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Deviation of a Monochromatic Lamb Wave
Beam in Anisotropic Multilayered Media:

Asymptotic Analysis, Numerical and
Experimental Results

Catherine Potel, Stéphane Baly, Jean-François de Belleval, Member, IEEE,
Mike Lowe, and Philippe Gatignol

Abstract—The aim of this paper is threefold: to describe
the physical phenomenon of the excitation of modal waves
such as Lamb waves, in anisotropic multilayered media, by
a monochromatic incident beam, using an asymptotic ap-
proach; to present a three-dimensional model using the de-
composition of the incident beam into monochromatic plane
waves (the formalism is applied to the particle displacement
vector); to illustrate the phenomenon both numerically and
experimentally. Numerical and experimental maps of the
reflected field of pressure are presented, and the reradiation
of the Lamb wave beam in an oblique plane is theoretically
and numerically illustrated.

I. Introduction

The ultrasonic testing of anisotropic multilayered struc-
tures is a well developed field of research, motivated

strongly by the needs for inspection of carbon fiber com-
posite materials for the aircraft industry. The challenges
include the measurement of the mechanical properties of
the structures to ensure manufacture quality, the detec-
tion of defects that may be created accidentally during
manufacture, and the detection of defects that may be in-
troduced in service. Recently, interest in the concept of
structural health monitoring has come to the forefront,
and the challenge here is to monitor large areas of compos-
ite structures using a limited number of permanently at-
tached transducers. A very interesting approach for these
kinds of inspection is the application of structure-guided
waves, such as Lamb waves, which enable a whole strip
to be tested with a single shot. However, the understand-
ing of the interaction of ultrasonic waves with anisotropic
multilayered structures is not easily achieved, and a solid
base of theoretical work is essential for the effective de-
velopment of testing techniques. Numerous works that ad-
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dress the fundamental physics and the testing applications
have been published, for example in [1]–[17]. The refer-
ences linked to the understanding of the present paper are
more particularly detailed subsequently.

For some configurations in the ultrasonic guided wave
testing of anisotropic multilayered plane structures, the
waves can be locally excited in the structure by an emitter
transducer immersed in an external fluid and aligned at
an oblique angle to the plate. Because the incident field
is a bounded beam, a Lamb wave beam is generated in
the structure. If the plate material is isotropic, then the
Lamb wave beam travels in the same sagittal plane as that
of the transducer. However, if the material is anisotropic,
then the Lamb wave beam may travel at a different angle
[14], [15], [17]–[21]. Clearly it is important to understand
the deviation of beam direction that may take place in
order to be able to exploit these waves for testing.

The aim of this paper is to demonstrate, by means of
an asymptotic approach in the far field, together with a
three-dimensional (3-D) model using the decomposition of
the incident beam into plane waves, and numerical and
experimental results as well, how the most energetic part
of the Lamb wave beam is deviated with respect to the
sagittal plane of the incident bounded beam.

The useful background literature for this purpose
mainly concerns the modeling of bounded beams, the inter-
action of such beams with a plane interface, including non-
specular reflection, and the propagation of Lamb waves.

Taking into account the geometry of the transducer
leads to the concept of an ultrasonic beam. The mathemat-
ical modeling simply using monochromatic plane waves is
thus no longer sufficient. Among the numerous studies of
the reflection-refraction of an acoustic beam by a liquid-
solid interface, the works of Ngoc and Mayer [22], then
those of Pott and Harris [23], [24] can be quoted: they
developed a numerical method of integration in order to
calculate the intensity profile of an ultrasonic beam, es-
pecially in the neighborhood of critical Rayleigh angles,
which brings out the nonspecular reflection phenomena;
such behavior also was studied by Neubauer [25]. By means
of a complex Laurent expansion of the reflection coeffi-
cient, Bertoni and Tamir [26], [27] developed an analyt-
ical model that describes these nonspecular phenomena.
Their representation of the incident field then was used by
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Rousseau and Gatignol [28]–[30] and Matikas et al. [31],
[32], who used asymptotic methods, expanded about the
angles for which a Rayleigh wave propagates. They ap-
proximated the integrals of the reflected field for high fre-
quencies, for immersed plates, and for semi-infinite media.
For an arbitrary oblique incidence onto fluid/solid inter-
faces and on to immersed plates, the works of Bertoni and
Tamir [26], [27] have been extended by Ngoc and Mayer
[22] and Ng et al. [33]. Considering the beam as a super-
position of inhomogeneous plane waves leads to similar
results [34], [35].

Following some of the above-mentioned authors, the for-
malism used in this paper is the decomposition of the
incident beam into monochromatic plane waves, and it
mainly relies on works of Goodman [36], Hosten and De-
schamps [37], Schaefer et al. [38] and Schaefer and Lewin
[39], Souissi [40] and Belleval et al. [41], Orofino and Ped-
ersen [42]–[48], Zeroug and Felsen [49], Rehman [50] and
Rehman et al. [51].

The organization of the paper is as follows. The phys-
ical phenomenon is described by means of an asymptotic
approach in Section II. This phenomenon is then numer-
ically and experimentally illustrated in Sections III and
IV: the model is first described (a 3-D model is necessary
here) in Section II, numerical pressure maps are given in
Section III, with a prediction of the deviation angle of the
Lamb wave beam and of the oblique plane. Experimen-
tal results are given in Section IV with a comparison with
numerical results.

