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Summary
A model, presented in a previous paper [J. App. Phys. 108 (2010) 074910], describing the modes coupling due to
scattering on small one-dimensional irregularities (parallel ridges) of the surface of isotropic solid plates, when
shear horizontal waves polarized along the ridges propagate perpendicularly to them, appears to be a convenient
tool to tackle the effects of the shape profile of the ridges (including the depth and the slope). Being concerned by
the use of this analytical approach not utilised until now, several results, yet typical of applications, are presented
below and compared with some experimental and numerical results, even analytical results (from an alternative
analytical model for particular cases). These comparisons permit to highlight the effects of spatial periodicities
of the ridges and show that the method could provide information on geometrical parameters characterising the
profile of the roughness, which could be of interest when other methods like optical methods cannot be used.

PACS no. 43.20.-f, 43.20.El, 43.20.Fn, 43.35.-c, 43.35.Cg

1. Introduction

The paper aims at providing results obtained from both an
analytical model presented in a previous paper [1] and an
experimental setup installed for the purpose [2], in order
to describe the modes coupling due to scattering on small
one-dimensional irregularities (parallel ridges) of the sur-
face of isotropic solid plates, when shear horizontal waves
polarized along the ridges propagate perpendicularly to
them, having in mind to propose a convenient method to
tackle the effects of the shape profile of the ridges (includ-
ing the depth and the slope).

The two-dimensional (x, z), homogeneous solid plate
in vacuum [domain (D), z ∈ (z1, z2)] considered, is as-
sumed to be infinite in the y-direction and bounded by
two parallel surfaces perpendicular to the z-axis, one of
them having 1D shape perturbation (small ridges parallel
to the y-axis) (Figure 1). At the entrance x = 0 of this
plate, a harmonic, incident propagating SH-wave (speed
cT ) coming from x → (−∞) is characterized by the am-
plitude (depending on the coordinate z) of the shear dis-
placement field, assumed to be polarized along the y-
axis (along the ridges). The ridged surface is assumed
to be small deviations (which depend on the coordinate
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x) from the regularly shaped surface which bounds out-
wardly the perturbed surface [defining the domain (D0),
z ∈ (−Lz/2, Lz/2)]. The incident displacement field un-
dergoes scattering on these irregularities, which therefore
induces modes coupling inside the plate.

For this problem, the analytic procedure whereby one
expresses both the perturbation of the incident field when
propagating along the rough part of the plate and the field
created by coupling due to the roughness is presented in
a previous paper [1], this analytic procedure relying fun-
damentally on an integral formulation of the basic math-
ematical problem. The methodology used in this previ-
ous paper to solve the integral equation relies on an ap-
propriate Green’s function and a perturbation method (for
small roughness) in the frame of a modal analysis, us-
ing a unique set of Neumann eigenmodes of the regularly
shaped surface that bounds outwardly the perturbed sur-
face of the plate.

The formalism gives analytic expressions for the cou-
pled SH-waves which are considered, leading to expres-
sions for the reflection coefficient at the input of the rough
part of the plate and the transmission coefficient at its out-
put (Appendix A1), which both depend on the param-
eters characterising the roughness and more specifically
on the phase-matching (phonon relationship) between the
wavenumbers (along the axis of the plate) of the propa-
gating waves and the spatial periods of the roughness (the
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Figure 1. Sketch of the 2D waveguide with upper surface having
small deviations (ridges). (a) General view and (b) zoom on the
ridges.

ridges). Moreover, results obtained from an alternative an-
alytical solution proposed in the literature [3, 4, 5, 6] (Ap-
pendix A2), which leads to almost accurate expressions
for each mode when only two coupled modes are consid-
ered, are given to support the approach used in the present
paper.

Being concerned herein by the use of the analytical ap-
proach mentioned above, not utilised until now, several re-
sults, yet typical of applications, are presented below and
compared with some numerical (available in the litera-
ture) and experimental (given in the present paper) results.
These results show that the method presented here could
provide information on geometrical parameters character-
ising the profile of the roughness (this is of interest when
other methods like optical methods cannot be used).

