# INTRODUCTION, MOTIVATION.

#### CONTINUOUS TIME MODELS WITH CONTINUOUS TRAJECTORIES.

- Black-Scholes model. Scale invariance of the Brownian motion.
- Local volatility models. Possible perfect hedging.
- Stochastic volatility models. Difficulty to obtain heavy tails, no large sudden moves.

#### CONTINUOUS TIME MODELS WITH DISCONTINUOUS TRAJECTORIES.

- Market crash.
- Credit risk.
- High-frequency trading. Aït-Sahalia & Jacod, High-frequency Financial Econometrics.
- Insurance and ruin theory.

# INTRODUCTION, MOTIVATION.

#### CONTINUOUS TIME MODELS WITH CONTINUOUS TRAJECTORIES.

- Black-Scholes model. Scale invariance of the Brownian motion.
- Local volatility models. Possible perfect hedging.
- Stochastic volatility models. Difficulty to obtain heavy tails, no large sudden moves.

## CONTINUOUS TIME MODELS WITH DISCONTINUOUS TRAJECTORIES.

- Market crash.
- Credit risk.
- High-frequency trading. Aït-Sahalia & Jacod, High-frequency Financial Econometrics.
- Insurance and ruin theory.

## OUTLINE OF THE WHOLE LECTURES.

## ■ PART 1 : DESCRIPTION OF THE LÉVY PROCESSES.

- Properties, examples.
- Simulation.
- PART 2 : STOCHASTIC CALCULUS WITH JUMPS.
  - Stochastic integral.
  - Itô's formula.
  - Change of measures.

## ■ PART 3 : APPLICATIONS TO FINANCE.

# LÉVY PROCESSES : DEFINITIONS AND FIRST EXAMPLES.

**Alexandre Popier** 

ENSTA, Palaiseau

February 2023

A. Popier (ENSTA)

Lévy processes (I).

February 2023 3/18

# DEFINITIONS.

## DEFINITION

A stochastic process  $(X_t)_{t\geq 0}$  defined on  $(\Omega, \mathcal{F}, \mathbb{P})$ , with values in  $\mathbb{R}^d$ , is a Lévy process if

- $X_0 = 0$  a.s.
- its increments are independent : for every increasing sequence t<sub>0</sub>,..., t<sub>n</sub>, the r.v. X<sub>t<sub>0</sub></sub>, X<sub>t<sub>1</sub></sub> − X<sub>t<sub>0</sub></sub>,..., X<sub>t<sub>n</sub></sub> − X<sub>t<sub>n-1</sub> are independent;
  </sub>
- its increments are stationnary : the law of X<sub>t+h</sub> X<sub>t</sub> does not depend on t;
- X satisfies the property called stochastic continuity : for any ε > 0, lim<sub>h→0</sub> P(|X<sub>t+h</sub> − X<sub>t</sub>| ≥ ε) = 0

 there exists a subset Ω<sub>0</sub> s.t. P(Ω<sub>0</sub>) = 1 and for every ω ∈ Ω<sub>0</sub>, t → X<sub>t</sub>(ω) is RCLL.

# DEFINITIONS.

If a filtration  $(\mathcal{F}_t)_{t\geq 0}$  is already given on  $(\Omega, \mathcal{F}, \mathbb{P})$ 

## DEFINITION

A stochastic process  $(X_t)_{t\geq 0}$  defined on  $(\Omega, \mathcal{F}, \mathbb{P})$ , with values in  $\mathbb{R}^d$ , is a Lévy process if

- $X_0 = 0$  a.s.
- its increments are independent : for any s ≤ t, the r.v. X<sub>t</sub> − X<sub>s</sub> is independent of F<sub>s</sub>;
- its increments are stationnary;
- X satisfies the property called stochastic continuity;
- a.s.  $t \mapsto X_t(\omega)$  is RCLL.

