LÉVY PROCESSES : DECOMPOSITION AND PROPERTIES.

Alexandre Popier

ENSTA, Palaiseau

February 2023

A. Popier (ENSTA)

Lévy processes (II).

DEFINITIONS.

DEFINITION

A stochastic process $(X_t)_{t\geq 0}$ defined on $(\Omega, \mathcal{F}, \mathbb{P})$, with values in \mathbb{R}^d , is a Lévy process if

- $X_0 = 0$ a.s.
- its increments are independent : for every increasing sequence t₀,..., t_n, the r.v. X_{t₀}, X_{t₁} − X_{t₀},..., X_{t_n} − X<sub>t_{n-1} are independent;
 </sub>
- its increments are stationnary : the law of X_{t+h} X_t does not depend on t;
- X satisfies the property called stochastic continuity : for any ε > 0, lim_{h→0} P(|X_{t+h} − X_t| ≥ ε) = 0

 there exists a subset Ω₀ s.t. P(Ω₀) = 1 and for every ω ∈ Ω₀, t → X_t(ω) is RCLL.

DEFINITIONS.

If a filtration $(\mathcal{F}_t)_{t\geq 0}$ is already given on $(\Omega, \mathcal{F}, \mathbb{P})$

DEFINITION

A stochastic process $(X_t)_{t\geq 0}$ defined on $(\Omega, \mathcal{F}, \mathbb{P})$, with values in \mathbb{R}^d , is a Lévy process if

• $X_0 = 0$ a.s.

its increments are independent : for any s ≤ t, the r.v. X_t − X_s is independent of F_s;

- its increments are stationnary;
- X satisfies the property called stochastic continuity;

• a.s. $t \mapsto X_t(\omega)$ is RCLL.

PROPOSITION

Let $(X_t)_{t\geq 0}$ be a Lévy process in \mathbb{R}^d . Then there exists a function $\psi : \mathbb{R}^d \to \mathbb{R}$ called characteristic exponent of X s.t. :

$$\forall z \in \mathbb{R}^d, \quad \mathbb{E}\left(e^{i\langle z, X_t \rangle}\right) = e^{t\psi(z)}.$$

JUMP-DIFFUSION PROCESSES.

$$X_t = MW_t + \gamma t + \sum_{0 < s \le t} \Delta X_s.$$

CHARACTERISTIC EXPONENT : for any $z \in \mathbb{R}^d$:

$$\psi_{X}(z) = -\frac{1}{2} \langle z, MM^{*}z \rangle + i \langle z, \gamma \rangle + \lambda \int_{\mathbb{R}^{d}} (e^{i \langle z, x \rangle} - 1) \pi(dx)$$
$$= -\frac{1}{2} \langle z, MM^{*}z \rangle + i \langle z, \gamma \rangle + \int_{\mathbb{R}^{d}} (e^{i \langle z, x \rangle} - 1) \nu(dx).$$

 M^* is the transpose matrix of M.

CHARACTERISTIC TRIPLE : $(A = MM^*, \nu, \gamma)$.

OUTLINE

LAW AND DECOMPOSITION OF A LÉVY PROCESS

- Infinitely divisible distributions
- Decomposition of the process

2 PROPERTIES OF A LÉVY PROCESS

- Sample path properties
- Moments
- Densities
- Markov processes, martingales

OUTLINE

LAW AND DECOMPOSITION OF A LÉVY PROCESS

Infinitely divisible distributions

Decomposition of the process

2 PROPERTIES OF A LÉVY PROCESS

- Sample path properties
- Moments
- Densities
- Markov processes, martingales

INFINITELY DIVISIBLE DISTRIBUTIONS.

Let μ be a probability measure on \mathbb{R}^d . Denote by

- $\hat{\mu}(z) = \int_{\mathbb{R}^d} e^{izx} \mu(dx)$ the Fourier transform of μ .
- μ^n the convolution product of μ *n* times μ with hersefl :

$$\mu^n = \underbrace{\mu * \ldots * \mu}_{n \text{ times}} \Longleftrightarrow \widehat{\mu^n} = (\hat{\mu})^n.$$

DEFINITION

A probability measure on \mathbb{R}^d is infinitely divisible if for every $n \in \mathbb{N}^*$, there exists a probability μ_n s.t. $\mu = \mu_n^n \iff \hat{\mu} = (\hat{\mu}_n)^n$.

