Python for Scientists
Part 6 — Modules, Scripts & Distribution

<> Cyril Desjouy ~

June, 2016
Updated : January 13, 2019

A

python

From pizabay

1 Desjouy . ~ 1 = Modules

THE IMPORT FUNCTION

Definition:
@ import sys is a shortcut to sys = __import__('sys')

@ Importing a module is just creating a module object assigned to a classical variable
@ __import__ function searches for modules in PYTHON PATH

» sys = __import__('sys"') » import sys

» type(sys) » type(sys)

module module

» sys.path » sys.path

[[,
'/(...)/python3.7/site-packages', '/(...)/python3.7/site-packages',
..0] ¢...1

THE IMPORT FUNCTION

Definition:
@ import sys is a shortcut to sys = __import__('sys')

@ Importing a module is just creating a module object assigned to a classical variable
@ __import__ function searches for modules in PYTHON PATH

» sys = __import__('sys"') » import sys

» type(sys) » type(sys)

module module

» sys.path » sys.path

[[,
'/(...)/python3.7/site-packages', '/(...)/python3.7/site-packages',
..0] ¢...1

Import custom modules:
1. Module and script in the same directory
> Python includes the current directory to PYTHON PATH
2. Directory of the module in the PYTHON PATH

» Module installed with pip/conda or other package manager

» Module’s path added with the IDE path manager (Spyder, ...)

> Module’s path added though OS : export PYTHONPATH=$PYTHONPATH:/MyDir/
» Module’s path added though the script : sys.path.insert(0, "/MyDir/")

3. None of the two above cited conditions are fullfilled

» ModuleNotFoundError

MODULES AND NAMESPACES

Definition :

@ The name of an object is the way to access to this object

A namespace is a set of names providing access to a set of objects

Different namespaces can co-exist in a single Python interpreter

o
o
@ Each namespace is isolated from the others
o

This isolation ensures that same names in different namespaces don’t collide

The namespace hierarchy :

Module namespace: Created when a module is imported.
Function namespace: Specific to the current function.

Built-in namespace: Created at startup. Contains all the built-in functions.

[Built-in namespace: Global to all modulesj

[Module 1: Global namespace]

[Module 2: Global namespacej

Function 1:
Local namespace

Function 2:
Local namespace

Function:
Local namespace

SubFunction:
Local namespace

MODULES AND NAM

_‘ beer.py

beers = ['Kro', 'Chouffe', 'Grim']

def serve(name):
if name in beers:
print(f"{name} served !")
else:
print (£"No {name} here !'")

def list_beers(beers=beers):
print('Beers :')
print (*¥beers, sep=', ')

—1 script.py

import beer

beers = ['Maredsous', 'Guinness']
beer.list_beers(beers)
beer.list_beers(beer.beers)
beer.serve('Chouffe')

—1 Outputs:

Beers

Maredsous, Guinness
Beers

Kro, Chouffe, Grim
Chouffe served !

MODULES AND NAM

_‘ beer.py

beers = ['Kro', 'Chouffe', 'Grim']

def serve(name):
if name in beers:
print(f"{name} served !")
else:
print (£"No {name} here !'")

def list_beers(beers=beers):
print('Beers :')
print (*¥beers, sep=', ')

for beer in beers:
serve (beer)

—1 script.py

import beer

beers = ['Maredsous', 'Guinness']
beer.list_beers(beers)
beer.list_beers(beer.beers)
beer.serve('Chouffe')

—1 Outputs:

Kro served !
Chouffe served !
Grim served !

Beers

Maredsous, Guinness
Beers

Kro, Chouffe, Grim
Chouffe served !

THE __NAME__ VARIABLE

The __name__ variable :
@ is a variable automatically created when a Python file is interpreted
@ contains the name of the current *.py file if it has been imported

@ contains "__main__" if the *.py is executed as the main script

_‘ mod_name . py —1 script_name.py

import mod_name

print('run mod :', __name__)

print('run script: ', __name__)

outputs —1 outputs

run mod : mod_name
run script: _main_

i

run mod : __main__ _ _

THE __NAME__ VARIABLE

The __name__ variable :
@ is a variable automatically created when a Python file is interpreted

@ contains the name of the current *.py file if it has been imported

@ contains "__main__" if the *.py is executed as the main script
_‘ mod_name . py —1 script_name.py
if __name__ == 'main': import mod_name
print('run mod :', __name__)
print('run script: ', __name__)
_‘ outputs —1 outputs
run mod : __main__ run script: __main__
Use of | if __name__ == "__main__": |7
@ Anything that comes after the if __name__ == "__main__" is executed when the

script file is explicitly executed

@ When the file is imported, the various functions and class definitions will be
imported, but the "__main__

script won’t be executed !