# REMARKS.

## **R**EMARKS ON THE DEFINITIONS :

- If  $\mathcal{F}_t = \mathcal{F}_t^X$ , the two definitions are equivalent.
- If {*F<sub>t</sub>*} is a larger filtration than (*F<sub>t</sub><sup>X</sup>* ⊂ *F<sub>t</sub>*) and if *X<sub>t</sub>* − *X<sub>s</sub>* is independent of *F<sub>s</sub>*, then {*X<sub>t</sub>*; 0 ≤ *t* < +∞} is a Lévy process under the large filtration.</li>

#### REMARKS ON THE HYPOTHESES :

- If we remove Assumption 5, we speak about Lévy process in law.
- If we remove Assumption 3, we obtain an additive process.
- Dropping Assumptions 3 and 5, we have an *additive process in law*.

#### Theorem

A Lévy process (or an additive process) in law has a RCLL modification.

## We can also prove that 2, 3 and 5 imply 4.

A. Popier (ENSTA)

Lévy processes (I).

# REMARKS.

## **R**EMARKS ON THE DEFINITIONS :

- If  $\mathcal{F}_t = \mathcal{F}_t^X$ , the two definitions are equivalent.
- If  $\{\mathcal{F}_t\}$  is a larger filtration than  $(\mathcal{F}_t^X \subset \mathcal{F}_t)$  and if  $X_t X_s$  is independent of  $\mathcal{F}_s$ , then  $\{X_t; 0 \le t < +\infty\}$  is a Lévy process under the large filtration.

## **REMARKS ON THE HYPOTHESES :**

- If we remove Assumption 5, we speak about Lévy process in law.
- If we remove Assumption 3, we obtain an *additive process*.
- Dropping Assumptions 3 and 5, we have an *additive process in law*.

## Theorem

A Lévy process (or an additive process) in law has a RCLL modification.

We can also prove that 2, 3 and 5 imply 4.

A. Popier (ENSTA)

Lévy processes (I).

## ENLARGED FILTRATION.

For a process  $X = \{X_t; t \ge 0\}$ , we define

- $\mathcal{N}_{\infty} = \mathcal{N}$  the set of  $\mathbb{P}$ -negligible events.
- For any  $0 \le t \le \infty$ , augmented filtration :  $\mathcal{F}_t = \sigma(\mathcal{F}_t^X \cup \mathcal{N})$ .

#### THEOREM

Let  $X = \{X_t; t \ge 0\}$  be a Lévy process. Then

- the augmented filtration  $\{\mathcal{F}_t\}$  is right-continuous.
- With respect to the enlarged filtration, {X<sub>t</sub>, t ≥ 0} is still a Lévy process.

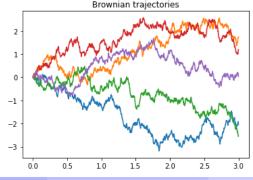
# **BROWNIAN MOTION.**

A Brownian motion is a Lévy process satisfying

- for every t > 0, X<sub>t</sub> is Gaussian with mean vector zero and covariance matrix t Id;
- the process *X* has continuous sample paths a.s.

Characteristic function :

$$\mathbb{E}(e^{i\langle z,B_t\rangle}) = \exp(-t|z|^2/2).$$



A. Popier (ENSTA)

## PROPOSITION

Let  $(X_t)_{t\geq 0}$  be a Lévy process in  $\mathbb{R}^d$ . Then there exists a function  $\psi : \mathbb{R}^d \to \mathbb{R}$  called characteristic exponent of X s.t. :

$$\forall z \in \mathbb{R}^d, \quad \mathbb{E}\left(e^{i\langle z, X_t \rangle}\right) = e^{t\psi(z)}.$$

# OUTLINE

## 1 A FIRST CLASS OF LÉVY PROCESSES

- Compound Poisson process
- Jump-diffusion processes

# OUTLINE

# A FIRST CLASS OF LÉVY PROCESSES

- Compound Poisson process
- Jump-diffusion processes

# POISSON PROCESS.

## DEFINITION

A stochastic process  $(X_t)_{t\geq 0}$ , with values in  $\mathbb{R}$ , is a Poisson process with intensity  $\lambda > 0$  if it is a Lévy process s.t. for every t > 0,  $X_t$  has a Poisson law with parameter  $\lambda t$ .

