de Poisson indépendants d’intensités
)\1 = )\p(yl), )\2 = )\p(yg),, )\m = )\p(ym>
3. Soit Xl,...., Xm des réels strictement positifs. On définit

M

(5.7) Z4(t) ::eka)t(Ak)Ntk et Z(t):= [ Zu(t).

Montrer que Z; vérifie 'EDS suivante :

AZ4(t) = 22 241 (1)

ot My(t) = NF — A\t pour k= 1,....,m.
4. Montrer que Zj est une martingale et que le crochet [Zy, Zy/] = 0 pour k # k'

5. Montrer que 7,7, et Z1Z573 sont des martingales. En déduire que Z est une
martingale et que E[Z(t)] = 1 pour tout ¢t > 0.

~ Nt
6. Montrer que Z; = e H
k=1

(V)
A(Ye)
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Exercice 5.2 Soit (F;);>0 un processus de Poisson d’intensité A\ et (Z,)nen une suite
de variables aléatoires indépendantes et identiquement distribuées de loi v(dz) sur R.
On suppose que la suite (Z,)nen et le processus (F;);>o sont indépendants. On définit
le processus de Poisson composé
Py
V-3
k=1

1. Quel est le triplet caractéristique de Y 7

2. Ecrire la décomposition de Lévy de Y en définissant correctement chacun des
termes de la formule. En déduire que

Yt:/zN(dr, dz)
R

pour une mesure aléatoire de Poisson N appropriée.

3. On suppose que I'on a une fonction u : [0, 7] x R — R de classe C? sur [0, 7] x R,
avec dérivées bornées sur [0, 7] x R, telle que

%(t’{p) = /R(u(t,:v + 2) —u(t,x)) \v(dz)

avec condition initiale u(0,z) = g(x). On fixe t € [0,7] et x € R. Le but est
d’exprimer u(t, ) en fonction du processus Y.

(a) Montrer que le processus
t
Z :/ / u(t—rz+Y,+2)—ult—r,x+Y,)| N(dr dz)
o Jr

est intégrable et d’espérance nulle. N est la mesure de Poisson compensée.

(b) Montrer que l'on a :
u(t,z) =Eg(x +Y).

Indication : appliquer la formule d’It6 a la fonction (r,y) — wu(t — r,y) et au processus de
Lévy (r,z +Y,).

Exercice 5.3 Soit X un processus de Lévy-Itd de la forme

Xt:/ ,usds+/ o, dW, +// N(ds,dz) + // ds ,dz)
|Z‘>1 z|<1

avec [, v (2)?v(dz) localement borné. On suppose que
2

o
pet 5+ / (€ =1 = () Ljpjza) w(da) =0
R
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p.s. pour tout t. En appliquant la formule d’'It6, montrer que eXt s’écrit sous la forme :

eXt = /Ot asdW —|—/Ot/RﬁS(z)N(ds,dz)

avec les coefficients « et 3 & préciser.
En supposant que o; et fR(e%(I) — 1)%v(dx) sont bornés p.s. par une constante
C, montrer, en utilisant le lemme de Gronwall, que (eX*) est une martingale de carré

intégrable.
Lemme de Gronwall. Soit ¢ une fonction positive localement bornée sur R, telle que

o(t) <a-+ b/o @(s)ds

pour tout ¢ et deux constantes a et b > 0. Alors ¢(t) < ae’t.

Exercice 5.4 (Extrait de ’examen 2008-2009) Dans cet exercice, la maturité est
T > 0 et on suppose que le prix de I'actif sans risque est donné par

ds0 — Sordt, SO — 1.
tandis que le prix de I'actif risqué est donné par ’équation suivante :
dS; = S;_(bdt + odWy + 6dM;), So > 0.

Ici W est un mouvement brownien standard, M un processus de Poisson compensé,
ie. M; = N; — At, avec N processus de Poisson d’intensité A > 0, indépendant de W.
Tous les processus sont définis sur le méme espace de probabilité filtré (Q, F, P, (F;)i>0)
et sont adaptés a la filtration. Les hypothéses sur les paramétres sont :

r>0, beR, oceR;, de€|—1,+00[\{0}.
On rappelle que les exponentielles de Doléans-Dade sont
1
E(eW)(t) = exp (O‘Wt - 50%) :
EOM)(t) = exp(n(l+0)M; — Mt(0 —In(1+6))) = exp (In(1 + )N, — A\dt)

1. Quelles sont les équations vérifices par E(cW) et £(M) 7 On appliquera la
formule d’It6 en justifiant son emploi.

2. Exprimer S; uniquement en fonction des paramétres du modéle.

3. Montrer que pour tout a € R,
1
(S)* = (S0)*E(acW) (t)E(0,M)(t) exp §a(a — 1)o%t + abt + A\t(S, — ad) | ,
avec 0, = (1 +9)* — 1.
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4. En déduire E(SY) pour tout t > 0.

Exercice 5.5 Soit (P;)¢>o un processus de Poisson d’intensité A et (Z,),en une suite
de variables aléatoires indépendantes et identiquement distribuées de loi v(dz) sur R.
On suppose que la suite (Z,)nen et le processus (P;);>o sont indépendants. On définit
le processus de Poisson composé
P
T P
k=1

1. Quel est le triplet caractéristique de Y 7

2. Ecrire la décomposition de Lévy de Y en définissant correctement chacun des
termes de la formule. En déduire que

Yt:/zN(dr, dz)
R

pour une mesure aléatoire de Poisson N appropriée.

3. On suppose que I'on a une fonction u : [0,7] x R — R de classe C? sur [0, 7] x R,
avec dérivées bornées sur [0, 7] x R, telle que

%(ﬂ T) = /R(u(t, x4+ z) —u(t,z))\w(dz)

avec condition initiale u(0,2) = g(z). On fixe t € [0,7] et x € R. Le but est
d’exprimer u(t, z) en fonction du processus Y.

(a) Montrer que le processus
t ~
Zy :/ / wt—rx+Y, +2)—ult—r,x+Y,)] N(dr dz)
o Jr

est intégrable et d’espérance nulle. N est la mesure de Poisson compensée.

(b) Montrer que 1'on a :
u(t,z) = Eg(x +Y}).

Indication : appliquer la formule d’Itd a la fonction (r,y) — u(t — r,y) et au processus de
Lévy (r,x +Y,).
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Part 111

Application in finance
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Chapter 6

Equivalence of measures

6.1 Pricing rules and martingales measures

This short section resumes the theory of arbitrage for semi-martingales models (the
notion of semi-martingale will be defined in Chapter 5). Define a market with

e underlying assets described by an adapted semi-martingale:
(S =(S7,St,....8H, tel0,17),
e S numeraire (for example Sy = exp(rt)),

e discount factor: B(t,T) = S?/S9.

A contingent claim is represented by its terminal payoff H, a Fr-measurable random
variable. The set of contingent claims of interest will be denoted by H.

A pricing rule is a procedure which attributes to each H € H a value II;(H) at each
time with the following requirements:

e Adaptativity: II;(H) is an adapted process (and a semi-martingale).
e Positiveness: H > 0= II,(H) > 0.

e Linearity (false for large portfolios in practice).

For any event A € F, the random variable 1,4 represents the payoff of a contingent
claim which pays 1 at 7" if A occurs and zero otherwise: it is a bet on A (also called a
lottery). We will assume that 14 € H: such contingent claims are priced on the market.
In particular 1o = 1 is just a zero-coupon bond paying 1 at T". Its value II;(1) represents
the present value of 1 unit of currency paid at T, i.e., the discount factor:

Ht(l) = B_T(T_t).
Define now Q : / — R by

Q(A) is thus the value of a bet of nominal exp(r7T) on the event A. Then, the linearity
and positiveness of II entail the following properties for Q:

= eTTH()(]_A).
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e 1>Q(A)>0,since 1 >14>0.

o If A, B are disjointed events 14,8 = 14 + 1p so by linearity of the valuation

operator: Q(AU B) = Q(A) + Q(B).

If one extends the linearity condition to infinite sums, then Q defined by is nothing else
but a probability measure over the scenario space (€2, F) ! So, starting from a valuation
rule II, we have constructed a probability measure Q over scenarios. Conversely, II can
be retrieved from Q in the following way: for random payoffs of the form H =), ¢;14,
which means, in financial terms, portfolios of cash-or-nothing options, by linearity of I1
we have IIo(H) = E?[H]. Now if II verifies an additional continuity property (i.e., if a
dominated convergence theorem holds on H) then we can conclude that for any random
payoff H € H,
o(H) = e ""E2[H].

Therefore there is a one-to-one correspondence between linear valuation rules II verifying
the properties above and probability measures QQ on scenarios: they are related by

(6.1) Iy(H) = e ""EY[H], and Q(A) = " TIy(14).

