# DS2 Chimie des solutions (1,5 h)

## I. Préparation d'une solution tampon ammoniacal de pH voisin de 10

http://labos-education.unsa.org/tous/PreparationSolutionsTampons.pdf

Dans une fiole jaugée de 1 litre, introduire 70 g de chlorure d'ammonium. Le dissoudre dans environ 200 cm<sup>3</sup> d'eau distillée. Ajouter 570 cm<sup>3</sup> de solution ammoniacale de densité 0,91 (30% massique). Compléter à 1 litre.

Pour les utilisations, la solution est diluée 10 fois.

La constante d'acidité du couple  $NH_4^+/NH_3$  est pKa = 9,2.

Expression du coefficient d'activité :  $log\gamma_i = -0.51*\mathbf{z_i}^2*\frac{\sqrt{I}}{1+\sqrt{I}}$  Masses molaires (g.mol<sup>-1</sup>) : M(NH<sub>4</sub>Cl) = 52,5 g.mol<sup>-1</sup> M(NH<sub>3</sub>) = 17 g.mol<sup>-1</sup>

- 1. Vérifier que les concentrations de la solution diluée sont  $[NH_4^+]=0,133 \text{ mol.L}^{-1}$  et  $[NH_4^+]=0,915 \text{ mol.L}^{-1}$ .
- 2. Calculer le pH de la solution diluée en considérant que l'activité des espèces est égale à leur concentration. Dans quelle condition cette approximation est-elle valable ?
- 3. Reprendre le calcul du pH de la même solution en prenant en compte l'activité.
- 4. Un pH mètre détecte 0,01 unité de pH, peut-on considérer que l'approximation du 1<sup>er</sup> calcul est valable ?
- 5. En travaux pratiques, dans quelle expérience vous avez utilisé une solution tampon à pH = 10 ?

# II. Oxydation du glucose (figure 1)

CAPES physique chimie (concours externe 2005) caractère réducteur du glucose.

Le glucose est qualifié de sucre réducteur, c'est à dire que la forme ouverte du D-glucose peut être oxydée sélectivement en acide gluconique ou en ion gluconate selon le pH de la solution. Le diagramme E-pH du glucose est proposé ci-dessous. La concentration totale maximale est égale à 1,0 10<sup>-2</sup> mol/L. Toutes les espèces sont considérées comme solubles et il y a égalité des concentrations sur les droites frontières.

| Glucose C <sub>6</sub> H <sub>12</sub> O <sub>6</sub> (C <sub>5</sub> H <sub>11</sub> O <sub>5</sub> – CHO)<br>Ecriture simplifiée : RCHO | Acide gluconique $C_6H_{12}O_7$ $(C_5H_{11}O_5-COOH)$<br>Ecriture simplifiée : RCOOH |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|--|--|--|--|
| H_O                                                                                                                                       | H0 0                                                                                 |  |  |  |  |  |  |
| Н—— ОН                                                                                                                                    | н— он                                                                                |  |  |  |  |  |  |
| но——н                                                                                                                                     | но——н                                                                                |  |  |  |  |  |  |
| Н—— ОН                                                                                                                                    | Н—— ОН                                                                               |  |  |  |  |  |  |
| Н ОН                                                                                                                                      | Н—— ОН                                                                               |  |  |  |  |  |  |
| I<br>CH₂OH                                                                                                                                | I<br>CH₂OH                                                                           |  |  |  |  |  |  |

- 1. La solubilité du glucose dans l'eau est 900g.L<sup>-1</sup> à 25°C. Quel mécanisme peut-on évoquer pour expliquer la solubilité ?
- 2. Ecrire la demi-équation correspondant à l'oxydation du glucose à pH = 0, utiliser les écritures simplifiées RCHO et RCOOH.
- 3. Quelle est la valeur du potentiel standard du couple glucose/acide gluconique ? expliquer votre réponse ?
- 4. Sur le graphe, que représente la valeur particulière pH = 3?
- 5. Etude à pH = 10 :
  - a. Ecrire la demi-équation correspondant à l'oxydation du glucose à pH = 10 ainsi que la relation de Nernst
  - b. Déterminer le potentiel standard du couple énoncé ci-dessus.
  - c. Donner l'expression de l'équation de la droite
  - d. Calculer le potentiel de ce couple à pH = 10

# III. Diagramme E – pH du diiode (figure 2)

Le diagramme E-pH du diiode est proposé ci-dessous. La concentration totale est égale à 1,0  $10^{-2}$  mol/L. Toutes les espèces sont considérées comme solubles et il y a égalité des concentrations sur les droites frontières.