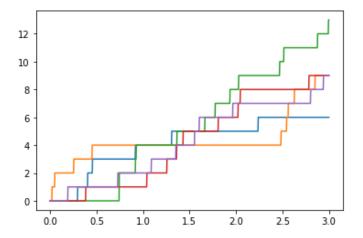
## **PROPOSITION (CONSTRUCTION)**

If  $(T_n)_{n \in \mathbb{N}}$  is a random walk on  $\mathbb{R}$  s.t. for every  $n \ge 1$ ,  $T_n - T_{n-1}$  is exponentially distributed with parameter  $\lambda$  (with  $T_0 = 0$ ), then the process  $(X_t)_{t \ge 0}$  defined by

$$X_t = n \Longleftrightarrow T_n \le t < T_{n+1}$$

is a Poisson process with intensity  $\lambda$ .

## POISSON PROCESS.



We consider a Poisson process  $(P_t)_{t\geq 0}$  with intensity  $\lambda$  and jump times  $T_n$ , and a sequence  $(Y_n)_{n\in\mathbb{N}^*}$  of  $\mathbb{R}^d$ -valued r.v. s.t.

•  $Y_n$  are i.i.d. with distribution measure  $\pi$ ;

②  $(P_t)_{t \ge 0}$  and  $(Y_n)_{n \in \mathbb{N}^*}$  are independent.

Define

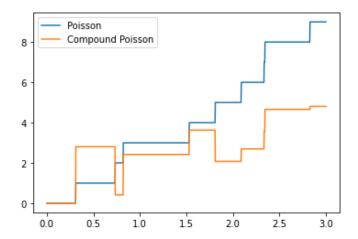
$$X_t = \sum_{n=1}^{P_t} Y_n = \sum_{n=1}^{+\infty} Y_n \mathbf{1}_{[0,t]}(T_n).$$

## DEFINITION

The process  $(X_t)_{t\geq 0}$  is a compound Poisson processes with intensity  $\lambda$  and jump distribution  $\pi$ .

# MERTON MODEL.

Compound Poisson processes with Gaussian jumps.



## PROPOSITION

The process  $(X_t)_{t\geq 0}$  is a Lévy process, with piecewise constant trajectories and characteristic function :

$$\begin{aligned} \forall z \in \mathbb{R}^{d}, \quad \mathbb{E}\left(e^{i\langle z, X_{l}\rangle}\right) &= \exp\left(t\lambda \int_{\mathbb{R}^{d}} (e^{i\langle z, x\rangle} - 1)\pi(dx)\right) \\ &= \exp\left(t \int_{\mathbb{R}^{d}} (e^{i\langle z, x\rangle} - 1)\nu(dx)\right); \end{aligned}$$

## DEFINITION

 $\nu$  is a finite measure defined on  $\mathbb{R}^d$  by :  $\nu(A) = \lambda \pi(A)$ ,  $A \in \mathcal{B}(\mathbb{R}^d)$ .  $\nu$  is called the Lévy measure of the compound Poisson process. Moreover

$$u(\mathbf{A}) = \mathbb{E}\left[\#\{t \in [0, 1], \quad \Delta X_t \neq 0, \ \Delta X_t \in \mathbf{A}\}\right].$$

## DEFINITION

The law  $\mu$  of  $X_1$  is called compound Poisson distribution and has a characteristic function given by :  $\hat{\mu}(z) = \exp\left(\lambda \int_{\mathbb{R}^d} (e^{i\langle z, x \rangle} - 1)\pi(dx)\right).$ 

#### PROPOSITION

Let X be a compound Poisson process and A and B two disjointed subsets of  $\mathbb{R}^d$ . Then :

$$Y_t = \sum_{s \leq t} \Delta X_s \mathbf{1}_{\Delta X_s \in A}$$
 and  $Z_t = \sum_{s \leq t} \Delta X_s \mathbf{1}_{\Delta X_s \in B}$ 

are two independent compound Poisson processes.

