STOCHASTIC CALCULUS FOR LÉVY PROCESSES.

Alexandre Popier

ENSTA, Palaiseau

February-March 2023

- STOCHASTIC INTEGRAL FOR SEMI-MARTINGALES
 - Simple processes.
 - Beyond simple processes
- QUADRATIC VARIATION
- 3 THE ITÔ FORMULA
 - For jump-diffusion processes
 - General case
- 4 STOCHASTIC EXPONENTIALS VS. ORDINARY EXPONENTIALS

- STOCHASTIC INTEGRAL FOR SEMI-MARTINGALES
 - Simple processes.
 - Beyond simple processes
- QUADRATIC VARIATION
- 3 THE ITÔ FORMULA
 - For jump-diffusion processes
 - General case
- 4 STOCHASTIC EXPONENTIALS VS. ORDINARY EXPONENTIALS

SIMPLE PROCESSES.

GIVEN:

- $(\Omega, \mathcal{F}, \mathbb{P})$ probability space with a filtration $(\mathcal{F}_t)_{t\geq 0}$.
- All processses are supposed to be adapted w.r.t. this filtration.

DEFINITION

A stochastic process $(\phi_t)_{t\geq 0}$ is called a simple (predictable) process if it can be represented as

$$\phi_t = \phi_0 \mathbf{1}_{t=0} + \sum_{i=0}^n \phi_i \mathbf{1}_{]T_i, T_{i+1}]}(t),$$

where $T_0 = 0 < T_1 < \ldots < T_n < T_{n+1}$ are non-anticipating random times and each ϕ_i is bounded \mathcal{F}_{T_i} -measurable r.v..

NOTATION: set of simple processes: S.

INTEGRAL OF SIMPLE PROCESSES.

SETTING: $X = (X_t = (X_t^1, \dots, X_t^d))_{t \ge 0}$ is a d-dimensional adapted RCLL process.

DEFINE: for $0 \le t$, and j s.t. $T_j < t \le T_{j+1}$

$$G_{t}(\phi) = \phi_{0}X_{0} + \sum_{i=0}^{j-1} \phi_{i}(X_{T_{i+1}} - X_{T_{i}}) + \phi_{j}(X_{t} - X_{T_{j}})$$

$$= \phi_{0}X_{0} + \sum_{i=0}^{n} \phi_{i}(X_{T_{i+1} \wedge t} - X_{T_{i} \wedge t})$$

DEFINITION

The process $G_t(\phi)$ is the stochastic integral of ϕ w.r.t. X and is denoted by :

$$G_t(\phi) = \int_0^t \phi_u dX_u.$$

INTEGRAL OF SIMPLE PROCESSES.

SETTING: $X = (X_t = (X_t^1, \dots, X_t^d))_{t \ge 0}$ is a *d*-dimensional adapted RCLL process.

PROPOSITION

If X is a martingale, then for any simple process ϕ , the stochastic integral G is also a martingale.

PROPOSITION

Assume that X is a real-valued RCLL process. Let ϕ and ψ be real-valued simple processes. Then $Y_t = \int_0^t \phi_u dX_u$ is an adapted RCLL process and

$$\int_0^t \psi_u dY_u = \int_0^t \psi_u \phi_u dX_u.$$

- STOCHASTIC INTEGRAL FOR SEMI-MARTINGALES
 - Simple processes.
 - Beyond simple processes
- QUADRATIC VARIATION
- 3 THE ITÔ FORMULA
 - For jump-diffusion processes
 - General case
- 4 STOCHASTIC EXPONENTIALS VS. ORDINARY EXPONENTIALS

INTEGRAL W.R.T. BROWNIAN MOTION.

PROPOSITION

Let ϕ be a predictable process verifying

$$\mathbb{E}\int_0^T |\phi_t|^2 dt < +\infty.$$

Then $\int_0^t \phi_u dW_u$ is a square integrable martingale and

$$\mathbb{E}\int_0^T \phi_u dW_u = 0, \qquad \mathbb{E}\left|\int_0^T \phi_u dW_u\right|^2 = \mathbb{E}\int_0^T |\phi_u|^2 du.$$

REMARK

- ϕ cannot be interpreted as a trading strategy : not LCRL,
- its integral cannot necessarily be represented as a limit of Riemann sums.