The relation (6.1) is sometimes called a risk-neutral pricing formula: the value of a random
payoft is given by its discounted expectation under Q. We have shown above that any
linear valuation rule IT verifying the properties above is given by a Orisk-neutralO pricing
rule: there are no others! It is important to understand that Q has nothing to do with
the actual/objective probability of occurrence of scenarios: in fact, we have not defined
any objective probability measure on the scenarios yet! Q is called a risk-neutral measure
or a pricing measure. Although it is, mathematically speaking, a probability measure on
the set of scenarios,Q(A) should not be interpreted as the probability that A happens in
the real world but as the value of a bet on A. A risk-neutral measure is just a convenient
representation of the pricing rule II: it is not obtained by an econometric analysis of
time series or anything of the sort, but by looking at prices of contingent claims at ¢ = 0.
Similarly for each t, A — A = e"1I;(14) defines a probability measure over scenarios
between 0 and ¢, i.e., a probability measure Q; on (2, F;). If we require that the pricing
rule II is time consistent, i.e., the value at 0 of the payoff H at T is the same as the
value at 0 of the payoff II,(H) at ¢, then @, should be given by the restriction of @,
defined above, to F; and II;(H) is given by the discounted conditional expectation with
respect to Q:

(6.2) IL(H) = e "T-YEQH| Ft].

Therefore we have argued that any time consistent linear pricing rule II verifying some
continuity property is given by a discounted conditional expectation with respect to some
probability measure Q. We will now consider such a pricing rule given by a probability
measure Q and examine what restrictions are imposed on Q by the requirement of
absence of arbitrage.

Assume now that, in addition to the market scenarios (€2, F) and the information
flow F;, we know something about the probability of occurrence of these scenarios,
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represented by a probability measure P. P represents here either the objective probability
of future scenarios or the subjective view of an investor. What additional constraints
should a pricing rule given by (6.2) verify in order to be compatible with this statistical
view of the future evolution of the market? A fundamental requirement for a pricing rule
is that it does not generate arbitrage opportunities. An arbitrage opportunity is a self-
financing strategy ¢ which can lead to a positive terminal gain, without any probability
of intermediate loss:

B(ve € [0,T], Vi(6) > 0) =1, P(Ve(9) > Vo(@)) #0.

Of course such strategies have to be realistic, i.e., of the form of a simple process to be
of any use. Note that the definition of an arbitrage opportunity involves P but PP is only
used to specify whether the profit is possible or impossible, not to compute its probability
of occurring: only events with probability 0 or 1 are involved in this definition. Thus the
reasoning in the sequel will not require a precise knowledge of probabilities of scenarios.
The self-financing property is important: it is trivial to exhibit strategies which are
not self-financing verifying the property above, by injecting cash into the portfolio right
before maturity. A consequence of absence of arbitrage is the law of one price: two
self-financing strategies with the same terminal payoff must have the same value at all
times, otherwise the difference would generate an arbitrage. Consider now a market
where prices are given by a pricing rule as in (6.2) represented by some probability
measure Q. Consider an event A such that P(A) = 0 and an option which pays the
holder 1 (unit of currency) if the event A occurs. Since the event A is considered to be
impossible, this option is worthless to the investor. But the pricing rule defined by Q
attributes to this option a value at t = 0 equal to

o(14) = e "TEQ[1,] = e "TQ(A).

So the pricing rule Q is coherent with the views of the investor only if Q(A) = 0.
Conversely if Q(A) = 0 then the option with payoff 14 > 0 is deemed worthless; if
P(A) # 0 then purchasing this option (for free) would lead to an arbitrage. So the
compatibility of the pricing rule Q with the stochastic model P means that Q and P are
equivalent probability measures: they define the same set of (im)possible events

(6.3) P~Q: VAeF, P(A) =0« QA) =0.

Consider now an asset S° traded at price Si. This asset can be held until T', generating
a terminal payoff S, or be sold for S}: the resulting sum invested at the interest rate r
will then generate a terminal wealth of e’"(T_t)Sf. These two buy-and-hold strategies are
self-financing and have the same terminal payoff so they should have the same value at
t:

EQ(S5|,) = B TS| F) = T8

Dividing by S% = e, we have

Si
4 E? ( =L

7) =g o (&

]-"t) = S
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Therefore absence of arbitrage implies that discounted values 52 = e "S! of all traded
assets are martingales with respect to the probability measure Q. A probability measure
verifying (6.3) and (6.4) is called an equivalent martingale measure. We have thus shown
that any arbitrage-free pricing rule is given by an equivalent martingale measure.
Conversely, it is easy to see that any equivalent martingale measure Q defines an
arbitrage-free pricing rule via (6.2). Consider a self-financing strategy ¢. Of course
a realistic strategy must be represented by a simple (piecewise constant) predictable
process. Since Q is a martingale measure Sisa martingale under Q so, as observed in
Chapter 5, the value of the portfolio V;(¢) = Vo+ fg ¢,dS,, is a martingale so in particular

¢ N ~

EQ / ¢y dS,] = 0. The random variable | ¢dS must therefore take both positive and
0 ~

negative values: Q(Vr(¢) — Vp > 0) # 1. Since P ~ Q, this entails P( [ ¢;dS; > 0) # 1:

¢ cannot be an arbitrage strategy. There is hence a one-to-one correspondence between
arbitrage-free pricing rules and equivalent martingale measures.

Proposition 6.1 In a market described by a probability measure P on scenarios, any
arbitrage-free linear pricing rule II can be represented as

IL(H) = e "TYEQH|F,],

where Q is an equivalent martingale measure: a probability measure on the market sce-
narios such that

Q~P,  E%(Sp|F) =S

Up to now we have assumed that such an arbitrage-free pricing rule/equivalent mar-
tingale measures does indeed exist, which is not obvious in a given model. The above
arguments show that if an equivalent martingale measure exists, then the market is
arbitrage-free. The converse result, more difficult to show, is sometimes called the Fun-
damental theorem of asset pricing:

Theorem 6.1 (Fundamental theorem) The market model defined by (Q, F, (F),P)
and asset prices (S¢)iejo,r) 5 arbitrage-free if and only if there exists a probability measure

Q ~ P such that the discounted assets (S¢)ico.r) are martingales w.r.t. Q.

And one can precise that

Theorem 6.2 The market model is complete if and only if there exists a unique mar-
tingale measure Q ~ P.

This theorem establishes the equivalence between the financial notion of market com-
pleteness (the possibility to perfectly hedge any contingent claim) and the uniqueness
of equivalent martingale measure, which is a mathematical property of the underlying
stochastic model. The theorem holds as stated above in discrete time models. In contin-
uous time models one has to carefully define the set of admissible strategies, contingent
claims and the notion of “martingale measure”. Unfortunately in the case where S has
unbounded jumps, which is the case of most exponential-Lévy models, a rigorous formu-
lation is quite difficult. Moreover while most stochastic models used in option pricing
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are arbitrage-free, only a few of these models are complete: stochastic volatility models
and as we will see shortly, exponential-Lévy models, jump-diffusion models fall into the
category of incomplete models.

In mathematical terms, completeness means that for any random variable H € H
depending on the history of S between 0 and 7', H can be represented as the sum of
a constant and a stochastic integral of a predictable process with respect to S. If this
property holds for all terminal payoffs with finite variance, i.e., any H € L*(Fr,Q) can
be represented as

T
H =E[H] + / $4dS,
0

for some predictable process ¢, the martingale (gt)te[O,T] is said to have the predictable
representation property. Thus market completeness is often identified with the predictable
representation property, which has been studied for many classical martingales. The pre-
dictable representation property can be shown to hold when S is (geometric) Brownian
motion or a Brownian stochastic integral, but it fails to hold for most discontinuous
models used in finance. For example, it is known to fail for all non-Gaussian Lévy pro-
cesses except the (compensated) Poisson process. We will show in this chapter that this
property also fails in exponential-Lévy models by a direct computation.

Even if the predictable representation property holds it does not automatically lead
to “market completeness”: as argued in Chapter 5, any predictable process ¢ cannot be
interpreted as a trading strategy. For this interpretation to hold we must be able, in some
way, to approximate its value process using an implementable (piecewise constant in
time) portfolio, so predictable processes which can be reasonably interpreted as“trading
strategies” are simple predictable processes or caglad processes.

Finally let us note that we are looking for a representation of H in terms of a
stochastic integral with respect to S. In fact the following theorem shows that when
the source of randomness is a Brownian motion W and a Poisson random measure M, a
random variable with finite variance can be always represented as a stochastic integral:

H = E(H) + / budIV, + / [ vt M(dsdy),

This property is also called a predictable representation property by many authors but
has nothing to do with market completeness. Even when S is driven by the same sources
of randomness W and M and M = Jg represents the jump measure of the process .S,
the previous expression cannot be represented as a stochastic integral with respect to
S. Such representations can be nevertheless useful for discussing hedging strategies.

6.2 Equivalence of measures for Lévy processes

The previous section shows that if we use jump-diffusion processes to modelize the
market prices, we must know how to change the probability measure.
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6.2.1 For a compound Poisson process
Poisson process. Assume that

e N is a Poisson process on a probability space (€2, F, P) relative to a filtration {F;};

A is its intensity;

M, = N; — At denotes the associated compensated Poisson process. Remember, It
is a martingale under P.

e )\ is any positive real number.

