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The aim of the paper is to describe the modes coupling due to scattering on small one-dimensional
irregularities �parallel ridges� of the surface of isotropic solid plates, when shear horizontal waves
�SH-waves� polarized along the ridges propagate perpendicularly to them. In a previous paper
�Valier-Brasier et al., Appl. Phys. Lett. 93, 164101 �2008��, an analytical model was presented for
describing the roughness by inertia of “teeth” which bound the ridges, through an impedancelike
boundary condition, whatever shape of the roughness is. In the present paper, this shape is accounted
for through a more sophisticated model, used previously for describing the effects of the roughness
of walls on acoustic pressure fields in fluid-filled waveguides �Valier-Brasier et al., J. Appl. Phys.
106, 034913 �2009��, and adapted here in order to describe the modes coupling due to the scattering
of these SH-waves. Moreover, the effect of a spatial periodicity of the ridges on the modes coupling
is discussed, emphasizing the role played by the phase-matching �phonon relationship�. Finally,
comparison between both models �“teeth inertial” and “shape profile” models� is given and
discussed. © 2010 American Institute of Physics. �doi:10.1063/1.3486020�

I. INTRODUCTION

As previously mentioned �see Refs. 1 and 2, and refer-
ences contained therein�, the characterization of the rough-
ness of the surface of solid plates is the subject of studies
presented in the literature.3–9 In specific applications �such as
the characterization of the roughness before applying adhe-
sive joints�, the attenuation of Lamb waves when propagat-
ing along the plate is a feature that becomes relevant when-
ever there are distributed small irregularities of the surface of
the plate which must be characterized. The incident displace-
ment field undergoes scattering on these irregularities, which
therefore induces modes coupling inside the plate.

These phenomena have been modeled using an
impedance-like boundary condition for describing the effect
of the roughness.1 In this model, the corrugations �ridges� are
assumed to be small deviations from the regularly shaped
surface of the inner plate �bounded outwardly by the ridges�.
These deviations are called “small teeth” and their effects are
described by their inertia. This inertia is accounted for by
nonhomogeneous reactive surfaces represented by a local
impedancelike operator in the frequency domain �note that
the equivalent modeling for a fluid-filled, rough waveguide
involves the compressibility of small cavities�. The solutions
are given in the frame of a modal theory, using a set of the
Neumann eigenmodes of the regularly shaped surface that
bounds inwardly the perturbed surface of the plate.

This previous model �called here “teeth inertial” model�
is a viable tool to give a first approach for the characteriza-
tion of the kind of irregularities mentioned above �small de-
viations�, whereas the model presented in the present paper
�called “shape profile” model� is a convenient tool to tackle

the effects of the shape profile of the ridges �including the
depth and the slope�. In this approach, the displacement field
of shear horizontal waves �SH-waves� is obtained from the
coupling between Neumann modes of the regularly shaped
surface of a waveguide that bounds outwardly the perturbed
surface of the considered plate �i.e., on outer side of the
perturbed surface�. In many respects, the model used herein
to account for the shape of the ridges �Sec. II� is an extension
to the solid isotropic plate of the method used previously for
describing the acoustic coupling in fluid-filled rough
waveguides �presented and compared with a previous one in
Refs. 2 and 10�. It relies on an analytic technique, using
Green’s theorem and a perturbation method in the frame of
the modal analysis mentioned above �i.e., using a unique set
of Neumann eigenmodes of the regularly shaped surface that
bounds outwardly the perturbed surface of the plate�.

The comparison between both models �teeth inertial and
shape profile models� is discussed, and the effects of phase-
matching �phonon relationship� between spatial periods of
the ridges and the spatial characteristics �namely wave-
numbers along the axis of the plate� of the incident modes
and the modes created by the scattering on the rough surfaces
are presented �Sec. III�. Finally, the approach herein built
permits to highlight the effects of spatial periodicity of the
ridges, using Fourier analysis to give analytically phase-
matched relationships �phonon relationships� not provided
yet in the frame of this modeling �Sec. IV�.

