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Two Elastodynamic Incremental Models:
The Incremental Theory of Diffraction

and a Huygens Method
Michel Darmon , Audrey Kamta Djakou, Samar Chehade, Catherine Potel, and Larissa Fradkin

Abstract— The elastodynamic geometrical theory of diffraction
(GTD) has proved to be useful in ultrasonic nondestructive testing
(NDT) and utilizes the so-called diffraction coefficients obtained
by solving canonical problems, such as diffraction from a half-
plane or an infinite wedge. Consequently, applying GTD as a ray
method leads to several limitations notably when the scatterer
contour cannot be locally approximated by a straight infinite
line: when the contour has a singularity (for instance, at a corner
of a rectangular scatterer), the GTD field is, therefore, spatially
nonuniform. In particular, defects encountered in ultrasonic NDT
have contours of complex shape and finite length. Incremental
models represent an alternative to standard GTD in the view
of overcoming its limitations. Two elastodynamic incremental
models have been developed to better take into consideration
the finite length and shape of the defect contour and provide a
more physical representation of the edge diffracted field: the first
one is an extension to elastodynamics of the incremental theory
of diffraction (ITD) previously developed in electromagnetism,
while the second one relies on the Huygens principle. These two
methods have been tested numerically, showing that they predict
a spatially continuous scattered field and their experimental
validation is presented in a 3-D configuration.

Index Terms— Elastodynamics, geometrical theory of diffrac-
tion (GTD), Huygens, incremental models, incremental theory of
diffraction (ITD).

I. INTRODUCTION

THE scattering of elastic waves from defects is of great
interest in ultrasonic nondestructive testing (NDT). The

geometrical theory of diffraction (GTD) is a classical method
used for modeling diffraction from cracks, which behave
locally as half-planes or infinite wedges [1], [2]. It is a high-
frequency ray method, which in addition to incident and
reflected rays, that introduces diffracted rays and describes
the diffracted field they carry using the diffraction coefficients
calculated for half-planes or infinite wedges, respectively.
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In other words, GTD relies on the locality principle of high
frequency phenomena, which stipulates that if the vicinity
of each diffraction point along the obstacle contour can be
described, may be approximately, by an infinite tangent half-
plane or by an infinite planar wedge, then the diffracted field
radiated by this point can be described using the corresponding
GTD diffraction coefficients. However, in ultrasonic NDT,
it is not uncommon to encounter a diffracting edge of a
flaw that cannot be approximated, even locally, by a straight
line or planar wedge as shown in Figs. 3(a) and 4(a). GTD
produces a discontinuity at the shadow boundaries emanating
from the edge endpoints (for instance, a corner of a rectangular
defect) since the GTD field is null out of the diffraction
cone. GTD has other drawbacks of ray tracing: searching
for the diffraction point for each observation point is not so
straightforward in the complex 3-D configurations, and the
GTD invalidity at caustics requires a uniform correction using
special functions [3].

Incremental methods have been developed, originally in
electromagnetism, to overcome these GTD limitations: incre-
mental theory of diffraction (ITD) [4]–[6], incremental length
diffraction coefficient (ILDC) [7], and equivalent edge currents
(EECs) [8]. Unlike GTD, incremental methods do not require
ray tracing. They treat points of the diffracting edge as
fictitious sources of the field called incremental field, and the
scattered field at an observation point is calculated as the
sum of these incremental contributions. Incremental models
provide an extension for observation angles outside of the
diffraction cone and a natural uniform representation of the
scattered field at caustics [4] or at the shadow boundaries
emanating from edge endpoints. Incremental methods are
particularly useful to better take into account the finite length
and shape of a defect contour. To model diffraction from an
edge of finite size, ITD can be based on GTD or [5] uniform
theory of diffraction (UTD) [9], UTD being a GTD uniform
correction, valid inside penumbras of incident or reflected rays
and outside [9].