PURE JUMP PROCESS.

DEFINITION

A pure jump process X is a process with

- piecewise constant trajectories,
- and a finite number of jumps on every finite time interval.

The stochastic integral of Φ w.r.t. X is defined

$$\int_0^t \Phi_s dX_s = \sum_{0 < s < t} \Phi_s \Delta J_s.$$

EXAMPLE. With

- $X_t = N_t \lambda t$: compensated Poisson process;
- $\Phi_t = \Delta N_t$;
- $\Psi_t = \mathbf{1}_{[0,S_1]}(t)$ where S_1 is the time of the first jump of N.

$$I_t = \int_0^t \Phi_{\mathcal{S}} dX_{\mathcal{S}} = N_t, \quad J_t = \int_0^t \Psi_{\mathcal{S}} dX_{\mathcal{S}} = \mathbf{1}_{[S_1, +\infty]}(t) - \lambda(t \wedge S_1).$$

SEMI-MARTINGALES.

DEFINITION

An adapted RCLL process X is a semi-martingale if the stochastic integral of simple processes w.r.t. X verifies the following continuity property: for every ϕ^n and ϕ in $\mathbb S$ if

$$\lim_{n \to +\infty} \sup_{(t,\omega) \in \mathbb{R}_+ \times \Omega} |\phi_t^n(\omega) - \phi_t(\omega)| = 0, \tag{1}$$

then in probability : $\int_0^T \phi_u^n dX_u \xrightarrow[n \to +\infty]{} \int_0^T \phi_u dX_u = G_T(\phi).$

EXAMPLES.

- A finite variation process.
- A (locally) square integrable (local) martingale.
- An adapted RCLL decomposable process X:

$$X_t = X_0 + M_t + A_t,$$

with

- $M_0 = A_0 = 0$,
- M locally square integrable martingale,
- A is RCLL, adapted, with paths of finite variation on compacts.,

Consequence: all Lévy processes are semi-martingales.

TECHNICAL RESULTS.

NOTATIONS:

- D : set of adapted RCLL processes.
- \mathbb{L} (resp. $b\mathbb{L}$) : set of adapted LCRL (resp. bounded) processes.

DEFINITION

A sequence (ϕ^n) of processes converges uniformly on compact sets in probability (ucp in short) to ϕ if :

$$\forall t > 0, \quad (\phi^n - \phi)_t^* \underset{n \to +\infty}{\longrightarrow} 0$$
 in probability.

LEMMA

- The set \mathbb{S} is dense in \mathbb{L} for the ucp topology.
- **2** For X semi-martingale, $G: \mathbb{S}_{ucp} \to \mathbb{D}_{ucp}$ is continuous.

STOCHASTIC INTEGRAL FOR LCRL PROCESS.

DEFINITION

Let X be a semi-martingale. The continuous linear mapping $G = G_X : \mathbb{L}_{ucp} \to \mathbb{D}_{ucp}$ obtained as the extension of $G : \mathbb{S} \to \mathbb{D}$ is called the stochastic integral.

THEOREM

Let T be a stopping time. Then

$$G(\phi)^T = (G(\phi)_{t \wedge T})_{t \geq 0} = G(\phi \mathbf{1}_{[0,T]}) = G_{X^T}(\phi).$$

2 The jump process $\Delta(G(\phi))$ is indistinguishable from $\phi(\Delta X)$.

STOCHASTIC INTEGRAL FOR LCRL PROCESS.

THEOREM

If X is a semi-martingale, and if ϕ is an adapted LCRL process then

- $Y_t = \int_0^t \phi_u dX_u$: semi-martingale.
- ullet If ψ is another adapted LCRL process, then

$$\int_0^t \psi_u dY_u = \int_0^t \psi_u \phi_u dX_u.$$

• If *X* is a (locally) square-integrable (local) martingale, *Y* is a (locally) square-integrable (local) martingale.