II. THE FUNDAMENTAL PROBLEM

A. The plate and its boundaries

The set-up considered is a two-dimensional �2D� �x ,z�,
homogeneous solid plate in vacuum, assumed to be infinite
in the y-direction, bounded by two parallel surfaces perpen-
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dicular to the z-axis and having one-dimensional �1D� shape
perturbation �small ridges parallel to the y-axis� �Fig. 1�, the
solid being characterized by its density � and its shear sec-
ond Lamé coefficient �. The ridged surfaces are set, respec-
tively, at the coordinates z1 and z2 �which depend on the
coordinate x� and their shape is defined by the local unit
vectors n1 and n2 normal to the real surfaces of the plate.
They are assumed to be small deviations from the regularly
shaped surfaces �set at �Lz /2� bounding outwardly the per-
turbed surfaces. The small distance between both surfaces
�the regular one and the corrugated one� are denoted h1

= �Lz /2�+z1 and h2= �Lz /2�−z2. An inner plate with regularly
shaped surfaces z= �d /2 is defined as being surrounded by
the 1D corrugation.

B. The basic equations

An harmonic �with a time factor exp�i�t��, incident
propagating SH-wave coming from x→−� is characterized
by its amplitude �depending on the coordinate z� at the en-
trance x=0 of the ridged plate �domain D, x� �0,��, z
� �z1 ,z2��. The shear displacement field, assumed to be po-
larized along the y-axis �along the ridges�, is denoted

û�x,z;t� = Ûy�x,z�exp�i�t�ey , �1a�

where ey denotes the unit vector that have the positive direc-
tion of the y-coordinate.

Its behavior is governed by the set of equations, includ-
ing the propagation equation and the boundary conditions,
which takes the following form:

��xx
2 + �zz

2 + kT
2�Ûy�x,z� = − f̂�z���x�, ∀ �x,z� � D , �1b�

T�x,z� . n1 = 0, ∀ x � �0,��, z = z1, �1c�

T�x,z� . n2 = 0, ∀ x � �0,��, z = z2, �1d�

where kT=� /cT, cT=�� /� being the speed of the shear

waves in the homogeneous solid plate, where f̂�z� represents
the source strength at x=0 ���x� being the Dirac function�,
and where T�x ,z� represents the stress tensor.

The boundary conditions �1c� and �1d� on the ridged
surfaces zq �q=1,2� of the real waveguide take the following
form:

T�x,zq� . nq = �1 + ��xhq�2�−1/2�Txy�x,z���xhq�

+ �− 1�qTzy�x,z��ey = 0, ∀ x, q = 1,2,

�2�

where

nq = �1 + ��xhq�2�−1/2�ex��xhq� + �− 1�qez� , �3�

denotes the local unit vectors normal to the surfaces of the
real plate, outwardly directed.

Hence, invoking the Hooke’s law and accounting for the
polarization along the y-axis of the SH-wave, these boundary
conditions imply

�nq
Ûy�x,zq� = 0, ∀ x, q = 1,2, �4a�

where �nq
=nq ·� is the normal derivative with respect to the

outward normal nq, namely:

�nq
= �1 + ��xhq�2�−1/2���xhq��x + �− 1�q�zq

�, q = 1,2.

�4b�

The solution will be expressed �through an integral formula-
tion, see Sec. II C� in the frame of a modal approach, using a
unique set of 1D orthogonal, normalized, respectively, anti-
symmetrical ��=1� and symmetrical ��=2� eigenfunctions
	m

����z� �with associated eigenvalues km
���� of the 2D wave-

guide bounded by the regularly shaped, parallel, and
plane surfaces set at z= �Lz /2 on the outer side of the per-
turbed surfaces. These eigenfunctions are solutions of the
homogeneous Helmholtz equation subject to Neumann
boundary conditions, in the domain D0= �x� �0,�� , z
� �−Lz /2,Lz /2��, given by �m=0,1 ,2 , . . .�

�5a����zz
2 + �km

����2		m
����z� = 0, z � �− Lz/2,Lz/2� ,

�z	m
����z� = 0, z = − Lz/2 and z = Lz/2.