As in ultrasonic NDT, a crack is usually not more than a
few centimeters long [10], and inspections are carried out at
high frequency (1–10 MHz). GTD can be utilized, because
cracks are usually large compared to the corresponding wave-
lengths. But GTD is theoretically valid for an infinite edge and
modeling has to take into account the crack’s finite extent.

This paper aims at developing elastodynamic incremental
models for isotropic solids, with application to ultrasonic NDT.
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Fig. 1. Plane wave with the propagation vector kα incident on a stress-free
crack (in gray) of contour L . Thick black arrow: direction of the incident
wave and thick gray arrow: direction of the wave scattered by the half-plane
tangent to the crack at the diffraction point Ql .

An elastodynamic incremental model was developed before for
an elliptical crack [11]: it is based on a Kirchhoff approxima-
tion integral on a line and will consequently necessarily predict
erroneous amplitudes of edge diffracted fields; that is why the
elastodynamic Kirchhoff prediction has been improved using
the physical theory of diffraction (PTD) [12], especially for
shear waves [12].

The methods proposed in this paper are more effective
than this Kirchhoff-based method [11] since they rely on
GTD or PTD which is a much better recipe than Kirchhoff for
modeling edge diffraction. In Section II, an elastodynamic ITD
is developed using the standard approach previously developed
in electromagnetism [4]. A new elastodynamic incremental
model based on the Huygens principle is also proposed.
Section III describes the numerical and experimental valida-
tions of both models. Section IV provides the conclusion.

II. INCREMENTAL MODELS

Let us consider a curved stress-free crack of contour L
embedded in an elastic homogeneous and isotropic space. Let
the crack be irradiated by a plane wave (Fig. 1)

uα(x) = Adαei(−ωt+kα ·x) (1)

where the superscript α = L, TV, or TH (longitudinal,
transverse vertical, or transverse horizontal) is used to denote
the incident wave mode, A is the wave amplitude, dα its
polarization (unit vector in the direction of particle motion),
kα its wave vector whose magnitude is noted kα = ω/cα,
with ω being the circular frequency, cα being the speed of the
corresponding mode, i being the imaginary unit, t is the time,
and x is the observation point. Below the exponential factor
exp (−iωt) is implied but omitted everywhere.

Incremental methods assume that points Ql of the diffract-
ing edge are all fictitious Huygens sources of a field defined
as the incremental field Fβ(Ql , x). Then, at an observation
point x, the field vβ diffracted by the contour L is the integral
over the contour L of the incremental field

vα
β(x) =

∫
L

Fβ(Ql , x)eikα l cos �α(l)dl (2)

with dl being the edge increment. We have developed two
different methods to determine this incremental field in

Fig. 2. Integration contours � and Cξ in the complex plane σ + iτ .

elastodynamics: one based on the GTD locality principle (ITD)
and one based on the Huygens principle.

A. Elastodynamic Incremental Theory of Diffraction

At the diffraction point Ql , let the crack edge be approx-
imated by a half-plane tangent to the edge at this diffraction
point (see Fig. 1). Let Ql be the origin of the local Cartesian
coordinate system {e′

x , e′
y, e′

z} associated with this half-plane.
It is convenient to express the incident wave vector kα = kα ·
(sin �α cos θα, sin �α sin θα, cos �α) in the associated spheri-
cal coordinates (kα,�α, θα) and the observation point x, using
either the local Cartesian coordinates (x ′, y ′, z′) or another set
of associated local spherical coordinates (s′, φ, θ).

