
Pressure and shear horizontal guided waves excitation: Nonuniform,
time-periodic source distribution of finite extent on the boundaries

Tony Valier-Brasier, Catherine Potel,a� and Michel Bruneau
Laboratoire d’Acoustique de l’Université du Maine (LAUM), UMR CNRS 6613, Université du Maine,
Avenue Olivier Messiaen, 72 085 Le Mans Cedex 9, France and Fédération Acoustique du Nord-Ouest
(FANO), FR CNRS 3110, France

�Received 28 January 2011; accepted 31 March 2011; published online 15 April 2011�

There is a class of waveguides problems in which energy is provided by a source distribution of
finite extent on the surface of the guide and for which usually the behavior of the acoustic field
created is not analytically correlated with the source strength. The present paper aims at providing
an analytical model describing the field which can be obtained from such nonuniformly distributed,
time-periodic source creating either pressure waves in fluid-filled waveguides or Shear Horizontal
waves in isotropic solid plates. This model involves convolution products between appropriate
Green’s functions and the source stress. A relevant example is finally displayed. © 2011 American
Institute of Physics. �doi:10.1063/1.3580772�

The nature of acoustic fields within fluid-filled or isotro-
pic solid, finite, or infinite waveguides is a topic of persisting
importance in fundamental acoustics and in its practical ap-
plications. There is a broad class of waveguide problems in
which the energy is provided by a source distribution of fi-
nite extent on the surfaces of the guides and for which the
acoustic field created is a modal field, either a pressure field
or a Shear Horizontal �SH�-wave, depending on the set-up
considered. In the literature, specific examples are addressed
in the frame of analytical models suitable for describing the
modes coupling due to scattering on small one-dimensional
irregularities of the surface of both fluid-filled waveguides
�acoustic pressure waves� and isotropic solid waveguides
�SH waves inside a plate� �see Refs. 1–8, and references
contained therein�. For these interior problems, the analytic
procedure whereby one expresses specific acoustic fields,
created by such source distributions on the surface of finite
waveguides, as an integral over the surface of the source, is
relatively unexplored �relevant formulation for infinite fluid-
filled waveguide was provided by Doak�.9 The present paper
deals with such analytical formulation for pressure and SH
waves �or torsional waves in a cylinder�, which involves
convolution products between appropriate Green’s functions
and the source stress acting on the boundaries of the me-
dium, upstream the domain of interest, where the bounding
surfaces of the waveguide are natural surfaces in a coordi-
nate system. A relevant example, starting from the behavior
of a nonuniformly distributed, time-periodic source of finite
extent set on the surface of fluid or solid infinite waveguide
is displayed. It shows how an appropriate SH or pressure
wave can be created downstream the source, respectively, in
a fluid-filled or solid waveguide.

The two or three-dimensional rectangular �x ,w=x ,y ,z�
or circular �x ,w=x ,r ,�� structure of semi-infinite
�x� �−� , ��� or finite �x� �−� , L�� extent under consider-
ation is schematically shown in Fig. 1. It is either a fluid-
filled waveguide �acoustic pressure waves� or an isotropic

solid waveguide �SH waves inside a plate, torsional waves in
a cylinder�. An acoustic source of finite extent, which is set
on the surface S0 of coordinates w=w0, namely, x0, y0 or r0,
�0 �or acting inside a negligible skin thickness� of the wave-
guide in the domain D1 �x� �−� ,0�� upstream the domain of
interest �domain x�0 labeled D2�, creates an appropriate
acoustic field at the entrance of the finite �x� �0,L�� or semi-
infinite x� �0,�� waveguide.7 This source is assumed to be a
nonuniformly distributed, time-periodic source �it depends
on the coordinate x �the axis of the waveguide� and on the
coordinates of the surface w0= �x0 ,y0� or �r0 ,�0��. It is worth
noting that the waveguide considered �x� �−� , L�� is
equivalent to a waveguide which is symmetrical with respect
to the abscissa x=−�.