2. Phase matching effects

In each example chosen hereafter, the roughness is as-
sumed to be either a periodically ridged surface or a
more sophisticated surface which contains several peri-
odic structures, always on one of the boundaries. Tables
I and II give, for each figure presented below, the shape of
the profile of the ridged surface, the values of its parame-
ters (including its spatial periods Λ, its normalised depth
h/Lz, and its total normalized length �/Λ), the normal-
ized thickness of the plate Lz/Λ, the adimensional fre-
quency range /f1d/cT , f2d/cT ) considered [d = Lz −
max[h(x)] ≈ Lz, see Figure 1a], the SH modes which sat-
isfy the phase-matching (phonon relationship) in this fre-
quency range, and the SH modes considered, namely inci-
dent (σ, m) and scattered (α, r) modes, m and r numbering
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Figure 2. Dispersion curves (thick lines) and phonon (phase-
matching) curves (thin lines).

the modes and σ and α denoting antisymmetrical (1) or
symmetrical (2) modes. An example of dispersion curves
and curves representing phase-matched relationship [1],

k
(σ)
x,m + k(α)

x,r − 2π/Λ = 0, (1)

with (k(σ)
x,m)2 = k2

T − (k(σ)
z,m)2, kT = ω/cT , and k(σ)

z,m =
(2m + δσ1)π/Lz (Neumann eigenvalues) is shown in Fig-
ure 2 (it corresponds to the results presented in Fig-
ure 3): in the frequency range considered (f1d/cT = 2.05,
f2d/cT = 2.45), four strong couplings appear between the
mode (σ = 2, m = 2) and the modes (α = 2, r = 0),
(α = 1, r = 0), (α = 2, r = 1), (α = 1, r = 1).

As a first example relying on the foregoing Figure 2
(a zoom in the frequency range of interest is given in
Figure 3a), the transmission and reflection intensity co-
efficients respectively at the output and at the input of
the roughness, obtained from the analytic procedure men-
tioned above (outlined in Appendix A1) when considering
six modes in the calculus, are shown in Figure 3b for the
configuration outlined in Tables I and II: transmission co-
efficient of the incident mode (2, 2) (upper curve, dashed-
dotted line), and reflection coefficients (lower curves)
of the counter-propagating, phase-matched modes (2,0)
(solid line), (2,1) (dashed-double dotted line), (1,1) (dot-
ted line), (1,0) (dashed line), as functions of the normal-
ized frequency.

These curves show clearly that the energy transfers from
the incident mode to each mode created by scattering on
the ridges occur at the same frequency, when the cor-
responding phase-matched relationship is verified (Fig-
ure 3a). These results are coherent with those available in
the literature (see for example [7, 8, 9]). Note that, owing
to the roughness, the thickness of the plate is not known
exactly, then, the calculated normalised frequency related
to a phase-matching cannot be defined exactly.

In the following, in section 3 (Figures 4 to 7) the effects
of the depth, the length, and the envelope of the roughness
on the SH waves are analysed, and in section 4 (Figures
8 to 11) the behaviour of SH waves is investigated when
the roughness contains periodic structures. Then, in sec-
tion 5 (Figures 12, 13) and (Figure 14), comparisons with
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Table I. Parameters of the ridges.

Figures Shape profile Normal. thickness Lz/Λ Normal. depth h/Lz Normal. length �/Λ
3 Regularly distributed isosceles triangles 3 0.01 30
4 Regularly distributed isosceles triangles 2.5 (0.01,0.02) 50
5 Regularly distributed isosceles triangles 2.5 0.025 (0.65)

6, 7 Sinus, windowed 2.5 0.02 20
8, 9 Sinus, 2 periods 1.95 0.02 30

10, 11 Pseudo-random (0.7,3) in (Λ4,Λ1) (0,0.8) (8,16) in (Λ4,Λ1)
12, 13 Regularly distributed trapezoidal grooves 1.67 0.01 40 and 100
14a Regularly distributed isosceles triangles 0.68 0.04 30
14b Regularly distributed isosceles triangles 0.68 0.04 20

Table II. Parameters of the SH-waves (modes).