�5b�

The eigenfunctions 	m
����z� and the corresponding eigenval-

ues km
��� take, respectively, the well-known following expres-

sions:

	m
�1��z� = �2/Lz sin�km

�1�z� , �6a�

with

km
�1� = �2m + 1�
/Lz, �6b�

and

	m
�2��z� = ��2 − �m0�/Lz cos�km

�2�z� , �7a�

with

km
�2� = 2m
/Lz. �7b�

FIG. 1. Sketch of the 2D waveguide with surfaces having small deviations
from the regular shape. �a� General view and �b� zoom on the corrugation.
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C. The integral formulation and the iterative solution

The integral formulation of the problem stated above
�1a�–�1c�, which involves domains D0= �x� �0,�� , z
� �−Lz /2,Lz /2�� and D= �x� �0,�� , z� �z1 ,z2��, can be
written as follows:11

��x,z� � �D� , Ûy�x,z�
�x,z� � �D0 − D� , 0



= �

z1

z2 �
0

+�

G�x,z;x�,z�� f̂�x�,z��dx�dz�

+ �
q=1,2

�
0

+�

�G�x,z;x�,z���nq
Ûy�x�,z��

− Ûy�x�,z���nq
G�x,z;x�,z���dx�. �8�

The displacement field Ûy�x ,z� in the domain �D�D0� and
the Green function G�x ,z ;x� ,z�� in the domain �D0� are both
expressed as an expansion on the Neumann eigenfunctions
	m

����z�, namely:

Ûy�x,z� = �
�=1

2

�
m=0

�

Âm
����x�	m

����z� , �9�

where the coefficients Âm
��� are the unknowns of the problem,

G�x,z;x�,z�� = �
�=1

2

�
r=0

�

�gr
����x,x��	r

����z���	r
����z� , �10a�

with

gr
����x,x�� = exp�− ikxr

���
x − x�
�/�2ikxr

���� , �10b�

�kxr

����2 = kT
2 − �kr

����2. �10c�

Therefore, invoking Eqs. �3�, �4b�, �9�, and �10�, Eq. �8�
yields straightforwardly

��x,z� � �D� , �
�=1

2

�
m=0

�

Âm
����x�	m

����z�

�x,z� � �D0 − D� , 0
�

= �
�=1

2

�
p=0

� �F̂p
����x� + �

�=1

2

�
r=0

�

Ĥrp
�����Âr

����x��
	p
����z� , �11�

where

F̂p
����x� = �

z1

z2

�gp
����x,x��	p

����z��� f̂�z��dz�, �12�

is the source term representing the energy transfer between
the source �assumed to be localized at the coordinate x�=0�
and the mode �� , p�, and where

Ĥrp
�����Âr

����x�� = − �
q=1

2 �
0

�

Âr
����x��	r

����zq���nq�
	p

����zq��


gp
����x,x��dx�, �13�

represents the boundary modal coupling due to the shape
profile of the roughness.

Then, taking into account the orthogonality properties of
the eigenfunctions, the inner product, in the interval
z� �−Lz /2,Lz /2�, of Eq. �11� by the eigenfunction 	m

���

yields the following relationship between the unknown coef-

ficients Âm
���:

Âm
����x� = F̂m

����x� + �
�=1

2

�
r=0

�

�Ĥrm
�����Âr

����x��

+ Brm
�����x�Âr

����x�	 , �14�

where �the end points z1 and z2 depend on the coordinate x�

Brm
�����x� = ��

−Lz/2

z1

dz + �
z2

Lz/2

dz�	r
����z�	m

����z� , �15�

the first term in the right hand side representing the effect of
the incident field on the mode m, the second ones represent-
ing the boundary modal coupling due to the shape of the
roughness, and the third one accounting for the depth of the
roughness �bulk modal coupling�.2,10,12

Using an iterative method to express the amplitude of

each mode Âm
����x�, which assumes that the coupling function

in the right hand side of Eq. �14� is a small quantity com-

pared to the source term F̂m
���, thus the Nth-order solution of

this Eq. �14� for Âm
����x� is written as follows:

�N�Âm
��� = �0�Âm

��� + �1�Âm
��� + ¯ + �N−1�Âm

��� + �N�Âm
���, �16�

where �N�Âm
��� denotes the Nth-order perturbation expansion

for Âm
���, �0�Âm

��� the zero order approximation �the solution

without roughness�, �1�Âm
��� the first order correction term,

and so on.
The solution without roughness and the first order solu-

tion of Eq. �14� �Born approximation, discarding the second-
order term� are, respectively, given by

�0�Âm
����x� = F̂m

����x� = exp�− ikxm

���x� , �17a�

�1�Âm
����x� = F̂m

����x� + �
�=1

2

�
r=0

�

�Ĥrm
������0�Âm

����x��

+ Brm
�����x��0�Âr

����x�	 , �17b�

the Nth-order taking the following form:

�N�Âm
����x� = F̂m

����x� + �
�=1

2

�
r=0

�

�Ĥrm
������N−1�Âr

����x��

+ Brm
�����x��N−1�Âr

����x�	 , �17c�

and so on.
In the results presented below, the amplitude of each

mode Âm
����x�, governed by Eq. �14�, is truncated to the

Nth-order expansion �17c� with respect to the small surface

perturbation, when the omission of the further term �N+1�Âm
���

�Eq. �16�� causes everywhere �i.e., for any value of x� a
relative error lower than one-thousandth of the error caused

when omitting term �N�Âm
���, namely when 
�N+1�Âm

��� / �N�Âm
���


�10−3.
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III. RESULTS AND DISCUSSIONS

A. Comparison between the shape profile approach
and the teeth inertial approach

Being concerned by the improvements provided by the
present approach �shape profile approach� compared to the
previous one �teeth inertial approach�, several simple results,
yet typical of some applications, are presented in this section.

In the first example chosen here, the roughness is as-
sumed to be a periodically corrugated surface �regularly dis-
tributed symmetrical sawtooth profile� on one boundary. The
values of the adimensional parameters used are given in
Table I, where f is the frequency, d the thickness of the
regularly shaped surfaces inner plate, cT the speed of the
shear waves in the homogeneous solid constituting the guide,
� the spatial wavelength of the periodic roughness, kT the
wavenumber �kT=2
f /cT�, � the total length of the rough-
ness, � the acoustic wavelength, and h the depth of the
roughness. The incident wave is assumed to behave as the
antisymmetrical mode �m ,��= �1,1�. Three other modes,
created by couplings due to the roughness, are accounted for
in the calculus: the symmetrical modes �r ,��= �0,2� and
�r ,��= �1,2�, and the antisymmetrical one �r ,��= �0,1�. The
driving frequency is such as the following phase-matched
relationship �phonon relationship� is approximately
verified:1,2,10,13–17

kxm=1

��=1� + kxr=1

��=2� − 2
/� = 0, �18�

as shown in Fig. 2 �vertical straight line at fd /cT=1.8 on the
dispersion and phonon curves�.

The relative amplitudes �i.e., normalized to the ampli-
tude of the incoming mode� of the modes considered here are
shown in Figs. 3�a� and 3�b� as functions of the adimensional
distance from the entrance of the rough part of the wave-
guide kTx, the number of iterations being always lower than
N=6 �more often N is lower than three�.

The amplitude of the incident antisymmetrical mode
�m ,��= �1,1� �Fig. 3�a�� decreases when this mode propa-
gates. The symmetrical mode �r ,��= �1,2� �Fig. 3�b�� is cre-
ated from the incoming wave �initial mode generated by a
source� by the diffusion process along the corrugation. Its
amplitude increases when propagating backward i.e., from
the right to the left �counter-propagating wave�. Its relative
amplitude �i.e., normalized to the amplitude of the incident
mode� is quite important because it is linked with the incom-
ing mode by the phase-matched relationship �18�.

The amplitude of the two other modes considered, the
symmetrical mode �r ,��= �0,2� and the antisymmetrical one
�r ,��= �0,1�, are much lower than the incident mode �less

than 3% of the amplitude of the incident mode� because they
are not linked with any other mode by a phase-matched re-
lationship.

These results show several features. The attenuation of
the incoming wave, and correlatively the amplitude of the
symmetrical mode �r ,��= �1,2� created, are both more im-
portant when taking account not only the depth of the ridges
but also their shape profile. As expected, these features show
that the scattering process on the roughness depends not only
on the depth of the roughness �teeth inertial model� but also
on its slope �shape profile model�, each effect contributing to
the energy transfer from the incoming wave to the other
modes, and then between all the existing modes.

In the second example chosen here, the roughness is
assumed to be also a periodically corrugated surface �regu-
larly distributed symmetrical trapezoidal profile� on one
boundary. The values of the adimensional parameters are
given in Table II. The incident wave is assumed to behave as
the antisymmetrical mode �m ,��= �0,1�. Three other modes,
created by couplings due to the roughness, are accounted for
in the calculus: the antisymmetrical mode �r ,��= �1,1�, and
two symmetrical modes, respectively, �r ,��= �0,2� and
�r ,��= �1,2�. The driving frequency is such as the following
phase-matched relationships �phonon relationships� are ap-
proximately verified:

kxm=0

��=1� − kxr=1

��=1� − �2
/�� = 0, �19a�

TABLE I. Parameters used to calculate the results presented in Figs. 2, 3�a�,
and 3�b�, where f is the frequency, d the thickness of the regularly shaped
surfaces inner plate, cT is the speed of the shear wave, and kT the associated
wavenumber, � the spatial wavelength of the periodic roughness, � the
length of the roughness, � the acoustic wavelength, and h the height of a
teeth of the sawtooth profile.