EXAMPLES

Gaussian, Cauchy, Poisson, compound Poisson, exponential, gamma, geometric distributions.

A. Popier (ENSTA)

Lévy processes (II).

PROPERTIES.

PROPOSITION

If X is a Lévy processs in law, the law of X_t is infinitely divisible.

LEMMA

The convolution product between two infinitely divisible distributions is infinitely divisible.

EXAMPLE

Using a Gaussian and a compound Poisson distributions, and denoting by $\hat{\mu}$ its characteristic function

$$\hat{\mu}(z) = \exp\left[-\frac{1}{2}\langle z, Az \rangle + i\langle \gamma, z \rangle + \int_{\mathbb{R}^d} (e^{i\langle z, x \rangle} - 1)\nu(dx)\right].$$

THE LÉVY–KHINTCHINE DECOMPOSITION.

$$D=\{x\in\mathbb{R}^d,\ |x|\leq 1\}.$$

THEOREM (FIRST PART)

If μ is infinitely divisible on \mathbb{R}^d , then

$$\hat{\mu}(z) = \exp\left[-\frac{1}{2}\langle z, Az \rangle + i\langle \gamma, z \rangle + \int_{\mathbb{R}^d} (e^{i\langle z, x \rangle} - 1 - i\langle z, x \rangle \mathbf{1}_D(x))\nu(dx)\right]$$

with

- $A \in \mathcal{S}_d^+(\mathbb{R})$,
- ν measure on \mathbb{R}^d s.t.

$$u(\{0\}) = 0 \quad \text{and} \quad \int_{\mathbb{R}^d} (|x|^2 \wedge 1) \nu(dx) < +\infty,$$
 (1)

• $\gamma \in \mathbb{R}^d$.

THE LÉVY-KHINTCHINE DECOMPOSITION.

THEOREM (LAST PART)

The representation of $\hat{\mu}$ is unique.

Conversely if $A \in S_d^+(\mathbb{R})$, if ν is a measure satisfying (1), and $\gamma \in \mathbb{R}^d$, then there exists an infinitely divisible law μ on \mathbb{R}^d with characteristic function given by the previous formula.

DEFINITION

 (A, ν, γ) is called the characteristic triple of μ . A is the Gaussian covariance matrix, ν the Lévy measure.

PROPOSITION

If μ is given by its triple (A, ν , γ), the characteristic triple of μ^{t} is (tA, $t\nu$, $t\gamma$).

Remark on γ (1).

Let $c : \mathbb{R}^d \to \mathbb{R}$ be a bounded function s.t.

$$\left(egin{array}{c} c(x) = 1 + o(|x|) & ext{when } |x|
ightarrow 0, \ c(x) = O(1/|x|) & ext{when } |x|
ightarrow +\infty. \end{array}$$

Then

$$\hat{\mu}(z) = \exp\left[-\frac{1}{2}\langle z, Az \rangle + i\langle \gamma_{c}, z \rangle + \int_{\mathbb{R}^{d}} (e^{i\langle z, x \rangle} - 1 - i\langle z, x \rangle c(x))\nu(dx)\right]$$

with

$$\gamma_{c} = \gamma + \int_{\mathbb{R}^{d}} x(c(x) - \mathbf{1}_{D}(x)) \nu(dx).$$

DEFINITION

The triple is denoted by $(A, \nu, \gamma_c)_c$ and the previous formula is also a Lévy-Khintchine decomposition of μ .

A. Popier (ENSTA)

Lévy processes (II).

Remark on γ (2).

• If
$$\int_{|x| \le 1} |x| \nu(dx) < \infty$$
, with $c \equiv 0$,
 $\hat{\mu}(z) = \exp\left[-\frac{1}{2}\langle z, Az \rangle + i\langle \gamma_0, z \rangle + \int_{\mathbb{R}^d} (e^{i\langle z, x \rangle} - 1)\nu(dx)\right].$

DEFINITION

 γ_0 is the drift of μ .

• If
$$\int_{|x|\geq 1} |x|\nu(dx) < \infty$$
, with $c \equiv 1$,
 $\hat{\mu}(z) = \exp\left[-\frac{1}{2}\langle z, Az \rangle + i\langle \gamma_1, z \rangle + \int_{\mathbb{R}^d} (e^{i\langle z, x \rangle} - 1 - i\langle z, x \rangle)\nu(dx)\right].$

DEFINITION

 γ_1 is the center of μ . And $\gamma_1 = \int_{\mathbb{R}^d} x \mu(dx)$.

