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Abstract. Ultrasonic telemetry techniques consist in locating various immersed structures (for 
instance, components in the main vessel of fast breeder reactors). The interactions beam-targets 
give rise to different scattering phenomena: tip diffraction of boundaries and edges of the 
different parts, specular reflection, and corner effect. In order to conceive and design such 
imaging techniques, simulation tool needs to account for these effects. Classical methods have 
been studied for such problems. The diffraction coefficients based on the Geometrical Theory 
of Diffraction (GTD) fail in the transition regions adjacent to shadow and reflection 
boundaries. The uniform diffraction theory provides continuous solutions in these regions, but 
with more sophisticated formulation. Another simple approximation based on the integral 
equation, widely used for scattering problems, is the so-called Kirchhoff approximation. The 
Kirchhoff approximation has good performance in the specular reflection zone but fails at 
predicting amplitude of diffracted waves by edges. A refinement of the Kirchhoff 
approximation which is based on the Physical Theory of Diffraction (PTD) and combines GTD 
and Kirchhoff edge diffraction coefficients has been studied. This refined Kirchhoff 
approximation provides a simple formulation and correct results for all scattered directions, 
which will be illustrated in the case of a rigid halfplane or wedge. 

1.  Introduction 
Monitoring and inspection of nuclear reactor are stringent requirements from operator and safety 
authorities. The sodium-cooled fast reactor (SFR) is one of the perspectives chosen for the 4th 
generation reactor. The characteristics exhibited by sodium, such as its opacity, have led the designers 
to devise specific monitoring and inspection techniques. Consequently ultrasonic techniques are seen 
as suitable candidates. Two approaches are being followed: the core monitoring where transducers are 
directly immersed in sodium near the reactor’s core and the outside inspection with transducers 
located along the wall of the main vessel (outside sodium medium).  

Ultrasonic telemetry is one of the core monitoring techniques that allows checking the position of 
the various objects contained inside the main vessel and the possible detection of defects inside these 
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objects. The distance between the transducer and the immersed targets can be determined by 
measuring the time of flight of backscattering acoustic waves generated by the transducer installed 
inside. While in-service the flow of sodium creates turbulence that leads to temperature 
inhomogeneities, which convert into ultrasonic velocity inhomogeneities. These variations of velocity 
could impact directly upon the location tolerance by introducing times of flight variations. Different 
scattering phenomena can also be produced while the interaction between the acoustic beam radiated 
by the probe and the immersed targets: specular reflection, tip diffraction from boundaries and edges 
of the different parts and corner effect. Thus various variables will influence this technique behavior. 
In order to optimize the probes parameters that are being developed and to predict the probes 
performances, a simulation tool is necessary to assist the design of each element of the ultrasonic 
telemetry.   

A wave propagation model has been developed in a previous work to calculate the ultrasonic field 
radiated in an inhomogeneous medium [1]. Calculations have shown that the inhomogeneous 
characteristic of the fluid doesn’t impact much the time of flight and amplitude of the acoustic wave 
propagating but leads to beam deviations. In this paper, we will consider the field scattered from the 
immersed targets; different models describing the scattering phenomenon have been studied and 
compared. Firstly the scattered acoustic field can be modeled using the high-frequency asymptotics 
known as the Geometrical Acoustics (GA) and Geometrical Theory of Diffraction (GTD) [2], all 
based on the ray theory. The former describe incident and reflected waves and the latter, wave 
diffracted by obstacle edges (the so-called edge waves). The regions that support different kinds of 
waves are classified as either geometrical regions (illuminated region and shadow region) or transition 
zones that are the boundaries between an illuminated region and a shadow region. The sum of GA and 
GTD gives a perfectly adequate description of geometrical regions but fails inside transition ones. A 
more sophisticated uniform GTD is required to complete the description.  

In some NDE applications, another approach, the so-called Kirchhoff approximation (KA) [3], is 
widely used in high-frequency scattering problems, particularly when dealing with obstacles of a 
complicated shape. The fundamental principle of this method is the use of Green’s function 
representing in a given region Σ the solution to the Helmholtz equation. The KA provides a correct 
description of the reflected wave and the fields inside the transition region. The integral formulation of 
the KA solution enables description of the field in more intricate regions, such as focusing areas, 
shadow boundaries of edge waves, where the known GTD procedures are no longer applicable. This 
approximation leads to qualitatively correct description of edge waves, but with incorrect amplitudes. 
To eliminate the deficiencies of KA and GTD and combine their advantages, a model called here the 
refinement of KA is proposed to modify KA by employing GTD diffraction coefficients: this approach 
is based on the Physical Theory of Diffraction (PTD) [4].  