Figures Frequency range Phase-matched SH modes SH modes considered
(f1d/cT , f2d/cT ) Inc. (σ, m) Scattered (α, r)

3 (2.05,2.45) (2,0) (1,0) (2,1) (1,1) (2,2) (2,0) (1,0) (2,1) (1,1)
4 (1.2,1.35) (2,1) (1,0) (2,0) (2,1) (1,1)
5 (1.2,1.35) (2,1) (1,0) (2,0) (2,1) (1,1)

6, 7 (1.65,1.9) (1,1) (2,1) (2,0) (1,0) (1,1)
8, 9 (1.1,1.35) (2,1) (2,0) (2,1) (1,0) (1,1)

10, 11 (0.5,0.85) (2,0) (1,0) (1,0) (2,0) (1,0) (2,1) (1,1)
12, 13 (1.2,1.35) (2,1) (2,1) (2,1) (2,0) (1,0) (1,1)
14.a (0.28,0.40) (2,0) (2,0) (2,0) (1,0)
14.b (1,1.1) (2,0) (2,0) (2,2) (2,0) (2,2) (1,0)

results obtained from the model outlined in Appendix A2
(two modes only) and with experimental results respec-
tively, are presented.

3. Influence of the geometrical parameters
of the grating

3.1. Influence of the depth of the ridges

Figures 4a and 4b show, for the same symmetrical saw-
tooth profile as the preceding one, the effects of the depth
of the ridges on the reflection and transmission intensity
coefficients respectively at the input and at the output of
the roughness (the parameters are given in Tables I and
II).

In Figure 4a, the transmission coefficient of the incident
mode (2,2) and the reflection coefficients (lower curves)
of the counter-propagating, phase-matched mode (2,1) are
presented, as functions of the normalized frequency, for
three values of the adimensional depth h/Lz: 0.010 (solid
line), 0.015 (dashed line), 0.020 (dotted line). In Fig-
ure 4b, the reflection and transmission intensity coeffi-
cients are given as functions of the normalised depth of the
ridges. As expected, these curves show clearly several fea-
tures: first, the energy transfer from the incident mode to
the scattered mode increases when the depth of the rough-
ness increases; second, the phase-matched frequency de-
creases slightly when the depth of the roughness increases
because the mean thickness of the plate decreases; third,
the shape of the curves (Figure 4a) coincides with the
square of a sinc function (see [1]); fourth, the sum of the

forward and the backward energy flux remains constant
(R + T ≈ 1); fifth, the width of the band gap increases
when the depth of the roughness increases [10]. Note that
these results are coherent with those obtained numerically
for Lamb waves (see for example [11]).

3.2. Influence of the length of the grating

Figures 5a and 5b show the effects of the length of the
ridges on the reflection and transmission intensity coef-
ficients respectively at the input and at the output of the
roughness, the other parameters being the same as the pre-
ceding ones (Tables I and II with h/Lz = 0.025). In Fig-
ure 5a, the reflection coefficients (lower curves) of the
counter-propagating, phase-matched mode (2,1) and the
transmission coefficient of the incident mode (1,0) are pre-
sented, as functions of the normalized frequency, for three
values of the length �/Λ (namely the number of teeth):
15 (solid line), 30 (dashed line), 45 (dotted line). Fig-
ure 5b, the reflection and transmission intensity coeffi-
cients are given as functions of the normalised length of
the roughness. As expected, these curves show clearly sev-
eral features: first, the energy transfer from the incident
mode to the scattered mode increases when the length of
the roughness increases; second, the phase-matched fre-
quency does not depends on the length of the roughness;
third, the shape of the curves (Figure 5a) coincide with the
square of a sinc function (see reference [1]); fourth, the
sum of the forward and the backward energy flux remains
constant (R + T ≈ 1). Once more, these results are coher-
ent with those obtained numerically for Lamb waves (see
for example [12]).
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Figure 3. (a) Zoom of the dispersion and phase-matching curves
(Figure 2) in the normalized frequency range (2.05,2.45). (b)
Reflection and transmission intensity coefficients respectively at
the input and the output of the roughness, as functions of the
normalized frequency: reflection coefficients (lower curves) of
modes (2,0) (solid line), (2,1) (dashed-double dotted line), (1,1)
(dotted line), (1,0) (dashed line), and transmission coefficient of
mode (2,2) (upper curve, dashed-dotted line).