EXAMPLES.

- $\nu \equiv 0$ if and only if μ is Gaussian.
- If μ compound Poisson, A = 0, $\nu = \lambda \pi$ and $\gamma_0 = 0$.
- If d = 1 and μ Poisson, A = 0, $\nu = \lambda \delta_1$, $\gamma_0 = 0$.
- If μ is the Γ distribution with parameters c and α

density :
$$\frac{\alpha^c}{\Gamma(c)} x^{c-1} e^{-\alpha x} \mathbf{1}_{\mathbb{R}^*_+}(x),$$

then
$$A = 0$$
, $\gamma_0 = 0$ and $\nu(dx) = c \frac{e^{-\alpha x}}{x} \mathbf{1}_{\mathbb{R}^*_+}(x)$.

• If μ is the stable distribution with index 1/2,

density :
$$\frac{c}{\sqrt{2\pi}}e^{-c^2/(2x)}x^{-3/2}\mathbf{1}_{\mathbb{R}^*_+}(x),$$

then
$$A = 0$$
, $\gamma_0 = 0$ and $\nu(dx) = \frac{c}{\sqrt{2\pi}} x^{-3/2} \mathbf{1}_{\mathbb{R}^*_+}(x)$.

DISTRIBUTION OF LÉVY PROCESSES.

THEOREM

- If X is a Lévy process (in law), the law of X_t is given by μ^t where μ is the law of X₁.
- If μ is infinitely divisible on ℝ^d, then there exists a Lévy process in law s.t. ℙ_{X1} = μ.

PROPOSITION

Let $(X_t)_{t\geq 0}$ be a Lévy process in law. Then there exists $\psi : \mathbb{R}^d \to \mathbb{R}$, characteristic exponent of X s.t. :

$$\forall z \in \mathbb{R}^d, \quad \mathbb{E}\left(\mathbf{e}^{i\langle z, X_t \rangle}\right) = \mathbf{e}^{t\psi(z)},$$

with characteristic triple (A, ν, γ) s.t.

$$\psi(z) = -\frac{1}{2} \langle z, Az \rangle + i \langle \gamma, z \rangle + \int_{\mathbb{R}^d} (e^{i \langle z, x \rangle} - 1 - i \langle z, x \rangle \mathbf{1}_D(x)) \nu(dx).$$

CLASSIFICATION OF THE LÉVY PROCESSES.

Let *X* be a Lévy process with triple (A, ν, γ) .

DEFINITION

X is called of

• type C if $A \neq 0$ or $\int_{|x| \leq 1} |x| \nu(dx) = +\infty$.

OUTLINE

LAW AND DECOMPOSITION OF A LÉVY PROCESS Infinitely divisible distributions

Decomposition of the process

2 PROPERTIES OF A LÉVY PROCESS

- Sample path properties
- Moments
- Densities
- Markov processes, martingales

DECOMPOSITION.

Let $(X_t)_{t\geq 0}$ be a Lévy process with characteristic triple (A, ν, γ) . $D(a, b] = \{x \in \mathbb{R}^d, \ a < |x| \le b\}$ and $D(a, +\infty) = \{x \in \mathbb{R}^d, \ |x| > a\}.$

THEOREM

• There exists Ω_1 s.t. $\mathbb{P}(\Omega_1) = 1$ and s.t. for any $\omega \in \Omega_1$,

$$\begin{aligned} X_t^{\mathbf{1}}(\omega) &= \lim_{\varepsilon \downarrow 0} \sum_{0 < s \leq t} \left[\Delta X_s \mathbf{1}_{\varepsilon < |\Delta X_s| < 1} - \mathbb{E}(\Delta X_s \mathbf{1}_{\varepsilon < |\Delta X_s| < 1}) \right] \\ &+ \sum_{0 < s \leq t} \Delta X_s \mathbf{1}_{|\Delta X_s| \geq 1} \end{aligned}$$

is defined for every $t \in \mathbb{R}_+$ with uniform time convergence in time on any compact set. The process X^1 is a Lévy process with triple $(0, \nu, 0)$. REMARK ON X^1 .

