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This letter aims at showing the interest in using an integration path in the complex plane in order to
calculate Fourier integrals, instead of using a real path, as needed for the fast Fourier transform
algorithm as follows: fastness, accuracy, avoiding of singularities, or even aliasing phenomenon.
The method is applied to the calculation of the acoustic field emitted by a transducer or a
loudspeaker; for the same number of sampling points, the calculation of the spatial Fourier integrals
is more accurate using a complex path than using a real path. © 2010 American Institute of Physics.
�doi:10.1063/1.3298359�

Optic or acoustic fields can be obtained using the well-
known principle of decomposition into monochromatic plane
waves �angular spectrum decomposition�. Thus, in a fluid
medium �sound speed c0 and density �0�, the complex acous-

tic pressure p̂�x ,z ; t�= P̂�x ,z�exp�−i�t� �where the “hat”
means that the quantity may be complex and where � is the
angular frequency of the waves� may be calculated in the
half-space z�0 �see Fig. 1� by means of a continuous super-
position of plane or evanescent waves1–4

P̂�x,z� = �
−�

+�

Â�kx�exp�i�kxx + k̂zz��dkx. �1�

Each wave has its own wave number vector k0=� /c0n
=kxex+ k̂zez, where n is the propagation direction vector of

the wave. The component k̂z of the wave vector is real or
purely imaginary valued and depends on kx via the usual
dispersion equation

kx
2 + k̂z

2 = �k0�2 = k0
2 = ��/c0�2, �2�

where the choice of the determination of this function k̂z�kx�
is crucial.

Indeed, the uniqueness of the solution �1� of the wave
propagation equation in the fluid medium is ensured by a
radiation �or decreasing� condition when z→+�, for each
plane or evanescent wave constituting the beam, by choosing

the appropriate value for k̂z, through the dispersion Eq. �2� as
follows:

• for �kx��k0, k̂z is real. The constitutive wave is a progres-
sive plane wave which propagates toward z�0 if the posi-

tive real determination is chosen for k̂z. �a�
• for �kx��k0, k̂z is purely imaginary. The constitutive wave

is evanescent in the direction Oz, and decreases exponen-

tially toward z�0 if the positive imaginary determination
is chosen. �b�

More specifically, the function k̂z�k̂x� must be specified

in the complex plane k̂x. The conditions ��a� and �b�� on k̂z
lead to select the relevant branch �the principal branch� of the

multivalued function k̂z�k̂x�. This principal branch corre-

sponds to the condition Re�k̂z��0 where Re�X̂� and Im�X̂�
denote the real and imaginary parts of X̂, respectively. The
holomorphy domain of this branch is limited by the two
following cuts on the real axis: −��kx�−k0 and k0�kx�

+�, on which Re�k̂z�=0 �Fig. 2�. The real integral path in kx

of the Fourier transform �1�, has to be specified as following,

when the principal branch k̂z�kx� is introduced in this inte-
gral:

-upper edge of the cut − � � kx � − k0 �Im�k̂z�

� 0� , �3a�

-segment − k0 � kx � k0 �Re�k̂z� � 0� , �3b�
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FIG. 1. Schematic diagram of the plane waves which constitute the acoustic
bounded beam created by an emitter in a fluid medium.
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-lower edge of the cut k0 � kx � + � �Im�k̂z� � 0� ,

�3c�

which corresponds to the dotted path on Fig. 2.
Once this choice has been done, by using the classical

relation between particle velocity and acoustic pressure,5 the

complex amplitude Â�kx� is determined as a function of the
component kx from the emission data of the normal velocity

Ŵ0�x� on the plane z=0 �membrane of a loudspeaker or the
front face of a transducer�.