Lemma 6.1 The process Z defined by

(6.5) Z(t) = exp (()\ - X)t) G) |

satisfies 3
A—A

Therefore Z is a martingale under P and E(Z(t)) =1, Vt > 0.

A=A
Proof. Define X; = TMt. The continuous part of X is

X =(A— M\t = [X]¢=0.

-\ AN,
A=A A
The jump part is: J; = TNt. Therefore 1 + AX,; = ()\) . Now we use Propostion 5.13 with a

Lévy process X of finite variations to obtain:

N\ Ny
Zy = E(X); = exp((A — A)t) H (1+AX,)=exp ((A — X)t) (i)

0<s<t

and since M is a martingale, Proposition 5.14 shows that Z is a martingale. (]

For some T > 0, let us define

(6.6) P(A) = E(14Z(T)) for A € Fy.

Theorem 6.3 Under the probability EN”, the process N is a Poisson process with intensity

@)

Proof. We use the Laplace transform of N under P: for any u € R

AN
pulVe ()\) ] — ANt
= eo‘fj‘)texp [)\t (euﬂn(i) — 1>}

= exp(Ale" —1)).

EF(¢N) = E(e"N1Z,) = A VE exp
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This proves exactly that under }TD, the process N is a Poisson process with intensity A (|

Now if for
e \ >0,

e 0>—1 0#0,
e o e R,
the process S
S, = Spexp [at + Ny In(1 4+ 0) — Aot] = Spel @ "N (g + 1)M
is the price of a asset, then S satisfies
dS; = aSudt + o S(t7)dM; = aSidt + oS(t7)d(Ny — At).

This can be obtained using the It6 formula, or using Proposition 5.13. S is called a
geometric Poisson process. Now assume that under a probability measure P, N is a
Poisson process with intensity A > 0. This probability is risk-neutral if under P, S
satisfies .
dSt = TStdt + O'S(t_)d<Nt — )\t),

where 7 is the riskless interest rate. Therefore

dS; = aSydt + o S(t7)d(N; — Xt) = rSydt + oS(t7)d(N, — \t),
which is possible if and only if

a—T

(6.7) O—OA=r—ol<= A= \—

o
Lemma 6.2 Assume that S is geometric Poisson process with intensity A and drift «,
and r s the riskless interest rate.

o If)\> u, we define A = X — e T, 0, Z by Equation (6.5) and P by (6.6).
~ 0 o
Under P:
dS; = rS,dt + oS(t7)dM, = rSydt + oS(t7)d(N, — Xt).

Hence the discounted price is a martingale and P is a martingale risk measure.
There is no arbitrage.

a—r

o [fAL

, there is an arbitrage !

Proof. The first case is an application of Theorem 6.3. For the second case assume that ¢ > 0. Then
a.s.
St Z Soert(O' + 1)Nt Z Soert.

Therefore buy the stock and borrow the price at rate r is an arbitrage. If o < 0, then » > a— Ao. Thus
S, < Spe™ (o +1)Nt < Spe™.

Sell the stock and deposit the amount at rate r is an arbitrage. ([
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Compound Poisson process with discrete jumps. We deal now with a compound
Poisson process () with

e N a Poisson process with intensity A;

e Y1.Y5 ... sequence of i.i.d. discrete random variables, independent of N

M
P(Y; = ym) = p(Ym) >0, m=1,...,M; and Y p(ym) = L;
m=1

Ny
o Q= ZYZ‘-
=1

We decompose the process () as follows.

e Denote by N™ the number of jumps of ) with size y,,. These are independent
Poisson processes with intensity A,, = A\p(yym,).

M M
o Write Ny = Y N, Qi =Y ymN/™.
m=1 m=1

Let A, m = 1,..., M, be positive numbers and

=1

2, (1) = exp (0 — 50)t) (i—:) 2 =] Zato)

Lemma 6.3 The process Z is a martingale under P. In particular E(Z(t)) = 1.

Proof. Left as an exercise (see Exercise 5.1). O

For some T > 0, we define as before a new probability: P(A) = E(1,Z(T)) for
Ae Frp.

M
Theorem 6.4 Under P, Q is a compound Poisson process with intensity A = Z Ain
m=1

and Y;, i € N* are i.i.d. with P(Y; = yn) = p(ym) =

>/?|3 !
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Proof. Once again we use the Laplace transform. For any v € R:

~ N
_ 5 A
EIP th — E thZ E mNm | | (/\m_)\nl)t m
(e ) ( t [exp ( y ) m=1 ‘ >\m,

M ) X
— H e()\m—km)tEeXp l(uym +1n 2™ 3 > Nm]

A
= H ePm=Am)t exp {)\ t [exp (uym + In 5\ ) — 11 }

M
= H exp{ t [exp (uym) — 1] } H exp ()\tp um )\ t)

m=1 m=1

/M
= exp l)\t (Z D(Ym )V — 1)] .

This achieves the proof. O

Remark that we can write

=I[ 2.

M

m=1

- ) T 35(v7)
exp (()\m - )\m)t> (ﬁ) A=)t H YE
General case. We can extend the previous result to the density case. Assume that
Y; has a density f.

e Let f an other density such that f(y) = 0= f(y) =0,
e and \ > 0.

We put

Theorem 6.5 Z is a martingale under P. Under the probability measure P defined by
(6.6) with the appropriated Z Q 1is a compound Poisson process with intensity A and Y,
1 € N* are i.i.d. with density f.

Proof. First prove that Z is a martingale. Define
N(t) ~ ~ < <

M), M(AQ)

" Af(Yw,) Af(AQy)

i=1

Now we consider the following compound Poisson process:
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We have: AH; =

M) X[ A
BN~ A/R ! WW=X

Therefore M; = H; — Mt is a martingale and

_ M(AQ)) _ B
AJ, = J,- (Af(AQt) - 1) = J,- (AH, — AN,).

Now the Itd formula implies:

t t -
Z, = 0+/ Jo—( e ’\)Sds+/ AN g,
0 0
t N
= Zo+ /Jg (A= XN)ePr A>9ds+/ e~V g _(dH, — dN,)
0 0

t t
= 1+ [ Z,od(H,—Xs)— / Z,-d(Ns — \s).
0 0

Hence 7 is a martingale with
AZt - Zt—AHt - th ANt

Now we have to prove that
B —exp (MGy(w) - 1), dvlu) = [ ().
R

We define the process
X, = exp (uQ = My (u) — 1),
and we prove that X Z is a P-martingale. We apply the It6 formula to obtain:

t t
(6.8) X Zy =1+ | X,-dZs +/ Z-dXs+ [X, Z];.
0 0
On the right hand side, the first term is a martingale. Now remark that AX; = X;- (e“AQt — 1).
Hence .
/Zsdes Ny (u —I/X Zods+ Y Xy Zy (e"29 —1).
0 0<s<t
Moreover
(X, Zi= Y AXAZ = Y X Z (e"49 —1) (AH, — AN,).
0<s<t 0<s<t
Thus
t
/Zsdes—&-[X,Z]t = (¢Y )—1) / X, Z,-ds+ Z X Zy- (“AQ“—l)
0

0<s<t

+ Y Xy Zy ("9 —1) (AH, — AN;)

0<s<t

> X Z-e"S%AH, — Ay (u /X Z,-ds

0<s<t

—ZXZAH+/\/Xst

0<s<t
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The last equality can be written as follows:

(6.9) /Ot Zo-dXs + [X, 2] /Ot X, Z,- (dVS - X&Y(u)ds)

t
— | X, Z, (dH, — \ds

0 ( 8 )
N(t) <z
. < . Af(Y:)
th M, = H, — X\t tingal deE“Y’L )
W1 t t martingale an f - [ )\f(Yz)

Indeed AV, = e*AQtAH,. Finally

M (Vi Py
E (e“Yi A;EY;) = X@(u) Combining Equations (6.8) and (6.9), we obtain that X Z is a P-martingale,
i

hence EF (X,) = E(X,Z,) = 1. O

The compound Poisson case can be resumed as follows.

Proposition 6.2 Let (X,P) and (X, Q) be compound Poisson processes on (§2, Fr) with
Lévy measures V¥ and v. P and Q are equivalent if and only if V¥ and v2 are equivalent.
In this case the density is

exp [\ = AT+ Y~ 6(AX,)],

0<s<T
where \* = V¥ (R), A® = v%(R) and ¢ = In %.

Proof. The if part is a consequence of the previous results. Now the only if part can be proved as
follows. Assume that ¥ and v¢ are not equivalent. Then we can find either a set B such that v (B) > 0
and v@(B) = 0 or a set B’ such that v*(B’) = 0 and v%(B’) > 0. Suppose that we are in the first case.
Then the set of trajectories having at least one jump the size of which is in B has positive P-probability

and zero Q-probability, which shows that these two measures are not equivalent. O

6.2.2 For a jump-diffusion process

Now let us add a Brownian component to our compound Poisson process. First recall
that due to the Girsanov theorem we have:

Proposition 6.3 (Girsanov theorem) Let (X,P) and (X,Q) be Brownian motions
on (Q, Fr) with volatilities o© > 0 and 0¥ > 0 and drifts u¥ and p@. P and Q are
equivalent if and only if o© = o@. In this case the density is

Q P Q)2 P2
P — L(p~)" = (p
oo [F 1 - L7

Assume now that on the same space (2, F,P)

e I/ is a Brownian motion;
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Nt
o () = Z Y; is a compound Poisson process with N Poisson process with intensity
i=1
A, and Y}, i € N*are i.i.d. random variables with density f.