# OUTLINE



# DEFINITION.

## DEFINITION

A jump-diffusion process X is the sum of a Brownian motion and of a independent compound Poisson process. Therefore a jump-diffusion process is a Lévy process.

In other words

- ▶ a *k*-dimensional Brownian motion  $(W_t)_{t\geq 0}$ , a *d* × *k* matrix *M*,
- a *d*-dimensional vector  $\gamma$ ,
- a Poisson process (P<sub>t</sub>)<sub>t≥0</sub> with intensity λ and jump times T<sub>n</sub>, and a sequence (Y<sub>n</sub>)<sub>n∈ℕ\*</sub> of ℝ<sup>d</sup>-valued r.v.

such that

- $Y_n$  are i.i.d. with distribution measure  $\pi$ ;
- ②  $(W_t)_{t \ge 0}$ ,  $(P_t)_{t \ge 0}$  and  $(Y_n)_{n \in \mathbb{N}^*}$  are independent.

## DEFINITION.

In other words

- ▶ a *k*-dimensional Brownian motion  $(W_t)_{t\geq 0}$ , a *d* × *k* matrix *M*,
- a *d*-dimensional vector  $\gamma$ ,
- A Poisson process (P<sub>t</sub>)<sub>t≥0</sub> with intensity λ and jump times T<sub>n</sub>, and a sequence (Y<sub>n</sub>)<sub>n∈ℕ\*</sub> of ℝ<sup>d</sup>-valued r.v.

such that

- $Y_n$  are i.i.d. with distribution measure  $\pi$ ;
- ②  $(W_t)_{t \ge 0}$ ,  $(P_t)_{t \ge 0}$  and  $(Y_n)_{n \in \mathbb{N}^*}$  are independent.

$$X_t = MW_t + \gamma t + \sum_{n=1}^{P_t} Y_n = MW_t + \gamma t + \sum_{n=1}^{+\infty} Y_n \mathbf{1}_{[0,t]}(T_n).$$

## DEFINITION.

$$X_t = MW_t + \gamma t + \sum_{0 < s \le t} \Delta X_s.$$

CHARACTERISTIC EXPONENT : for any  $z \in \mathbb{R}^d$  :

$$\psi_X(z) = -\frac{1}{2} \langle z, MM^*z \rangle + i \langle z, \gamma \rangle + \lambda \int_{\mathbb{R}^d} (e^{i \langle z, x \rangle} - 1) \pi(dx)$$
  
=  $-\frac{1}{2} \langle z, MM^*z \rangle + i \langle z, \gamma \rangle + \int_{\mathbb{R}^d} (e^{i \langle z, x \rangle} - 1) \nu(dx).$ 

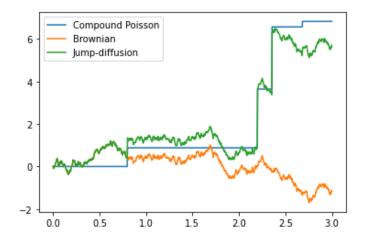
 $M^*$  is the transpose matrix of M.

CHARACTERISTIC TRIPLE :  $(A = MM^*, \nu, \gamma)$ .

A. Popier (ENSTA)

# TWO EXAMPLES.

Jump-diffusion process with Gaussian jumps (used in the Merton model).



# TWO EXAMPLES.

Kou model where the jump sizes are given by a non symmetric Laplace distribution.