3.3. Influence of the envelope of the grating

In the results presented above, the length of the roughness
is just given by a truncation of its tails (the envelope of
the roughness is given by a rectangular window of length
�). This leads to reflection and transmissions intensity co-
efficients expressed, as functions of the frequency, by the
square of a sinc function [1], as shown in Figures 3, 4a, and
5a. Three smoothly tapered windows are considered here-
after. Ordering the windows chosen from the less to the
more (smoothly) tapered, they are respectively: the rectan-
gular window, the Hann window [half period (0, π) of si-
nus function], the Barlett window (triangle, using straight
line for the taper), and the Blackmann window given by,
in the interval (0, �):

0.42 − 0.5 cos(2πx/�) + 0.8 cos(2πx/�). (2)

The Power Spectral Density (PSD) of these profiles for the
windows considered, namely the Fourier transform with
respect to the abscissa x of the autocovariance function
of the adimensional depths of the roughness, as functions
of the inverse adimensional spatial wavelength, are given
in Figure 6, the profile of the ridges being assumed to be
sinusoidal with a spatial period Λ. The effects of the win-
dows of the roughness on the reflection [mode (1,1)] and
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Figure 4. (a) Reflection coefficients (lower curves) of the coun-
ter-propagating, phase-matched mode (2,1) and the transmission
coefficient of the incident mode (1,0), as functions of the normal-
ized frequency, for three values of the normalized depth h/Lz:
0.010 (solid line), 0.015 (dashed line), 0.020 (dotted line). (b)
Reflection and transmission intensity coefficients, as functions
of the normalised depth of the ridges.

transmission [mode (2,1)] intensity coefficients are shown
in Figures (7a) and (7b) respectively, as functions of the
adimensional frequency (the other parameters are given in
Tables I and II). The results are coherent with the proper-
ties of the windows.

4. Roughness containing periodic struc-
tures

In this section, the behaviour of SH waves is investigated
when the roughness contains periodic structures (multiple
spatial period, pseudo-random profile).

4.1. Roughness with multiple spatial periods
In the first two examples considered herein, the ridges are,
respectively, a superposition of two sinusoidal distribu-
tions with spatial periods Λ1 and Λ2 given by

h

4
2 − cos(2πx/Λ1) − cos(2πx/Λ2) , x ∈ (0, �), (3)

and a juxtaposition of the same sinusoidal distributions ex-
pressed as

h

2
1 − cos(2πx/Λ1) , x ∈ (0, �0 < �), (4a)

h

2
1 − cos(2πx/Λ2) , x ∈ (�0, �), (4b)
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(a)

(b)

Figure 5. (a) Reflection coefficients (lower curves) of the coun-
ter-propagating, phase-matched mode (2,1) and the transmission
coefficient of the incident mode (1,0), as functions of the nor-
malized frequency, for three values of the length �/Λ (namely
the number of teeth): 15 (solid line), 30 (dashed line), 45 (dot-
ted line). (b) Reflection and transmission intensity coefficients,
as functions of the normalised length of the roughness.

Figure 6. PSD of the roughness, functions of the inverse of the
adimensional spatial wavelength, with sinusoidal ridges: for rect-
angular window (dashed-dotted line), Hann windows (dotted
line), Barlett window (dashed line), Blackmann window (solid
line).

where �0 = 15Λ1, (� − �0 = 16Λ2, and (Λ2 − Λ1) � Λ
with Λ = (Λ1 + Λ2)/2.

The PSD of these profiles, namely the PSD of the adi-
mensional depths of the roughness, as functions of the in-
verse adimensional spatial wavelength, are shown in Fig-
ures 8a and 8b for the profiles given respectively by equa-
tions (3) and (4). It is noteworthy that the third spatial pe-
riod Λ3 which appears in Figure 8b is due to the super-

(a)

(b)

Figure 7. Effect of the window: rectangular window (dashed-dot-
ted line), Hann windows (dotted line), Barlett window (dashed
line), Blackmann window (solid line). (a). Reflection intensity
coefficient of the incident mode (1,1) as function of the fre-
quency. (b). Transmission intensity coefficient of the scattered
mode (2,1) as function of the frequency.

position of the tails of the curves associated to the other
periods (Λ1 and Λ2). The reflection and transmission in-
tensity coefficients (obtained from the analytic procedure
outlined in Appendix A1), respectively at the input and at
the output of the roughness, are shown in Figure 9a for the
profile 8a and in Figure 9b for the profile 8b, the config-
uration being outlined in Tables I and II: the lower curves
(dashed lines) represent the reflection coefficient of the
counter-propagating, phase-matched mode (2,1) and the
upper curves (solid line) represent the transmission coef-
ficient of the incident mode (2,0), as functions of the nor-
malized frequency. These curves show clearly that the en-
ergy transfer from the incident mode to the mode created
by scattering on the ridges occurs when the corresponding
phase- matched relationship is verified for the correspond-
ing frequencies, including the phase-matching linked to
the third spatial period Λ3. These results are coherent with
those available in the literature (see for example [6]).