- STOCHASTIC INTEGRAL FOR SEMI-MARTINGALES
 - Simple processes.
 - Beyond simple processes
- QUADRATIC VARIATION
- 3 THE ITÔ FORMULA
 - For jump-diffusion processes
 - General case
- 4 STOCHASTIC EXPONENTIALS VS. ORDINARY EXPONENTIALS

REALIZED VOLATILITY.

FRAMEWORK:

- X semi-martingale, adapted RCLL process with $X_0 = 0$,
- time grid $\pi = \{t_0 = 0 < t_1 < t_2 < \ldots < t_{n+1} = T\}.$

REALIZED VARIANCE:

$$V_X(\pi) = \sum_{i=0}^n (X_{t_{i+1}} - X_{t_i})^2$$

$$= X_T^2 - 2 \sum_{i=0}^n X_{t_i} (X_{t_{i+1}} - X_{t_i})$$

Convergence in probability:

$$[X,X]_T = X_T^2 - 2 \int_0^T X_{u^-} dX_u.$$

QUADRATIC VARIATION.

DEFINITION

The quadratic variation process of a semi-martingale X is the adapted RCLL process defined by :

$$[X,X]_t = |X_t|^2 - 2\int_0^t X_{u^-} dX_u.$$

PROPOSITION (PROPERTIES)

- $X_0^2 + \sum_{i=0} (X_{t_{i+1}} X_{t_i})^2 \underset{\|\pi\| \to 0}{\longrightarrow} [X, X]_T$ in ucp.
- $([X,X]_t)_{t\in[0,T]}$ is a non-decreasing process with $[X,X]_0=X_0^2$.
- Jumps of [X, X]: $\Delta[X, X]_t = |\Delta X_t|^2$.
- If X is continuous and has paths of finite variation, then [X, X] = 0.

CROSS VARIATION.

DEFINITION

Given two semi-martingales X, Y, cross variation process [X, Y]

$$[X,Y]_t = X_tY_t - X_0Y_0 - \int_0^t X_{s-}dY_s - \int_0^t Y_{s-}dX_s.$$

PROPOSITION

- [X, Y] is an adapted RCLL process with finite variations.
- Polarization identity :

$$[X, Y] = \frac{1}{2}([X + Y, X + Y] - [X, X] - [Y, Y]).$$

- $[X, Y]_0 = X_0 Y_0$ and $\Delta[X, Y] = \Delta X \Delta Y$.
- Convergence (in probability) :

$$X_0 Y_0 + \sum_{i=0}^n (X_{t_{i+1}} - X_{t_i}) (Y_{t_{i+1}} - Y_{t_i}) \underset{\|\pi\| \to 0}{\longrightarrow} [X, Y]_T.$$

PROPERTIES.

EXAMPLE : consider X a jump process :

$$X_t = X_0 + I_t + R_t + J_t = X_0 + \int_0^t \Gamma_s dW_s + \int_0^t \Theta_s ds + J_t.$$

Then
$$[X]_T = \int_0^T \Gamma_s^2 ds + \sum_{0 < s < T} (\Delta J_s)^2$$
.

PROPOSITION

Let X and Y be two locally square integrable martingales. Then [X,Y] is the unique adapted RCLL process A with paths on finite variation on compacts satisfying the two properties :

- XY A is a local martingale;

PURE JUMP PROCESSES.

PROPOSITION

Let *X* be a quadratic pure jump semi-martingale. Then for any semi-martingale *Y*,

$$[X, Y]_t = X_0 Y_0 + \sum_{0 < s < t} \Delta X_s \Delta Y_s.$$

THEOREM

Consider $X^{(i)}$, i = 1, 2, two jump processes :

$$X_t^{(i)} = X_0^{(i)} + I_t^{(i)} + R_t^{(i)} + J_t^{(i)} = X_0^{(i)} + \int_0^t \Gamma_s^{(i)} dW_s + \int_0^t \Theta_s^{(i)} ds + J_t^{(i)}.$$

Then

$$[X^{(1)},X^{(2)}]_T = \int_0^T \Gamma_s^{(1)} \Gamma_s^{(2)} ds + \sum_{0 \leq s \leq T} \Delta J_s^{(1)} \Delta J_s^{(2)}.$$

PURE JUMP PROCESSES.