The targets to be inspected by telemetry are steel structures immersed in liquid sodium, thus, the 
assumption of perfect rigid boundary condition should be not suitable here. In order to take into 
account the real boundary condition of our case, a modified GTD model applied to nearly-rigid wedge 
has been implemented. The reflection coefficient of this nearly-rigid interface can also be taken into 
account in the KA integral creating the rigorous KA formalism valid for arbitrary boundary condition.  

2.  Geometrical Theory of Diffraction 

2.1.  Non uniform asymptotic solution for scattered waves 
Consider a simple example: a plane wave scattered by a two-dimensional halfplane as shown in Figure 
1. Presence of this halfplane in a plane incident wave field (with θ0: incident angle) gives rise to a 
shadow region of incident wave, a reflected wave and the related shadow region. Thus two light-
shadow boundaries can be identified which are function of the incident angle: θ 1 = π - θ0, θ 2 = π + θ0. 
The incident and reflected wave are given by Geometrical Acoustics and these solutions are 
discontinued on light-shadow boundaries jumping to zero in the shadow region. These discontinuities 
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of the field will be eliminated by adding the diffracted fields. Therefore the scattered field can be 
written as 

  (1) Scat GA GTD.U U U= +

 
 

Figure 1: scattering of a plane acoustic wave by a halfplane. 

The geometrical acoustic fields can be written as 
  (2) 0i cos( ) i cos( )GA Inc Ref ,kr krU U U e eθ θ θ θ− − − += + = ± 0

the plus sign is taken for the Neumann boundary condition (hard case) and the minus sign for the 
Dirichlet boundary condition (soft case). We’ll treat in the following only the Neumann’s case (perfect 
rigid target). 

In the problem under consideration the diffraction field is a cylindrical wave generated by the 
obstacle edge. According to the Geometrical Theory of Diffraction [2], the “main-order” term with 
respect to large  in the diffraction field has the form kr

  
i

GTD GTD
0( , ) ,

kreU D
kr

θ θ  (3) 

where 0θ  is the incidence angle of the plane wave, r and θ are the polar coordinates of the observation 
point, k is the wavenumber and GTD

0( , )D θ θ  is the diffraction coefficient [2] given by 

 
i /4

GTD 0
0( , ) sec sec

2 22 2
0D e π θ θ θ θ

θ θ
π

− +⎛ ⎞= − +⎜ ⎟
⎝ ⎠

, (4) 

where the angles θ and 0θ  are measured with respected to the illuminated surface of the halfplane (S+) 
as shown in Figure 1. From eqn.(4) it follows that the diffraction coefficient grows without bound if 
the observation point is at a light-shadow boundary (θ = π - θ0 or θ = π + θ0) as shown in Figure 2. 
Clearly this diffraction coefficient is inapplicable in the vicinity of light-shadow boundaries where 
their poles are located. Hence GTD fails on the light-shadow boundaries.  
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Figure 2: diffraction coefficient for Neumann boundary 
condition and incidence angle φ0=50° 
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The situation would be essentially the same when the obstacle is an infinite wedge. The only 
difference between the wedge and halfplane would manifest itself only in the angular dependence of 
the edge-wave diffraction pattern, i.e. in the dependence of the diffraction coefficient D on the wedge 
angle Ф. Let us now consider a wedge of angle Ф (see Figure 3) with the polar coordinates (r, θ), this 
wedge occupies the region {(r, θ): 2π - Ф ≤ θ ≤ 2π}.  

Figure 3: Scattering of a plane wave by a wedge with the 
wedge angle Ф. 