Let f be a density such that f(y) = 0= f(y) =0, A > 0, and © an adapted process.

We define
t 1 t
Z! = exp (—/ 0,dW, — —/ @idu),
0 2 Jo

N(t)

5 M (Y3)
Z2 — (A=)t
e EAJ"( )’

<

Z, = Z}7Z2.
Lemma 6.4 7 is a martingale under P. In particular E(Z;) =1, Vt > 0.

Proof. The proof is straightforward if © just depends on W. Recall that from Proposition 5.8, the
two processes W and @ are independent. Therefore Z! and Z? are two independent martingales, and
thus Z is a martingale.

Now in general let us use the It6 formula to obtain:

t t
Zt:1+/ Zj,dzg+/ zZldz:+[Z', 7%,
0 0

Now since Z! is continuous and Z2 is a pure jump quadratic martingale, [Z!, Z2]; = 0. (I

For some T > 0, we put P(A) = E(1,Z(T)) for A € Fy.

Theorem 6.6 Under P,
t
Wt == Wt + / @udu

0

is a Brownian motion and Q) is a compound Poisson process with intensity A and Y;,
1 € N* 4.4.d. with intensity f. Furthermore W and ) are independent.

Proof. Here we want to show that
EPew1 WetuaQe — exp (;u%t) exp (S\t(QEY(UQ) - 1)) .
We define
th = exp (ulﬁft — ;ﬁt) ,
XP = exp (1@ — M(dy(u2) — 1))
From the proof of Theorem 6.5, we know that X222 is a P-martingale. Moreover
d(X'ZY) = (uy — ©) X} Z}dW,

which implies that X'Z! is a martingale. Since [X'Z!, X272 =0,

t t
(X1X2ZlZz)t:1+/ (XlZl)Sfd(X2Zz)s+/ (X2Z?%),-d(X'ZY),
0 0
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which proves that X' X2Z!Z? is a P-martingale. O

6.2.3 The general case

The previous section shows that if we use Lévy processes to modelize the market
prices, we must know how to change the probability measure. This has been done for
jump-diffusion processes. Now we come to the general case. Let (X,P) and (X, Q) be
two Lévy processes on R? with characteristic triplets (4,v,7) and (A, v/, ).

Theorem 6.7 P|x, and Q|z, are equivalent for all t (or equivalently for one t > 0) if
and only if the following conditions are satisfied:

1. A=A

2. The Lévy measures are equivalent with

[ tesp(ot)/2) =177 i) < o

where ¢(x) = In <Cfi—yyl)

3.7 —~v- / x(V —v)(dx) = An, for some n € R%
lz[<1

d
We will admit this result. If P and Q are equivalent, then % =l

ith
P, wi

U, = <77>Xf>—%<77,z477>—t<77,7>

+lim > qS(AXS)—t/ (e*@ — 1)v(da)

el0
0<s<t,|AXs|>e |z|>¢

Here X¢ is the continuous part of X and 7 is such that
v [l =) = an
lz[<1

if A # 0 and zero if A = 0. So under P, U is a Lévy process on R with triplet (Ay, vy, vv)
given by:

Ay = (n, An),
vo = vo ' r\op

1 y -1
W= —gtndn) = [ (€ =1 =) (67 ).

Remark that from the definition of a density, E(e/) = EF(e%t) = 1.
Let us describe the Esscher transform. In fact this is a special case of Theorem 6.7.
Let
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e X be a Lévy process with triplet (0, v,~),
e 0 a real number such that / v (dr) < oo.
|lz|>1
e Define the function ¢(z) = 0x and the measure 7(dx) = e’ v(dz).

Method 6.1 (Esscher transform) Then we obtain an equivalent probability Q under
which X 1s a Lévy process with zero Gaussian component, Lévy measure v and drift

1
5=y +/ 2" — 1)w(d).
—1
The derivative 1s given by
dQlr, €
Py, B
with f(#) = —InEexp(6X;).

Proof. The first part is an immediate application of Theorem 6.7. Since = 0, the process U is given
by:

— exp (09X, + [(O)1),

= lim - e — Dw(dx) | .
U, = 1@0( > OAX, t/lm>s( Dv(d ))

0<s<t,|AX;|>e

Recall that X can be written like:

X, =9t + Z AX, + 161%1 ( Z AX, — t/6<|151 xu(dw)) .

0<s<t,|AX |>1 0<s<t,e<|AX,|<1

Hence

Uy =60X; — 0yt —tlim / (%" — 1)v(dx) — / Ozv(dz) | .
€0 |z|>e e<|z|<1

But remember that from Theorem 2.9, Eexp(0X;) = e¥(?) where
0(0) =~ + /(ef’r 1= a1y gy (@) (de).
R
Hence

U =0X; —ty(0) = 0X: +tf(0),
which finishes the proof. O

An important consequence of the Esscher transform is a sufficient condition for no
arbitrage in exponential Lévy models.

Proposition 6.4 (No arbitrage) Let (X,P) be a Lévy process. If r is the interest
rate and if the trajectories of X are neither almost surely increasing nor almost surely
decreasing, then the exp-Lévy model given by S, = et is arbitrage-free: there exists a
probability Q equivalent to P such that (e Sy)ico.r) is a Q-martingale.
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Proof. Assume that the characteristic triplet of X is (¢2,v,7). If 02 > 0, we can change the drift
without changing the Lévy measure, using a Girsanov transform. In fact it is the same trick as the one
used in the Black Scholes model. Therefore we assume now that o2 = 0.

First take the function ¢(z) = —22. We define an equivalent probability P under which X is a Leévy
process with triplet (0,7,%) with

2

v(dx) = e_I2y(dx), F=r —|—/| - z(e™® — 1Dv(dx).

Under P, X has exponential moments of any order. R
Next use the Esscher transform with some parameter §. Under P we can choose 6 € R as we want.
Therefore we have a probability measure Q? equivalent to P such that under QY, the characteristics of

X are 0 and L

7(dz) = P o(dz), 7= &+/ (e — 1)i(da).

-1

Now from Proposition 2.16, exp(X) is a martingale under QY if and only if

y+ /OO (" =1 -1y qy(x))7(dx) = 0.

— 00
Now this equation can be written

o0

1
(6.10) —5=f(0) = / z(ef" — 1)o(dx) +/ (" —1—al_y yy(2))e?(da).

—1 —0o0

Therefore exp(X) is a martingale if and only if the equation f(f) = —4 has one solution. Let us study
the function f. With the dominated convergence theorem, it is obvious that f is a continuous function
on R. Moreover

£1(0) = /m 2(e® — )" 5(dz) > 0.

— 00

Hence f is a non decreasing function on R. Let us now distinguish several cases.

e 1(]0,400[) > 0 and v(] — 00,0]) > 0. Since 7 is equivalent to v, the same holds for 7. In this
case, the derivative of f is bounded from below by a constant C' > 0. Therefore f(+o00) = +00)
and f(—oo) = —oo. Equation (6.10) has one solution.

1
e (] —00,0]) =0 and / av(dz) = +oo. We still have f(400) = +00. Now from the dominated

convergence theorem,

(o)
lim (e — 1 — a1y yy(x))e? i (dx) = 0.

60— —oc0 o

From the second term of f,

1 1 1
lim z(ef" — 1)o(dz) = —/ zo(dx) = —/ xefmgu(dx) = —00.
b——c0 J 4 0 0

And we still have f(—o0) = —o0.

1
o (] —00,0]) =0 and / zv(dzr) < 4o00. Here
0

60— —o0

1
lim f(6) = f/ zv(dx) = =5 + o,
0
where 7 is the drift of X under P. Hence there is a solution if 5y < 0.
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If we summarize the different cases, we see that there is a solution except if:
1
v(] —o00,0]) =0, / zv(dr) < 400, Ao >0,
0

i.e. if X is a non decreasing Lévy process. By symmetry we can treat the case of decreasing trajectories

and complete the proof. ([l

From the financial point of view, the main consequences of this proposition and the
proof are

e an easy sufficient condition for viability of the market model,

e and the non-uniqueness of the risk-neutral probability in general. In other words,
in a financial model involving a general Lévy process, the market is incomplete.
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Chapter 7

Pricing and hedging for jump diffusion
processes models

7.1 Asset driven by a Poisson process

The model is the following. Assume that

e N is a Poisson process with intensity A > 0,

e M; = N; — Mt is the compensated Poisson process, thus a martingale.
The dynamic of the risky asset S; is given by:

Sy = Spexplat+ Ny In(1+ o) — Aot]
— Soe(af)\o')t(l +O’)Nt.