4.2. Pseudo-random profile

In the next example, the roughness is assumed to have the
pseudo-random profile shown in Figure 10a. Its PSD (Fig-
ure 10b) exhibits four spatial periods (usually, in practice,
rough surfaces exhibit a limited number of dominant spa-
tial periodicities). A zoom of the dispersion and phase-
matching curves in the adimensional frequency range
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(a)

(b)

Figure 8. PSD of the adimensional depth of the roughness, as
functions of the inverse adimensional spatial wavelength, for
ridges with two sinusoidal distributions: (a) profile given by
equation (3), (b) profile given by equation (4).

(0.5,0.85) is shown in (Figure 11a) and the reflection and
transmission intensity coefficients (obtained from the ana-
lytic procedure outlined in Appendix A1), respectively at
the input and the output of the roughness, are shown in
Figure 11b, the configuration being outlined in Tables I
and II. In both figures, the incident mode (1,0) is rep-
resented by the dashed-dotted line (forward propagative
mode), the counter-propagative scattered mode (2,0) by
the dashed line, the counter-propagative scattered mode
(1,0) by a dotted line, and the dispersion curve of the
phase-matched mode (2,0) by a solid line [the other modes
(2,1) and (1,1) considered in the calculus are here evanes-
cent modes]. These curves show clearly that the energy
transfer from the incident mode to the modes created by
scattering on the ridges (here the same mode as the inci-
dent one and another one) occurs when the correspond-
ing phase-matched relationship is verified for the corre-
sponding frequencies, i.e. here for three and four values of
the frequency for the modes (2,0) and (1,0) respectively.
These results show that conversions of SH waves can be
predicted by computing the PSD of the roughness, and,
conversely, information (i.e. spatial wavelength of peri-
odic structures and their relative amplitudes) can be ac-
quired through experimental results [13].

5. Comparison with analytical and experi-
mental results

The remaining of the paper presents comparisons with re-
sults obtained from the model outlined in Appendix A2

(a)

(b)

Figure 9. Reflection coefficients of the counter-propagating,
phase-matched modes (2,1) (lower curve, dashed line) and trans-
mission coefficient of the incident mode (2,0) (upper curve, solid
line), as functions of the normalized frequency: (a) for the profile
given in Figure (8a) and (b) for the profile given in Figure (8b).

(a)

(b)

Figure 10. Pseudo-random roughness: (a) Pseudo-random pro-
file, (b) PSD exhibiting four spatial periods.

(two modes only) and with experimental results respec-
tively.
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(a)

(b)

Figure 11. (a) Zoom of the dispersion and phase-matching curves
in the adimensional frequency range (0.5,0.85). (b) Reflection
and transmission intensity coefficients. In both figures: dashed-
dotted line the incident mode [forward propagative mode] (1,0),
dashed line the counter-propagative scattered mode (2,0), dot-
ted line the counter-propagative scattered mode (1,0), dispersion
curve of the phase-matched mode (2,0) by a solid line.

5.1. Comparison with the two-coupled modes theory

Figures 12 and 13 show, respectively for the normalized
lengths �/Λ equal to 40 and 100 (number of regularly dis-
tributed trapezoidal grooves), the results obtained for the
reflection (a) and transmission (b) intensity coefficients
as functions of the normalised frequency when only two
modes are phase-matched, namely the incident one and the
counter-propagating scattered one [both being the mode
(2,1) here], four modes being considered in the calcula-
tion. In Figure 12, these results are calculated from both
the analytical solution used in the present paper outlined in
Appendix A1 (full lines) and an alternative analytical so-
lution proposed in the literature [3] outlined in Appendix
A2 (dashed-line), for the parameters given in Tables I and
II. The curves show a good agreement between the ana-
lytical models, the slight deviation observed being proba-
bly due to the different natures of the approximations used
to solve equations in each model. In Figure 13 the results
are calculated from the alternative analytical solution (Ap-
pendix A2) only, because, in the stopband, the counter-
propagative scattered wave reach the same amplitude as
the incident one and thus the iteration process does not
converges anymore in the other method (Appendix A1);
but unfortunately this alternative method is limited to only
two modes.