The scattered field from the wedge has the same form as that for the halfplane (eqn.(1)) with diffracted 
field written as 

  
ikreGTD GTD

0( , ),U D
kr

θ θΦ Φ=  (5) 

with the diffraction coefficient for a wedge of angle Ф [5] defined by 

 
[ ]

4
GTD

0

ie π π
0 0( , ) ( , , ) ( , , ) ,

2 2

( , , ) ctg ( ) ctg ( ) .
2 2

D H H

H

θ θ θ π θ θ π θ
π
π πα β α β α β

Φ = − + Φ − − Φ
Φ

⎡ ⎤Φ = − + +⎢ ⎥Φ Φ⎣ ⎦

 (6) 

This diffraction coefficient has also two poles (corresponding to zeros of ctg’s arguments) at θ =π ± θ0, 
i.e. on the light-shadow boundaries of the incident and reflected waves. 

2.2.  Uniform asymptotic theory (UAT) for scattered waves 
Several uniform theories derived from GTD exist. One of the two most studied methods, the so-called 
uniform asymptotic theory of diffraction (UAT), involves the application of Fresnel integral near the 
light-shadow boundaries [5, 6] in order to smooth the abrupt field shift through the boundaries. Let us 
take the example of halfplane and there are two light-shadow boundaries: θ= π + θ0 for the incident 
wave and θ= π - θ0 for the reflected wave. The uniform solution UUAT of eqn.(1) is written as 

UAT GA
,{ ( )},e i rU U F k s s= −  (7) 

where F is the Fresnel integral. For a plane incident wave its argument can be given as follows: 

 02 cos , ( )e rkr k s s 0( ) 2 cos ,
2 2e ik s s krθ θ θ θ− +

− = − =  (8) 

where si, se and sr are respectively the eikonals of incident wave, the edge wave and the reflected wave. 
In the case of wedge, the eqn.(7) becomes:  

 ( )
i

1/2UAT GA
, 0{ ( )} i ( , ),

kr
n

e i r n
eU U F k s s k C

r
θ

0n
θ

∞
+= − + ∑

n

=

 (8) 

The expansion associated to C  corresponds to the differences in the boundary conditions between the 
halfplane and the wedge, and the zero order of expansion Cn is given as follow [9]: 
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 ( ) ( )1 1GTD 0
0 0 0( , ) ( , ) 2 2 sec 2 2 sec ,

2 2
C D θ θ θ θ

θ θ θ θ π π
− −

Φ

− +⎡ ⎤= + ±⎢ ⎥⎣ ⎦
0  (9) 

where GTD
0( , )D θ θΦ  is given by eqn. (6). Such a zero-th order approximation defines the primary term 

of UAT. 
Another method proposes a modification of the diffraction coefficient and consists in suppressing 

the coefficient poles by multiplying it with a transition function having zeros at the poles. This 
procedure known as the uniform geometrical theory of diffraction (UTD) was described in [8].  

2.3.  Asymptotic solution for scattered waves from a finite impedance obstacle 
To deal with the solid targets immersed in a fluid medium, we have to take into account non perfectly 
rigid boundary condition at the target surface. Thus the real acoustic impedances of the propagation 
medium and the obstacle have to be taken into account  

Z c ρ=  (10) 
with ρ the density and c the acoustic velocity in the corresponding medium. In our case, the acoustic 
wave propagates in a liquid sodium and is reflected on a steel target; we can here define the 
admittance of such fluid-solid interface as  

 Z ,f sZβ =  (11) 
where Zf and Zs represent the acoustic impedance of sodium (fluid) and steel (solid) respectively. The 
boundary condition of the wave equation on this fluid-solid interface can be given by 

 ( ) 0,U∂ i ( )k Uβ− =
∂

x

GTD
0

x
x

 (12) 

where U(x) is the acoustic potential field and x denote the chosen Cartesian coordinate system. The 
mathematical formulations for the diffraction of an acoustic plane wave by a finite impedance wedge 
have been given by Willams [10] and Pierce et al. [11]. In our case, we consider that the interface 
sodium/steel is a nearly rigid interface, since Zf (200°C) = 2.23  106 kg/ (m2.s) and for a typical steel 
alloy ρ = 7700 kg/m3, with a longitudinal velocity cl of 6000 m/s, Zs = 46.2  106 kg/ (m2s), thus, 
β=0.048  1. The diffraction coefficient for a nearly rigid wedge [11] is given by 

 0( , , ) [1 ( , ) ].D D Sθ θ β θ θ β∗
Φ Φ Φ= × + ⋅  (13) 