fd /cT=1.8 � /�=0.72 kT�=226.2
d /�=2.5 h /d=0.005 � /�=50

FIG. 2. �Color online� Dispersion curves �thick lines� of the guide with
smooth interfaces �kxm

���d /2
=��fd /cT�2− ��2m+�1��d /2Lz�2	, and curves

�thin lines� corresponding to the phase-matched relation �18� �kxm

���d /2


=d /�−��fd /cT�2− ��2m+�1��d /2Lz�2	, �=1 and �=2 corresponding, re-
spectively, to antisymmetrical and symmetrical modes. Solid lines: mode
�m ,��= �0,2�, dashed-dotted lines: �m ,��= �0,1�, dashed lines: �m ,��
= �1,2�, and dotted lines: �m ,��= �1,1�. �a� Phase velocity, �b� wavenumber,
as a function of the reduced frequency.

074910-4 Valier-Brasier, Potel, and Bruneau J. Appl. Phys. 108, 074910 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



kxm=0

��=1� + kxr=1

��=2� − 2�2
/�� = 0, �19b�

kxm=0

��=1� + kxr=1

��=2� − 3�2
/�� = 0, �19c�

as shown in Fig. 4 �vertical straight line respectively at
fd /cT=1.09,1.33,1.83 on the dispersion and phonon
curves�.

The amplitude of the modes considered here are shown
in Figs. 5 and 6 as functions of the adimensional distance
from the entrance of the rough part of the waveguide kTx, the
number of iterations being always lower than N=5 �Fig. 5�
and lower than N=6 �Fig. 6�. Figures 5�a� and 5�b� show
respectively the amplitudes of the incident antisymetrical
mode �m ,��= �0,1� and the amplitude of the antisymmetri-

cal mode �r ,��= �1,1� created by coupling for a driving fre-
quency so that Eq. �19a� is nearly verified. Figures 6�a� and
6�b� show respectively the amplitudes of the incident anti-
symmetrical mode �m ,��= �0,1� and the amplitude of the
symmetrical mode �r ,��= �1,2� created by coupling for a
driving frequency so that Eq. �19b� is nearly verified. The
amplitudes of the other modes are always much lower than
the amplitude of the incoming mode because they do not
obey to a phase-matched relationship at the frequencies con-
sidered here.

Note that the amplitude of the antisymmetrical mode
�r ,��= �1,1� �Fig. 5�b�� increases when propagating forward,
i.e., from the left to the right, while the amplitude of the
symmetrical mode �r ,��= �1,2� �Fig. 6�b�� increases when
propagating backward, i.e., from the right to the left.

It worth noting that the convergence of the iterative pro-
cesses used to obtain the results is always improved when
using the method presented here, where the integral formu-
lation is directly substituted to the differential equations
which expressed the class of problem considered �the modal
solution lying on the set of eigenfunctions of the external
regularly shaped plate�.

B. Reflection and transmission intensity coefficients

The time average over a period of the power per unit
area integrated over the thickness of the plate �̄ is given by,18

FIG. 3. �Color online� Relative amplitudes of the modes �i.e., normalized to
the amplitude of the incoming mode� as functions of the adimensional dis-
tance from the entrance of the rough part of the waveguide kTx, calculated
using the shape profile method �solid line� and using the teeth inertial
method �dashed line�. �a� Incident antisymmetrical mode �m ,��= �1,1� and
�b� symmetrical mode �r ,��= �1,2� satisfying the phase-matched relation-
ship �18�.