Then, the pressure field P̂�x ,z� can be calculated, for any
given z�0, using the Fourier integral �1�, in the form6

P̂�x,z�
�0c0W0

= k0a�
−�

+� Ĝ�kx�

k̂z

exp�i�kxx + k̂zz��dkx, �4�

with Ĝ�kx� =
1

�

sin�kxa�
kxa

for a crenel �piston mode� ,

�5a�

where Ŵ0�x� is a constant W0 on the interval −a�x�a and
is zero outside, and

Ĝ�kx� =
1

2��
exp	− 
 kxa

2
�2� for a Gaussian emitter

with nominal diameter 2a . �5b�

The computation of this Fourier integral could classi-
cally be done using a discrete Fourier transform, which per-
mits to use a fast Fourier transform �FFT� algorithm. This
implies that the parameter kx be real �and the real path inte-
gration is that specified in Eq. �3��. In addition, this tech-
nique is restrictive insofar as it imposes a strict association
between the sampling points of the integration variable and
the points of the physical space where the values of the pres-
sure field are calculated. The number of these points will
have to be equal to the number of the integration points and
will have to be regularly distributed on a line parallel to the
emitting line.

On the other hand, the matrix computation languages
now available �MATLAB

® or SCILAB software for instance�
permit to calculate very fastly integrals of the form �1�, using
a simple classical trapezoid method. Here, the constraint on
mapping points in the physical space is avoided. Moreover,
using the Cauchy integral theorem, the path integration in kx

may be modified in the plane of the complex variable k̂x.
This is the numerical technique we propose in this letter, in
order to calculate spatial Fourier integrals of the form of
Eq. �4�.

Figure 3 present cartographies in the spatial plane
�O ,x ,z� of the acoustic field generated by an emitter, using a

real path for computing the Fourier integrals when the nor-

mal velocity Ŵ0�x� is a crenel �piston mode, see Fig. 3�a�� or
is a Gaussian �Fig. 3�b��. For the chosen sampling in kx �only
30 or 50 points� the fields are not well described and present
many irregularities. At least, a 500 points sampling is neces-
sary to obtain a good resolution, for each point M�x ,z� of the
physical space. Also, the points kx= 	k0 of the real axis, for

which k̂z=0, are �integrable� singularities for the Fourier in-
tegral; therefore, the sampling values of kx must avoid these
points, and a great number of points is necessary in order to
obtain a suitable approximated value of the integral in the
neighboring of these singularities.

Instead of using a real path for the integration in kx, it is
also possible to use a complex path, according to Cauchy
integral theorem, since the function to be integrated is ana-
lytic.

The study of the behavior at infinity of the function

Ĝ�kx� �see Eqs. �4� and �5�� and of the propagation exponen-
tial permits to perform a possible distortion of the integral
path at infinity. Following the classical theorems in complex
analysis,7 the path may be moved away at infinity, parallel to

the real axis, above this axis in the region Re�k̂x��0 and

below it in the region Re�k̂x��0.
Practically, the real integration path is substituted by the

finite path Q�P�PQ �Fig. 2�. This change of path is justified
if the integral values on the segment QR and on the half-
straight line �R ,+�� are negligible with respect to the value
of the whole integral. As the trapezoid method makes it very
easy to calculate the acoustic field at only one point of the
physical space, the path Q�P�PQ can be optimized by study-
ing the values of the integrals for some benchmark points of
the physical space. For instance, in the case of a piston mode

FIG. 2. Complex integration paths in the complex plane of k̂xa.

FIG. 3. �Color online� Cartographies of the acoustic pressure �modulus�
field in a fluid with four cuts at z=0, ze=2.5a, ze=5a and ze=7.5a, using a
real path for the calculation of Fourier integral �1�. �a� Piston mode, k0a
=4 �−5�kxa�5, 30 sampling points for kx�. �b� Gaussian mode, k0a=2
�−4�kxa�4, 50 sampling points for kx�.
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emitter �k0a=4�, for a benchmark point located on the acous-
tic axis 10a far from the emitter, the modulus of the reduced