The source is described by its normal velocity inside the
fluid-filled waveguide or the tangential stress acting on the
surface S0 �contour �0, coordinate w0� of the solid wave-
guide. In both situations, these parameters depend on the first
derivative of the acoustic field �pressure field in fluid-filled
waveguide or displacement field in solid waveguide� with
respect to the spatial coordinates. Therefore, the boundary
conditions on the surfaces of the waveguides in the domain
D2 considered are Neumann boundary conditions, namely
the normal velocity field vanishes in the fluid-filled wave-
guide and the tangential component of the stress vanish in
the solid waveguide. Besides, owing to the symmetrical ge-
ometry of the structure with respect to the coordinate x=−�,
the first derivative with respect to x of the x- �axial� and
w-coordinates of the velocity fields, and the x-component of
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FIG. 1. Sketch of a waveguide of axis x with lateral surfaces denoted S0

�contour �0� and section denoted �S�, with a source distribution on the
surface in the interval x� �−� ,0�, assumed to be symmetrical with respect to
the abscissa x=−� �or rigid walled at x=−��.
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the velocity field vanish at the coordinate x=−�.
The acoustic fields expressed analytically below are the

pressure fields p2�x ,w� �fluid-filled waveguides� or the
y-component of the displacement field U2y�x ,z� �SH wave�,
in the domain of interest D2 �x� �0,L�, L finite, or infinite�,
both denoted below �2�x ,w� ��1�x ,w� in the domain D1�.
Actually, the field in the domain D2 depends on both the field
in the domain D1 and the interface conditions between both
domains. The formalism used, in both domains, lies on the
classical integral formalism, assuming appropriate Green’s
functions.

The problem addressed herein, in the domains Di, i
=1,2, is governed by the following set of equations, includ-
ing the propagation equation and the boundary conditions,
which is written as

��xx
2 + �ww

2 + k2��i�x,w� = 0, domain Di, �1a�

�n0
�i�x,w� = ��x,w�, on the lateral surfaces S0, �1b�

with ��x ,w�=−i�	0V�x ,w� �fluid� or ��x ,w�
= �1 /
�Tzy�x ,w� �over the surface of the source, and
��x ,w�=0 elsewhere, where V�x ,w� denotes the velocity of
the source �normal to the fluid waveguide, outwardly di-
rected� and �1 /
�Tzy�x ,w� the y-component of the stress
�solid plate�, � ,k ,	0 ,
, and �n0

being, respectively, the an-
gular frequency, the adiabatic wavenumber, the density
�fluid�, the second Lamé coefficient �solid�, and the normal
derivative �outwardly directed�.

The integral formulation of the problem stated above
�1a� and �1b�, in the domain D1, can be written as follows:

�1�x,w� = �
−�

0

dx0�
�0

d�0G1�x,w;x0,w0��n0
�1�x0,w0�

+
/

�S�
�G1�x,w;0,w0��x0

�1�0,w0�

− �1�0,w0��x0
G1�x,w;0,w0��dw0, �2�

�the first term in the right hand side lying on the lateral
surface of the domain D1 and the second one on the section
�S� of the waveguide at x=0�, where the Green’s function
G1�x ,w ;x0 ,w0� is given by the eigenfunction expansion

G1�x,w;0,w0� = �
n=0

�

gn�x,x0��n�w0��n�w� , �3a�

the orthogonal, normalized eigenfunctions �n�w� being solu-
tions of the homogeneous Helmholtz equation with the Neu-
mann boundary conditions at the outer surface of the wave-
guide, with the requirement of symmetry of the Green’s
function at the abscissa x=−�, this being fulfilled by

gn�x,x0� = 	exp�− ikxn
x − x0
� + exp�− ikxn�x + x0

+ 2����/�2ikxn� , �3b�

with kn
2=kxn

2 +kwn
2 , kn denoting the eigenvalues �the subscript

n standing for two integers�.
In the domain D2, the Green’s function chosen is re-

quired to satisfy to the Neumann boundary condition at the
outer surface of the waveguide and to satisfy a given bound-
ary condition at the end x=L of the domain �R being a

known reflection coefficient accounting for the input proper-
ties of the device loading the end of the waveguide�, leading
to

G2�x,w;x0,w0� = �
n=0

hn�x,x0��n�w0��n�w� , �4a�

hn�x,x0� = 	exp�− ikxn
x − x0
� + R exp�ikxn��x + x0�

− 2L���/�2ikxn� . �4b�

Given this Green’s function, the solution of the problem ad-
dressed here in the domain D2 is readily expressed as fol-
lows:

�2�x,w� = �
n

�n�w�	��x0
hn�x,x0 = 0��

/
�S�

�2�x0

= 0,w0��n�w0�dw0 − hn�x,0�
/

�S�
�x0

�2�x0

= 0,w0��n�w0�dw0� . �5�

Finally, we must express the continuity conditions at the in-
terface x=0 between both domains D1 and D2 mentioned
above. They are given by

