Feuille de TP 1 – Copules elliptiques

Indication générale : lorsqu'on demande N simulations d'un vecteur X de dimension d, on fera attention à donner les simulations en ligne : les simulations seront stockées dans une matrice de dimension $N \times d$ où chaque ligne est une simulation du vecteur X.

1 Copules gaussiennes

1.1 Vecteurs gaussiens

On se propose ici de générer un vecteur aléatoire gaussien (X,Y), dont les lois marginales de X et Y sont gaussiennes de paramètres 0 et 1.

Pour cela on crée une matrice de covariance $\Gamma = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$, $\rho \in]-1,1[$, dont on cherchera une (pseudo)-racine A (via par exemple la commande chol de R). Puis on générera un vecteur gaussien formé de deux variables gaussiennes centrées réduites indépendantes, dont on déduira (X,Y).

Exercice 1.1. Simuler plusieurs fois le vecteur (X,Y) et tracer sous forme d'un nuage de points X en fonction de Y. Observer graphiquement ce qui se produit quand ρ varie.

R permet de générer des vecteurs gaussiens de taille quelconque via la commande mvrnorm.

Exercice 1.2. Tester cette fonction sur un ou deux exemples.

1.2 Copule gaussienne

Elles sont simulées en créant un vecteur gaussien corrélé (comme dans les exercices 1.1 ou 1.2) auquel on applique à chaque composante la fonction de répartition ϕ (ou pnorm en R) :

$$\phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2}{2}\right) dt.$$

Exercice 1.3.

- 1. Créer un vecteur aléatoire (U, V) dont la loi est donnée par une copule gaussienne de paramètre ρ .
- 2. Vérifier que U et V suivent bien des lois uniformes sur [0, 1].
- 3. Tracer le nuage de points correspondant pour différentes valeurs de ρ . Que remarquez-vous?
- 4. Calculer numériquement le coefficient de corrélation linéaire de Spearman ρ_S de (U,V) et vérifier que l'on a $\rho_S = \frac{6}{\pi} \text{Arcsin} \left(\frac{\rho}{2}\right)$. Vérifier aussi qu'il est égal au coefficient de corrélation linéaire entre U et V.

On pourra utiliser la fonction cor avec la bonne méthode.

5. Calculer numériquement le tau de Kendall $\tau(U,V)$ pour différentes valeurs de ρ et vérifier graphiquement que l'on a $\tau(U,V)=\frac{2}{\pi}\mathrm{Arcsin}\;(\rho)$.

1.3 Variables corrélées via une copule gaussienne

On veut créer maintenant un vecteur (X,Y) de marginales respectives une loi exponentielle de paramètre 2 (densité : $2\exp(-2x)\mathbf{1}_{\mathbb{R}_+}(x)$) et une loi de Pareto de paramètre 3 (densité : $3x^{-4}\mathbf{1}_{[1,+\infty[}(x))$), et dont la dépendance est donnée par une copule gaussienne de paramètre $\rho = 0, 5$.

Exercice 1.4.

- 1. Simuler ce vecteur (X,Y) plusieurs fois.
- 2. Tracer l'histogramme de la loi de X et de Y et vérifier que les lois marginales sont celles voulues.
- 3. Vérifier que X et Y ne sont pas indépendantes en calculant le coefficient de corrélation linéeaire entre X et Y.
- 4. Calculer numériquement le coefficient de corrélation linéaire r(X,Y) pour différentes valeurs de ρ et vérifier graphiquement que $r(X,Y) \neq r(U,V)$.
- 5. Calculer le coefficient de Spearman $\rho_S(X,Y)$ pour différentes valeurs de ρ , et vérifier graphiquement que l'on a $\rho_S(X,Y) = \rho_S(U,V) = r(U,V)$ où r(U,V) est le coefficient de corrélation linéaire d'une copule gaussienne de param'etre ρ .
- 6. Calculer numériquement le tau de Kendall $\tau(X,Y)$ pour différentes valeurs de ρ et vérifier graphiquement que l'on a $\tau(X,Y) = \tau(U,V)$.

2 Copules de Student

Pour engendrer une t-copule (ou de Student) il suffit de

- 1. Générer un vecteur gaussien X de matrice de covariance $\Gamma = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}, \rho \in]-1,1[.$
- 2. Générer une v.a.r. S de loi χ^2_{ν} . Si ν est entier, $S = \sum_{i=1}^{\nu} W_i^2$ avec W_i i.i.d. de loi $\mathcal{N}(0,1)$.
- 3. Poser $Y = \sqrt{\frac{\nu}{S}}X$.
- 4. Calculer $U_i = \mathcal{T}(Y_i)$, avec \mathcal{T} fonction de répartition de la loi t de Student (pt en R).

Exercice 2.1.

- 1. Simuler un échantillon de taille N=10000 d'un vecteur aléatoire (U,V) dont la loi est donnée par une t-copule de paramètres $\rho=0.5$ et $\nu=3$.
- 2. Vérifier que U et V suivent bien des lois uniformes sur [0,1].
- 3. Tracer le nuage de points correspondant pour différentes valeurs de ρ . Que remarquez-vous?

Variables corrélées via une copule de Student

Exercice 2.2. Créer un vecteur (X,Y) de marginales respectives une loi exponentielle de paramètre 2 et une loi de Pareto de paramètre 3, et dont la dépendance est donnée par une copule de Student de paramètre $\rho = 0,5$ et $\nu = 3$. Reprendre alors l'exercice 1.4.

3 Et en dimension plus grande?

Soit
$$\Gamma = \begin{pmatrix} 1 & \rho_1 & \rho_2 \\ \rho_1 & 1 & \rho_3 \\ \rho_2 & \rho_3 & 1 \end{pmatrix}$$
, avec $\rho_i \in]-1,1[$, une matrice positive.

Exercice 3.1.

1. Simuler un échantillon de taille N=10000 d'un vecteur gaussien (X,Y,Z) centré de matrice de covariance Γ .

- 2. Appliquer à chaque coordonnée la fonction de répartition ϕ et vérifier que le vecteur obtenu (U,V,W) a des marginales uniformes sur [0,1].
- 3. Que se passe-t-il quand on fait varier les ρ_i ? Attention à bien conserver une matrice Γ positive.

On a ainsi simulé une copule gaussienne de dimension 3 de paramètres (ρ_1, ρ_2, ρ_3) .

Exercice 3.2.

- 1. Simuler un échantillon de taille N = 10000 d'un vecteur (X, Y, Z) de lois marginales
 - Weibull de paramètres 2 et 3;
 - Pareto de paramètre 5;
 - binomiale de paramètres 4 et 0.6; corrélées par la copule gaussienne de paramètres (0.2, -0.5, 0.6).
- 2. Calculer la matrice de corrélation de (X,Y,Z), puis les coefficients de Spearman entre les trois composantes.