This is a modification of the GTD diffraction coefficient given previously by multiplying a term 
containing a function SФ (θ, θ0) and the admittance β of this interface. This asymptotic solution for the 
scattered-field is an extension of GTD for nearly-rigid wedge. In order to find the function SФ (θ, θ0), 
let us define firstly the function 

 cos( ) cos( )( ) ,
sin( )

Mν
νπ νθθ
ν νπ

−
=  (14) 

with ν=π/Ф and the function 

 
( ) ({ })

( ) [ ]
( ) [ ]

1/2( 1)p−

1

1

0

1( ) sin( )
sin 2 sin 2 1

sin 2 sin (2 1)
           ,

sin 2 sin (2 1)

n

q

m

Q
n n

m m
m m

θ ν νπ
ν θ π ν θ π

θ θ β
θ θ β

Φ
=

−

=

= −
⎡ + ⎤ ⎡ + − ⎤⎣ ⎦ ⎣

− Φ + − +
−

− Φ − +

∑

∑

⎦

1
0

 (15) 

in which the wedge angle Ф should take the form pπ/2q (i.e. for instance for a right-angled wedge 
Ф=3π/2, p = 3 and q = 1). Finally the function SФ (θ, θ0) is given as follows:  

 [ ]0 0 0( , ) 2 ( ) ( ) ( ) ( ).S M M Q Qν νθ θ θ θ θ θ θΦ = + + − − − − −

0( , , )D
θ−

Φ Φ  (16) 

θ θ β∗
ΦWith the modified diffraction coefficient  , the non-uniform solution of scattered field 

from a nearly rigid wedge can be written as 
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i

Nearly-rigid Inc Ref0

0

1 sin .
1 sin

kreU U U
r

θ β
θ β

D∗
Φ

−
= − +

+ Φ  (17) 

The second term of (17) refers to the reflected field, where the reflection coefficient R is 

 0

0

.1 sin
1 sin

R − θ β
θ β

= −
+

 

In the extreme case where the obstacle is perfectly rigid Zs ∞, so β →0 we have R = 1 or where it is a 
perfect acoustic absorbent surface Zs 0, β ∞, we get R   ‐1. In our case, the module and the phase 
of reflection coefficient on the sodium/steel interface are given below with φ = π - θ0. 

(18) 
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Figure 4: Reflection coefficient on the interface sodium/steel 
versus the complementary angle of incidence (γ = π/2- θ0): modulus 
(solid curve) and phase (dash curve).  

3.  Kirchhoff approximation 
The geometrical theory of diffraction provides short-wave asymptotic solutions accurate to the given 
orders of k for some typical model problems. Unfortunately, many model problems of practical 
interest have neither rigorous solutions to extract short-wave asymptotics nor appropriate asymptotics. 
Under these circumstances, one has to resort to approximate methods. A widely used method 
employed for large flaw size compared to the wavelength is the Kirchhoff approximation (KA) [3]. 
For any geometry, however complicated, the solution of KA is formulated as an integral of the field 
over the illuminated side of the reflector.  

Consider how the KA method formulates a solution to the scattering field from a halfplane (see 
Figure 1). Let us introduce the associated Cartesian coordinate system x (x1, x2), so that we have 

 1 2cos and sin .x r x rθ θ=  (19) =
Let us consider this acoustic problem with the acoustic potential field U(x) satisfying the Helmholtz 
equation. Fundamental of this method is the use of Green’s function G to obtain, by superposition of 
elementary fields, an expression in the form of integral equation for a given boundary S (x1, x2=0) 

 Scat ( ') ( , ')U G∂ ∂⎡ ⎤
⎥

x x x x
S

( ) ( , ') ( ') s( ').U G U d= −⎢ ∂ ∂⎣ ⎦∫x x x x
n n

 (20) 

Here, U(x) refers to the field on the surface S, ∂/∂n implies differentiation along the inward-directed 
normal to S, x’ denote one point on the surface S and the Green function G (x, x’) for the two-
dimensional problem studied here takes the form : 

 (1)
0( , ) (i 4) ( )G H k′ ′= −x x x x

(1)H
 (21) 

with the Hankel function of first kind.  0
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3.1.  Approximation sol ns for a perfect boundary condition utio
The Kirchhoff approximation is based on the assumption that for λ = (2π/k)  L (L is a typical size of 
the reflector), i.e. for kL  1, one can use the approximation of geometrical acoustics for the total field 
U (x’) near the surface. In the shadow region, we can set 