THE

__NAME__ VARIABLE

if

beer.py

beers = ['Kro', 'Chouffe', 'Grim']

__hame__ ==

def serve(name):

if name in beers:
print(f"{name} served !")
else:
print(£"No {name} here !")

def list_beers():

print('Beers :')
print (¥beers, sep=', ')

for beer in beers:
serve (beer)

main__"':

_‘ script.py

import beer

beer.list_beers()
beer.serve('Chouffe')

_| Output from script.py l—

Beers
Kro, Chouffe, Grim
Chouffe served !

_| Output from beer.pyI

Kro served !
Chouffe served !
Grim served !

C@ “Talk is cheap. Show me the code.”@

By Linus Torvald

Screenshot by Gamaliel Espinoza Macedo

The way to go

RAL STRUCTURE OF A PYTHON SCRIPT

—| my_ first_ python__ script.py I

#!/usr/bin/env python ->
-*- coding: utf-8 -x- ->
"""My first awesome Python script!""" ->

import mymodulel as myshortcutl

import mymoduleN as myshortcutN

def mygreatfct(a):
""" My great docstring """

return a

if __name__ == "__main__": ->
first_line = "Yeah! It begins" ->
last_line = "Yeah! It ends" ->

Needed for script execution
If not present, ASCII by default]

The doc of my script/module

Modules used in this script

My function definitions

Not necessary, but recommended

Beginning of my script

Ending of my script

The way to go

sENERAL STRUCTURE OF / 'THON SC
GENERAL STRUCTURE OF A PYTHON SCRIPT

‘ Scripting in Python ‘

Why should I use this thing :] #1/usr/bin/env python‘ ?

@ If you work on Window, you won’t !
@ If you work on Mac or Linux, this makes the python script executable

@ Note that you should have to adapt the path as a function of your system and of the
interpreter you want to use (Python 2.x / Python 3.x)

Why should I use this other thing : ‘ if __name__ == "__main__": |7

__name__ is a Python variable automatically created by Python

_name__ contains the name of the current script if it has been imported

o
o
@ __name__ contains "__main__" if the script is the main script
@ Anything that comes after the if __name__ == "__main__" is executed when the

script file is explicitly executed

@ When the file is imported, the various function and class definition will be imported,
but the "__main__" script won’t be executed !

(_\ Distribution /ﬁ

From pizabay

INTRODUCTION

There are several ways to distribute Python code :
@ Packaging : Creation of a setup.py for the installation of your Python code

> Extensive guide : Python Packaging
> Excellent guide in french : Sam & Max

@ Code freezing: Create an executable file that contains all your Python code, the
libraries used in the code and the Python interpreter

> Advantage : The application will run on any system
» Disadvantage : The size of the app !

@ Distribution packaging : To distribute Python code on Linux, creation of a
distribution package for Archlinux, Debian, Ubuntu, Fedora... !

‘Whatever you choose, try to:
@ publish your source code on dedicated platforms such as github

@ package your mature codes and distribute them through Pypi (pip)

1
The package will not include the Python interpreter. Then, the distribution package will be
smaller than freezing the application.

https://python-packaging-user-guide.readthedocs.io/
http://sametmax.com/creer-un-setup-py-et-mettre-sa-bibliotheque-python-en-ligne-sur-pypi/

CX_FREEZE

Focus on cx_freeze

@ There are several freezing tools supporting different features and platforms
(cx_freeze, bbfreeze, py2exe, pyinstaller, py2app, ...)

@ cx_freeze is multi platform (Win/Linux/OSX)

cx_freeze is compatible with Python 2.x and 3.x

@ Using cx_freeze is as simple as :

cx_freeze MyApp.py

@ cx_freeze will generate an executable adapted to the current OS

@ cx_freeze can also be used with a setup.py file :

» see here for the official documentation
> or here for a french tutorial

https://cx-freeze.readthedocs.io/en/latest/overview.html
https://openclassrooms.com/fr/courses/235344-apprenez-a-programmer-en-python/235020-distribuer-facilement-nos-programmes-python-avec-cx-freeze

	Modules
	The import function
	Modules and namespaces
	The name variable

	Scripts : The way to go
	General structure of a Python script

	Distribution
	Introduction
	cxfreeze