The exact scattered field uα
β(x,�α, θα) generated by a plane

elastic wave irradiating a half-plane can be described using the
plane-wave spectral decomposition [2]

uα
β(x,�α, θα) = i

qβκβ

2π

∫
�

�β(λ,�α, θα) sin λdβ(�β, θ)

× eikβ [r ′ sin �β cos(λ−θ̄)+z′ cos �β ]dλ (3)

with β being the scattered wave mode, qβ = kβ sin �β and
κβ = cL/cβ the dimensionless slowness of the scattered wave

�β(−qβ cos λ, sgn(sinθ)) = gβ(−qβ cos λ, sgn(sinθ)

qα cos θα − qβ cos λ
(4)

where expressions of gβ are given from [2] in [13, Appen-
dix B] and θ̄ given by

{
θ̄ = θ, if θ ≤ π(y ′ ≥ 0)

θ̄ = 2π − θ, if θ > π(y ′ < 0).
(5)

dβ is the polarization vector of the scattered wave, and � is
the steepest descent contour shown in Fig. 2. The diffraction
angle �β is related to the incidence angle �α by the law of
edge diffraction

kβ cos �β = kα cos �α. (6)
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An asymptotic evaluation of (3) which utilizes the steepest
descent method leads to the GTD diffracted field [2]

uα
β(x,�α, θα) = uα

(
xα
β

) eikβ s′
β√

kβs′
β

Dα
β (�α, θα, θ)dβ(�β, θ) (7)

with the diffraction coefficient

Dα
β (�α, θα, θ) = ei π

4√
2π

k2
β�β(θ̄,�α, θα)| sin θ | (8)

with s′
β = r ′/ sin �β, r ′ = (x ′2 + y ′2)1/2, and xα

β = (0, 0, z′ −
s′
β cos �β) being the diffraction point on the diffracting edge

(the single ray satisfying the law of edge diffraction and
reaching x emanates from xα

β) and uα(xα
β) = uα(xα

β ) · dα .
Implementing the procedure described in [4], the incremen-

tal field Fβ(Ql , x) is the field Fβ(z′ = 0, x) radiated by
the diffraction point Ql treated as lying on the edge of the
tangential half-plane.

It is then assumed that the field diffracted by a half-plane
edge is the sum of incremental fields emitted by all diffraction
points along the infinite edge

uα
β(x,�α, θα) =

∫ +∞

−∞
Fβ(z′, x)eikα z′ cos �α dz′. (9)

Using notation ξ = �α, the inverse Fourier transform gives

Fβ(z′, x) = kα

2π

∫
Cξ

uα
β(x, ξ, θα) sin ξe−ikα z′ cos ξ dξ. (10)

The contour Cξ in the ξ = σ + iτ plane is shown in Fig. 2.
Thus, at any arbitrary observation point, the incremental
contribution from Ql to the diffracted field is

Fβ(Ql , x) = Fβ(z′ = 0, x)

= kα

2π
uα(Ql)

∫
Cξ

uα
β(x, ξ, θα) sin ξdξ. (11)

Note that the incident field in this local Cartesian coordinate
is uα(Ql) = 1 and is, therefore, independent of ξ and thus
can be taken outside the integral sign. Replacing uα

β(x, ξ, θα)
in (11) by its (3), the incremental field Fβ(Ql , x) becomes

Fβ(Ql , x) = i
κβkα

4π2 uα(Ql) ×
∫

Cξ

∫
�

qβ(ξ)�β(λ, ξ, θα)

× sin λ sin ξdβ(ξ, λ)eig(λ,ξ)dλdξ (12)

with g(λ, ξ) = kβ [r ′ sin �β(ξ) cos(λ − θ̄ ) + z′ cos �β(ξ)].
Angle �β is related to ξ by the law of edge diffraction
kβ cos �β(ξ) = kα cos ξ . Therefore, the phase function in (12)
can be written as

g(λ, ξ) = s′[ sin φ cos
(
k2
β − k2

α cos2 ξ
)1/2 + kα cos φ cos ξ

]
(13)

with s′ being the distance between the observation point and
the diffraction point Ql . Integral (12) has two stationary phase
points

(λ0, ξ0) =
(

θ̄ , arccos

(
kβ

kα
cos φ

))
and (θ̄ , 0). (14)