(a)

(b)

Figure 12. Reflection (a) and transmission (b) intensity coeffi-
cients as functions of the normalised frequency (40 grooves):
(solid line) solution from model outlined in Appendix A1,
(dashed line) solution from model outlined in Appendix A2.

(a)

(b)

Figure 13. Reflection (a) and transmission (b) intensity coeffi-
cients as functions of the normalised frequency (100 grooves).

5.2. Comparison with results of measurements

The final part provides a comparison between analytical
results obtained from the analytical model used in this
paper (Appendix A1) and the experimental results ob-
tained from the method presented in Appendix A3. Figures
14a and 14b show respectively the reflection and trans-
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(a)

(b)

Figure 14. Reflection (a) and transmission (b) intensity coeffi-
cients, as functions of the normalised frequency, for the incident
mode (2,0) phase-matched respectively with itself and the mode
(2,2): theoretical result (dashed line), normalised experimental
result (solid line).

mission intensity coefficients [theoretical curves (dashed
lines), experimental curves (solid lines)] as functions of
the normalised frequency when only two modes are phase-
matched in the frequency range considered, namely the in-
cident one (2,0) and respectively the counter-propagating
scattered one (2,0) and the co-directional scattered one
(2,2) [14, 15], three modes being accounted for in the cal-
culation (see Tables I and II). Owing to the experimen-
tal technique, the experimental amplitudes of these coeffi-
cients are unknown. So, their maxima are here normalised
with respect to the maxima of the theoretical results. Nev-
ertheless, considering the shape of the curves, the agree-
ment can be considered as excellent. It should be noted that
the relative uncertainty 7 · 10−3 on the experimental value
of the shear velocity cT can explain the slight frequency
shift which appears between theoretical and experimental
curves.

6. Conclusion

To conclude, it can be noted that the results analysed in
this paper highlight several points. The analytical model
used to describe the effects of the roughness is successful
in relevant situations. It can handle a variety of realistic
situations. While this modelling could appear somewhat
cumbersome, the numerical calculations are in fact very
simple and rapid to handle. This modelling would be ef-
fective in many applications even though it assumes that
the roughness remains a small perturbation. Moreover, as
mentioned in a previous paper [1], it is noteworthy that the
theoretical results convey an interpretation of the physical

phenomena. Finally, it can be emphasized that, given the
relative simplicity of the model used here to obtain the re-
sults, there is seen to be close agreement between these
results and those available or expected (including results
involving Lamb waves), thereby supporting this theoreti-
cal modelling.

Appendix

A1. The integral formulation and the itera-
tive solution [1]

The displacement field Ûy(x, z) in the domain (D) of the
plate [the time dependence being given by exp(iωt)] and
the appropriate Green function in the domain (D0) hav-
ing a regularly shaped surface which bounds outwardly
the perturbed surface of the plate, are both expressed as
an expansion on the Neumann [in the domain (D0)] eigen-
functions ψ (σ)

m (z), namely

Ûy(x, z) =
2

σ=1

∞

m=0

Â
(σ)
m (x)ψ (σ)

m (z), (A1)

G(x, z; x, z) =
2

σ=1

∞

m=0

g
(σ)
m (x, x)ψ (σ)

m (z) ψ (σ)
m (z), (A2)

where the coefficients A(σ)
m are the unknowns of the prob-

lem, the coefficients g(σ)
m (x, x) being known (σ = 1, 2

respectively for antisymmetrical and symmetrical eigen-
functions). Straightforward calculation, starting from an
integral formulation [1], yields the following relationship
between the unknown coefficients Â(σ)

m :

Â
(σ)
m (x) = F̂

(σ)
m (x) +

2

α=1

∞

r=0

Ĥ
(ασ)
rm Â

(α)
r (x) (A3)

+ B(ασ)
rm (x) Â(α)

r (x) ,

where

F̂
(σ)
m (x) =

Z2

Z1

g
(σ)
m (x, x)ψ (σ)

m (z) f̂(z
) dz (A4)

represents the effect of the incident field on the mode
(m, σ),

Ĥ
(ασ)
rm Â

(α)
r (x) = −

∞

0
Â

(α)
r (x)ψ (α)

r (z1) (A5)