In order to avoid arbitrage opportunity, we assume that

a—r

A >

a—T

We define A = \ — > (0 and

is a martingale and

VAe F, |P(A)=E14%7)|

PP is the risk-neutral measure and under P:
dS; = rSydt + o S(t7)dM, <= d(e™™S,) = oe "t S(t7)d M,

with M, = N, — Mt is a martingale. Equivalently

Sy = Spe™ A (g 4 1) |,
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See Theorem 6.3 and what follows for the details.
Now we consider an European call at time 7" with strike K:

C(T)=(Sr— K)*.
We denote with C'(t) the risk-neutral price of the European call:
e"C(t) = Ele(Sr — K)T|F]
= BT (ST (0 4 1)V K)HE,

Therefore C(t) = c(t, S(t)) where

- X ; + M (T =ty «
c(t,r) =) (:Be_A“(T_t)(a +1) — Ke_T(T_t)> N(T -ty - Y s
7!

Jj=0

Proposition 7.1 The function c satisfies:
o ¢(T,x) = (x— K)* for every x > 0;

o for0<t<T andz > 0:

—rc(t,x) + g—j(t, x)+ (r— S\U)x%(t, x) + S\(C(t, (c+1)x) —c(t,z)) = 0.
If we define
ot (0 +1)S(t)) — c(t,5())
(1) = 5 (1) :
then
dC(t) = o(t7)dS(t) + r(C(t) — o(t)S(t))dt
and

e "C(t) = C(0) + /0 e ™ [e(u, (0 +1)S(u7)) — c(u, S(u™))] dM (u).

This proves that the model is complete and the risk-neutral probability is unique ! Hence
this model is equivalent to the Black-Scholes model for pure jump process.

7.2 Asset driven by a compound Poisson process and
a Brownian motion
Now we try to generalize the previous model. We define
e W Brownian motion,
e Ni,..., Ny, independent Poisson processes, with intensity A, > 0,

e —1 <y <...<ypy nonzero numbers.
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and

M M Ny M
Ne=Y Nu(t), Q=Y ymNut)=> Y, A=) A,
m=1 m=1 =1 m=1
where Y7,Y5, ... are i.i.d. random variables with distribution
Am
P(Y: = ym) = plym) = -

@ is a compound Poisson process with expectation equal to S\ where g = E(Y;) =
M

1

" Z AmYm- Therefore the process M; = (Q; — St is a martingale.
m=1

The model for the stock price is now: S (0) > 0 and

dS(t) = aS(t)dt+ oS(t)dW, + S(t™)dM,
= (a—pN)S(t)dt +oS(t)dW, + S(t7)dQ,.

Proposition 7.2 The solution of the previous equation is

S(t) = S(0) exp {aW(t) + (a — B — %02) t] f[l(Y; +1).

Proof. Multiply S; by exp[—(a — BA)t], apply Ito’s formula to X; = Sy exp[—(a — SA)¢]:

dXt = O'X(t)th + X(ti)th

and use Proposition 5.10. (]

We construct risk-neutral measures. We use Theorem 6.6. Let
e R,
° 5\1, e A be positive constants.

<\ Nm(t)
1 ~

The density of the measure change is:

2(t) = Zo(t) [ [ Zn(t), B(A) = E(14Z(T)).

m=1

Under P:

o W(t) = W(t) + 6t is a Brownian motion,
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e cach N, is a Poisson process with intensity A,
e W and Ny, ..., N,, are independent of one another.

Now define

Under P:
o Ny = Z%zl N, (t) is a Poisson process with intensity \,
e the jump-size r.v. Y1,Y,, ... are i.i.d. r.v. with I@(Yz = Ym) = D(Ym),

o M(t) = Q(t) — B)t is a martingale where
L 1M
p 5 mz:l Y

Recall that

dS(t) = (a— BN)S(t)dt + oS(t)dW, + S(t7)dQ(t)
= rS(t)dt + o S(t)dW, + St )d(Q(t) — BAt),

or
Ny

S(t) = S(0) exp {O—W(t) + (r — B — 302) t] [Jovi+0.

i=1

Hence P is a risk-neutral probability if the market price of risk equation is satisfied:

M
(7.1) Oz—ﬂ/\:T-f-O'Q—BS\ <:>a—7“:00+2(/\m—5\m)ym.

m=1

This equation has many solutions and a choice has to be made. Merton in his seminal
article has choosen to let the coefficients \,, unchanged and to only modify the Brownian
drift.
Assumption: we choose )i, ..., Ay and then 6 such that (7.1) holds.

Remember that the Black-Scholes price of a call with volatility o, interest rate r,
current stock price x, expiration data 7, strike K is:

k(T,2) = aN(dy(7,2)) — Ke "N (d_(7,x)),

with

and
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Theorem 7.1 For 0 <t <T the risk-neutral price of a call
C(t) =E [eT(S(T) — K)*|F]

is given by C(t) = c(t, S(t)) where

j
&(T—tme_ﬁ’\T t) HY—I—l)
=1

I N (T — )i ~
= g e_)‘(T_t)uE

, !

J=0

The price is a convex combinaison of Black-Scholes prices. The function c satisfies
c(T,x) = (x — K)* and the partial integro-differential equation (PIDE in short)

2

(r—)\ﬁ) Oc (t x)—l—lax@(t )

—re(t,x) + 927

Oc
E(ta )

T\

S By )elt. (g + D)) — e, x)] .

Corollary 7.1 The call price ¢ satisfies

Aeelt, 5(1))) = e S(1) 9o (1, S(1) W
+ Z e [e(t, (ym + 1)SE7)) — ct, S(t7))] d(Nm(t) — Ant)-

A natural question is: what about hedging ? Define a portfolio by: X (0) = ¢(0, S(0))
and

dX (1) = 6(t7)dS(t) + r[X (t) — 5(£)S(t)]dt

with the delta-hedging strategy: [d(t) = %(t, S(t))|.

Proposition 7.3
1.

d e "e(t,S(t) — e X (t)]

2. for any 0 <t <T Elec(t,S(t))] = E[e " X(t)].
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Continuous jump distribution. Let us finish with the case of continuous jump
distribution, that is, Y; have a density f with support in (—1,00). We denote f =

E(Y;) = / yf(y)dy, and we choose 8, A > 0 and a density f with support in supp (f)
-1
s.t.

(7.2) a—r =00+ BX\—BA|

with 8 = E(Y;) = / yf(y)dy. Once again to solve (7.2), the Merton’s approach
1

consists to take f = f and to change only the drift on V.
In this case, Theorem 7.1 holds. But the PIDE becomes:

<~ Oc 1 d*c
(tv l’) + (T - )\B)i’%(t, l’) + 5021’2@@7 l’)

dc

—rc(t,x) + T

A [/OO ct, (y + Dz) f(y)dy — c(t, )| = 0.

-1

If X is a hedging portfolio with X (0) = ¢(0,.5(0)) and

dX (1) = 5(t7)dS(t) + r[X (t) — 6(£)S(t)|dt, with 5(t) = %(@ S(t)),

then
d [e*”c(t, S(t)) — GfrtX(t)]
I [c(t, S(t) — clt, S(t7)) — (S(t) - S(t‘))%(t S(t_))} Ny

= e [ et 5@) - oft 87D~ () 057D Fat.

-1

In that case, the market is always incomplete.
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7.3 Exercises

Exercice 7.1 (Extrait de ’examen de 2009-2010) Soit X = (X});>0 un processus
de Lévy réel de triplet caractéristique (0%, v, ), tel que v se décompose en

v(dr) = A Zp”é_n(dsn) + B (14 2) " Pe M1 oo f(2)d,
n=1

aveca >0et >0, A>0,A>0et B>0,p€|0,1] et J, est la masse de Dirac au
point ¥y :
VACR, oy(A)=1siye A, éy(A)=0siy ¢ A.

Préliminaires.
1. Que peut-on dire des sauts négatifs du processus X 7

2. Montrer que si > 0 et a > 0, alors

ooxﬁq 2By — L(a)l'(B)
/0 (1+2) d Tt

On pourra utiliser I'indication et le changement de variable y = T2
x

Partie 1 : étude des sauts de X. Dans cette partie, on suppose que ¢ = 0. Tout
d’abord on va supposer A = 0.

1. Montrer que X est un processus de Poisson composé avec dérive 7 Quelle est la
valeur de cette dérive en fonction de la fonction de répartition d’une loi béta au
point 1/2 7

2. A quelles conditions sur a et 3, X; admet-il un moment d’ordre n € N* (avect > 0
fixé quelconque) 7

3. Calculer E(X;) si elle existe, en fonction de la fonction de répartition d’une loi
béta au point 1/2.

4. Montrer que si § > 0, X se décompose comme suit :

N} v N?
Xe=aot+) 15— 2%
i=11+Yi j=1

avec

o N!' = (N})i>0 et N2 = (N?);>o deux processus de Poisson d’intensité respec-
tive py et pg & déterminer,
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e les Y, suivant une loi béta de paramétres « et f3,
e les Z; une loi géométrique de paramétre p,
o NU N2 Y = (V))ien+ et Z = (Z;)ien+ étant tous indépendants.

5. En admettant que l'on sache simuler des lois béta et géométrique, proposer un
algorithme de simulation du processus de Lévy X pour § > 0. On supposera la
dérive vy connue.