$$\begin{aligned} X_t^{\mathbf{1}}(\omega) &= \lim_{\varepsilon \downarrow 0} X_t^{\varepsilon} + \sum_{0 < s \le t} \Delta X_s \mathbf{1}_{|\Delta X_s| \ge 1} \\ &= \lim_{\varepsilon \downarrow 0} X_t^{\varepsilon} + Y_t, \end{aligned}$$

with

• X^{ε} is a compensated compound Poisson process

$$X_t^{\varepsilon} = \sum_{0 < s \le t} \Delta X_s \mathbf{1}_{\varepsilon < |\Delta X_s| < 1} - t \int_{D(\varepsilon, 1]} x \nu(dx), \quad \mathbb{E}(X_t^{\varepsilon}) = 0;$$

• Y is a compound Poisson process with jumps size greater than 1.

DECOMPOSITION.

Let $(X_t)_{t\geq 0}$ be a Lévy process with characteristic triple (A, ν, γ) .

Theorem

- The process X^1 is a Lévy process with triple $(0, \nu, 0)$.
- Obenoting X²_t = X_t − X¹_t, there exists a set Ω₂ s.t. P(Ω₂) = 1 and s.t. for any ω ∈ Ω₂, X² is a continuous Lévy process with characteristic triple (A, 0, γ).
- **3** X^2 is a Brownian motion with covariance matrix A and drift γ .
- The processes X^1 and X^2 are independent.

DEFINITION

 X^1 is the jump part and X^2 the continuous part of X :

$$X_t^2 = MW_t + \gamma t.$$

LAW AND DECOMPOSITION OF A LÉVY PROCESS Infinitely divisible distributions

Decomposition of the process

2 PROPERTIES OF A LÉVY PROCESS

- Sample path properties
- Moments
- Densities
- Markov processes, martingales

LAW AND DECOMPOSITION OF A LÉVY PROCESS Infinitely divisible distributions

Decomposition of the process

2 PROPERTIES OF A LÉVY PROCESS

- Sample path properties
- Moments
- Densities
- Markov processes, martingales

PROPOSITION

A Lévy process is continuous if and only if $\nu = 0$. In that case it is a Brownian motion with drift.

PROPOSITION

A Lévy process is piecewise constant if and only if it is a compound Poisson process or if it is of type A with $\gamma_0 = 0$, i.e.

•
$$A = 0$$
 and $\int_{\mathbb{R}^d} \nu(dx) < +\infty$,
• $\gamma = \int_{|x| \le 1} x \nu(dx)$;
or
 $\psi(x) = \int_{\mathbb{R}^d} (e^{iux} - 1)\nu(dx)$, with $\nu(\mathbb{R}^d) < +\infty$.

THEOREM (JUMPS REPARTITION)

If $\nu(\mathbb{R}^d) = +\infty$, then a.s. the jumping times are countable and dense in \mathbb{R}_+ .

If $0 < \nu(\mathbb{R}^d) < +\infty$, there is an infinite countable jumping times, but only a finite number on any bounded interval. Moreover the first jumping time has an exponential distribution with parameter $\nu(\mathbb{R}^d)$.

FINITE VARIATIONS.

THEOREM

A Lévy process is of bounded variation if and only if it is of type A or B.

In this case :

$$X_t = \gamma_0 t + \int_{[0,t]\times\mathbb{R}^d} x J_X(ds \times dx) = \gamma_0 t + \sum_{s\in[0,t]}^{\Delta X_s\neq 0} \Delta X_s.$$

Characteristic function :

$$\mathbb{E}\left(e^{i\langle z.X_t\rangle}\right) = \exp t\left[i\langle \gamma_0,z\rangle + \int_{\mathbb{R}^d} (e^{i\langle x,z\rangle} - 1)\nu(dx)\right].$$

PROPOSITION

A Lévy process is non-decreasing if and only if

•
$$A = 0$$
 and $\nu(] - \infty, 0]) = 0$,
• $\int_0^1 x \nu(dx) < +\infty$ with $\gamma_0 \ge 0$.

In this case use the Laplace transform : for $u \ge 0$

$$\mathbb{E}(e^{-uX_t}) = \exp\left[t\int_0^{+\infty}(e^{-ux}-1)\nu(dx)-t\gamma_0 u\right].$$

REMARK : if A = 0, $\nu(] - \infty, 0]) = 0$ and $\int_0^1 x\nu(dx) = +\infty$, the process has just non-negative jumps, but whatever γ , it is not non-decreasing. It has infinite negative drift!