COROLLARY

Let W be a Brownian motion and $M = N - \lambda$. a compensated Poisson process, relative to the same filtration. Then $[W, M]_t = 0$ for every t > 0.

- STOCHASTIC INTEGRAL FOR SEMI-MARTINGALES
 - Simple processes.
 - Beyond simple processes
- Quadratic variation
- 3 THE ITÔ FORMULA
 - For jump-diffusion processes
 - General case
- 4 STOCHASTIC EXPONENTIALS VS. ORDINARY EXPONENTIALS

- STOCHASTIC INTEGRAL FOR SEMI-MARTINGALES
 - Simple processes.
 - Beyond simple processes
- Quadratic variation
- 3 THE ITÔ FORMULA
 - For jump-diffusion processes
 - General case
- 4 STOCHASTIC EXPONENTIALS VS. ORDINARY EXPONENTIALS

RECALL: CONTINUOUS CASE.

For Γ and Θ adapted let :

$$X_t^c = X_0 + I_t + R_t = X_0 + \int_0^t \Gamma_s dW_s + \int_0^t \Theta_s ds,$$

and f a function of class $C^2(\mathbb{R})$. Then

$$f(X_t^c) = f(X_0) + \int_0^t f'(X_s^c) dX_s^c + \frac{1}{2} \int_0^t f''(X_s^c) d[X^c]_s$$

= $f(X_0) + \int_0^t f'(X_s^c) \Gamma_s dW_s + \int_0^t f'(X_s^c) \Theta_s ds + \frac{1}{2} \int_0^t f''(X_s^c) \Gamma_s^2 ds$

or in differential notation

$$df(X^c_t) = f'(X^c_s)\Gamma_s dW_s + f'(X^c_s)\Theta_s ds + \frac{1}{2}f''(X^c_s)\Gamma^2_s ds.$$

THE ITÔ FORMULA.

THEOREM

Let X be a jump process and f of class $C^2(\mathbb{R})$:

$$X_t = X_t^c + J_t = X_0 + \int_0^t \Gamma_s dW_s + \int_0^t \Theta_s ds + J_t.$$

Then

$$f(X_t) = f(X_0) + \int_0^t f'(X_s) dX_s^c + \frac{1}{2} \int_0^t f''(X_s) \Gamma_s^2 ds + \sum_{0 < s \le t} [f(X_s) - f(X_{s-})].$$

APPLICATION.

PROPOSITION

We consider the geometric Poisson process

$$S_t = S_0 \exp(N_t \log(\sigma + 1) - \lambda \sigma t) = S_t e^{-\lambda \sigma t} (\sigma + 1)^{N_t},$$

where N is a Poisson process with intensity λ and $\sigma > -1$. Then S is a martingale :

$$S_t = S_0 + \sigma \int_0^t S(u-)dM_u = S(0) + \sigma \int_0^t S(u-)d(N_u - \lambda u).$$

PROPOSITION

Let W be a Brownian motion and N a Poisson process with intensity $\lambda > 0$, defined on the same probability space $(\Omega, \mathcal{F}, \mathbb{P})$ relative to the same filtration $\{\mathcal{F}_t, \ t \geq 0\}$. Then W and N are independent.

MULTI-DIMENSIONAL ITÔ FORMULA.

THÉORÈME

Let $X = (X^{(1)}, \dots, X^{(d)})$ with $X^{(i)}$, $i = 1, \dots, d$, jump processes and f of class $C^{1,2}(\mathbb{R}_+ \times \mathbb{R}^d)$. Then

$$f(t, X_{t}) = f(0, X_{0}) + \int_{0}^{t} \frac{\partial f}{\partial t}(s, X_{s}) ds + \sum_{i=1}^{d} \int_{0}^{t} \frac{\partial f}{\partial x_{i}}(s, X_{s}) d(X^{(i)})_{s}^{c}$$

$$+ \frac{1}{2} \sum_{i=1}^{d} \sum_{j=1}^{d} \int_{0}^{t} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(s, X_{s}) [(X^{(i)})^{c}, (X^{(j)})^{c}]_{s} ds$$

$$+ \sum_{0 \leq s \leq t} [f(s, X_{s}) - f(s, X_{s-})].$$

DOLÉANS-DADE EXPONENTIAL.