II. Description of the Phenomenon and

Approach to Modeling

The aim of this section is to physically describe the
Lamb wave beam deviation and to explain how to predict
the deviation angle, both by an asymptotic analysis and
by a 3-D model using a decomposition of an ultrasonic
beam into monochromatic plane waves. For background,
the first part presents some results on the dispersion curves
for Lamb waves in a plate, especially on the slowness curves
for Lamb waves.

A. Lamb Waves in an Anisotropic Multilayered Plate

Consider an anisotropic multilayered plate immersed in
a fluid. The interface plane is denoted (x1Ox2), the x3-
axis being perpendicular to the interfaces (see Fig. 1). At a
characteristic pair (angle θ of the acoustic axis of the emit-
ter transducer, frequency f), the incident acoustic beam
generates locally a Lamb wave in the plate [52], [53]. The
calculation of the dispersion curves for Lamb modes [54]
permits the characteristic pair (θ, f) to be determined, in
order to generate a Lamb wave in the plate (see for exam-
ple Fig. 2 and Table I for the material characteristic of an
hexagonal unidirectional composite plate [55], the fibers of
which are in the direction of x1-axis). Note that, alterna-
tively, the phase velocity Vph of the Lamb wave (instead of

Fig. 1. Geometry of the problem (a) for a multilayered anisotropic
plate, (b) in the particular case of an unidirectional composite plate.

Fig. 2. Dispersion curves for Lamb waves. Unidirectional car-
bon/epoxy plate with sixth-order axis parallel to x1-axis. Curves
plotted using the software Disperse [53].

TABLE I
Material Characteristics of the Unidirectional

Carbon-Epoxy Medium (Hexagonal Symmetry).
1

C11 C12 C22 C23 C44 C55 ρ

126 6.7 13.7 7.1 3.3 5.8 1580 kg/m3

1Elastic constants (GPa) such that sixth-order axis is parallel to the
x1-axis [47], with c55 = (c22 − c23) /2.
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the incident angle θ) could be drawn as a function of the
frequency:

Vph =
ω

k1
=

V 0

sin θ
, (1)

where k1, ω, and V 0 are, respectively, the projection of the
current wave number vector onto the x1-axis, the angular
frequency, and the velocity of a longitudinal wave in the
fluid. These dispersion curves are obtained by writing the
boundary conditions when the layer is in a vacuum, which
leads to a dispersion relation of the form:

ω = F (k1, k2), (2)

where k2 is the projection of the current wave number
vector onto the x2-axis.

Such curves depend on the position of the sagittal plane
with respect to the plate, i.e., on the azimuthal angle ϕ
(see Fig. 1). The dispersion curves of Fig. 2 are drawn
for a given angle ϕ. Actually, for realistic transducer sim-
ulation, bounded beams have to be considered, and the
incident beam is centered on an acoustic axis, parallel to
the main wave-vector of the beam (i.e., which conveys the
maximum energy in the beam). Thus, it is necessary to
represent the variation of the Lamb mode as a function
of the azimuthal angle ϕ. When ϕ varies, plotting Vph (or
its inverse in the present case) leads to a number of modal
curves F , given implicitly by (2) in the (k1, k2) plane. Two
examples of such curves for Lamb modes are given in Fig. 3
for a carbon/epoxy layer and for two layers of a 0◦/90◦

carbon/epoxy structure, in the more usual form of the so-
called slowness curves. Other examples may be found in
[14], [18], [52]. Note that these curves are drawn for a given
frequency.

B. Generation of a Lamb Wave Beam by an Incident
Bounded Beam—Description of the Phenomenon

Let us consider an anisotropic, multilayered plate im-
mersed in a fluid. In order to clarify the description of
the phenomenon, the plate represented in Fig. 1(b) is an
unidirectional composite plate, the fibers of which are not
aligned with the direction of the x1-axis. Note that the
explanations given subsequently are very general and can
be applied to the general case of a stratified medium. At a
characteristic pair (angle θ of the acoustic axis of the emit-
ter transducer, frequency f) the incident acoustic beam
generates locally a Lamb wave in the structure. This Lamb
beam reradiates waves into the fluid. Due to the anisotropy
of the plate, the direction of the Lamb wave beam (i.e., its
most energetic part) is deviated with respect to the sagittal
plane (plane perpendicular to the interfaces and contain-
ing the acoustic axis of the incident beam) [19], [20]. In
the case of an unidirectional plate, and according to the
generated Lamb mode, it will be seen in Section III-B and
Section III-C, that this deviation tends toward the direc-
tion of the fibers and can be almost parallel to them.

The above-described phenomenon, thus, has a 3-D ge-
ometry. As a consequence, a 3-D model is necessary in

Fig. 3. Slowness curves for Lamb modes f.H. = 1 MHz.mm. (a) Uni-
directional carbon/epoxy plate with sixth-order axis parallel to x1-
axis. (b) For two layers of a 0◦/90◦ carbon/epoxy structure.

order to simulate it and to observe the deviation of the
Lamb wave beam.

