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Black-Scholes model. Scale invariance of the Brownian motion.
Local volatility models. Possible perfect hedging.
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OUTLINE OF THE WHOLE LECTURES.

PART 1 : DESCRIPTION OF THE LÉVY PROCESSES.
I Properties, examples.

I Simulation.

PART 2 : STOCHASTIC CALCULUS WITH JUMPS.
I Stochastic integral.

I Itô’s formula.

I Change of measures.

PART 3 : APPLICATIONS TO FINANCE.
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DEFINITIONS.

DEFINITION

A stochastic process (Xt )t≥0 defined on (Ω,F ,P), with values in Rd , is
a Lévy process if

1 X0 = 0 a.s.
2 its increments are independent : for every increasing sequence

t0, . . . , tn, the r.v. Xt0 ,Xt1 − Xt0 , . . . ,Xtn − Xtn−1 are independent ;
3 its increments are stationnary : the law of Xt+h − Xt does not

depend on t ;
4 X satisfies the property called stochastic continuity : for any ε > 0,

lim
h→0

P(|Xt+h − Xt | ≥ ε) = 0

5 there exists a subset Ω0 s.t. P(Ω0) = 1 and for every ω ∈ Ω0,
t 7→ Xt (ω) is RCLL.
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DEFINITIONS.

If a filtration (Ft )t≥0 is already given on (Ω,F ,P)

DEFINITION

A stochastic process (Xt )t≥0 defined on (Ω,F ,P), with values in Rd , is
a Lévy process if

1 X0 = 0 a.s.
2 its increments are independent : for any s ≤ t , the r.v. Xt − Xs is

independent of Fs ;
3 its increments are stationnary ;
4 X satisfies the property called stochastic continuity ;
5 a.s. t 7→ Xt (ω) is RCLL .
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REMARKS.

REMARKS ON THE DEFINITIONS :
If Ft = FX

t , the two definitions are equivalent.
If {Ft} is a larger filtration than (FX

t ⊂ Ft ) and if Xt − Xs is
independent of Fs, then {Xt ; 0 ≤ t < +∞} is a Lévy process
under the large filtration.

REMARKS ON THE HYPOTHESES :
If we remove Assumption 5, we speak about Lévy process in law.
If we remove Assumption 3, we obtain an additive process.
Dropping Assumptions 3 and 5, we have an additive process in
law.

THEOREM

A Lévy process (or an additive process) in law has a RCLL
modification.

We can also prove that 2, 3 and 5 imply 4.
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ENLARGED FILTRATION.

For a process X = {Xt ; t ≥ 0}, we define
N∞ = N the set of P-negligible events.
For any 0 ≤ t ≤ ∞, augmented filtration : Ft = σ(FX

t ∪N ).

THEOREM

Let X = {Xt ; t ≥ 0} be a Lévy process. Then
the augmented filtration {Ft} is right-continuous.
With respect to the enlarged filtration, {Xt , t ≥ 0} is still a Lévy
process.
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BROWNIAN MOTION.

A Brownian motion is a Lévy process satisfying
1 for every t > 0, Xt is Gaussian with mean vector zero and

covariance matrix t Id ;
2 the process X has continuous sample paths a.s.

Characteristic function :

E(ei〈z,Bt 〉) = exp(−t |z|2/2).
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CHARACTERISTIC FUNCTIONS.

PROPOSITION

Let (Xt )t≥0 be a Lévy process in Rd . Then there exists a function
ψ : Rd → R called characteristic exponent of X s.t. :

∀z ∈ Rd , E
(

ei〈z,Xt 〉
)

= etψ(z).
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OUTLINE

1 A FIRST CLASS OF LÉVY PROCESSES
Compound Poisson process
Jump-diffusion processes
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POISSON PROCESS.

DEFINITION

A stochastic process (Xt )t≥0, with values in R, is a Poisson process
with intensity λ > 0 if it is a Lévy process s.t. for every t > 0, Xt has a
Poisson law with parameter λt .