- 1. Ecrire les demi-équations redox correspondant aux droites 1, 2, 3. Sans calcul, indiquer quels potentiels sont fonction de la concentration des espèces en solution.
- 2. Utiliser les données notées sur le graphe pour calculer le potentiel standard du couple 1<sub>2</sub>/1.
- 3. A l'aide d'un diagramme de Latimer, calculer le potentiel standard du couple  $IO_3^-/I_2$  sachant que  $E^\circ(IO_3^-/I^-) = 1,09 \text{ V}$ .
- 4. Une solution aqueuse de diiode perd sa coloration quand on lui ajoute de l'hydroxyde de sodium. Traduire cette observation par une équation bilan.
- 5. Montrer qu'une solution de diiode placée à pH=10, oxyde le glucose de manière quantitative. Ecrire l'équation bilan de la réaction.

### IV. Equilibres de complexation, condition de réaction totale

### Données:

Constantes de formation des complexes :

|       | FeF <sup>2+</sup> | FeY <sup>-</sup> |
|-------|-------------------|------------------|
| log β | 5,2               | 25,1             |

### Constante d'acidité

|     | HF/F <sup>-</sup> |  |  |  |  |
|-----|-------------------|--|--|--|--|
| рКа | 3,2               |  |  |  |  |

### Coefficient de réaction parasite en fonction du pH:

| Réaction parasite                                   | рН                       | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    |
|-----------------------------------------------------|--------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| H <sup>+</sup> / Y <sup>4-</sup>                    | $\log \alpha_{Y}(h)$     | 17,33 | 13,59 | 10,69 | 8,52  | 6,53  | 4,71  | 3,36  | 2,31  | 1,32  | 0,48  |
| H <sup>+</sup> /F <sup>-</sup>                      | $\log \alpha_{\rm F}(h)$ | 2,20  | 1,23  | 0,41  | 0,06  | 0,01  | 0,00  | 0,00  | 0,00  | 0,00  | 0,00  |
| Y <sup>4-</sup> , H <sup>+</sup> / Fe <sup>3+</sup> | $\log \alpha_{Fe}(Y,h)$  | 6,77  | 10,51 | 13,41 | 15,58 | 17,57 | 19,39 | 20,74 | 21,79 | 22,78 | 23,62 |

Dans le dosage du fluor total, réalisé en TP, il est nécessaire de libérer l'ion F par exemple, du complexe FeF<sup>2+</sup>, par ajout d'EDTA. Il faut donc réaliser les conditions suivantes : réaction de formation de FeY totale et masquage du complexe FeF<sup>2+</sup>.

- 1. Vérifier qu'à pH = 5, ces conditions sont satisfaites.
- Retrouver l'expression du coefficient de réaction parasite α<sub>Fe</sub>(Y,h), représentant les réactions parasites de formation de FeY et l'influence du pH sur la formation de Y<sup>4-</sup>.

**Figure 1 :** Diagramme E/pH pour l'étude de l'oxydation du glucose, C = 0,01 mol.L<sup>-1</sup>

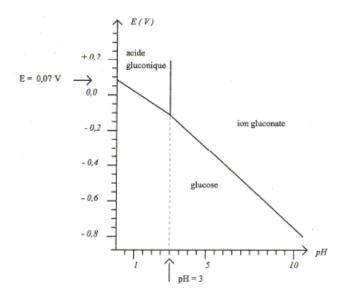
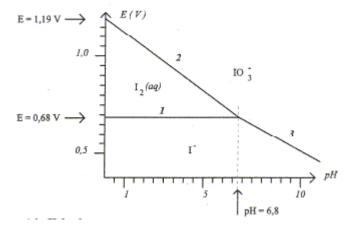




Figure 2 : Diagramme E/pH de l'iode, C = 0,01 mol.L<sup>-1</sup>