C. Description of the Model

It is useful to recall the principle of the decomposition of
a beam into monochromatic plane wave (or angular spec-
trum decomposition). This principle is well-known when it
is applied to a scalar variable [36], [37], [41]. As mentioned
in Section I, the decomposition of the incident beam into
monochromatic plane waves has been used by several au-
thors [38]–[51], and so necessarily there is some repeated
information here for completeness.

Here, the formalism is applied to a vector variable, and
particular attention is paid to the reference systems used
(origin and basis) and to the reference of the displace-
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ment amplitude. The calculation procedure is summarized
in Section III-A.

1. Decomposition of a Beam into Monochromatic Plane
Waves:

• Consider a monochromatic plane wave with a wave
number vector �kE , propagating in a medium. A reference
system RE is defined by a reference point OE and the
corresponding basis BE =

(
�eXE

1
, �eXE

2
, �eXE

3

)
. The repre-

sentation of any point M in the space is expressed as(
XE

1 , XE
2 , XE

3
)
, and the components of the vector �kE in

the basis BE are denoted:

�kE

BE

∣∣∣∣∣∣
KE

1
KE

2
KE

3

. (3)

The components of �kE are related by the following dis-
persion relation:

(
KE

1
)2

+
(
KE

2
)2

+
(
KE

3
)2

=
( ω

V 0

)2

with kE =
∥∥∥�kE

∥∥∥ =
ω

V 0 .
(4)

• The acoustic field, represented here by the particle
displacement vector �υE of the considered plane wave, can
be written in the following form:

�υE
(
XE

1 , XE
2 , XE

3
)

= �UE
(
KE

1 ,KE
2

)
e−(i�kE ·

−−−→
OEM−iωt)

= �UE
(
KE

1 ,KE
2

)
e−i(KE

1 XE
1 +KE

2 XE
2 +KE

3 XE
3 −ωt), (5)

where �UE
(
KE

1 ,KE
2

)
is referenced in XE

3 = 0.
• Due to the linearity of the acoustic equations, a given

field �uE
(
XE

1 , XE
2 , XE

3
)

can be built, at any point M , omit-
ting the eiωt factor, as a superposition of all the plane
acoustic fields �υE

(
XE

1 , XE
2 , XE

3
)
, with parameters KE

1
and KE

2 with KE
3 given by the dispersion relation (4):

�uE
(
XE

1 , XE
2 , XE

3
)

=

1
(2π)2

+∞∫
−∞

+∞∫
−∞

�UE
(
KE

1 ,KE
2

)
e−i�kE ·

−−−→
OEMdKE

1 dKE
2 . (6)

• The acoustic field �u
(
XE

1 , XE
2 , 0

)
is assumed to be

known in the reference plane PE
0 =

(
OE , XE

1 , XE
2

)
at

XE
3 = 0. Practically, this plane is the plane of the front face

of the transducer. Thus, the field �uE
(
XE

1 , XE
2 , 0

)
appears

as the Fourier transform of the vectors �UE
(
KE

1 ,KE
2

)
usu-

ally called angular spectrum vectors:

�uE
(
XE

1 , XE
2 , 0

)
=

1
(2π)2

+∞∫
−∞

+∞∫
−∞

�UE
(
KE

1 ,KE
2

)

· e−i(KE
1 XE

1 +KE
2 XE

2 )dKE
1 dKE

2 . (7)

Fig. 4. Geometry of the problem for the calculation of the reflected
and transmitted fields.

By an inverse Fourier transform of (7), numerically cal-
culated by a 2-D fast Fourier transform (FFT) algorithm,
the angular spectrum vector thus can be obtained in the
reference plane PE

0 . Using (5), the angular spectrum vec-
tor in a plane PE

Z0
, parallel to the reference plane PE

0 and
situated at the distance Z0 from it, is given by:

�UE
(
KE

1 ,KE
2 ;XE

3 = Z0
)

= �UE
(
KE

1 ,KE
2

)
e−iKE

3 Z0 .
(8)

The term e−iKE
3 Z0 represents a change of phase, and

the particular displacement field in a plane parallel to the
reference plane, is given by the Fourier transform:

�uE
(
XE

1 , XE
2 , Z0

)
=

1
(2π)2

+∞∫
−∞

+∞∫
−∞

�UE
(
KE

1 ,KE
2

)
e−iKE

3 Z0

· e−i(KE
1 XE

1 +KE
2 XE

2 )dKE
1 dKE

2 . (9)

Because of the 3-D geometry, �UE
(
KE

1 ,KE
2

)
and

�uE
(
XE

1 , XE
2 , Z0

)
are 3-D vectors.

This calculation is done here numerically, using a 2-D
FFT algorithm that imposes a constant step sampling.
Calculating the field in a plane nonparallel to the plane(
OE , XE

1 , XE
2

)
implies a change of reference system that

leads to a nonlinear relation between the former and new
KE

1 and KE
2 . As a consequence, the step of the sampling

is no longer constant. It will be seen, in the next section,
that the calculation of the reflected field in a plane sym-
metric to the emitter plane with respect to the normal to
the interfaces, does not need any change in the sampling
domain.