EXAMPLE.

PROPOSITION

Let $(X_t)_{t\geq 0}$ be a Lévy process on \mathbb{R}^d and let $f : \mathbb{R}^d \to [0, \infty[$ be a positive function such that $f(x) = O(|x|^2)$ when $x \to 0$. Then the process $(S_t)_{t\geq 0}$ defined by

$$S_t = \sum_{s \leq t, \Delta X_s \neq 0} f(\Delta X_s),$$

is a subordinator.

For $f(x) = |x|^2$, the sum of the squared jumps

$$S_t = \sum_{s \leq t, \Delta X_s
eq 0} |\Delta X_s|^2$$

is a non decreasing Lévy process.

LAW AND DECOMPOSITION OF A LÉVY PROCESS Infinitely divisible distributions

Decomposition of the process

2 PROPERTIES OF A LÉVY PROCESS

- Sample path properties
- Moments
- Densities
- Markov processes, martingales

SUBMULTIPLICATIVE FUNCTIONS.

DEFINITION

A function on \mathbb{R}^d is under-multiplicative if it is non-negative and if there exists a constant a > 0 s.t.

$$\forall (x,y) \in (\mathbb{R}^d)^2, \ g(x+y) \leq ag(x)g(y).$$

LEMMA

- The product of two submultiplicative functions is submultiplicative.
- If g is submultiplicative on R^d, then so is g(cx + γ)^α with c ∈ R, γ ∈ R^d and α > 0.

Solution $\beta \leq 1$. Then the following functions are submultiplicative.

 $|x| \lor 1 = \max(|x|, 1), \quad \exp(|x|^{\beta}), \ \ln(|x| \lor e), \ \ln\ln(|x| \lor e^{e}).$

• If g is submultiplicative and locally bounded, then $g(x) \le be^{c|x|}$.

MOMENTS OF A LÉVY PROCESS.

THEOREME

Let *g* be a under-multiplicative function, locally bounded on \mathbb{R}^d . Then equivalence between

- there exists t > 0 s.t. $\mathbb{E}(g(X_t)) < +\infty$
- for any t > 0, $\mathbb{E}(g(X_t)) < +\infty$.

Moreover $\mathbb{E}(g(X_t)) < +\infty$ if and only if $\int_{|x| \ge 1} g(x)\nu(dx) < +\infty$.

Hence $\mathbb{E}(|X_t|^n) < \infty$ if and only if $\int_{|x| \ge 1} |x|^n \nu(dx) < \infty$. In particular

$$\mathbb{E}(X_t) = t\left(\gamma + \int_{|x| \ge 1} x\nu(dx)\right) = t\gamma_1,$$

and

$$(\operatorname{Var} X_t)_{ij} = t \left(A_{ij} + \int_{\mathbb{R}^d} x_i x_j \nu(dx) \right).$$

A. Popier (ENSTA)

Lévy processes (II).

EXPONENTIAL MOMENTS.

THEOREM

Let X be a Lévy process with triple (A, ν, γ) . Let

$$\mathcal{C} = \left\{ \mathcal{c} \in \mathbb{R}^d, \ \int_{|x| \geq 1} e^{\langle \mathcal{c}, x \rangle} \nu(dx) < +\infty
ight\}.$$

- C is convex and contains 0.
- Get C if and only if $\mathbb{E}(e^{(c,X_t)}) < +\infty$ for some *t* > 0 or equivalently for any *t* > 0.
- If $w \in \mathbb{C}^d$ is s.t. $\operatorname{Re}(w) \in C$, then

$$\psi(w) = \frac{1}{2} \langle w, Aw \rangle + \langle \gamma, w \rangle + \int_{\mathbb{R}^d} (e^{\langle w, x \rangle} - 1 - \langle w, x \rangle \mathbf{1}_D(x)) \nu(dx)$$

has a sense, $\mathbb{E}(e^{\langle w, X_t \rangle}) < +\infty$ and $\mathbb{E}(e^{\langle c, X_t \rangle}) = e^{t\psi(w)}$.