The second phase stationary point corresponds to grazing
incidence. In this paper, we study the contribution of the

first stationary phase point alone. The obtained results are,
therefore, not valid for any grazing incidence. Applying the
steepest descent method to the double integral (12) leads to
the following high-frequency approximation of the incremental
field (see the Appendix or [13] for details)

Fβ(Ql , x) = 1√
2π i

sin φDα
β (�α(φ), θα, θ)dβ(φ, θ)

eikβ s ′

s′
(15)

with

�α(φ) = arccos

(
kβ

kα
cos φ

)
. (16)

This asymptote of the incremental field, which is valid in the
far field zone kβs′ � 1, is a spherical wave weighted by a
scattering coefficient. Thus, each point on the defect contour
points acts as a fictitious source of the spherical wave.

Note that if the contour L is a straight line (the crack is a
half-plane), then substituting (15) into (2), the diffracted field
is

vα
β(x) =

∫ ∞

−∞
uα(Ql)

sin φ(l)√
2π i

Dα
β (�α(φ(l)), θα, θ)

× eikβ s ′

s′ dβ(φ, θ)dl. (17)

In the global Cartesian coordinate system {O, ex = e′
x , ey =

e′
y, ez = e′

z}, the diffraction point is Ql(0, 0, l). The cor-
responding phase stationary point ls is the z-coordinate of
the diffraction point on the contour. At this stationary point,
φ(ls) = �β , s′(ls) = s′

β , and the phase stationary point
contribution to (17) is

vα
β(x) = eikα ls cos �α Dα

β (�α, θα, θ)dβ(�β, θ)
eikβ s ′

β√
kβs′

β

. (18)

ITD gives, thus, the GTD solution (7) for infinite straight
edges.

B. Huygens Method

According to Huygens, when impacted by an incident plane
wave, each point on an obstacle serves as the source of a spher-
ical secondary wavelet with the same frequency as the primary
wave. The amplitude at any point is the superposition of these
wavelets. This theory gives a simple qualitative description of
diffraction but needs to be adapted to provide a good agree-
ment with more exact scattering formulations (such as GTD).
Therefore, in our Huygens method, we postulate an ansatz,
in which the amplitude of the scattered field at an observation
point is obtained by integrating the spherical waves’ contribu-
tions from the points along the edge and by weighting each
contribution by a directivity factor (henceforth named K )

vα
β(x) =

∫
L

Kuα(Ql)
eikβ s ′

s′ dl (19)

where L is the crack contour, and dl is the length of
an elementary arc along the contour L. To determine the
unknown K vector in (19), we again use Huygens’ principle:
the latter tells us that the scattered wavefront from an infinite
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straight edge is the envelope of the secondary spherical waves
and is, thus, cylindrical or conical in the field far from the
flaw as predicted by GTD. To mathematically transform the
sum of spherical waves of our Huygens proposed integral
into a cylindrical or conical waveform, we apply below the
stationary phase method to Huygens’ integral for a straight
infinite edge and the obtained far-field approximation is
identified to the GTD one to fix the K coefficient.

If the contour L is a straight segment with ends a and
b, the angles of incidence �α and θα are the same at any
discretization points on the diffracting edge. In the frame
{O, ex , ey, ez}, the distance between the diffraction point
Ql = (0, 0, l) on the contour L and an observation point
x = (x, y, z) = (x ′, y ′, z′ + l) is s′ = [(z − l)2 + r ′2]1/2

with r ′ = (x ′2 + y ′2)1/2. Using the law of edge diffraction (6),
the phase function of diffracted field (19) can be written as

q(l) =
√

(z − l)2 + r ′2 + l cos �β (20)

The stationary phase point is the edge diffraction point
(0, 0, ls) with

ls = z − r ′

tan �β
. (21)

Therefore, in the far field (kβr ′ � 1), the diffracted field (19)
can be approximated by the phase stationary method

vα
β(x) = H (ls − a)H (b − ls)AK ei π

4

√
2π

sin �β

ei(kα ls cos �α+kβ s ′
β)

√
kβs′

β

(22)

when the phase stationary point is far from the edge extremi-
ties a and b, and H is the Heaviside function. The coefficients
vector K can be chosen to be

K = sin �β√
2iπ

Dα
β (�α, θα, θ)dβ(�β, θ) (23)

so that for an infinite straight edge (a → −∞, b → ∞),
the stationary point contribution gives the GTD diffracted
field (7).