PROPOSITION

Let X be a jump process. The Doléans-Dade exponential of X is defined by

$$Z^X(t) = \exp\left\{X^c(t) - rac{1}{2}[X^c,X^c]_t
ight\} \prod_{0 < s < t} \left(1 + \Delta X(s)
ight).$$

This process is solution of the following stochastic differential equation with initial condition $Z^X(0)=1$:

$$Z^{X}(t) = 1 + \int_{0}^{t} Z^{X}(s-)dX(s).$$

- STOCHASTIC INTEGRAL FOR SEMI-MARTINGALES
 - Simple processes.
 - Beyond simple processes
- QUADRATIC VARIATION
- 3 THE ITÔ FORMULA
 - For jump-diffusion processes
 - General case
- 4 STOCHASTIC EXPONENTIALS VS. ORDINARY EXPONENTIALS

RECALL.

SETTING:

- $X_t = \sigma W_t + \mu t + J_t$ where J compound Poisson process and W Brownian motion;
- $f \in C^2(\mathbb{R})$.

FORMULA:

$$f(X_{t}) = f(X_{0}) + \int_{0}^{t} f'(X_{s}) dX_{s}^{c} + \frac{\sigma^{2}}{2} \int_{0}^{t} f''(X_{s}) ds$$

$$+ \sum_{0 < s \le t} \{ f(X_{s}) - f(X_{s-}) \}$$

$$= f(X_{0}) + \int_{0}^{t} f'(X_{s}) dX_{s} + \frac{\sigma^{2}}{2} \int_{0}^{t} f''(X_{s}) ds$$

$$+ \sum_{0 < s \le t} \{ f(X_{s}) - f(X_{s-}) - \Delta X_{s} f'(X_{s-}) \}.$$

ITÔ FORMULA FOR SEMI-MARTINGALES.

THEOREM

Let X be an n-tuple of semi-martingales, and $f:[0,T]\times\mathbb{R}^n\to\mathbb{R}$ a $C^{1,2}$ function. Then f(.,X) is again a semi-martingale, and the following formula holds :

$$f(t, X_t) = f(0, X_0) + \int_0^t \frac{\partial f}{\partial t}(s, X_s) ds + \sum_{i=1}^d \int_0^t \frac{\partial f}{\partial x_i}(s, X_{s-}) dX_s^i$$

$$+ \frac{1}{2} \sum_{i,j=1}^d \int_0^t \frac{\partial^2 f}{\partial x_i \partial x_j}(s, X_s) d[X^i, X^j]_s^c$$

$$+ \sum_{0 < s \le t} \left\{ f(s, X_s) - f(s, X_{s-}) - \sum_{i=1}^d \Delta X_s^i \frac{\partial f}{\partial x_i}(s, X_{s-}) \right\}.$$

DECOMPOSITION.

PROPOSITION

Let X be a Lévy process with characteristic triplet (σ^2, ν, γ) and $f: \mathbb{R} \to \mathbb{R}$ a C^2 function s.t. f and its two derivatives are bounded by a constant C. Then $Y_t = f(X_t) = M_t + V_t$ where M is the martingale part given by :

$$M_t = f(X_0) + \int_0^t f'(X_s) \sigma dW_s + pure-jump martingale,$$

and V a continuous finite variation process :

$$\begin{array}{lcl} V_t & = & \frac{\sigma^2}{2} \int_0^t f''(X_s) ds + \gamma \int_0^t f'(X_s) ds \\ & + \int_0^t \int_{\mathbb{R}} (f(X_{s^-} + y) - f(X_{s^-}) - y f'(X_s) \mathbf{1}_{|y| \leq 1}) ds \nu(dy). \end{array}$$

- STOCHASTIC INTEGRAL FOR SEMI-MARTINGALES
 - Simple processes.
 - Beyond simple processes
- QUADRATIC VARIATION
- 3 THE ITÔ FORMULA
 - For jump-diffusion processes
 - General case
- 4 STOCHASTIC EXPONENTIALS VS. ORDINARY EXPONENTIALS

EXPONENTIAL OF A LÉVY PROCESS.

