L1 SPI — ALGORITHMIC

S03 — The concept of script

Cyril Desjouy
15 juillet 2024

Preamble

Parts 1 to 3 of this practical present the concept of script and module. These parts will be done with your
instructor and will form the basis of the course at which one to refer to in order to understand and deepen these
notions. Part 4 is a practical application of the concepts seen in Parts 1 to 3 previous.

1 Introduction

Now that you have covered most of the basics of Python, it is necessary to move up a gear and start coding real
ones programs. When it comes to writing a few lines of code, Jupyter is perfectly adapted. However, when it comes
to coding a complete application, extending over several tens (see hundreds or thousands) of lines often distributed
in several files, developers use generally an IDE (Integrated Development Environment). Spyder is one of them.
among others, and this is the one we will use for our developments in the coming years. It has the advantage of
being simple, effective, adapted to scientific computation and is also included in the Python distribution Anaconda.

— Start by launching Spyder I

The Spyder interface is subdivided into several main sub-windows :

— a sub-window containing a text editor,
— a sub-window grouping Python and IPython consoles,

— a sub-window containing (among other things) an object inspector and a variable explorer.

— Start by typing an instruction in the text editor (for example a=1)

— Save this ﬁleE] and execute it (F5 shortcut, and choose "run in the active Python or IPython console")

— Observe the information displayed in the console and the changes in the object explorer

a. Python scripts have the extension .py

Congratulations! Even if it’s not the classic "Hello World", you created your first script !

2 Interpretation of source files

2.1 Scripts

When running a program, the Python interpreter reads a source file containing code (a script) and interprets
each instruction it contains. The first line of the file is read and interpreted first, the second is read and interpreted
second, and so on. It is therefore important to check that on each line, the interpreter Python has all the necessary
information to proceed with its interpretation !

2.2 Modules and namespace concept 2 INTERPRETATION OF SOURCE FILES

1. Create a new script that you will call FirstScript.py in which you :

— will define a function myfct () as follows :

def myfct(x):
print ("The square of {} is {}".format(x, x**2)

— will use this function to display the square of the variable a = 5 that you will have previously defined

2. Run the script and observe the result in the Python console (or IPython)

A script finally allows to group a set of instructions in the same one file. As mentioned before, the execution
of a script consists of the interpretation of each line of the file successively.

2.2 Modules and namespace concept

1. Create a new script that you will call SecondScript.py in which you :

— will import FirstScript as a module using the built in function import,
— will define a function myfct () as follows :

def myfct(x):
print("The cube of {} is {}".format(x, x**3)

— will use this function to display the cube of the variable a = 3 that you will have previously defined.

2. Run the script and observe the result in the Python console (or IPython)

Aren’t there some unexpected lines? Indeed, when the instruction import is usedE]7 the Python interpreter
reads and executes the instructions contained in the imported source file. All lines of code interacting with the
console are therefore interpreted conventionally and their results are displayed on the standard output. The import
command creates a new object whose name is here FirstScript available in the namespace of SecondScript and
that contains its own objects. This object is an object of type module.

The notion of namespace is a fundamental notion under Python. A namespace. is simply a container of
names. It is used to allow the distinction between two elements with the same name. Let’s consider the follo-
wing example :

In : import numpy

In : numpy.abs

Out : <ufunc 'absolute'>
In : abs

Qut : <function abs>

In this example, we have access to two different objects with the same name :
— the function abs() of the module numpy whose name is prefixed by the namespace called numpy,
— the function abs () whose name is not prefixed and which is therefore in the current space.

The module name is thus used as namespace which allows not to overwrite objects already defined in the current
namespace. For this reason, it is strongly recommended to avoid to copy directly a reference from one namespace
to another unless to know exactly what you’re doing :

In : from numpy import abs
In : abs
Out : <ufunc 'absolute'>

Each namespace is completely isolated from the others and you can check this by resuming your experiments
on your files FirstScript.py and SecondScript.py :

1. For the import to work correctly, the Python interpreter must know the location of the file to be imported. If the file from which
the import is performed is in the same directory as the file to import, the import will go right. If it’s not the case and Python can’t
find the file to import in the PYTHON_PATH (this is the list of folders in which Python searches for modules, we will come back to this
later), the interpreter will raise the ImportError exception.

2.3 The special variable __name__ 2 INTERPRETATION OF SOURCE FILES

3. Modify SecondScript.py as follows :

— use the function print to display the value of the attribute a of the module FirstScript,
— use the function myfct of the module FirstScript with as input argument the variable a in the
current namespace. then the variable a in the namespace of FirstScript,

— do the same thing with the function myfct of the current namespace.