The formulation of Huygens method (19) has similitudes
with (45) of the paper [11]. But this cited equation was
simply a step of calculation in [11] and led to no modeling
application. Moreover, this equation has been established only
for an elliptic crack and compressional waves. In contrast,
the Huygens method proposed here can be applied for any
crack shape and also for shear waves.

Finally, incremental fields in the ITD and Huygens models
can both be represented using the K function by

Fβ(Ql , x)|ITD = eikβ s ′

s′ K (�(l)) (24)

Fβ(Ql , x)|Huygens = eikβ s ′

s′ K (�β) (25)

with

K (ζ ) = sin ζ√
2π i

Dα
β (�α(ζ ), θα, θ)dβ(ζ, θ). (26)

The Huygens formula (25) differs from the ITD formula (24)
by the argument ζ of the coefficient K (ζ ). In ITD, ζ is

the angle φ characterizing the ray issuing from an arbitrary
discretization point to the observation point, whereas in the
Huygens method, it is the diffraction angle �β . Consequently,
ITD is parametrized by the local angle φ, whereas the Huygens
method is parametrized by the incident angle �α according
to (6). Both methods add endpoints contributions to the
classical edge contribution. Even if endpoints probably radiate
differently from other points inside the edge segment, the ITD
and Huygens models lead to a more physical description than
GTD one’s [see Figs. 3(a) and 4(a)].

III. RESULTS

A. Implementation

For both Huygens and ITD models, the diffracted field is
then computed using (2) [and (24)–(26) for ITD, (25) and
(26) for Huygens], where the integration along the edge L is
approached numerically by a discrete sum. For the case studied
here of an incident plane wave, the GTD diffraction coefficient
and scattered polarization are the same for all meshed edge
points for Huygens computations [see (25)], whereas they vary
along the edge for ITD [see (24) depending on �(l)]. Huygens
is consequently much less time-consuming than ITD.

B. Numerical Tests

The ITD and Huygens models have been subjected to two
different kinds of numerical tests. In both tests, the longitudi-
nal/transversal speeds and frequency of the incident wave are,
respectively, cL = 5900 (m/s) and cT = 3230 m/s and 1 MHz.

The first test is a comparison to GTD. The numerical
tests involve here a longitudinal oblique (�α=L = 60° and
θα=L = 60°) incident wave and both longitudinal (Fig. 3)
and transversal (Fig. 4) diffracted waves from a finite straight
edge. The frame center O is taken as the center of a 40-mm-
long crack edge. The observation points are chosen to lie in
the plane (e′

y, e′
z) normal to the crack plane and containing

the crack edge (see Fig. 1): θ = 90° or θ = 270°. There is
no shadow boundary of the incident or reflected fields (diver-
gence of the GTD diffraction coefficient) in this observation
plane since, for example, for P scattered waves, θ 	= θα

