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A stochastic model is proposed to simulate the propagation of an acoustic wave in a random medium

characterized by weak velocity fluctuations. After the acoustic wave propagation through a random

velocity field, the propagation field becomes itself a random field. In the developed stochastic

approach, the wave field in such random medium is modeled by the combination of the wave field in

a mean homogeneous medium and of fluctuation corrections. These corrections are provided by a

random field generator whose inputs are the statistical moments of the travel times. Using this

stochastic modeling, the propagation of both an incident plane wave and an acoustic realistic beam

generated by a real transducer in a random velocity field is calculated and the corresponding

simulations are validated by comparison with those obtained with a deterministic model based on

geometrical optics. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4748274]

I. INTRODUCTION

Wave propagation phenomena are involved in a large

amount of scientific fields and often associated with impor-

tant industrial issues. When the media of propagation are not

homogeneous, their physical characteristics (such as bulk

density, temperature, elastic stiffness, and particle motion)

may vary randomly in space but with a spatial correlation. A

wave propagating through such media undergoes some sto-

chastic spatiotemporal fluctuations (the so-called inhomoge-

neities) of one or several structural medium parameters

which depend on the nature and environment of the propaga-

tion medium. The spatial correlation of these inhomogene-

ities can be characterized by a correlation function (defined

in Sec. II A) and the characteristic length. This characteristic

length gives information on the average homogeneity size.

Different ratio of characteristic length to the wavelength lead

to three different propagation regimes: low frequency, me-

dium frequency, and high frequency. In this paper, we are

only interested in high frequency problems involving the

wave propagation through media containing large scale ran-

dom inhomogeneities.

A medium composed of random inhomogeneities is of-

ten too complicated to be described deterministically; it is

common to model the real medium by a random medium

using a stochastic process. For one sample generation of

random velocity medium, the wave propagation in such me-

dium can be calculated using a deterministic propagation

model as the method of geometrical optics,1,2 the method of

smooth perturbation,3,4 and the numerical methods.5–7 Often

these deterministic methods require significant computation

time.

Therefore, the stochastic analysis based on rigorous

mathematical and statistical developments is adopted here to

reveal the nature and degree of influence of the velocity var-

iations on the wave propagation. Numerous papers dealing

with stochastic simulation have been published in the view

of various applications: oceanography, materials science, hy-

drology, and geophysics. Among these papers, various tech-

niques of stochastic simulation have been developed

including matrix decomposition techniques,8,9 moving aver-

age,10 nearest neighbor,11 spectral methods,12,13 and turning

bands.14 More recently, the analysis of stochastic systems

with input parameters variations has been the subject of

extensive researches in the past two decades in stochastic

mechanics.15–17 Numbers of stochastic analysis have also

been carried out in the topics of seismic ground motions18–20

whose spatial variation is an important factor that should be

carefully considered in the seismic design of buried lifelines

such as tunnels and pipelines.

One of the techniques that have been widely applied in

engineering problems for simulating stochastic seismic

waves is the method of integral spectral decomposition.21

The application of this method to the wave propagation in

random media consists in representing the random elastic

modulus and mass density as Fourier integrals using their

spectral densities called spectral representations. Substituting

the spectral representations of the random material parame-

ters into the wave equation, a stochastic wave can finally be

obtained by solving that wave equation. But this method is

not quite efficient in practice because the resolution of such

stochastic inhomogeneous wave equation requires the com-

plex one of an integral characteristics equation for the wave

number.22

In this paper, we propose a new fast simulation method

to address the problem of the wave propagation in a weakly

inhomogeneous random medium. This modeling problem is

a challenging complex one of practical interest since it can

be encountered in different fields of physics and can deal
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with numerous industrial applications. The new proposed

modeling considers that the wave field in a random medium

is the combination of a homogenous field and a fluctuation

contribution. The homogeneous field is the wave propagation

field in an average homogeneous medium, which is simple to

calculate. The fluctuation contribution is due to the random

velocity variations and can be generated by a random field

generator whose inputs are the statistical moments of the

wave field in the studying random velocity medium. Accord-

ing to the theoretical studies of Chernov,23 Tatarskii,24

LaCasce,25 and Rytov,26 the statistics of the random wave

field are strongly related to the statistical moments of the

random medium. Using the perturbation method,26,27 the an-

alytical expressions of the statistical moments of wave field

are determined. The spectral method of Shinozuka12 is used

as the random field generator owing to its simplicity and its

efficiency. Using this new method, we can simulate effi-

ciently the fluctuations part of the wave field which is related

to the random properties of the medium velocity. This devel-

oped model owns the advantages to deal with the wave prop-

agation in a three dimensional space and to lead to a very

short computation time.