PROPOSITION

Let X be a (σ^2, ν, γ) Lévy process s.t. $\int_{|y| \ge 1} e^y \nu(dy) < \infty$. Then $Y_t = \exp(X_t)$ is a semi-martingale with decomposition $Y_t = M_t + A_t$

where the martingale part is given by

$$M_t = 1 + \int_0^t Y_{s^-} \sigma dW_s + pure-jump martingale;$$

and the continuous finite variation drift part by

$$A_t = \int_0^t Y_{s^-} \left[\gamma + \frac{\sigma^2}{2} + \int_{-\infty}^\infty (e^z - 1 - z \mathbf{1}_{|z| \ge 1}) \nu(dz) \right] ds.$$

DOLÉANS-DADE EXPONENTIAL.

PROPOSITION

Let X be a (σ^2, ν, γ) Lévy process. There exists a unique RCLL process Z s.t. :

$$dZ_t = Z_{t^-} dX_t, \quad Z_0 = 1.$$

Z is given by:

$$Z_t = \exp\left(X_t - \frac{\sigma^2 t}{2}\right) \prod_{0 < s < t} (1 + \Delta X_s) e^{-\Delta X_s}.$$

If $\int_{-1}^{1} |x| \nu(dx) < \infty$, the jumps of X have finite variation and the stochastic exponential of X can be expressed as

$$Z_t = \exp\left(X_t^c - rac{\sigma^2 t}{2}
ight) \prod_{0 < s \le t} (1 + \Delta X_s).$$

DOLÉANS-DADE EXPONENTIAL.

DEFINITION

 $Z = \mathcal{E}(X)$ is called the Doléans-Dade exponential (or stochastic exponential) of X.

PROPOSITION

If X is a Lévy process and a martingale, then its stochastic exponential $Z = \mathcal{E}(X)$ is also a martingale.

RELATION BETWEEN THE TWO EXPONENTIALS.

Let X be a Lévy process with triplet (σ^2, ν, γ) and $Z = \mathcal{E}(X)$ its stochastic exponential. If Z > 0 a.s., there exists another Lévy process L s.t. $Z = \exp(L)$ where :

$$L_t = \ln Z_t = X_t - rac{\sigma^2 t}{2} + \sum_{0 < s \leq t} (\ln(1 + \Delta X_s) - \Delta X_s).$$

Its characteristic triplet $(\sigma_L^2, \nu_L, \gamma_L)$ is given by :

$$\begin{split} & \sigma_L = \sigma, \\ & \nu_L(A) = \int \mathbf{1}_A (\ln(1+x)) \nu(dx), \\ & \gamma_L = \gamma - \frac{\sigma^2}{2} + \int \left[\ln(1+x) \mathbf{1}_{[-1,1]} (\ln(1+x)) - x \mathbf{1}_{[-1,1]}(x) \right] \nu(dx). \end{split}$$

RELATION BETWEEN THE TWO EXPONENTIALS.

Let L be a Lévy process with triple $(\sigma_L^2, \nu_L, \gamma_L)$ and $S_t = \exp L_t$ its exponential. Then there exists a Lévy process X s.t. S is the stochastic exponential of $X : S = \mathcal{E}(X)$ where

$$X_t = L_t + \frac{\sigma^2 t}{2} + \sum_{0 < s \le t} \left[1 + \Delta L_s - e^{\Delta L_s} \right].$$

The triplet (σ^2, ν, γ) of X is given by :

$$\begin{split} &\sigma = \sigma_L, \\ &\nu(A) = \int \mathbf{1}_A (e^x - 1) \nu_L(dx), \\ &\gamma = \gamma_L + \frac{\sigma_L^2}{2} + \int \left[(e^x - 1) \mathbf{1}_{[-1,1]} (e^x - 1) - x \mathbf{1}_{[-1,1]} (x) \right] \nu_L(dx). \end{split}$$