and θ 	= 2π − θα.
GTD is a ray method. Given an observation point, the dif-

fraction point on the edge can be found, which gives rise to a
diffracted ray satisfying the law of edge diffraction and reach-
ing this observation point. The diffracted field amplitude is
then evaluated using the GTD formula (7). The classical GTD
produces a discontinuity at the shadow boundaries emanating
from the edge endpoints [see Figs. 3(a) and 4(a)]. Unlike
GTD, the Huygens model involves summing up the wavelets
generated by the fictitious sources on the edge. Therefore,
in this model (and also in ITD), the edge endpoints contribute
to the diffracted field, making it continuous [see Figs. 3(b) and
4(b)]. Since GTD is discontinuous at the shadow boundary of
the edge endpoints, but Huygens (or ITD) is continuous, the
difference between GTD and Huygens (or ITD) solutions [see
Fig. 3(d)] is discontinuous and behaves as a sign function.
The appearance of the sign function can be mathematically
shown by calculating the asymptotic uniform contribution of
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Fig. 3. Diffraction of an oblique incident longitudinal wave (white arrow,
�α = 60° and θα=L = 60°) by a planar 40-mm-long crack, observed in
the plane normal to the crack and containing the crack edge. Results for
the longitudinal diffracted wave, normalized by the incident amplitude: real
parts of (a) GTD, (b) Huygens, and (c) ITD solutions. Absolute difference
between real parts of (d) Huygens and GTD solutions and (e) Huygens and
ITD solutions.

coalescing extremity points and stationary phase points in the
Huygens’ integral using a method proposed by Borovikov [14].
Extremity points then correspond to the waves diffracted by

Fig. 4. Results in the configuration of Fig. 3 for the transversal diffracted
wave: (a), (b), and (c) with the same meaning as shown in Fig. 3.

the edge endpoints and stationary phase points to waves
diffracted from the edge itself. This difference highlights the
Huygens spherical waves emitted by endpoints which interfere
with each other [see Fig. 3(b) and (d)] and render the Huygens
field continuous at endpoints shadow boundaries contrary to
GTD. In Fig. 3(b) and (d), the difference between GTD and
Huygens (or ITD) increases near the edge, y ∼ 0 mm. That
does not matter because near the edge, neither GTD nor
Huygens (nor ITD) provide a valid result since they are far-
field approximations. In the edge near field, Huygens is closer
to GTD than ITD and in far field Huygens and ITD are similar.
In near field, the ITD coefficient given by (24) and depending
on the local angle φ varies more rapidly than the Huygens
one from a diffraction point to another, and the summation of
secondary sources is more destructive. These observations are
more pronounced for the mode-converted transversal diffracted
wave shown in Fig. 4.

Echoes from the endpoints contributions obtained with ITD
and Huygens models are not exact since they still rely on
canonical GTD solutions (infinite half-plane or wedge). But
these incremental methods produce a spatially continuous field
and, consequently, a more physical representation than GTD
one’s.
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Fig. 5. (a) Edge of length L impinged by an incident longitudinal plane
wave. Longitudinal edge diffracted field simulated by different models:
(b) L = 10 mm and (c) L = 20 mm.

It has been numerically checked that as the edge length
increases, the Huygens and ITD models both converge
to GTD.

The second test is a comparison between GTD, Huygens,
ITD, and a finite difference (FD) numerical model [15].
An edge of length L [see Fig. 5(a)] is impinged by an incident
longitudinal plane wave. The amplitude (absolute value) of
the longitudinal edge diffracted field is plotted for two flaw
lengths L versus the observation angle φ of observation points
located in the plane (e′

y, e′
z) at a distance R = 30 mm of

five wavelengths from the flaw center. Since this observation
plane is in the shadow boundary of the incident (θ = θα) or
reflected (θ = 2π − θα) fields, the analytical models are all
combined with UTD [16]: the UTD diffraction coefficient is
then finite contrary to the GTD one. As shown in Figs. 3 and
4, the GTD diffracted field is discontinuous at the shadow
boundaries [angles φ1, . . . , φ4 in Fig. 5(a)] emanating from
the edge endpoints. ITD and Huygens methods give generally
accurate and similar results for observation points for which
there exists a GTD diffraction point on the edge (φ1 < φ < φ2)
and (φ3 < φ < φ4) and even around these regions. Huygens
has a more physical behavior than ITD for small edge lengths
for regions surrounding φ = 0 and φ = 180° (where ITD

Fig. 6. TOFD inspection used for experimental validation.

vanishes due to destructive interferences as shown also in
Figs. 3(c) and 4(c) for y = 0).