The developed stochastic simulation is theoretically

described in the case of acoustic scalar waves but this con-

cept can be easily extended to other kinds of propagating

waves, in elastodynamics, electromagnetism, and optics. We

devote Sec. II of this paper to the use of the classical deter-

minist method based on geometrical optics in order to calcu-

late the ray tracing and travel times of an incident plane

wave in a Gaussian random field. In Sec. III, the statistical

moments of travel times in random medium are first studied

using the ray perturbation method. For the wave propagation

in a random medium, it enables to obtain the analytical solu-

tions for the average and the correlation functions of travel

times for an incident plane wave. These analytical expres-

sions are the main inputs of the stochastic model described

in Sec. III B. And finally, in Sec. IV, the propagation field

simulations provided by the deterministic method and the

stochastic model are compared in a realistic application: the

prediction of the acoustic beam generated by a real

transducer.

II. SIMULATING THE PROPAGATION OF AN
ACOUSTIC WAVE VIA A DETERMINISTIC MODEL

The method of geometrical optics is of great importance

in wave-field analysis. It is a simple and attractive model to

deal with a wide range of wave phenomena. It works well as

long as the wavelength is small compared to the characteris-

tic length of the heterogeneity. This method is applied here

to calculate the ray-tracing of a plane wave in a random ve-

locity medium.

A. Geometrical optics equations in a inhomogeneous
fluid medium

The following is a brief derivation of the geometrical

optics equations for the simplest case of the scalar mono-

chromatic wave propagating through an inhomogeneous me-

dium. We consider a monochromatic wave whose wave field

u(r) at a point r can be solved by the inhomogeneous Helm-

holtz equation1

DuðrÞ þ k2
0n2ðrÞuðrÞ ¼ 0; (1)

k0 denotes the modulus of the average acoustic wave number

vector k. n(r) is the spatially varying refractive index of the

medium. This inhomogeneous Helmholtz equation [Eq. (1)]

can describe under certain conditions waves propagation in

different physical domains.1

For acoustic waves, the acoustic Helmholtz equation

[Eq. (1)] is derived from fundamental laws28,29 (Euler and

mass conservation hydrodynamic equations, the thermody-

namic state equation connecting pressure, density, and en-

tropy) for a non-viscous fluid. Several main assumptions

were then done to obtain the Helmholtz equation [Eq. (1)].

By neglecting the thermal conductivity, the sound propaga-

tion is assumed to be an adiabatic process. The material den-

sity is supposed to be spatially constant. The material

properties are also independent of time. The fluid is assumed

to be non-moving at rest and contains no source. Note that

more general derivations than equation [Eq. (1)] for the

acoustic wave equation can be found in the books of Bre-

khovskikh and Godin28 and Bruneau.29 In practice, it can be

shown that the propagation of monochromatic acoustic

waves in weakly turbulent fields can be accurately described

by equation [Eq. (1)] if the acoustic wave length is less than

a typical length scale of the turbulent field depending on its

Prandtl number.30 The equation [Eq. (1)] governs acoustic

waves by setting

k0 ¼
x
c0

and nðrÞ ¼ c0

cðrÞ ; (2)

where x is the angular frequency, c(r) represents the local

velocity in the fluid medium whose average value is c0. We

are only interested in this paper in the influence of the me-

dium velocity variation on the propagation field in the case

of weakly inhomogeneous media.

As previously said, the perturbation field �ðrÞ defined as

follows refers to small fluctuations ðj�ðrÞj � 1Þ defined by

1

c2ðrÞ ¼
1

c2
0

½1þ �ðrÞ�; (3)

where c(r) represents the local velocity in the fluid medium

whose average value is c0. We consider a smooth inhomoge-

neous medium and suppose that �ðrÞ varies only slightly

over the wavelength k and has a zero average and a variance

r2
�

r2
� ¼ E½�2ðrÞ�; (4)

where E½::� denotes the mathematical expectation. As �ðrÞ is

a set of random values in space, the dependency between

these values can be described by a function of the distance

separating them in space using the covariance function

C�ðhÞ. For a reference point r1, the relation between the

value on this point and that on another point r2 can be quan-

tified by
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C�ðhÞ ¼ E½�ðr1Þ�ðr2Þ� ¼ E½�ðr1Þ�ðr1 þ hÞ�; (5)

where h ¼ r2 � r1 is the vector connecting the two points r1

and r2. For an isotropic homogeneous random medium, the

covariance function C� does not depend on the h direction,

but only on the vector modulus h ¼ jhj. By normalizing the

covariance function C�ðhÞ by the variance of random field

�ðrÞ, one can obtain its correlation coefficient

R�ðhÞ ¼
E½�ðrÞ�ðrþ hÞ�

r2
�

; (6)

which varies between �1 and 1 and is used to indicate the

random field correlation structure. For example, for a Gaus-

sian random field, the correlation coefficient is given by

R�ðhÞ ¼ e�ðh
2=l2� Þ; (7)

where l� is called the characteristic length of this random

field, and it is also an indicator of the distance inside which

two random variables can be correlated.