TABLE II. Parameters used to calculate the results presented in Figs. 4–6
where f is the frequency, d the thickness of the regularly shaped surfaces
inner plate, cT is the speed of the shear wave and kT the associated wave-
number, � the spatial wavelength of the periodic roughness, � the length of
the roughness, � the acoustic wavelength, and h the height of a teeth of the
sawtooth profile.

d /�=1.67 h /d=0.005 � /�=20
fd /cT=1.09 � /�=1.53 kT�=192.02
fd /cT=1.83 � /�=2.56 kT�=321.7

FIG. 4. �Color online� Dispersion curves �thick lines� of the guide with
smooth interfaces, and curves �thin lines� corresponding to the phonon re-
lationships �19a�–�19c�, where �=1 and �=2 correspond, respectively, to
antisymmetric and symmetric modes. Solid lines: mode �m ,��= �0,2�,
dashed-dotted lines: �m ,��= �0,1�, dashed lines: �m ,��= �1,2�, and dotted
lines: �m ,��= �1,1�. �a� Phase velocity and �b� wavenumber, as a function of
the reduced frequency.
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�̄�x� =
1

T
�

0

T

dt�
z1�x�

z2�x�

Txyu̇ydz . �20�

The modal expansion of this time averaged energy flux is
found by inserting Eqs. �1a� and �9� of the velocity field u̇y

and the expression of the components Txy of the stress tensor
T in the integrals, and then integrating to obtain

�̄�x� = −
1

4
i���

�=1

2

�
m=0

�

�
�=1

2

�
r=0

�

�Âm
����x���xÂr

����x���

− �Âm
����x����xÂr

����x�	�����rm − Brm
�����x�� , �21�

where X� is the complex conjugate of X.
Assuming that, at the input x=0 and the output x=� of

the corrugated part of the plate, the walls are regularly
shaped �i.e., zq�0�=zq���= �−1�qLz /2, q=1,2� the term
Brm

�����x� vanishes, leading to

�̄�x� = �
�=1

2

�
r=0

�

�̄r
����x�, x = 0 and x = � , �22�

where

�̄r
����x� = − 1

4 i���Âr
����x���xÂr

����x���

− �Âr
����x����xÂr

����x�	 , �23�

is the time average energy flux of each mode.
The reflection and transmission intensity coefficients are

defined as

Rr
��� = 
�̄r

����x = 0�/�̄inc
 , �24a�

FIG. 5. �Color online� Relative amplitudes of modes �i.e., normalized to the
amplitude of the incoming mode� as functions of the adimensional distance
from the entrance of the rough part of the waveguide kTx. �a� Relative
amplitude of the incident antisymmetrical mode �m ,��= �0,1�, �b� relative
amplitude of the antisymmetrical mode �r ,��= �1,1� satisfying the phonon
relationship �19a�.

FIG. 6. �Color online� Relative amplitudes of modes �i.e., normalized to the
amplitude of the incoming mode� as functions of the adimensional distance
from the entrance of the rough part of the waveguide kTx. �a� Relative
amplitude of the incident antisymmetrical mode �m ,��= �0,1� and �b� rela-
tive amplitude of the symmetrical mode �r ,��= �1,2� satisfying the phonon
relationship �19b�.

FIG. 7. �Color online� Reflection coefficient Rr=1
��=2� �solid line� and transmis-

sion coefficient Tm=1
��=1� �dashed line� as functions of the adimensional fre-

quency fd /cT.
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Tr
��� = 
�̄r

����x = ��/�̄inc
 , �24b�

where �̄inc is the time average energy flux of the incident
mode given by

�̄inc = 1
2��kxm

���. �25�

Hereafter, we consider the rough plate presented previously
�Sec. III A�.

In Fig. 7, the reflection coefficient of the symmetrical
mode �r ,��= �1,2� �Rr=1

��=2�� �solid line� and the transmission
coefficient of the antisymmetrical mode �m ,��= �1,1�
�Tm=1

��=1�� �dashed line� are plotted �as functions of the adimen-
sional frequency in the interval fd /cT� �1.75,1.85��. The
trends of these results obtained for SH-waves are clearly
similar to those given in the literature for Lamb waves.13

IV. FOURIER ANALYSIS OF PERIODIC ROUGH
PROFILE

It is of interest to investigate more deeply the modeling
presented in this paper when applying it to periodic rough
profiles �a limited but important class of roughness�. As in
the preceding section, the modal coupling is expressed by
using the integral formulation but hereafter the shape profile
is expressed as a Fourier series in order to highlight analyti-
cally the strong effects of the spatial periodicities of the
roughness on the mode coupling. In the iterative method �16�
used to express the amplitude of each mode Âm

��� �14�, the
first order solution �N=1� is sufficient here to address these
effects without loss of information, because the processes
converge rapidly2 �meaning that the results presented above
are obtained mainly by the first order solution�. Moreover,
these trends agree with those given by Hawwa,19 though the
periodic profile is quite different.