 ( )U x( ) 0.U x
′∂′ = =

∂n
 (22) 

When evaluating U(x) and ∂U(x)/∂n in the illuminated region, the total field is equal to the sum of 
incident and specularly reflected fields for the Neumann condition or to a difference of these fields for 
the Dirichlet condition. Therefore, on S: 

 Inc for the Neumann condition( ) 2 ( ) and 0U U ( )U ′∂′ ′= =
∂

xx x
n

; (23-a) 

 
Inc( ) ( )U U′ ′∂ ∂x x

for the Dirichlet condition.( )=0 and 2U ′ =
∂ ∂

x
n n

 (23-b) 

Thus, in the KA, the scattered field from a perfectly rigid surface (Neumann condition) can be written 
as 

 KA Inc

0
( ) 2 ( ') ( ),U x U ds( , )G+∞ ′∂ ′= −

∂∫ x
n
x x x

[ ]

 (24) 

where s is the surface element along the illuminated surface of halfplane. In the wedge case, this 
integration must be carried out on each wedge face when the two faces are illuminated by the 
incidence wave. 

3.2.  Approximated solutions for an impedance boundary condition 
The eqn.(20) can also be calculated for a given arbitrary boundary condition whose corresponding 
refection coefficient is R. In this condition, the assumption (22) can remain but the approximations 
given by eqn. (23) should be rewritten [12] as follows:  

 [ ]
Inc

Inc ( ) ( )( ) 1 ( ), 1 .U UU R U R
′ ′∂ ∂′ ′= + = −

∂ ∂n n
x xx x  (25) 

R = 1 corresponds to the Neumann condition and R = -1 gives the Dirichlet condition. Therefore the 
Kirchhoff integral for a given impedance interface is given by 

( ) ( )( ) 
Inc

*KA Inc , '
( ) ( , ') (1 ) (1 ) ( ).

U G
U G R U R ds

′⎡ ⎤∂ ∂
′

S
′= − − +⎢ ⎥∫

x x x
x x x x x

∂ ∂⎣ ⎦n n
 (26) 

4.  Refinement of the Kirchhoff approximation 
The Kirchhoff approximation has some limitations; the most important one is the incorrect prediction 
of the diffraction wave amplitudes. To overcome this limitation we are going to correct the Kirchhoff 
approximation by employing GTD diffraction coefficient. As we can see the GTD diffraction 
coefficient can be computed in an efficient manner using algorithm given by eqn.(4), this refinement 
of the Kirchhoff approximation should be quite fast.  

In order to correct the Kirchhoff approximation, we should identify different parts inside the 
Kirchhoff integral (eqn.(24) for a Neumann boundary condition for example). Using the stationary 
phase method, we find that the integral (24) involves two critical points, a stationary point 
corresponding to the geometrical field UGA and the lower limit contribution where x’=0 corresponding 
to the diffraction field. This diffraction field contribution has the same form as the UGTD with a 
different diffraction coefficient: 

 
i

KA(Diff) KA
0( , ).

kreU D
kr

 (27) θ θ=
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Using [5] to find the asymptotic contribution of integration domain boundary, the Kirchhoff 
diffraction coefficient, for a Neumann boundary condition (plus sign) and a Dirichlet boundary 
condition (minus sign), turns to be 

 
/4

KA 0
0( , ) tan tan .

2 22 2

ieD
π

0θ θ θ θ
θ θ

π
− +⎛= − ±⎜

⎝ ⎠
⎞
⎟

x

 (28) 

This means that outside the penumbrae areas, the non-uniform asymptotics of the Kirchhoff integral 
are 

  (29) KA GA KA(Diff)
non-uniform ( ) ( ) ( ).U U U= +x x

Thus the KA integral has been decomposed in two parts. The refinement of the Kirchhoff 
approximation is to correct the diffraction field amplitudes by employing the GTD  

 
(

 RKA KA GTD KA(Diff)

i
KA GTD KA

( ) ( ) ( ) - ( )

             ( ) ( ) - ( ) .
kr

U U U U
eU D D
kr

= +

= +

x x x x

x x )x
 (30) 

Finally the refinement of the Kirchhoff (RKA) consists in correcting, thanks to GTD, the KA 
contribution corresponding to the field scattered by the edge. This correction leads to add a corrective 
term to the KA field which is the difference of wave amplitudes diffracted by the edge given by GTD 
and KA. The diffraction coefficients for KA diffraction contribution and GTD have the same 
singularities at θ = π + θ0 and θ = π – θ0 (see Figure 5); when we make the difference of the two 
coefficients, their singularities cancel each other. 
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DGTD

Dkirchoff

DGTD - DKirchoff

 
Figure 5: Diffraction coefficient for GTD and KA for θ0 =50°. 