2. Interaction of the Beam with a Structure: Consider
the anisotropic multilayered medium of Fig. 4 and let
R = (O, x1, x2, x3) be the associated reference system. The



potel et al.: ultrasonic waves and anisotropic multilayered structures 991

emitter transducer is excited by a monochromatic signal
and is immersed in a fluid. The particle displacement is
assumed to be known in (or next to) the front face plane
of the transducer. The normal to this plane (the acoustic
axis of the transducer) makes an angle θ with the normal
to the interfaces of the plate. The aim of this section is
to determine the reflected field in a plane parallel to the
plane symmetric to the emitter plane, with respect to the
normal to the interfaces, and the transmitted field in a
plane parallel to the emitter plane (see Fig. 4).

Let us define the following reference systems:
• RE =

(
OE , XE

1 , XE
2 , XE

3
)

with the corresponding ba-

sis BE =
(
�eXE

1
, �eXE

2
, �eXE

3

)
, linked to the emitter plane,

• RR =
(
OR, XR

1 , XR
2 , XR

3
)

with the corresponding in-

direct basis BR =
(
�eXR

1
, �eXR

2
, �eXR

3

)
, linked to the inspec-

tion plane for the reflected field,
• RT =

(
OT , XT

1 , XT
2 , XT

3
)

with the corresponding ba-

sis BT =
(
�eXT

1
, �eXT

2
, �eXT

3

)
= BE , linked to the inspection

plane for the transmitted field.
From (6), the emitted, reflected, and transmitted dis-

placement fields can be, respectively, written in the follow-
ing form:

�uE
(
XE

1 , XE
2 , XE

3
)

=

1
(2π)2

+∞∫
−∞

+∞∫
−∞

�UE
(
KE

1 ,KE
2

)
e−i�kE ·

−−−→
OEMdKE

1 dKE
2 ,(10)

�uR
(
XR

1 , XR
2 , XR

3
)

=

1
(2π)2

+∞∫
−∞

+∞∫
−∞

�UR
(
KR

1 ,KR
2

)
e−i�kR·

−−−→
ORMdKR

1 dKR
2 ,(11)

�uT
(
XT

1 , XT
2 , XT

3
)

=

1
(2π)2

+∞∫
−∞

+∞∫
−∞

�UT
(
KT

1 ,KT
2

)
e−i�kT ·

−−−→
OT MdKT

1 dKT
2 , (12)

where �kE, �kR, and �kT and are the wave number vectors of
respective emitted, reflected, and transmitted plane waves.
Their components in the basis BE , BR, and BT are de-
noted:

�kE

BE

∣∣∣∣∣∣
KE

1
KE

2
KE

3

,

�kR

BR

∣∣∣∣∣∣
KR

1
KR

2
KR

3

,

�kT

BR

∣∣∣∣∣∣
KT

1
KT

2
KT

3

, (13)

with the representation of any point M in the space in
each reference system given by:

−−−→
OEM

BE

∣∣∣∣∣∣
XE

1
XE

2
XE

3

,

−−−→
ORM

BR

∣∣∣∣∣∣
XR

1
XR

2
XR

3

,

−−−→
OT M

BT

∣∣∣∣∣∣
XT

1
XT

2
XT

3

. (14)

As a consequence, the displacement amplitudes of the
angular spectrum vectors �UE , �UR, and �UT are, respec-
tively, referenced in OE , OR, and OT .

• For each monochromatic plane wave, the re-
flection and transmission coefficients R

(
KE

1 ,KE
2

)
and

T
(
KE

1 ,KE
2

)
can be obtained by various methods in the

literature, for example, by using the Thomson-Haskell
method (with a change of reference of the Floquet
waves) [20], [56]–[59]. Generally speaking, because of the
anisotropy, the displacement fields in the plate are cou-
pled with each other, and the displacement vectors are
3-D vectors. The displacement amplitudes of the emitted
and reflected wave are referenced at the upper interface of
the structure at point O (i.e., at x3 = 0), whereas the dis-
placement amplitude of the transmitted wave is referenced
at the lower interface of the structure at point O′, i.e., at
x3 = zP (see Fig. 4). The phase factors are such that:

ψR = �kE ·
−−−→
OEO + �kR ·

−−−→
OOR, (15)

and

ψT = �kE ·
−−−→
OEO + �kT ·

−−−→
O′OT . (16)

• As the angular spectrum is known in a reference plane,
the multiplication of these terms permits us to obtain the
displacement fields in the reception plane, i.e., the reflected
field �uR and the transmitted field �uT . This multiplication
is no more that a convolution in the space

(
XR

1 , XR
2

)
or(

XT
1 , XT

2
)
:

�uR
(
XR

1 , XR
2 , XR

3 = 0
)

=
1

(2π)2

+∞∫
−∞

+∞∫
−∞

�UE
M

(
KE

1 ,KE
2

)
R

(
KE

1 ,KE
2

)

· e−iψR

e−i(KR
1 XR

1 +KR
2 XR

2 )dKR
1 dKR

2

,
(17)

and

�uT
(
XT

1 , XT
2 , XT

3 = 0
)

=
1

(2π)2

+∞∫
−∞

+∞∫
−∞

�UE
(
KE

1 ,KE
2

)
T

(
KE

1 ,KE
2

)