· ∂n1ψ
(σ)
m (z1) g

(σ)
m (x, x) dx

represents the boundary modal coupling due to the shape
profile of the roughness (∂n1 = n1 · ∇ denoting the normal
derivative with respect to the outward normal n1),

B
(ασ)
rm (x) =

z1

−Lz/2
dz +

Lz/2

z2

dz ψ
(α)
r (z)ψ (σ)

m (z) (A6)

accounts for the depth of the roughness (bulk modal cou-
pling), the endpoints z1 and z2 depending on the coordi-
nate x).
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Using an iterative method to express the amplitude of
each mode Â(σ)

m (x), which assumes that the coupling func-
tion in the right hand side of equation (A3) is a small quan-
tity compared to the source term F̂

(σ)
m , thus the Nth-order

solution of this equation (A3) for Â(σ)
m (x) is written as

[N]Â
(σ)
m = (0)Â

(σ)
m + (1)Â

(σ)
m + . . . (A7)

+ (N−1)Â
(σ)
m + (N)Â

(σ)
m ,

where

(0)Â
(σ)
m (x) = F̂

(σ)
m (x) = exp − ik(σ)

xm x (A8)

denotes the zero order approximation (the solution without
roughness), and where

[N]Â
(σ)
m (x) = F̂

(σ)
m (x) +

2

α=1

∞

r=0

Ĥ
(ασ)
rm

[N−1]Â
(α)
r (x) (A9)

+ B(ασ)
rm (x)[N−1]Â

(α)
r (x)

denotes theNth-order perturbation expansion for Â(σ)
m .

In the results presented in this paper, the amplitude
of each mode Â(σ)

m , governed by equation (A3), is trun-
cated to the Nth-order expansion (A9) with respect to the
small surface perturbation, when the omission of the fur-
ther term (N+1)Â

(σ)
m causes everywhere (i.e. for any value

of x) a relative error lower than one-thousandth of the
error caused when omitting term (N)Â

(σ)
m , namely when

|(N+1)Â
(σ)
m /(N)Â

(σ)
m | ≤ 10−3.

The reflection and transmission intensity coefficients
are defined as

R
(α)
r = φ

(α)
r (x = 0)/φinc , (A10)

T
(α)
r = φ

(α)
r (x = �)/φinc , (A11)

where φ
(α)
r (x) and φinc are the time average energy flux

of respectively the (r, α) reflected (x = 0) or transmitted
(x = �) mode and the incident modes.

A2. Two modes alternative solution [3]:
Coupled modes theory

When a strong coupling between the incident mode (σ, m)
and another mode (α, r) occurs in the frequency range of
interest because of the phase-matching between both, for
the spatial period Λ of a Fourier (sinusoidal) component
of the roughness considered, equations (A3) can be solved
directly for these two coupled modes, if the bulk modal
coupling can be neglected (its effect is usually weak) and
if the normal derivative of the Neumann eigenfunctions on
the real boundaries can be expressed to the lower order ap-
proximation (small surface perturbation). For this spatial
period Λ of the roughness, expression (A3) of the ampli-
tude of the incident mode (σ, m) and the amplitude of the
scattered mode (αj, rj), where j = 1, 2 stand respectively

for a wave propagating in the same direction as the incom-
ing wave (σ,m) and in the opposite direction, are respec-
tively given by the following relations [equation (A3) for
a Fourier component]:

Â
(σ)
m (x) = e−ik(σ)

x,mx 1 + ξ
(σ,αj )
j,(m,rj )

x

0
Â

(αj )
rj (x) (A12)

· e(−)j i(k(σ)
x,m−2π/Λ)xdx ,

Â
(αj )
rj (x) = (−)je−ik

(αj )
x,rj xζ

(σ,αj )
j,(m,rj )

xj

x

Â
(σ)
m (x) (A13)