5.  Models comparisons and discussion  

5.1.  Perfectly rigid halfplane 
The scattering of a plane wave by a halfplane is a canonical problem and it has an exact solution 
which allows us to compare with the GTD non-uniform eqn.(1) and uniform solutions eqn.(7). Those 
results are represented by their radiation pattern (containing the maximum power) and shown in 
Figure 6 and Figure 7. The incidence angle θ0 is taken at 50°; the observation points are located 
around the edge for two distances from the edge r = λ and r = 5λ where λ is the wave length. 
According to the incidence θ0 the light-shadow boundaries are θ1= 130° and θ2=230° on which we 
find the singularities of the non-uniform GTD solution (black dash-dot curve). However the uniform 
solutions (green dash curve) coincide quite well with the exact solution (red solid curve). 
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Figure 6: Radiation pattern comparison of 
the scattered field by a perfectly rigid 
halfplane given by exact solution, GTD and 
UAT.  

Figure 7: Radiation pattern comparison of 
the scattered field by a perfectly rigid 
halfplane given by exact solution, GTD and 
UAT. 

 
Applying Kirchhoff approximation to the perfectly rigid halfplane in the same configuration as in 

Figure 6 and Figure 7, we obtain the results in Figure 8 and Figure 9. Kirchhoff approximation 
provides a qualitatively correct description of the scattered field. Errors can be found near the 
boundaries and in the shadow region where the edge diffraction wave dominate. When the observation 
is done far from the boundaries (r = 5λ) and it is usually the case in non destructive evaluation, the KA 
field coincide quite well with the exact solution (Figure 9).  

In a two dimensional space, the distribution of KA’s normalized errors around the halfplane can be 
represented in Figure 10. The errors located near the edge are caused by the approximations we made 
in eqn.(23) on the boundary condition. The errors away from the edge are indeed due to the incorrect 
prediction of the diffracted wave amplitudes.  

To correct the errors produced by the Kirchhoff approximation, we apply the refinement of the 
Kirchhoff approximation by employing GTD diffraction coefficients. The configurations of Figure 8 
and Figure 9 have been recalculated using the refined Kirchhoff approximation. The results are given 
in Figure 11 and Figure 12. The results after the refinement coincide quite well with the exact 
solutions. The errors are greatly reduced Figure 13 (from 20% max to 1.5% max).  
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Figure 8: Radiation pattern 
comparison of scattered field 
from a rigid halfplane given by 
exact solution and Kirchhoff 
approximation. 

Figure 9: Radiation pattern 
comparison of scattered field 
from a rigid halfplane given by 
exact solution and Kirchhoff 
approximation. 

Figure 10: Distribution of KA 
errors to the exact solution with 
the θ0 = 50°.   

UKA - UExact, θ0 = 140°

θ0 = 50°, r = λ 
θ0 = 50°  r = 5λ;
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Figure 11: Radiation pattern 
comparison of scattered field 
from a rigid halfplane given by 
exact solution and refined KA.  

Figure 12: Radiation pattern 
comparison of scattered field 
from a rigid halfplane given by 
exact solution and refined KA 

Figure 13: Distribution of 
refined KA’s errors to the exact 
solution with θ0 = 50°. 

URefined KA - UExact, θ0 = 140°

θ0 = 50°; r = 5λθ0 = 50°, r = λ 
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Figure 14: Radiation pattern comparison of the 
scattered field from a perfectly rigid right-angle 
wedge given by GTD and exact solution. 

Figure 15:  Radiation pattern Comparison of 
the scattered field from a perfectly rigid right-
angle wedge given by KA and the refined KA. 