C. Experimental Validation

The echoes diffracted by the top tip of a 40-mm-long and
10-mm-high planar notch breaking the back wall of a ferritic
steel component have been simulated by the two previous
incremental methods and compared to both experimental and
numerical results. This comparison briefly presented in [17,
Sec. II] is reproduced here to make this paper self-consistent
since the theory of incremental methods is completely detailed
here1; the results simulated by a Huygens/2.5-D GTD model
and by a hybrid numerical model are shown here in addition.
The objective of this experimental validation is to evaluate the
ability of the developed incremental models to simulate the
echo amplitude of a defect edge of finite extent.

The diffraction echoes have been measured in a time-of-
flight diffraction (TOFD) contact configuration (see Fig. 6)
using two 6.35 mm diameter, single element, Plexiglas wedge-
type transducers emitting compressional P-waves at 45° inci-
dence and 2.25 MHz. The flaw skew angle (angle between
the top edge of the notch and Y-axis, see Fig. 6) has been
varied from 0° to 70° by rotating the specimen around the
Z-axis. S-waves are generated in the specimen but the main
and first arrival echo from the specimen bulk is due to incident
P-wave->scattered P-wave diffraction from the top crack edge.
To compute the ultrasonic response of flaws, we have used a
reciprocity-based measurement model whose principles and
abilities are described in more detail in [18]. In order to avoid
modeling of the pulser, cabling, electroacoustic transduction,
and electronics at emission/reception, this model requires
as input the experimental signal obtained by a calibration
measurement on a reference flaw. A side-drilled hole of 2 mm
diameter and 40 mm length (in red shown in Fig. 6) has been
used for calibration. Our first measurement model [18] applied
plane-wave approximations to the ultrasonic fields at each
flaw mesh point in order to calculate diffraction coefficients.
It yields satisfying results in most usual configurations but
can lead to inaccuracies in unfavorable cases, such as for
wide probe apertures, outside of the focal region, or for beam-
splitting or distortion due to irregular geometries.

A new ray-based model [19] describes the ultrasonic field as
a sum of rays emanating from meshed points of the transducer
surface and applies the plane-wave approximation to each ray

1Only the main results are presented in [17] (reusing portions from [17]
in other works are allowed). This paper is cited in [17] under the submitted
reference [10] to refer to the theory of the incremental models.
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Fig. 7. Echo amplitude diffracted by the top tip.

instead of the entire mean field. It can significantly improve
the accuracy of echo computations since the GTD diffraction
coefficient is calculated at each mesh flaw contour point for
each pair of incident and diffracted rays instead of being
calculated only once. In Fig. 7, the maximal amplitude of
the P->P echo signal is plotted for both experimental and
simulated results. In the current configuration, plane-wave
approximation and the ray-based model lead to quasi-identical
results since the flaw is far from the probes and the maximal
flaw echo amplitude is obtained for the flaw edge location on
the probes focal axis. The ray-based model results are slightly
closer to those of a hybrid finite elements method model [20]
(mixing a ray model for beam calculation and spectral finite
elements for flaw scattering modeling).

The Huygens/GTD and ITD/GTD results are similar and
close to experiments even for large skews with a maximal dif-
ference of 2 dB, which is of order of measurement errors [21].
Huygens/2.5-D GTD model breaks down for skew angles
greater than 30°. Therefore, the experimental validation of both
ITD and Huygens methods in a 3-D configuration and with a
finite-size flaw has been successful.

IV. CONCLUSION

Two incremental methods have been proposed for use
in elastodynamics to predict diffraction from edges of a
finite length. Both methods are based on the edge integral
approach. For the plane-wave incident on a half-plane both
methods reproduce the canonical GTD solution, but unlike
the latter they lead to a field which is spatially continuous
notably at the shadow boundaries due to edge endpoints. The
methods have been tested numerically and validated against
experiments for a back wall planar crack. Such methods
can be combined with the recently developed elastodynamic
corrections to GTD, which are valid in the vicinity of shadow
boundaries, the PTD [12] and the UTD [16] or in the vicinity
of critical angles [22].