· e−iψT

e−i(KT
1 XT

1 +KT
2 XT

2 )dKT
1 dKT

2

,
(18)

where �UE
M

(
KE

1 ,KE
2

)
is the angular spectrum vector mir-

ror to the incident angular spectrum vector �UE
(
KE

1 ,KE
2

)
with respect to the interfaces (see Fig. 4). Due to the choice
of the basis BE , BR, and BR, the components of the in-
cident, reflected and transmitted wave number vectors in
these bases are equal. Let us note:

K1 = KE
1 = KR

1 = KT
1 and K2 = KE

2 = KR
2 = KT

2 .
(19)

As a consequence, the reflected angular spectrum
vector �UR (K1,K2) is equal, omitting the factor
R (K1,K2) · e−iψR

, to the mirror angular spectrum vec-
tor �UE

M (K1,K2). The components of �UE
M (K1,K2) in the



992 ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 52, no. 6, june 2005

basis BR are the same as the components of �UE (K1,K2)
in the basis BE , i.e., if:

�UE
(
KE

1 ,KE
2

)
=

3∑
i=1

UE
i

(
KE

1 ,KE
2

)
�eXE

i
,

(20a)

then

�UE
M

(
KE

1 ,KE
2

)
=

3∑
i=1

UE
i

(
KE

1 ,KE
2

)
�eXR

i
.

(20b)

And:

�uR
(
XR

1 , XR
2 , XR

3 = 0
)

=
1

(2π)2

+∞∫
−∞

+∞∫
−∞

�UE
M (K1,K2)R (K1,K2)

· e−iψR

e−i(K1 XR
1 +K2 XR

2 ) dK1 dK2,

(21a)

and

�uT
(
XT

1 , XT
2 , XT

3 = 0
)

=
1

(2π)2

+∞∫
−∞

+∞∫
−∞

�UE (K1,K2)T (K1,K2)

· e−iψT

e−i(K1 XT
1 +K2 XT

2 )dK1 dK2.

(21b)

Knowing that, generally speaking, the pressure is re-
lated to the X3-component of the particle displacement
by the following formula:

P (K1,K2;ω) =
iρ0ω2

K3
U3 (K1,K2;ω) , (22)

where ρ0 is the density of the fluid, the reflected and trans-
mitted pressure fields are, respectively, given by:

PR
(
XR

1 , XR
2 , XR

3 = 0
)

=
iρ0ω2

(2π)2

+∞∫
−∞

+∞∫
−∞

1
KR

3
UE

M3
(K1,K2)R (K1,K2)

· e−iψR

e−i(K1 XR
1 +K2 XR

2 )dK1 dK2

,
(23a)

and

PT
(
XT

1 , XT
2 , XT

3 = 0
)

=
iρ0ω2

(2π)2

+∞∫
−∞

+∞∫
−∞

1
KT

3
UE

3 (K1,K2)T (K1,K2)

· e−iψT

e−i(K1 XT
1 +K2 XT

2 )dK1 dK2

,
(23b)

where UE
M3

= UE
3 (20b). Due to (19), the sampling is the

same in the emitted, reflected, and transmitted planes.
It should be noted that the calculation of the reflected

and transmitted fields in other planes, in particular in a
plane parallel to the interfaces of the plate, would require
a Jacobian term in the integrals. The numerical procedure
in order to avoid it is described in Section III-A.

Fig. 5. Obtaining the main group direction of the modal wave field,
for a particular branch of the modal curve.

D. Asymptotic Analysis by a Stationary Phase Argument

The above-described model permits one to numerically
obtain reflected and transmitted fields of pressure in the
fluid surrounding the immersed plate, especially when, at a
characteristic pair (angle θ of the acoustic axis of the emit-
ter transducer, frequency ω), the incident acoustic beam
generates locally a Lamb wave in the plate. The deviation
phenomenon, described above, thus can be numerically il-
lustrated, and the deviation angle of the Lamb beam can
be numerically found (see below). However, an asymptotic
analysis in the far field also permits one to predict this de-
viation angle, using the Lamb slowness curves. The aim of
this section is to summarize the reasoning for this asymp-
totic analysis; full details are contained in [18]–[20].

Consider the point corresponding to the projection �kΛ0

of the main wave vector of the acoustic axis of the trans-
ducer onto the plate (see Fig. 1) on one branch of the
slowness Lamb curve (see Fig. 5). The incident beam also
generates waves with slowness vectors close to this point of
the curve. These waves contribute to the modal propaga-
tion and, therefore, a bounded Lamb beam is generated in
the structure. By means of a stationary phase argument,
it is possible to demonstrate that the most energetic part
of this modal beam propagates along the group direction.
This group direction is along the normal to the Lamb slow-
ness curve at the point on the curve given by the direction
of the Lamb wave vector. As the medium constituting the
layers is anisotropic, the Lamb slowness curve is not circu-
lar and this normal direction is different from the direction
of the Lamb wave vector �kΛ0 . As a consequence, the Lamb
wave beam is deviated in the group direction xΛ associated
with the modal wave vector of the acoustic axis of the in-
cident beam (see Fig. 5). It should be noted here that, as
the phenomenon is described for a monochromatic field,
the only dispersion that is involved in the problem is the
angular dispersion of the Lamb waves. Thus, it is the group
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Fig. 6. Reflected field of pressure, in a plane parallel to a unidirectional carbon/epoxy plate with thickness H = 0.59 mm, f = 1.35 MHz,
mode S0. (a) Sixth-order axis parallel to x1-axis, ϕ = 0◦. (b) Sixth-order axis not parallel to x1-axis, ϕ = 45◦.

direction that is important in this case, and not the group
velocity.