θ0 = 120° 
r = 2λ 

θ0 = 120° 
r = 2λ 

5.2.  Perfectly rigid wedge 
The GTD extension for a wedge (6) has been applied to a rigid right-angled wedge (Figure 14). For an 
incidence of 120°, there is no shadow region outside the wedge and the incident wave is reflected on 
both surfaces in the direction of 60° and 240°. Two singularities are found in the these two specular 
directions, but outside the singularity zones, the GTD model gives a quite good prediction. The 
Kirchhoff approximation can be also used to calculate the scattered field by a wedge and if two 
surfaces are illuminated, the integral (24) should be calculated on both surfaces. The refinement 
procedure of Kirchhoff approximation can be extended for a rigid wedge. The radiation pattern of KA 
and refined KA are illustrated in Figure 15 and we see the refined KA leads to a slight improvement.  

5.3.  Nearly rigid wedge 
The scattered fields from a nearly rigid wedge have been calculated for two different incidences: θ0 = 
50° (before the abrupt phase shift of the reflection coefficient, see Figure 16) and θ0 = 20° (after the 
abrupt phase shift, see Figure 17). The result, given by eqn.(17) (GTD nearly-rigid: red solid curve), is a 
non-uniform asymptotic solution (GTD extension) and considered as an almost exact solution outside 
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the penumbrae areas. Then we compare this GTD result (outside the penumbrae areas) to those given 
by the Kirchhoff approximation with the Neumann boundary condition [eqn. (24)]  (KA rigid : green dot 
curve). For the incidence θ0 = 50°, the amplitude of KA rigid is little high than that of GTD nearly-rigid 
which can be explained by the modulus of the reflection coefficient | R (θ0 = 50°) | ≈ 0.85 in the nearly 
rigid case and | R (θ0 = 50°) | = 1 in the perfectly rigid case. At this incidence the pattern lobes of the 
two results have the same orientations, since there is no phase-shift yet, and for the incidence θ0 = 20°, 
there’s no obvious amplitude difference, but the pattern lobes have different orientations which is due 
to the phase shift of R. We add in the Figure 16 and Figure 17 the results given by eqn.(26) (KAimpe: 
black dash curve): the Kirchhoff approximation solution for a finite impedance boundary condition. 
We find a quite good coincidence between GTDnearly-rigid and KAimpe outside the penumbrae areas. 
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Figure 16: Radiation pattern comparison of 
the scattered field from a nearly-rigid 
wedge 

Figure 17: Radiation pattern comparison of 
the scattered field from a nearly-rigid 
wedge 

θ0 = 50°, r = 2λ θ0 = 50°, r = 2λ 

6.  Conclusion  
Two classic wave scattering models: Geometrical Theory of Diffraction (GTD) and the Kirchhoff 
approximation have been studied for a rigid halfplane model and a rigid wedge. The results have been 
compared with exact solutions. The asymptotic GTD formalism can be computed in an efficient 
manner and gives a perfectly adequate description of geometrical regions but is inapplicable inside 
transition regions. A more sophisticated uniform GTD is required to complete the description. The 
Green’s-function-based KA formalism’s results are uniform with respect to the observation point. KA 
correctly describes the geometrical field but leads to qualitatively correct description of diffraction 
wave but with incorrect amplitudes. In order to eliminate the deficiencies of GTD and KA and 
combine their advantages, the refinement of KA has been developed which consists in correcting, 
thanks to GTD, the KA contribution corresponding to the field scattered by the edge. This correction 
leads to add a corrective term to the KA field which is the difference of wave amplitudes diffracted by 
the edge given by GTD and KA. The refined KA gives accurate results compared to the exact 
solutions and with its simple formalism it can deal with obstacles of a complicated shape.  

As to the wedge with finite impedance which is representative of the solid targets immersed in 
fluid which are inspected by telemetry, a non-uniform asymptotic model has been implemented. It is a 
modification of the classic GTD model by account of the real admittance of the fluid-solid interface. 
This model gives accurate description of the scattered field from a finite impedance surface outside the 
transition regions. The reflection coefficient of the fluid-solid interface can be taken into the KA 
integral and this KA extended to impedance wedges yields scattered fields from a nearly-rigid wedge 
coinciding with the modified GTD fields.  

By coupling the impedance Kirchhoff model to the wave propagation model in inhomogeneous 
medium, it will be possible to simulate the complete telemetry technique and predict the possibility to 
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locate or detect objects contained in the reactor main vessel, which will help the development of 
visualization tools under sodium for the new generation nuclear reactor. 
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