�2�0,w� = �1�0,w� and �x�2�0,w� = �x�1�0,w� . �6�

Therefore, invoking the inner product of �1 by �n �Eqs. �2�
and �3a��, and using Eq. �6�, the integral in the right hand
side of Eq. �5� can be expressed as

/
�S�

�2�x0 = 0,w0��n�w0�dw0 =
/

�S�
�1�x0

= 0,w0��n�w0�dw0 = �Fn�0�

+ gn�0,0�
/

�S�
�x0

�2�x0

= 0,w0��n�w0�dw0�/�1 + �x0
gn�0,0�� , �7�

with

Fn�x� = �
−�

0

dx0�
�0

d�0gn�x,x0��n�w0���x0,w0� . �8�

Then reporting this result in Eq. �5�, multiplying by the
eigenfunction �n and integrating over the section of the
waveguide, and finally derivating with respect to x, yields the
relevant expression for the last integral in Eq. �7�, at x=0:

/
�S�

�x�2�x = 0,w��n�w�dw =
�x�x0

hn�0,0�

1 + �x0
gn�0,0�

�Fn�0�

+ gn�0,0�
/

�S�
�x0

�2�x0 = 0,w0��n�w0�dw0�

− �xhn�x = 0,x0 = 0�
/

�S�
�x0

�2�x0

= 0,w0��n�w0�dw0, �9a�

namely, noting that the integral over the surface �S� in the
left hand side of this equation is nothing else that those in the
right hand side,
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/
�S�

�x0
�2�x0 = 0,w0��n�w0�dw0

=
�x�x0

hn�0,0�

�1 + �x0
gn�0,0���1 + �xhn�0,0�� − gn�0,0��x�x0

hn�0,0�

�Fn�0� . �9b�

Finally, reporting this result in Eq. �7� then in Eq. �5�, and
invoking expressions �3b� and �4b� for the Green’s coeffi-
cients gn�x ,x0� and hn�x ,x0�, the solution in the domain D2

takes the following form:

�2�x,w�

= �
n
� Fn�0�

1 + R exp�− ikxn2L��1 − 2 exp�− ikxn��cos�kxn���

� 	exp�− ikxnx� + R exp�ikxn�x − 2L����n�w�
 . �10�

Note that reporting results obtained above in Eq. �2�, ac-
counting for Eqs. �3a� and �3b�, leads straightforwardly to
the solution in the domain D1.

The simple example presented hereinafter involves both
an infinite rectangular or cylindrical fluid-filled waveguide or
a two-dimensional infinite solid waveguide �SH wave in a
plate� and a source activity given by the harmonic factor
��x ,w� of the source distribution set on the lateral wall in the
interval x� �−� ,0�, assuming the symmetry with respect to
x=−�, such as ��x ,w�=�0 cos kxm�x+��, where kxm is linked
to the eigenvalue labeled “m” �m being in this example a
given integer� and where kxm� is assumed to be greater than

.

For a plate of thickness Lz �in the z-direction�, the factor
�8� at x=0 which appears in the solution �10�, for a source
distribution ��x ,w� chosen on the wall set at z=0, takes the
following form:

Fn�0� = �− 1�m+n+1i
�0�

2kxm

�2 − �n0

Lz
exp�− ikxn���sinc�kxm

+ kxn�� + sinc�kxm − kxn��� , �11�

�sinc denoting the cardinal sine� showing that when m�n
�kxm� and kxn� being greater than 
� the amplitude of the
mode n created by the source is very small �the term in the
bracket is much lower than one�, unlike when m=n the am-
plitude of this mode, is important. Then the field created is
given mainly by this mode. In order to illustrate that result,

Fig. 2 show the shapes of the amplitudes �normalized to one�
of the fields created by sinusoidal sources for the antisym-
metrical mode m=10 �kx10�=10
�, when considering 21
propagative modes in the calculus.

In conclusion, it should be noted that this analytical
model describing the field obtained from a time-periodic
source nonuniformly distributed on the wall of a waveguide,
which accounts for the discontinuity between the part of the
boundary of the waveguide containing this external source
distribution and the other part assumed to be motionless,
would be effective in many applications, even though the
discrepancies between theoretical and experimental strengths
of the source distribution could be not so small as to be
negligible.

The authors are indebted to the Fédération Acoustique
du Nord-Ouest �FANO, FR CNRS 3110� for substantial help
in the project which includes this account.
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FIG. 2. Shapes of the amplitudes �normalized to one� of the fields created by
sinusoidal sources for the antisymmetrical mode m=10 �kx10�=10
�, when
considering 21 propagative modes in the calculus.
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