The modal beam, as it propagates along the anisotropic
medium, radiates into the external fluid. This radiation
phenomenon is centered in an oblique plane corresponding
to the reflected direction of the acoustic axis. The intersec-
tion of this oblique plane with the interface direction is the
main group direction of the modal beam. All the nonspec-
ular effects observed by Neubauer [25] and modeled by
several authors, now have to be searched in this oblique
plane, and not in the sagittal plane. Thus in this context,
because of the beam deviation, the usual 2-D modeling
of the acoustic beam is no longer sufficient, and the 3-D
model is needed.

III. Numerical Method and Results

Using the numerical procedure presented in Section III,
corresponding to the model described in Section II, numer-
ical results are presented for carbon/epoxy structures, in
order to illustrate the deviation of the Lamb wave beam. A
first illustration of the phenomenon is given in Section III,
with the conventions of representation used here, then sev-
eral maps of the reflected field are given in Section III,
with a comparison between the deviation angle given nu-
merically by the model and by the asymptotic analysis
explained in Section II. The radiation of the reflected field
in an oblique plane also is illustrated.

A. Calculation Procedure

The calculation procedure corresponding to the 3-D
model described in Section II is as follows:

• The particle displacement is simulated in the emitter
transducer plane by an analytical expression. Experi-
mental measurements (in order to take into account a
real transducer) also could be used.

• The incident field is decomposed into plane waves, us-
ing a 2-D FFT algorithm.

• For each oblique monochromatic plane wave, reflec-
tion and transmission coefficients are calculated us-
ing the transfer matrix formalism. Alternative multi-
layered models from the literature also could be used
here.

• A Fourier transform, numerically calculated by a 2-D
IFFT algorithm, permits us to obtain the displace-
ment and pressure fields in the spatial domain.

• According to the applications (propagation of Lamb
waves for example), an interpolation in the spatial
domain permits us to obtain the transmitted and re-
flected fields of pressure in a plane parallel to the in-
terfaces of the plate.

Note that the reflected field is numerically calculated
in a plane parallel to the plane that is symmetric to the
emitter plane, with respect to the normal to the interfaces;
and the transmitted field is calculated in a plane parallel
to the emitter plane. The calculation of these fields in a
plane parallel to the interfaces of the plate would require
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Fig. 7. Two points of view for the representation of the results: (a) and (b) first point of view, rotation of the sagittal plane; (c) and (d)
second point of view, rotation of the plate; (b) and (d) slowness curves.

Fig. 8. Map of the reflected field of pressure for a unidirectional carbon/epoxy plate (f.H. = 1 MHz.mm), azimuthal angle ϕ = 30◦.
Excitation of (a) mode S0 θ = 11.2◦, (b) mode A2 θ = 3.1◦, (c) mode A1 θ = 29.5◦.

both the calculation of a Jacobian in the integrals, and an
interpolation of the sampling. This choice of planes thus
avoids that additional complication. Then, in order to find
the field of pressure in a plane parallel to the interfaces of
the plate, the pressure is calculated for a set of planes of
the reflected or transmitted field, each one with a different
distance along the reflected or transmitted beam path. The
required field then is found from the intersection of the set
of planes with the plane parallel to the interfaces of the
plate.

This model is very general because it takes into account
the anisotropy of each layer constituting the structure, the
geometry of the transducer, and the propagation in three
dimensions.

B. First Illustration of the Lamb Wave Beam Deviation

In this illustration, the reflected fields of pressure are
represented in a plane parallel to the plate. The position of
the sagittal plane is located by the azimuthal angle ϕ (see
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Fig. 9. Slowness curves for Lamb modes for a unidirectional car-
bon/epoxy plate (f.H. = 1 MHz.mm) with the deviation angle α′

associated to each mode, when ϕ = 30◦.

Fig. 10. Influence of the number of points for defining numerically
the emitter transducer (20 points).

Fig. 1). Let OX be the intersection of the sagittal plane
with the first interface of the plane [see Figs. 1 and 6(a)].
Thus, all the reflected fields of pressure are represented as
maps in the plane (OX,OY ), the OY -axis being perpen-
dicular to the OX-axis. This simply amounts to making
the plate rotate while keeping the sagittal plane fixed, in-
stead of making the sagittal plane vary while keeping the
plate fixed. These two points of view are quite equivalent
(apart from the signs of angles).

A first illustration of the Lamb wave beam deviation
is presented in Fig. 6, for a unidirectional carbon/epoxy
plate, when the fibers’ direction is contained in the sagit-

Fig. 11. Crossing of the Lamb slowness curves of a unidirectional
carbon/epoxy plate (f.H. = 1 MHz.mm) for modes S0 and A1, ϕ =
70◦.