APPENDIX

Let us show how to evaluate the double integral (12).
Denoting it by I it can be written as

I =
∫

�

∫
Cξ

A(λ, ξ)e−s ′ f (λ,ξ)dλdξ (27)

with

A(λ, ξ) = i(κβkα)

4π2 uα(Ql)qβ(ξ)�β(λ, ξ, θα)

× sin λ sin ξdβ(ξ, λ) (28)

and

f (λ, ξ) = −i
[

sin φ cos(λ − θ̄ )
(
k2
β − k2

α cos2 ξ
) 1

2

+ kα cos φ cos ξ
]

(29)

where (13) was used. Integral I can be approximated using
the steepest descent method [14] to give

I ∼ 2π

s′
A(λs, ξs )√

det H (λs, ξs)
e−s ′ f (λs ,ξs) (30)

where H is the Hessian matrix. All the functions above are
evaluated at the phase stationary point at which we have

0 = ∂λ f = i
[

sin φ sin(λ − θ̄ )
(
k2
β − k2

α cos2 ξ
) 1

2
]

(31)

0 = ∂ξ f = −i
[
k2
α sin φ cos(λ − θ̄ ) sin ξ

× cos ξ
(
k2
β − k2

α cos2 ξ
)− 1

2 − kα cos φ sin ξ
]
.

(32)

Therefore, the stationary point is λs = θ̄ , ξs = 0 or

cos ξs = kβ

kα
cos φ (33)

and according to (16), ξs = �α(φ). We have also

∂2
λλ f = i

[
sin φ cos(λ − θ̄ )

(
k2
β − k2

α cos2 ξ
) 1

2
]

(34)

i∂2
ξξ f = k2

α sin φ cos(λ − θ̄ )
(
k2
β − k2

α cos2 ξ
)− 1

2

×
[

cos2 ξ − sin2 ξ − k2
α sin2 ξ cos2 ξ

k2
β − k2

α cos2 ξ

]

− kα cos φ cos ξ (35)

∂2
λξ f = ∂2

ξλ(g) = i
[
k2
α sin φ sin(λ − θ̄ ) sin ξ

× cos ξ
(
k2
β − k2

α cos2 ξ
)− 1

2
]
. (36)

Finally, at the diffraction point (λs, ξs)

∂2
λλ f |(λs ,ξs ) = ikβ sin2 φ (37)

∂2
ξξ f |(λs ,ξs) = i

k2
α − k2

β cos2 φ

kβ sin2 φ
(38)

∂2
λξ (g)|(λs ,ξs) = 0. (39)

Using (39)–(41), the Hessian matrix at the stationary point is

H (λs, ξs) =
⎡
⎢⎣

ikβ sin2 φ 0

0 i
k2
α − k2

β cos2 φ

kβ sin2 φ

⎤
⎥⎦ (40)

and

det[H (λs, ξs)] = −k2
α sin2 �α(φ). (41)

Since

f (λs , ξs) = −ikβ (42)

A(λs , ξs) = i(κβkα)

4π2 uα(Ql)qβ(�α(φ))�β(θ̄ ,�α(φ), θα)

× | sin θ | sin �α(φ)dβ(φ, θ) (43)
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substituting the above expressions into (3), we get

I ∼ 1

2π

eikβ s′

s′ sin φuα(Ql)k
2
β�β(θ̄ ,�α(φ), θα)

× | sin θ |dβ(φ, θ) (44)

and according to (8)

I ∼ sin φ√
2iπ

uα(Ql)
eikβ s′

s′ Dα
β (�α(φ), θα, θ)dβ(φ, θ). (45)
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