A. Mode created by coupling „first order
approximation…

Starting from Eq. �17b� to express the amplitude of a
mode �r ,�� created by coupling only, namely

�1�Âr
����x� = − �

q=1

2 �
0

�
�0�Âm

����x��	m
����zq�Nq

−1���x�hq��x�

+ �− 1�q�zq
�	r

����zq�gr
����x,x��dx�

+ Bmr
�����x��0�Âm

����x� , �26�

where the indices �m ,�� represent the incident mode �as-
sumed to be known and unique to the lower order approxi-
mation�, and assuming the following approximations, the
depth of the corrugation z1�x� being much lower than the
thickness of the plate Lz,

	m
����z1� � �− 1�m+���2 − ��2�m0/Lz� , �27a�

�z1
	m

����z1� � �− 1�m+�+1��2 − ��2�m0/Lz��km
����2h1, �27b�

Eq. �26�, among Eqs. �10b� and �17�, leads to, the incident
mode �m ,�� being given,

�1�Âr
����x� = i�̂rm

�����
0

�

exp�− ikxm

���x����x�h1�x�����x�


exp�− ikxr

���
x − x�
�	dx� − i�̂rm
�����kr

����2


�
0

�

exp�− ikxm

���x��h1�x��exp�− ikxr

���
x − x�
�dx�

+ 2kxr

����̂rm
����h1�x�exp�− ikxm

���x� , �28�

where the term

�̂rm
���� = �− 1�m+r+�+�

��2 − �m0��2��2 − �r0��2�
2kxr

���Lz

, �29�

is an adimensional coupling factor.
On substituting the Fourier series of the periodic shape

profile h1�x��, namely

h1�x�� = �
n=−�

+�

Ĉn exp�i
2n


�
x�� , �30�

into Eq. �28�, it follows that, for an incident mode �m ,��,

�1�Âr
����x� = i�̂rm

���� �
n=−�

+�

Ĉn�− kxr

���2n


�
+ �kr

����2
exp�− ikxr

���x�


 �
0

x

exp�− i�kxm

��� − kxr

��� −
2n


�
�x’
dx�

+ i�̂rm
���� �

n=−�

+�

Ĉn�kxr

���2n


�
+ �kr

����2
exp�ikxr

���x�


 �
x

�

exp�− i�kxm

��� + kxr

��� −
2n


�
�x�
dx�

+ 2kxr

����̂rm
���� �

n=−�

+�

Ĉnexp�− i�kxm

��� −
2n


�
�x
 .

�31�

Two kinds of phase-matching �phonon relationship� appear:

kxm

��� − kxr

��� −
2n


�
= 0, �32a�

kxm

��� + kxr

��� −
2n


�
= 0, �32b�

the first one representing the coupling of waves that travel in
the opposite x-directions, the second one representing the
coupling of waves that travel in the same x-direction.20–23

On one hand, if the driving frequency is such as the
phonon relationship �32a� is nearly satisfied, namely if the
driving frequency is such as

kxm

��� − kxr

��� −
2n1


�
= �1, �33�

where the so-called detuning parameter �1 �Ref. 22� is as-
sumed to be much lower than �−1, then Eq. �31� of the
amplitude of the mode �r ,��, created by coupling with the
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incident mode �m ,��, takes the following form:

�1�Âr
����x� � �̂rm

����Ĉn1�kxr

���2n1


�
− �kr

����2
exp�− ikxr

���x�


 � exp�− i�1x� − 1

�1
�, if �1 � 0, �34a�

�1�Âr
����x� � − i�̂rm

����Ĉn1�kxr

���2n1


�
− �kr

����2
x


exp�− ikxr

���x�, if �1 = 0, �34b�

and then, on defining a coupling coefficient22

n1�̂r
��� = − iĈn1�kxr

���2n1


�
− �kr

����2
 , �35�

this couple of Eqs. �34a� and �34b� reduces to

�1�Âr
����x� � n1�̂r

����̂rm
����x exp�− i��1

2
+ kxr

����x
sin c��1

2
x� .