LAW AND DECOMPOSITION OF A LÉVY PROCESS Infinitely divisible distributions

Decomposition of the process

2 PROPERTIES OF A LÉVY PROCESS

- Sample path properties
- Moments

Densities

Markov processes, martingales

CONTINUITY OF THE LAW.

Lemma

If X is a compound Poisson process, then $\mathbb{P}(X_t = 0) \ge e^{-\lambda t}$.

Theorem

Let X be a Lévy process with triple (A, ν , γ). Equivalence :

- $\mathbb{P}(X_t)$ is continuous for every t > 0,
- **2** $\mathbb{P}(X_t)$ is continuous for one t > 0,

COROLLARY

Equivalence between :

- $\mathbb{P}(X_t)$ is discrete for every t > 0,
- **2** $\mathbb{P}(X_t)$ is discrete for one t > 0,
- **3** *X* of type A and ν discrete.

PROPOSITION

Let X be a d-dimensional Lévy process with triple (A, ν, γ) with A of rank d. Then the law of X_t , t > 0 is absolutely continuous.

Theorem (for d = 1)

Let X be a Lévy process with triple (A, ν, γ) .

• If $A \neq 0$ or if $\nu(\mathbb{R}) = +\infty$, X_t has a continuous density on \mathbb{R} .

If the Lévy measure satisfies :

$$\exists \beta \in]0,2[, \quad \liminf_{\varepsilon \downarrow 0} \varepsilon^{-\beta} \int_{-\varepsilon}^{\varepsilon} |x|^2 \nu(dx) > 0$$

then for every t > 0, X_t has a density of class C^{∞} and all derivatives of this density go to zero when |x| goes to $+\infty$.

LAW AND DECOMPOSITION OF A LÉVY PROCESS Infinitely divisible distributions

Decomposition of the process

2 PROPERTIES OF A LÉVY PROCESS

- Sample path properties
- Moments
- Densities
- Markov processes, martingales

PROCESSES WITH INDEPENDENT INCREMENTS AND MARTINGALES.

PROPOSITION

Let *X* be a process with independent increments. Then

- If $\mathbb{E}(|X_t|) < \infty$, $\forall t \ge 0$, then $M_t = X_t \mathbb{E}(X_t)$ is a martingale (with independent increments).
- In dimension 1, if Var (X_t) < +∞, ∀t ≥ 0, then (M_t)² E((M_t)²) is a martingale.

PROPOSITION

A Lévy process is a MARTINGALE if and only if $\int_{|x| \ge 1} |x| \nu(dx) < +\infty$ and

$$\gamma + \int_{|x|\geq 1} x\nu(dx) = 0.$$

In dimension 1, $\exp(X)$ is a MARTINGALE if and only if $\int_{|x|\geq 1} e^x \nu(dx) < +\infty$ and

$$\frac{A}{2} + b + \int_{-\infty}^{+\infty} (e^x - 1 - x \mathbf{1}_{|x| \le 1}) \nu(dx) = 0.$$

MARKOV PROPERTY.

Theorem

Let μ be an infinitely divisible distribution on \mathbb{R}^d and X the associated Lévy process. Then X is a Markov process with transition function

$$P_t(x,B) = \mu^t(B-x).$$

CONVERSELY : every time homogeneous Markov process, with space homogeneous transition function, is a Lévy process in law.

PROPOSITION

Let $(X_t)_{t\geq 0}$ be a Lévy process (in law). Then for every $s \geq 0$, the process $(X_{t+s} - X_s)_{t\geq 0}$ is a Lévy process with the same distribution as $(X_t)_{t\geq 0}$. And the two processes are independent.

THEOREM (STRONG MARKOV)

Let *X* be a Lévy process in law and \mathcal{F} its completed filtration. Let τ be an a.s. finite \mathcal{F} -stopping time. Then the process $(X_{t+\tau} - X_{\tau})_{t\geq 0}$ is independent of \mathcal{F}_{τ} and with the same law as *X*.

INFINITESIMAL GENERATOR :

$$\mathcal{L}f(x) = \frac{1}{2} \sum_{j,k=1}^{d} A_{jk} \frac{\partial^2 f}{\partial x_j \partial x_k}(x) + \langle \gamma, \nabla f(x) \rangle$$

+
$$\int_{\mathbb{R}^d} \left[f(x+y) - f(x) - \langle y, \nabla f(x) \rangle \mathbf{1}_{|y| \le 1} \right] \nu(dy).$$