Fig. 12. Map of the reflected field of pressure for a unidirectional
carbon/epoxy plate (f.H. = 1 MHz.mm), azimuthal angle ϕ = 70◦.
Excitation of modes S0 and A1.

tal plane [see Fig. 6(a)]; in this case, as expected, the most
energetic part of the nonspecular field is not deviated with
respect to the sagittal plane. However, when the fibers’ di-
rection is not contained in the sagittal plane [see Fig. 6(b)],
a deviation of the Lamb wave field is observed. Here, in
this particular case, the deviation direction is practically
to that of the fibers. In both cases, the specular and non-
specular parts of the reflected field can be observed.

C. Study of Several Lamb Modes

It has been seen that, in the far field (corresponding to
the nonspecular part of the reflected field), the Lamb wave
beam generated in the structure is centered on a direction
xΛ given by the normal to the slowness curve at the point
corresponding to the acoustic axis of the emitter. Let us
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Fig. 13. Map of the reflected field of pressure for two layers of a
0◦/90◦ carbon/epoxy structure (f.H. = 1 MHz.mm), azimuthal an-
gle ϕ = 30◦, incident angle θ = 24.7◦. Excitation of mode 3 [see
Fig. 3(b)].

Fig. 14. Radiation of the Lamb beam field in an oblique plane in the
external fluid.

note α′ the angle between the xΛ-axis and the OX axis,
and let us call it the deviation angle.

It also is possible to determine the group direction from
the numerical results of the above-described model by
seeking the maximum amplitude of the reflected field of
pressure. Considering only the nonspecular part of the re-
flected field, it, thus, is possible to determine the deviation
angle of the Lamb wave beam.

The following maps are presented together with the as-
sociated Lamb slowness curves and their corresponding
group directions (normal to the slowness curve). Figs. 7(b)
and (d) present the Lamb slowness curves for an unidirec-
tional carbon/epoxy plate (modes S0 and A1), with the
fiber direction parallel to the x1-axis, with the two points
of view for the representation of the maps. All the maps
are presented using the second point of view of Fig. 7(d),

TABLE II
Lamb Mode Deviation Obtained by Both Theoretical and

Numerical Methods.
1

Lamb mode A2 S0 A1

Normal to slowness curve for Lamb 28.0◦ 28.0◦ −12.0◦

Maximum of magnitude of pressure 27.9◦ 28.3◦ −10.6◦

1Uniaxial carbon-epoxy plate, azimuthal angle ϕ = 30◦, frequency-
thickness = 1 MHz.mm.

which is a simple rotation of the azimuthal angle ϕ of
Fig. 7(b). The distance between the emitter and the plate
is equal to 200 mm. The emitter has a Gaussian response,
with a diameter equal to 20 mm. The reflected pressure is
calculated at the surface of the plate, in water.

Fig. 8 presents the map of the reflected field of pressure
for an unidirectional carbon/epoxy plate, when the fiber
direction is not contained in the sagittal plane (azimuthal
angle ϕ = 30◦). The associated slowness curves are given
in Fig. 9. The excited Lamb mode is not the same for
Figs. 8(a), (b), and (c). It appears clear that the devia-
tion direction of the Lamb mode depends on the excited
mode itself. Indeed, these three excited modes are those
described in Fig. 9. From Fig. 9, it can be observed that
modes A2 and S0 have slowness curves with very similar
shapes, whereas that of mode A1 is totally different. As
a result, the direction of propagation of Lamb mode A1
is different from that of modes A2 and S0, which roughly
follow the fiber direction. The angles of deviation for each
mode are given in Table II, using the normal to the slow-
ness curves (asymptotic approach method) and the search
for the maximum amplitude of the reflected field of pres-
sure (numerical method). It can be seen that both methods
are in excellent agreement. The amplitude of the reflected
field depends on the coupling effect between the fluid and
the structure.

Note that the cross shape located at the specular re-
flected field, which is visible on all maps, is related to the
number of points taken to define the emitter. Here, for
computational time reasons, this number of points is equal
to 10. For more points, the cross is less visible, as can be
seen, for example, in Fig. 10.

When two Lamb slowness curves cross (ϕ = 70◦, see
Fig. 11), both modes A1 and S0 are excited, as can be seen
in Fig. 12. As the shape of these two slowness curves is very
different, so are the normal and thus the deviation angles.
It is important to recognize that such a phenomenon can
be observed only because of the 3-D model and because
the spatially finite nature of the ultrasonic beam is taken
into account.

Let us now consider a structure made up of two car-
bon/epoxy layers, the fibers of one being perpendicular
to those of the other (0◦/90◦ structure), each layer being
0.11-mm thick. The corresponding Lamb slowness curves
are given in Fig. 3(b) and the predicted map is shown in
Fig. 13. The deviation angle given by the normal to the
slowness curve (α′ = −50◦) is in very good agreement
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Fig. 15. Maps of the reflected field of pressure for a unidirectional carbon/epoxy plate (f.H. = 1 MHz.mm), azimuthal angle ϕ = 60◦.
Excitation of mode S0. (a) h = 0 mm, (b) h = 200 mm.

Fig. 16. Experimental setup.

with that given by the maximum of the magnitude of the
pressure (α′ = −50.1◦).