On suppose maintenant que A > 0.
6. Pour quels u € R a-t-on Eexp(uX;) < 400 ?
7. Si B =0, calculer I'exposant caractéristique ¥ de X et en déduire E exp(uXy).

8. Montrer que si g > 0, alors X se décompose comme suit :

NP N
Xe=t+) Vi= 7,
i=1 j=1
avec

o N3 = (N2)>0 et N* = (N}');>o deux processus de Poisson d’intensité respec-
tive us et pg & déterminer,

e les V; étant positifs ou nuls de densité f donnée par
f(@)=ca” (1 +2) " Pe Mg o)
ol ¢ est une constante de normalisation

9. Montrer qu’il existe une constante C' = C(«, 5, \) telle que
Vo >0, f(r) < Ca? 11 +x)™ P,
En déduire un algorithme de simulation par rejet des V;.

Indication. On rappelle qu’une variable aléatoire Y suit une loi béta de paramétres
a>0etb>0sY admet pour densité la fonction g :

F(a+0b) , 4

g(x) = Ww (1 - x)“_11]071[(x).

On note par F(x;a,b) la fonction de répartition au point x de la loi béta de paramétres
a etb.

Partie 2 : probabilités risque-neutres. On suppose que le prix S = (S;)o<t<r d'un
actif risqué est de la forme S; = Spexp(rt+ X;). T désigne la maturité du contrat, r > 0
le taux sans risque. On suppose que A > 2.
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1. Montrer que S est bien défini et admet des moments d’ordre 1 et 2.

2. A quelles conditions sur (o2, v,7) est-on certain d’avoir un modéle sans arbitrage
7 On expliquera pourquoi et on prendra soin de bien détailler les conditions.

3. Montrer que si 02 > 0, on peut déterminer une probabilité¢ Q équivalente a P
sous laquelle les prix actualisés sont martingales en utilisant une transformation
de Girsanov (comme dans le modéle de Black-Scholes). Donner la densité de Q
par rapport a P.

Partie 3 : valorisation d’un call. On suppose que A > 0 et § > 0. On rappelle
qu’alors X se décompose ainsi

N} N
Xi=yt+ocW +Y; 270t+aWt—|—ZVi —ZZ]-,
i=1 j=1

avec
e IV mouvement brownien,

o N3 = (N3)>0 et N* = (N}');>¢ deux processus de Poisson d’intensité respective
3 et fig,

e les V; étant positifs ou nuls de densité f,
e les Z; une loi géométrique de parameétre p.

Pour tout n > 0, i > 0, et toute densité g sur |0, +00[ ayant un moment exponentiel
d’ordre 1, on pose

N

O(t) = exp (—nW, — n°t/2) elra—A)t H /ng((v‘z/l))

1=
1. Montrer que © est une martingale sous P.

2. Soit @ la probabilité équivalente & P de densité ©7. Quelle est la loi de S =
(St)o<t<r sous Q ?

3. Montrer que sous Q, le prix actualisé est une martingale si et seulement si
1-— +oo
70—077+02/2—|—;L4((6 i)—1>+ﬁ(/ exg(:)s)dx—l)zo.
- 0

4. Exprimer le prix a l'instant initial de 'option d’achat européenne de strike K,
de maturité T', comme une série double faisant intervenir les prix Black-Scholes
d’options d’achat européennes.
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Exercice 7.2 (Probléme de I’examen 2012-2013) Soit (FP;);>0 un processus de Pois-
son composé d’intensité A et de loi des sauts . On suppose de plus que, pour un certain
p€[0,1],

p(dz) = péi(dz) + (1 = p)d_1(dz),
c’est-a-dire que le processus n’effectue que des sauts de taille £1. On note (F;):i>o la
filtration engendrée par P.

Partie 1, loi des grands nombres.
1. (a) Montrer que pour tout ¢t > 0, P, est intégrable et calculer E[P,].

P,
(b) En déduire que 'on a, P presque stirement, lim — = A(2p — 1).

n—+oo M

2. (a) A l'aide de la formule d’It6, montrer que
M, = (P, — Xt(2p —1))* = Xt

est une martingale F;-adaptée.

(b) En déduire que

E | sup |P)?| < +oo.

te(0,1]

Indication : utiliser I'inégalité de Doob valable pour des martingales cadlag :

E( sup Mt|2> <4 sup E(|M;[).
t€[0,7] t€[0,T]

3. (a) Vérifer que pour tout n € N et tout t € [n,n+ 1[ on a :

P P, p-P, P,
—t—)\(2p—1)‘§‘——/\(2p—1)‘—|— sup : ‘
t n ten,n+1] n n(n + 1)
(b) Vérifier que les variables aléatoires X,, = sup |P,—P,|? sont identiquement
ten,n+1]

distribuées et E[X,,] < 400 pour tout n > 0.

En dedus I i X, . Xy tond o ]
(c) En déduire que la série —- converge, puls que =% tend vers zéro lorsque
n2 ’ n
neN
n tend vers +o00 presque stirement.

(d) Montrer que 1'on a P presque siirement
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Partie 2, temps d’atteinte.
1. Justifer que le processus P ne prend que des valeurs entiéres.

2. Pour m € N*, on définit
™ =inf{t >0, P, > m}.

(a) Montrer que 7™ est un temps d’arrét.
(b) Montrer que, sur {7 < +o0}, on a Prm = m.

(c) Montrer que si p > 1/2, on a 7™ < 400 presque siirement.

3. Pour v € R, on pose

Vt >0, M =exp(uP;,—tod(u)),

ol : ¢(u) = /R(euz — DAu(dz).

(a) Justifier que ¢(u) est bien défini pour tout u € R et est de classe C* sur R.
(b) Montrer que, pour tout u € R, M* est une F;-martingale.

4. Dans cette question, on suppose p > 1/2.

(a) Montrer qu’il existe d > 0 tel que ¢(u) > 0 pour u €]0, J].
(b) Montrer que, pour u €]0, 4], on a :

E |:€77m¢(u) 17—m<+oo:| =e ",

Penser a utiliser le théoréme d’arrét de Doob.

(c¢) En déduire que
P(7m < 400) =1,

et en déduire la valeur de E[7™].
5. Dans cette question, on suppose 0 < p < 1/2.

(a) Trouver un ¢ > 0 tel que ¢(u) > 0 pour u €]9, +00] et ¢p(J) = 0.
(b) Montrer que, pour u €]d, +ocl, on a :

m

o(u)q

(c¢) En déduire que

P(r™ < 400) = (L)m

I—p
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Chapter 8

Finance with general Lévy process

8.1 Pricing of European options in exp-Lévy models

The exponential Lévy models assume that the risk-neutral dynamics of an asset price
is given by:
Sy = Spexp(rt + Xy)

where X is a Lévy process with triplet (2, v,7) s.t.

) / e"v(dx) < oo,
a1

o2
o v+ 5 + /(ey —1-— y1|y‘§1)u(dy) =0.

X is a Lévy process such that E(eXt) =1 for all ¢.
From Section 5.3, this class of models is the same as the following construction:

dS; = rSudt + S(t7)dZ;, with Z Lévy process.

e~ S, martingale if and only if Z is a martingale with E(Z;) = 0. Moreover we have
seen that if o # 0 and if v > 0, the market is incomplete.

8.1.1 Call options

Recall that if H is a convex payoff function, then
H(Sr) = HO)+ H(OSr + [ pldK)(Sr - K)",
0

where the measure p is the second derivative of H. Moreover one has the call-put parity
relation:

CyT,K) - P(T,K) =S, — e "TVEK.

Hence the basic derivative is the call option. Let Cy(T, K) be the price at time ¢ of the
call with strike K:

(8.1) CT,K) =e " T IE [(Sr — K)*|F] = C(t, 8T, K).
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With 7 =T —¢

Clt,y; T,K) = e "E[(Sr — K)"|F]
= ¢ E[(ye " — K)T] = Ke "E(e*™ — 1),

where z is the log forward moneyness
Y
r=In—=+rr.
K

Therefore entire structure of options prices is given by

8.2) u(r.) = CEEELR) g 1y (o am(a),

where p, density of X..
Assume that v is computed, then we can calculate the implied volatility. Recall that
the Black-Scholes formula states:

CP5(S, K, 7,0) = SN (dy) — Ke "N (d_),
WithT:T—t,x:ln%—l—rT and
1 1
dy = —— |z £ =o*1| .
. o\T {x 27 T}

Moreover o +— CB%(o) is an increasing function, mapping |0, oo[ into ](S; — Ke™™™) T, S|
(maximal interval allowed by arbitrage bounds).
Now given the market price C; (7T, K), the implied volatility is defined by the formula:

CP3(Sy, K, 7, 5(T, K)) = C{ (T, K).
Using moneyness m = K/S;, we define the implied volatility surface
Ii(t,m) = 3(t + 7,mS(t)).

Proposition 8.1 In the exp-Lévy models, the implied volatility for a given moneyness
level m = K/S; and time to maturity T does not depend on time

Vit >, Li(1,m) = Iy(r,m).