PROPOSITION (CONSTRUCTION)
If (Tn)n∈N is a random walk on R s.t. for every n ≥ 1, Tn − Tn−1 is
exponentially distributed with parameter λ (with T0 = 0), then the
process (Xt )t≥0 defined by

Xt = n⇐⇒ Tn ≤ t < Tn+1

is a Poisson process with intensity λ.
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POISSON PROCESS.
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COMPOUND POISSON PROCESSES.

We consider a Poisson process (Pt )t≥0 with intensity λ and jump times
Tn, and a sequence (Yn)n∈N∗ of Rd -valued r.v. s.t.

1 Yn are i.i.d. with distribution measure π ;
2 (Pt )t≥0 and (Yn)n∈N∗ are independent.

Define

Xt =

Pt∑
n=1

Yn =
+∞∑
n=1

Yn1[0,t](Tn).

DEFINITION

The process (Xt )t≥0 is a compound Poisson processes with intensity λ
and jump distribution π.
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MERTON MODEL.

Compound Poisson processes with Gaussian jumps.
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COMPOUND POISSON PROCESSES.

PROPOSITION

The process (Xt )t≥0 is a Lévy process, with piecewise constant
trajectories and characteristic function :

∀z ∈ Rd , E
(

ei〈z,Xt 〉
)

= exp

(
tλ
∫
Rd

(ei〈z,x〉 − 1)π(dx)

)
= exp

(
t
∫
Rd

(ei〈z,x〉 − 1)ν(dx)

)
;

DEFINITION

ν is a finite measure defined on Rd by : ν(A) = λπ(A), A ∈ B(Rd ). ν is
called the Lévy measure of the compound Poisson process. Moreover

ν(A) = E [#{t ∈ [0,1], ∆Xt 6= 0, ∆Xt ∈ A}] .
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COMPOUND POISSON PROCESSES.

DEFINITION

The law µ of X1 is called compound Poisson distribution and has a

characteristic function given by : µ̂(z) = exp

(
λ

∫
Rd

(ei〈z,x〉 − 1)π(dx)

)
.

PROPOSITION

Let X be a compound Poisson process and A and B two disjointed
subsets of Rd . Then :

Yt =
∑
s≤t

∆Xs1∆Xs∈A and Zt =
∑
s≤t

∆Xs1∆Xs∈B

are two independent compound Poisson processes.
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OUTLINE

1 A FIRST CLASS OF LÉVY PROCESSES
Compound Poisson process
Jump-diffusion processes
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DEFINITION.

DEFINITION

A jump-diffusion process X is the sum of a Brownian motion and of a
independent compound Poisson process. Therefore a jump-diffusion
process is a Lévy process.

In other words
I a k -dimensional Brownian motion (Wt )t≥0, a d × k matrix M,
I a d-dimensional vector γ,
I a Poisson process (Pt )t≥0 with intensity λ and jump times Tn, and

a sequence (Yn)n∈N∗ of Rd -valued r.v.
such that

1 Yn are i.i.d. with distribution measure π ;
2 (Wt )t≥0, (Pt )t≥0 and (Yn)n∈N∗ are independent.
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DEFINITION.

Xt = MWt + γt +
∑

0<s≤t

∆Xs.

CHARACTERISTIC EXPONENT : for any z ∈ Rd :

ψX (z) = −1
2
〈z,MM∗z〉+ i〈z, γ〉+ λ

∫
Rd

(ei〈z,x〉 − 1)π(dx)

= −1
2
〈z,MM∗z〉+ i〈z, γ〉+

∫
Rd

(ei〈z,x〉 − 1)ν(dx).

M∗ is the transpose matrix of M.

CHARACTERISTIC TRIPLE : (A = MM∗, ν, γ).
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TWO EXAMPLES.

Jump-diffusion process with Gaussian jumps (used in the Merton
model).
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TWO EXAMPLES.

Kou model where the jump sizes are given by a non symmetric
Laplace distribution.
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