D. Radiation in an Oblique Plane

The Lamb wave beam reradiates into the external fluid
in an oblique plane corresponding to the specular reflection
angle of the acoustic axis (see Fig. 14). The field in this
oblique plane has been studied by an asymptotic analysis
in [19], [20]. In this section, it is illustrated numerically.

Let β be the angle between the oblique plane and the
plate, and δ be the distance between this plane and the
Ox3-axis, for a given height h (see Fig. 14). If the re-
flected field is examined at the height h from the plate,
the maximum of the magnitude of the pressure is found
in the oblique plane, and its projection onto the plane of
the plate is located at the distance δ from the OxΛ-axis
(main group direction). Knowing the incident angle θ and

the deviation angle α = (Ox1, OxΛ), a simple geometric
calculation leads to the following formulae (ϕ = 0◦):

β = Arctg
(

1
tg θ sinα

)
=

π

2
− Arctg

δ

h
. (24)

Numerically, Fig. 15(b) presents the reflected field of
pressure for a unidirectional carbon/epoxy plate when
h = 200 mm. The dotted line corresponds to the maxi-
mum magnitude of pressure when h = 0, transferred from
Fig. 15(a). It can be observed clearly that the two Lamb
wave beams are shifted. The measurement of the distance
δ permits us to determine the angle β, using (24). The
theoretical value coming from (24) (β = 74.7◦) and the
numerical value (β = 75.3◦) are in very good agreement.
It also can be seen that there is an increase of the Lamb
wave beam size as a function of the height h, which is due
to the spreading of the beam.

IV. Experimental Results

Experiments have been made on a 0.59-mm thick uni-
directional carbon/epoxy plate in order to validate the de-
velopments.

A. Experimental Setup

The emitting transducer used to generate the ultrasonic
field is a Panametrics wide band (Panametrics-NDT) PZT
device, V314, with nominal frequency 1 MHz and diameter
3/4 inch (19.05 mm). The receiver is a needle hydrophone,
PVDF technology, diameter 1 mm, from Precision Acous-
tics Ltd., Dorchester, Dorset, England. The hydrophone
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Fig. 17. Reflected field of pressure (dB). Experimental result (a) and numerical result (b). Mode S0 excitation with an azimuthal angle
ϕ = 0◦, frequency = 1.35 MHz, incident angle = 9.8◦, plate thickness = 0.59 mm.

Fig. 18. Reflected field of pressure (dB). Experimental result (a) and numerical result (b). Mode S0 excitation with an azimuthal angle
ϕ = 45◦, frequency = 1.20 MHz, incident angle = 13.6◦, plate thickness = 0.59 mm.

has an integrated preamplifier with a sensitivity equal to
413 mV/MPa at 3 MHz. The electrical signal is a win-
dowed tone amplified by a Matec TB-100 electronic card
(Matec Instrument Company, Northborough, MA). The
duration of excitation has been adjusted in order to ob-
tain 10 cycles within the excitation window.

The distance between the transducer emitter front face
and the surface of the plate is equal to 90 mm. The hy-
drophone is positioned as close as possible from the surface
of the plate (roughly 1 mm). It is supported by an electron-
ically controlled arm. Displacements accuracy is ±0.1 mm
along both the x1 and the x2-axis (see Fig. 16).

B. In Plane Configuration

Fig. 17 presents experimental and numerical results
when the fiber direction is contained in the sagittal plane
(in-plane fiber configuration), i.e., ϕ = 0◦. The excited
mode is S0. Globally, a good agreement between experi-

mental and numerical shapes of the reflected pressure can
be observed. The deviation angle of the Lamb beam is
equal to zero in both cases; the Lamb beam propagation
direction is parallel to the fiber direction and is contained
in the sagittal plane.

C. Out-of-Plane Configuration

Fig. 18 presents experimental and numerical results
when the fiber direction is not contained in the sagittal
plane (out-of-plane fiber configuration). Here ϕ = 45◦.
The excited mode is still S0. The fact that the direction of
the ultrasonic reflected Lamb beam is not contained in the
sagittal plane is highlighted in Fig. 18. The deviation angle
obtained by seeking the maximum amplitude of the nu-
merical and experimental reflected fields are, respectively,
42.2◦ and 45.1◦. Moreover, the pressure magnitudes are
roughly similar. The Lamb beam propagation direction is
quite close to the fiber direction.
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V. Conclusions

When an ultrasonic beam is incident on an anisotropic
multilayered structure, the bounded nature of this beam
excites a Lamb wave beam in the structure. This modal
beam travels in the structure and reradiates waves into the
external fluid. Due to the anisotropy of the plate, the most
energetic part of the Lamb wave beam is deviated with re-
spect to the sagittal plane. Using an asymptotic analysis,
this deviation direction corresponds to the normal to the
tangent of the Lamb slowness curve, at a point correspond-
ing to the main wave number vector of the acoustic axis
of the incident beam. It has been shown in this paper that
a 3-D model is necessary to simulate this phenomenon.
The theoretical and numerical deviation angle are in good
agreement, and the oblique plane in which the Lamb wave
beam reradiates in the fluid has been brought out. A very
good agreement between numerical and experimental re-
sults has been found for several different configurations.
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