K
Hence ¥(T, K) = Iy <§, T — t). Let us mention some features of implied volatility
t

surfaces.
1. Skew /smile.

e A negatively skew jump distribution implies skew of the surface.

e And a strong variance of jumps generates curvature (smile).
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2. Short term skew.

e Diffusion models produce little skew for short maturities.
e But in exp-Lévy models there is a strong short term skew.
3. Flattening of the skew/smile with maturity. For a Lévy process with finite
variance,

Xr—EXr :
—————— —— Gaussian.

\/T T—+o00

e Long maturities prices are close to Black-Scholes prices.

e Hence implied volatility smile becomes flat.

The main problem is to compute the price given by (8.1) or (8.2). More generally if
H(St) is the payoff of a financial derivative, the price at time ¢ is given by:

(8.3) (T, K) = e "TYE [H(S7)| F] = e ""E[H (S )] = II(r, S)

with 7 =T —t and II(7,y) = e ""E[H (ye"™*7)]. Let us mention several methods:

e Monte Carlo simulations. Using Chapter 3, if we can simulate the Lévy process,
we compute the expectation II(7,y) by Monte Carlo approximation. The method
works always, in any dimension, but is quite slow. The rate of convergence is of
the order 1/ VN , where N is the number of simulations.

Moreover if X cannot be exactly simulated, we can use an approximation and
Propositions 3.1 and 3.2.

e Fourier transform.

e Numerical scheme for PIDE.

8.1.2 Fourier transform methods

Since a Lévy process is well described by its characteristic function, a very powerful
method to compute the price is the Fourier transform. Recall that for a function f,

e the Fourier transform is: | Ff(v) = / e f(z)dx.

o0

1 [~ _
e The inverse Fourier transform is: 7' f(z) = 2—/ e " f(v)dv.
7T

—00

For f € L*(R), F~'Ff = f. This can be extended to a d-dimensional space.
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Transformation w.r.t. the log strike price. Let us assume that
b SO = ]-7

e for some a > 0, E(S77*) < 0o <= ey (dy) < oo.

ly|>1
The aim is to compute C(k) = e "TE((e"TTX7 — €k)T) via the algorithm:
e express its Fourier transform in strike,
e find the prices for a range of strikes by Fourier inversion.
The problem is that C(k) is not integrable ! Put
ar(k) = e TE((&THT — b)) (1 = 1Ty,

Proposition 8.2 (Carr and Madan method)

@T(U—i) —1

(r(v) = Fer(v) =™ iv(1 + iv)

where ®7 is the characteristic function of Xr.

1 )
Now using Fourier inversion, zr(k) = gy / e~ "F¢p(v)dv. But the difficulty is that
T JRrR

¢¢(v) ~ |v|~% at infinity. Therefore truncation error in the numerical evaluation of zp(k)
will be large. One possible improvement consists to deal with

Br(k) = e TTE((e T — b)) — Ogg(k).

In that case

ET(U) = Fzr(k) = evrT ®r(v ;}?1:_?3)(@ — )

2T ~
where ®7.(v) = exp —07(02 + w)) The advantage is that |v]°((v) — 0 for any 8.

Hence the inverse Fourier transform converges very fast. But the inconvenient is the
dependence on the choice of o.

Transformation w.r.t. the log spot price. Lewis has considered another method.
Denote s = 1n .Sy and f be the payoff function of the option. Then

Cs) = T / F(e T pr () da

We assume that
e pr is Fourier integrable in some strip Si;

o f*(x) = f(e®T) is Fourier integrable in some strip Sy;
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e S=5 NS ={z=Re+iSz; Rz —i3z€ 5} NS, # 0.

Definition 8.1 (and Proposition) g is Fourier integrable in a strip (a,b) if

/e_au|g(u)|du < 00, /e_bulg(u)|du < 0.
R R

Then Fg(z) = / e"*g(u)du exists and is analytic for all z € C such that a < Im (z) <

R
b. Moreover for a < w < b

1 w00 )
g(x) / e Fg(z)dz.

27T W —00

For every z € S:

FC(2) = e T dp(—2)Ff*(2).

For a call option, the payoff is Fourier integrable in the region Sz > 1:

€k+iz(k—rT)
Ff(z) = ——.
J) iz(iz + 1)

Hence pr must be integrable in a strip (a,b) with a < —1 and b > 0 (because it’s a
density). Finally

o(1+i2) (k—rT)

FCO(z) = (I)T<_Z>m

and

du

exp(wz —w)(k—r ewh=rT=2) o (—jw — u
cloy BT (4 e =T | by (—iv — u)

27 (tu —w)(1 +iu — w)

for some w € (1,1 + «).
In both cases we have to compute the inverse Fourier transform. But remark that

FUw = 2 [T e L[
2m J_g

2 ) o

1 N-1
oy > wif(vj)e
=0

e f(v)dv

Q

with discretisation step 0v = 2R/(N —1), v; = —R+jov and suitable weights w;. There-
fore we compute a discrete Fourier transform, which needs a priori O(N?) operations.

Using the so-called Fast Fourier Transform this computational cost can be reduced to
O(Nlog N).
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8.1.3 Integro-differential equations

We always consider a exp-Lévy price: S; = Sy exp(rt+X;) where X is a Lévy process
(02, v,7) such that under some risk-neutral measure Q, S; = eX* is a martingale. We
assume that S, € L? i.e.

/ e*u(dy) < oc.
ly|=1

Then

t t t
Sy = So+/ rSudu+/ aSuqu+/ /(e"”—l)S(u)jX(du, dx),
0 0 o Jr

and .
dSt T T G2

— =odW;+ [ (e* —1)Jx(du,dx), sup E(S;) < occ.
R

t (0,7

We want to price an European option. The value is
clt,y) =BT H(Sr)|S, = y]
orwith =T —t o =In(y/K)+r7, h(x) = H(Ke*)/K and

e'Me(t, y)

I = E%h(z + X,)].

u(r,x) =
Proposition 8.3 We assume that
e the payoff H(St) satisfies

|H(y) — H(x)| < K|z —yl;

e cither o > 0 or there exists € (0,2), such that limi)nf 55/ |z|*v(dz) > 0.

Then the value of a European call with terminal payoff H(St) is given by ¢ : [0,T] x
(0,00) = R with:

1. c€ C([0,T] x [0,00)) N CH2((0,T) x (0,00));
2. Vy >0, c(T,y) = H(y);

3. ¢ satisfies on (0,T) x (0,00) the following equation:

dc dc a?y? 0%c
(¢ =t = (t,y) — reft
at(,yHryay(,yH 5 6y2(,y) re(t, y)

(8.4)

—i—/R [c(t,yez) —c(t,y) —y(e” — 1)2—;(15, y)| v(dz) =0.
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It implies that the function u satisfies the following PIDE on (0,7] x R:

(8.5) % = Lxu, u(0,2) = h(z);
where
8f o2 0% f

86 |Lxi@ =15t + T oL+ [0 - 1) sty S @)

Moreover if there is no jump, the measure v is equal to zero, and Equation (8.4) becomes

Oc Oc 2 2 82
t t = —re(t,y) =0
(915( y)+7"yay( )+ 2 9 2(t.y) = re(t,y)
which is the Black-Scholes equation and Equation (8.5) becomes the classical heat
equation

ou of o?0%f
or Jxr 2 Ox?
The result can be extended to weak solutions in some Sobolev space or to viscosity
solutions, removing the assumption that X has a smooth density.
To solve numerically Equation (8.4), a finite difference method can be used. There

are four main steps:
1. The original space domain is localized (as for the Black-Scholes model).

2. The integration domain R of Lx in (8.6) must also be localized to a bounded
domain.

3. The small jumps mest be approximated by a Brownian motion.

4. The solution is computed at discrete grid points and the derivatives in (8.4) are
replaced by finite differences.

For the first two steps, one can prove that since S; € L?, the localization error decays
exponentially with respect to the truncation bound. The small jumps approximation
has been made in Chapter 3. The main difficulty in the last step is that the finite
difference methods on the derivatives induces a sparse matrix whereas the integral part
induces a densely populated matrix.

8.2 Wiener-Hopf factorization and barrier options

Theorem 8.1 (Wiener-Hopf factorization) For X a real Lévy process, let W be the
characteristic exposant of X. There exist two unique characteristic functions <I)(‘; and
. of co-divisible laws, with zero drift, and with support included resp. in [0, 00[ and
| — 00,0] s.t. for any ¢ >0

T} = O (u)®, (u).
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Moreover if p; is the law of X at time t:

R
(1) = exp U t 1e—qt/(; T _1)p, dx)d]

For X a real Lévy process, define

M, = sup X, N, = inf X,.

0<s<t 0<s<t

Theorem 8.2 Using Wiener-Hopf factorization, we have

. /0 " eV foxp (i2M, + iw(X, — M) dt = B ()% (w).

; / B [exp (2N, + iw(X, — N)))| di = & ()@, (2).
0
Hence in law
Mt:Xt_Nta Nt:Xt_Mt-
These results can be apply to barrier (or lookback) options. Assume that the payoff
is

= (Sp — €)1 ( sup St> ,

0<t<T

e S, = Xt is the spot price at time ¢ of the stock with Sy =1 ;
e the riskless rate is zero ;

e we work under a risk neutral probability.