· e−i(k
(αj )
x,rj +(−)j+12π/Λ)xdx,

where ξ
(σ,αj )
j,(m,rj )

and ζ
(σ,αj )
j,(m,rj )

are constant coefficients, where
x1 = 0 and x2 = �, and where

k
(σ)
x,m

2
= k2

T − k
(σ)
z,m

2
, (A14)

with kT = ω/cT and k(σ)
z,m = (2m + δσ1)π/Lz (Neumann

eigenvalues).
The first derivative with respect to x of the set of equa-

tions (A12) and (A13) can be written as

∂x X(x) = FX(x), (A15)

where the matrix column X(x) = [S (σ)
m (x) S

(αj )
rj (x)]T rep-

resents the amplitude of the modes considered when they
are expressed as (T indicates the transpose operation)

Â
(σ)
m (x) = S

(σ)
m (x)e−i(k(σ)

x,m−δj )x, (A16)

Â
(αj )
rj (x) = S

(αj )
rj (x)e+i (−)jk(σ)

x,m−δj x
, (A17)

and where the square matrix F has the following property:

exp Fx = cos(γjx)I + sin(γjx)/γj F , (A18)

with

2δj = k
(σ)
x,m + (−)j+1k

(αj )
x,rj − 2π/Λ (A19)

(so-called detuning parameter), the parameters γj being
known constants (I is the unit matrix). Therefore, the so-
lutions can be written as

X(x) = exp F (x − x0) X(x0), (A20)

with, accounting for the conditions at the input x0 = 0 and
at the output x0 = � of the roughness,

X(x) = exp Fx X(0) = exp Fx
1
0

for j = 1, (A21)

X(x) = exp F (x − �) S
(σ)
m

0
= exp Fx

1
S

(αj )
rj

for j = 2. (A22)
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Table A1. Geometrical and physical parameters.

� (mm) Lz (mm) ρ (kg/m3) cT (m/s) h (mm) Λ (nm) (fa, fb) (kHz) α (◦) fe (Hz)

RC 126 2.88 2700 3080 0.12 4.2 (260,740) 300 to 450 by 1 kHz step
TC 148 5 2700 3080 0.20 7.4 (260,740) 7.5 670 to by 1 kHz step

Figure A1. Photography of the corrugated interface of a sample.

Figure A2. Block diagram of the experimental setup.

A3. Experimental method

The experimental setup [2] used for measuring the effects
of couplings between contra-directional (Reflection Coef-
ficient “RC”) and co-directional SH-modes (Transmission
Coefficient ‘ ‘TC”) under a periodic distribution of ridges
on a plate is presented in Figures A1 (photography of a
ridged plate) and A2 (block diagram of the set-up). Trans-
versely polarized, piezo-composite transducers are glued
at the ends of the plate (over the thickness of the plate up-
stream and on the flat surface downstream) by means of
a high-viscosity gel to ensure homogeneous applied shear
stresses. The upstream transducer acts as both an emitter
and a receiver for the same SH-mode (input and counter-
propagating unique mode phase-matched with itself in the
frequency range investigated), and the downstream receiv-
ing transducer is glued on a Plexiglas® wedge in order to
detect another phase-matched mode created by coupling.
The geometrical parameters of the plate (length of the
ridged part � and thickness Lz), the h physical parame-

ters of the material of the plate (density ρ and SH-wave
velocity cT of aluminium), the geometrical parameters of
the thirty (respectively twenty) isosceles triangular ridges
(depth h and spatial period Λ), the −6 dB frequency band-
width (fa, fb) of the transducers, the angle α of the receiv-
ing wedge, and the characteristics of the input signal (fre-
quency fe in a tone burst) are such as the modes involved
in the measurements are (2,0) and (2,2) [these parameters
are given in Table A1].

The excitation frequency fe is tuned by 1 kHz step in the
frequency ranges considered for the measurement of the
reflection and the transmission coefficients respectively.
For each value of the frequency, a signal averaging of 100
successive shots is carried out to improve the signal-to-
noise ratio and a signal in the time domain of 200µs (25000
points) is registered. The same experimental procedure is
applied to a plate without grating, providing a signal of
reference for each frequency.

Fast Fourier Transform (FFT) is then calculated on each
signal in the time domain providing a (fe, f ) matrix. The
diagonal elements of this matrix constitute a vector Â
whose each component represents the complex amplitudes
of the FFT at a given excitation frequency. The ratio ÂÂ∗

(product of Â by its conjugate Â∗) with and without grat-
ing leads to the normalised reflection or transmission in-
tensity coefficient (this ratio enables to cancel the effect
of the frequency response of the transducers in their fre-
quency passband).
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