�36�

On the other hand, if the driving frequency is such as the
phonon relationship �32b� is nearly satisfied, namely if the
driving frequency is such as

kxm

��� + kxr

��� −
2n2


�
= �2, �37�

where the detuning parameter �2 is assumed to be much
lower than �−1, then Eq. �31� of the amplitude of the mode
�r ,��, created by coupling with the incident mode �m ,��,
takes the following form:

�1�Âr
����x� � n2�̂r

����̂rm
������ − x�exp�i�kxr

��� −
�2

2
�x



sin c��2

2
�� − x�� , �38�

with �coupling coefficient�

n2�̂r
��� = iĈn2�kxr

���2n2


�
+ �kr

����2
exp�− i
�2

2
�� · �39�

The amplitude of the antisymmetrical mode �r ,��= �1,1�
created by coupling �Eq. �36�� is maximum for �1=0 at x
=� �Eq. �19a�� while the amplitude of the symmetrical mode
�r ,��= �1,2� created by coupling �Eq. �38�� is maximum for
�2=0 at x=0 �Eq. �19b�� and to a lesser extent it is maximum
for �3=0 at x=0 �Eq. �19c��. These amplitudes �normalized
by the amplitude of the incident wave� are, respectively,
shown in Figs. 8�a� and 8�b� as functions of the adimensional
frequency fd /cT �dotted lines�, the full lines showing the
results obtained from solving directly Eq. �14�.

B. Direction of propagation: Group velocity

The group velocity can provide information, in particu-
lar, here on the direction of propagation of the modes created
by coupling which can propagate either in the same direction
as the incoming wave or in the opposite direction. It can be
expressed for each mode �r ,�� by considering the ratio of

the time average of the energy flux �̄r
��� on the time average

of the total energy density �i.e., here twice the kinetic energy

K̄r
����:

�̄r
���/2K̄r

���, �40�

where the time average of the energy flux �̄r
��� is given by

Eqs. �22� and �23�, and where the kinetic energy K̄r
��� is given

by

K̄r
����x� =

1

4
��2Âr

����x��Âr
����x���, �41�

the total kinetic being given by

K̄�x� =
1

T
�

0

T

dt�
z1�x�

z2�x� 1

2
��u̇y�2dz = �

�=1

2

�
r=0

�

K̄r
����x� . �42�

On substituting Eq. �36� of the amplitude �1�Âr
����x� into Eqs.

�23� and �42�, it is found straightforwardly that,

�̄r
���

2K̄r
���

= cgr

��� +
cT

kT

�1

2
, �43�

where cgr

���= �cT /kT�kxr

��� represents the group velocity of the
mode �r ,�� considered when the phonon relationship �33� is
assumed.

FIG. 8. �Color online� Relative amplitudes of modes �i.e., normalized to the
amplitude of the incoming mode� as functions of the adimensional fre-
quency fd /cT. �a� Relative amplitude of the antisymmetrical mode �r ,��
= �1,1� at x=� satisfying the phonon relationship �32a� and �b� relative
amplitude of the symmetrical mode �r ,��= �1,2� at point x=0 satisfying the
phonon relationships �32b�.
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Equation �43� shows that this mode, shown in Fig. 5�b�
propagates forwardly, i.e., in the same direction as the in-
coming wave �cgr

����0�.
Similarly, on substituting Eq. �38� of the amplitude

�1�Âr
����x� into Eqs. �23� and �42�, it is found straightfor-

wardly that,

�̄r
���

2K̄r
���

= − cgr

��� +
cT

kT

�2

2
, �44�

which shows that this mode, shown in Fig. 6�b�, propagates
backwardly �opposite to the direction of the incoming wave
as mentioned in Sec. III A�.

V. CONCLUSIONS

In conclusion, it can be noted that a major advantage of
the method used here to express the effect of the roughness
on SH-waves, in comparison with previous methods such as
those presented in Refs. 1, 2, 10, and 11, is that it does not
require lengthy calculations to obtain the coupling effects of
the nonlocalized perturbation. Basically, this method is com-
pletely general when assuming however small perturbations
�small depths and small slopes�. Therefore, the method can
be straightforwardly extended to any shape of roughness and
even to more sophisticated lamb waves �subject to modifying
the basic expansions and to accounting for the coupling be-
tween longitudinal and transversal waves�. Moreover, it is
worth noting that, owing to SH-waves in plates behave simi-
larly to torsional waves in circular pipes, the results obtained
for the first ones can be extended to the second ones �this can
be of interest in practical pipe testing�.
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