Let C (T, k,b) be the price of the option at time 0.

Proposition 8.4 Assume that the law of (X, M) is Fourier integrable. Then for
Im(v) > 0 et Im(u) <0

s [ B (v +u— )P, (u—i
q / i / e~ CT, b, bydTdkdy = 10— D (0 0]
R2 0 wo (1 + du)

Therefore the price can be computed using an inverse Fourier transform and the so-
called Gaver-Stehfest algorithm to inverse the Laplace transform. A different way to
estimate the price consists to use PDE methods like for Call options. If B is the barrier
and K the strike, we have to solve for all (t y) €]0,T7[x]0, B]

dc dc a*y? 0%

Oc
[ Jettone) = et~ et = 03 0.0)] via) =0
R Y
with
o(T,y) = (y — K)*, fory €0, B,
c(t,y) =0, for t € [0,7] and y > B.
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8.3 Exercises

Exercice 8.1 (Extrait de ’examen 2008-2009) Dans cet exercice, la maturité est
T > 0 et on suppose que le prix de 'actif sans risque est donné par

ds° = SOrdt, S0 = 1
tandis que le prix de I'actif risqué est donné par ’équation suivante :
dS; = S;_(bdt + odWy + 6dM,), Sp > 0.

Ici W est un mouvement brownien standard, M un processus de Poisson compensé,
ie. M; = N; — At, avec N processus de Poisson d’intensité A > 0, indépendant de W.
Tous les processus sont définis sur le méme espace de probabilité filtré (2, F, P, (F¢)i>0)
et sont adaptés a la filtration. Les hypothéses sur les paramétres sont :

r>0, beR, oceR;, §€|—1 +0[\{0}.

On rappelle que les exponentielles de Doléans-Dade sont

E(eW)(t) = exp (O‘Wt — %O’Qt) :
EWOM)(t) = exp(n(l+0)M; — Mt(0 —In(1+6))) = exp (In(1 + 0) N, — A\dt)

1. Quelles sont les équations vérifices par E(cW) et £(0M) 7 On appliquera la
formule d’It6 en justifiant son emploi.

2. Exprimer S; uniquement en fonction des paramétres du modéle.

3. Montrer que pour tout a € R,
1
(S1)® = (S0)*E(acW)(t)E(0,M)(t) exp §a(a —1)o?t + abt + A\t(d, — ad) | ,

avec 0, = (1 +6)* — 1.
4. En déduire E(S§) pour tout ¢ > 0.

5. Soit v > —1. Montrer que (L] = E(WYW)()E(YM)(t))o<i<r est une martingale
définissant une probabilité risque-neutre Q7 équivalente a P, si et seulement si

b—r+op+ Aoy =0.
6. Montrer que sous Q7, on a pour tout ¢t € [0, 7]
exp(—rt)Sy = SoE (W) (t)E(OMT)(t).
On précisera la dynamique de (W, )o<t<r et (M, )o<i<r sous Q7.
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On définit alors le prix V7 de loption d’achat (S — K)* sous Q7 par
vt € [0,T], Vi = e " TOEY ((Sp — K)T|F) = e "TTIRY((Sr — K)T|F).

On définit aussi H(t,S;) comme le prix Black-Scholes de ce méme contrat & 'instant ¢
et LH la fonction

LH(t,x)=H(t,(1+d)x)) — H(t,x) — 5xaa—i[(t,x).

On supposera (sans le redémontrer) que H € CY2([0, T[xR), que s est bornée et que
T

H est convexe par rapport a la seconde variable.

7. En appliquant la formule d’It6, montrer que

T
e "V = e " H(t,S;) + (1 4+ 7)AE” {/ e " LH(s,Ss)ds
t

7).

8. Montrer que pour tout v €] — 1, 400],

Vte[0,T), H(tS) <V(t) < S,

9. Montrer que |LH(t,x)| < 2xC|d| avec |0H/0x(t,x)| < C.
10. En déduire que lim1 V(t) = H(t,St).
v

11. Prouver que pour tout 0 <a <lett >0, lim E7((£(0M")(t))*) = 0.

yY——+00
Indication : procéder comme a la question 3. On rappelle que sous les hypothéses imposées a a
etd, (1+d)*—ad—1<0.

12. Montrer que Vg = Sy—e™""EY [G(SoE(SM™)(T))] avec G(y) = E [g(ye E(cW7)(T))]
et g(x) =2 — (xr — K)*.

13. En déduire alors que lim EY(e”?(Sp — K)T) = Sy et que lim V() = S,.

y—400 Y—+00

14. A quoi correspond lintervalle [H(t, S;), S] en terme de prix ?

Exercice 8.2 (Extrait de ’examen 2011-2012) Soit X = (X;);>¢ un processus de
Lévy de triplet caractéristique (o2, v,7) tel que 0% > 0, v(dz) = f(z)dz, ou f est une
fonction continue & support compact inclus dans | — 1; +o0o[. On écrira X sous la forme
Xi =Yt +0B; 4+ Q, ot 79 € R, B = (By);>0 est un mouvement brownien standard et
@ un processus de Poisson composé compensé.

On considére également, pour Sy € R, la solution S de 'EDS

t
vt >0, St:50+/ S,-dX,.
0
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1. Expliquer pourquoi S; > 0, pour tout t > 0. Exprimer S; en fonction de 7y, B, o,
Q.

Indication : Appliquer la formule d’It6 pour exprimer In(Sy).

uXt] est bien définie et peut

2. Montrer que pour u € R et t > 0, I'espérance Ele

s’écrire sous la forme
E[euXt] _ etd)(u)

ou ¢ est une fonction que 'on déterminera.
3. Montrer que, pour tout v € R, le processus M*" défini par
M} = exp(uX; — to(u))
est une martingale.

4. On définit une nouvelle mesure de probabilité Q" par

dQ" _
dP r
Montrer que 'on peut trouver u € R tel que (S;, 0 <t < T') soit une martingale

sous Q" 7

5. Si S est utilisé pour modéliser I’évolution d’un actif risqué sur un marché financier
ou le taux d’intérét sans risque est nul, commentez les résultats obtenus.

Exercice 8.3 (Suite de ’exercice 2.5) Au début des années 2000, W. Schoutens a
proposé de modéliser des cours d’actifs via le processus de Meixner (avec application
au Nikkei-225 ou S&P 500). Celui-ci, noté X = (X;, t > 0) dans la suite, a une
structure simple, stable par changement de probabilité, et donne des formules semi-
fermées, comme pour le modeéle de Black-Scholes.

Le processus de Meixner est déterminé par sa fonction caractéristique :

2dt
) b/2 )
Yt >0, @ (u)=FE("") = % et
Les paramétres de ce modéle vérifient :
a>0, d>0, —rm<b<m, meR.

La loi de X; est appelée loi de Meixner et notée M(a,b,d, m).
Partie 3 : modéle financier sans arbitrage. On suppose que le prix d'un actif
financier est donné par

(8.7) Vt >0, Sy =Syexp(Xy),

o X est un processus de Meixner de paramétres (a,b,d, m). r désigne le taux sans
risque du marché.
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1. Expliquer (sans démonstration) pourquoi ce modéle sera sans arbitrage.

2. En appliquant la transformation d’Esscher pour un 6 € R, montrer que X; suit,
sous la nouvelle probabilité, la loi M (a,b+ a,dt, mt).

3. Montrer que I'unique 6* qui rend les prix actualisés martingales, est donné par la

formule :
1 (v 2tan (2Dt E0)))

4. Une autre fagon de définir un processus risque-neutre est de corriger I’exponentielle
o exp(rt)
Smsk neutral — SO exp X )
! ( t)E(exp(Xt))
Montrer que la loi de S7*F=meutral ost M (a, b, d, m) avec

m:r—len(%).

Partie 4 : pricing d’option. On utilise ici le modéle (8.7) avec transformation
d’Esscher via 6*. Soit C'(T', K) le prix du call européen de maturité 7" et de prix d’exercice
K.

1. Montrer que I'on a une formule analogue au modéle de Black-Scholes, a savoir :
C(T,K)=Sy[l — Fr(z,0* + 1))+ e ™" K [1 - Fr(z,0%)],
avec r = In Sﬁo et Fy(.,0) est la fonction de répartition de la loi M (a,b+ af,d, m).

2. On souhaite utiliser la méthode de Carr-Madan pour calculer le prix. Montrer
qu'il existe a > 0 tel que E(S1®) < +o00 si et seulement si 14+ a < ”T_b —0".

3. On pose Cr(k) = [ e (e* — e*)p(T, s)ds. Montrer que

k
exp(—ak) [ _,
Cr(k) = —Xp(2 ) / e Fhp(v)dv

o0

avec

hr(v) :/ e_i”k/ e e (5 — M g(T, 5)ds.
—00 k

4. En permutant les deux intégrales et en utilisant la définition de la fonction carac-
téristique, montrer que

e T dp(v— (1+ a)i)

h = :
r(v) a?+a—v2+i2a+1)v
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