4. Run SecondScript.py, observe the result in the console and conclude.

2.3 The special variable __name__

When the Python interpreter reads a source file (either directly in the course of its execution or indirectly in
the course of its importation), it creates several special variables. One of them is of particular interest : this is the
variable __name___

1. Add instructions :
— print("Read FirstScript.py :", __name__) at the end of the file FirstScript.py

— print("Read SecondScript.py :", __name__) at the end of the file SecondScript.py

2. Run FirstScript.py and observe the value of the referenced object by the variable __name__.

3. Run SecondScript.py and observe the value of the objects referenced by the variables __name__ in the
different namespaces.

In the case of running FirstScript.py, the Python interpreter runs your script as the main program. You
should see that the object __name___ is a string containing the value " main_ ".

In the case of running SecondScript.py, the Python interpreter also runs your script as the main program.
You should see that the object __name__ in the namespace of SecondScript is a string of characters that also
contains the value " main_ ". You should also see the value of the object __main__ in the namespace of
FirstScript which is a string containing the value "FirstScript". You will have found that in this case, the special
variable __name__ in the namespace of FirstScript.py no longer refers to the same object as when you have

previously run the program FirstScript.py.

e N
Conclusions :

n n

— When a .py file is executed, the special variable __name__ contains " main

— When a file MyModule.py is imported from a file MyScript.py and that it is executed, the special
variable __name___ contains

]

o' main "

in the namespace of MyScript.py
e "MyModule" in the namespace of MyModule.py

3 PYTHON SCRIPTS : GOOD PRACTICES

3 Python scripts : Good practices

The variable __name___ is of paramount importance under Python since it facilitates and promotes code reuse.
As you have seen previously, importing a source file results in the interpretation of all the lines of this file, which
can be a problem when you want only access the functions defined therein and not the body of the program.
That’s when the variable ___name__ plays an essential role since it allows the definition of a code block that will
be interpreted only when the program is executed thanks to the instruction :

if __name__ == "__main__":
instructions

This instruction allows you to execute the script in its entirety if it is read as as the main program and to execute
only the part before the instruction if __name__ == "__main__" if it is subject to a import.
The following Fig. 7?7 presents a classic script template that you can reuse at will for your future developments.

1 script.py
#!/usr/bin/env python -> needed for direct execution
—*- coding: utf-8 —-*- -> If missing, ASCII by default
L]
doc of the program... -> can span

. several lines
LA]

import mymodulel as myshortcutl -> Modules used in program

import mymoduleN as myshortcutN

def mygreatfct(a): -> User function
'!''function docstring'''
return a
if __name__ == "__main__": -> Read the following only if script is executed !
first_line = "Yeah! It begins" -> begining of main program
last_line = "Yeah! It ends" -> end of main program

FIGURE 1 — Recommended frame for writing Python scripts

By using this type of structure, you ensure that each code can be reused simply in other applications by
importing your scripts as a module in order to access the functions that you will have previously developed.
The next step is to test this template in the case of files you have previously created :

1. Add the condition on the variable __name__ at the right location in your file FirstScript

2. Run FirstScript.py and observe the result in the console

3. Run SecondScript.py and observe the result in the console

4 APPLICATION : CREATING A MODULE FOR ELECTROKINETICS

4 Application : Creating a module for electrokinetics

The aim here is to repeat the developments you have carried out during the SO9E02 of semester 1 to create a
module offering tools for creating electronic filters of the 1°* and 2°¢ order.

1. Create a file eec.py that will be a module containing tools for electrokinetics and which will contain :

— A class Filter that can be instantiated with :

— a mandatory argument freq representing the frequency axis on which one to calculate the filter,
— a mandatory argument wc representing the filter cut-off pulsation,

— an optional argument Q representing the quality factor of the filter (second order filters only),
— an argument of the type string specifying the type of filter (high pass, low pass, band pass),
— an argument of the type int specifying the order of the filter (order 1 or 2),

and providing the methods :

— orderifilter () returning the transfer function of an order filter 1 (RC or RL filter),

— order2filter () returning the transfer function of an order filter 2 (RLC filter).

— A function modphase() taking as input arguments a transfer function and returning its module (en
dB) and its argument (en radians).

— A function bode() taking as input arguments a transfer function, the frequency axis and a string
representing the title of the plot. This function will use modphase () to trace the Bode diagram of the
filter (amplitude response and in phase on two sub-figures arranged on the same line). The figure ??
shows an example of a plot produced by the function bode ()

2. Add in the file eec.py a series of tests allowing to validate the functions and classes you have defined.
These tests do not will not be executed when using eec.py as module. These tests will include, for example,
calculating and tracing transfer functions :

— of a first-order low-pass filter

— of a second order bandpass filter

— of the multiplication of two second order filters

3. Create a file test_filters.py in which you will import your module eec and use it to create a series of
10 filters low pass whose cut-off frequencies will be linearly distributed between 100 and 500 Hz. Overlay
the plots of the transfer functions of these 10 filters.

4 APPLICATION : CREATING A MODULE FOR ELECTROKINETICS

filter.png

FIGURE 2 — Example of a path produced by the function bode ()