pressure P̂�x ,z� / ��0c0W0� �left hand member of Eq. �4�� is
equal to 0.5033, whereas the values of the integrals on QR
and on �R ,+�� �abscissa of R located at kxa=4.5� are respec-
tively equal to 6
10−12 and to 7
10−12 �integration limited
to kxa=50�. Considering these results, it is even justified to
merge points P and Q �and P� and Q��, and thus to restrict
the integration to only one segment P�P. The study for
benchmark points closer to the emitter show that the abscissa
of R has to be slightly increase, �increasing influence of eva-
nescent waves�. A good compromise, adopted here for the
drawing of the cartography �Fig. 4�a��, is to choose the seg-
ment �−5+0.2i ,5−0.2i�. The number of the sampling points
can be reduced to 50 or even to 30 in the case of this car-
tography. The choice of the distance Im�kxa�=0.2 is guided
by the caring about both being far enough from singular

points kxa= 	4, and being close enough to the real axis, in
order to minimize the value of the integral on QR.

As an example, Fig. 4 present cartographies in the spa-
tial plane �O ,x ,z� of the acoustic field, in the same condi-
tions as those of Fig. 3 �for the same number of points for the
sampling of kx�, but using such a complex integration path.
As it can be shown comparing Figs. 3 and 4, using such an
integration path hugely improves the accuracy of the calcu-
lus of integral �1�, without increasing the number of points
for the sampling of kx.

This method saves a significant amount of time. As a
rough guide, on a personal computer �Intel T7500, 2.20 GHz,
1.99 GB RAM�, the integration along a real path �1000 sam-
pling points for kx� takes 1.25 s for a mapping of 250 000
points in physical space, while, for a comparable accuracy,
the integration along a complex path �40 sampling points for
kx are sufficient� takes only 0.1 s.

It is possible to extend this method to the computation of
three-dimensional fields, for which double spatial Fourier in-
tegrals have to be calculated. Cauchy’s theory is still valid,
but now, integration surfaces �dimension 2� have to be dis-
torted in a four-dimensional space. However, as the distor-
tions from the real axis are small, the geometrical complexity
is reduced. Some encouraging results have been obtained in
this sense.

As a conclusion, this complex integration method, which
is fast and accurate, is interesting when the number of the
calculation points in the physical space becomes large, like
for drawing cartographies such as those of Fig. 4, or when
the beam interacts with a fluid or solid multilayered
structure.6 Moreover, the fact to be no longer dependent on
the constraints imposed by the FFT algorithm becomes par-
ticularly useful in the case of oblique incidence on a struc-
ture.

1J. W. Goodman, Introduction to Fourier Optics �McGraw Hill, New York,
1981�.

2J. Pott and J. G. Harris, J. Acoust. Soc. Am. 76, 1829 �1984�.
3D. Orofino and P. Pedersen, IEEE Trans. Ultrason. Ferroelectr. Freq. Con-
trol 40, 238 �1993�.

4M. Rousseau and P. Gatignol, Theory of the Acoustic Bounded Beam, in
Acoustic Interactions with Submerged Elastic Structures, Part I, Series on
Stability, Vibration and Control of Systems Series B Vol. 5, edited by A.
Guran, J. Ripoche, and F. Ziegler �World Scientific, Singapore, 1996�, pp.
207–241.

5M. Bruneau and T. Scelo, Fundamentals of Acoustics �ISTE, UK, 2006�.
6N. Bedrici, Ph. Gatignol, and C. Potel, Acust. Acta Acust. 95, 189 �2009�.
7E. T. Whittaker, G. N. Watson. A Course of Modern Analysis �Cambridge
University Press, Cambridge, 1927�.

FIG. 4. �Color online� Cartographies of the acoustic pressure field �modu-
lus� in a fluid with four cuts at z=0, ze=2.5a, ze=5a, and ze=7.5a, using a
complex path P�P for the calculation of Fourier integral �1�. �a� Piston
mode, k0a=4 �kxa on the line �−5+0.2i ,5−0.2i�, 30 sampling points for kx�.
�b� Gaussian mode, k0a=2 �kxa on the line �−4+0.2i ,4−0.2i�, 50 sampling
points for kx�.
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