The inhomogeneous propagation medium is assumed to

be weakly and also smoothly variable. Since �ðrÞ is supposed

to vary only slightly over the wavelength k, we can assume

that the field u at each point can be locally approximated by

a plane wave

uðr;xÞ ’ UðrÞe�ixTðrÞ; (8)

where U(r) denotes the amplitude, T(r) is the local travel

time and x is the pulsation. The smaller the ratio of the

wavelength to the characteristic scale of inhomogeneity l� is,

the better the high frequency approximation Eq. (8) is. Sub-

stituting the solution Eq. (8) into the wave equation [Eq. (1)]

leads to two equations independent of frequency, the eikonal

equation and the transport equation1

ðrTÞ2 ¼ c�2 ¼ c�2
0 ½1þ ��; (9a)

2rU � rT þ Ur2T ¼ 0; (9b)

where

r ¼ @

@x
þ @

@y
þ @

@z
:

By solving the eikonal equation [Eq. (9a)], the rays tra-

jectories and the times of flight are obtained, whereas the

amplitude is given by the transport equation [Eq. (9b)].

In our study, we are only interested in the time of flight

T(r) of the propagation field. Different mathematical and

numerical approaches have been proposed to solve the

eikonal equation and implemented for various applica-

tions; the most popular one is called the characteristic

method.31

According to the characteristic method, the eikonal

equation can be transformed into a system of ordinary differ-

ential equations system2 including the derivatives with

respect to time of both the spatial location r of a point along

the ray and the slowness vector sðrÞ ¼ rTðrÞ

dr

dT
¼ c2ðrÞsðrÞ; (10a)

dsðrÞ
dT
¼ �rcðrÞ

cðrÞ : (10b)

The two differential equations are known as the kinematic

ray tracing system, where d T is the time step along the ray,

c(r) denotes the velocity at point r and rcðrÞ its spatial de-

rivative. The slowness vector can also be defined as

sðrÞ ¼ t

cðrÞ ; (11)

where t is the vector tangent to the ray and normal to the

phase front T¼ const.
The numerical procedures for the solution of a system of

ordinary differential equations of the first order with speci-

fied initial conditions (i.e., the acoustic source position r0

and the initial slowness vector s0) are well known. Once the

solution of system Eqs. (10a) and (10b) is determined by the

Runge-Kutta method, the ray path r0 ! r0 (r0 is a current

point along the ray) can be obtained. Such a procedure is

usually called ray tracing. Travel time at the current point

Tðr0Þ can be simply computed along the ray path r0 ! r0 as

follows:

Tðr0Þ ¼
ðr0

r0

dT: (12)

B. Ray tracing and travel time in random media

Setting the Cartesian coordinate system in which r¼ (x,
y, z), we assume a plane wave propagating along the x direc-

tion with unit amplitude: eikx coming from the region x < 0,

where cðrÞ ¼ c0, and penetrating the random region x > 0,

where the velocity c(r) is defined by Eq. (3). In Fig. 1, an

example of simulated Gaussian random velocity map is repre-

sented in a two dimensional area ½x=l�; y=l��; in this realization

FIG. 1. Realization of a Gaussian 2D random field, for a characteristic

length l�¼ 0.1 m. Velocity magnitude, represented by the color code, varies

from 2461 m/s to 2481 m/s.

054902-3 L€u, Darmon, and Potel J. Appl. Phys. 112, 054902 (2012)



of velocity map, the modeled velocity is the sound celerity

which varies from 2461 m/s to 2481 m/s and its standard devi-

ation is r� ¼ 1:8� 10�3. Figs. 2 and 3 show for an incident

plane wave two examples of ray tracing in two different

media with a Gaussian random velocity field whose standard

deviations are respectively r� ¼ 1:8� 10�3 and r� ¼ 3:5
�10�3, whose characteristic lengths l� are 0.1 m. 80 rays,

which are initially linear trajectories, are launched with a reg-

ular step of 0.03 m in the transversal direction. The rays are

plotted in a plane (x, y) and in terms of the non-dimensional

variables x=l� and y=l�. The ray method allows to model ray

bending in inhomogeneous media: modeled rays are curved

owing to the medium velocity inhomogeneities. The rays are

randomly distorted by the velocity fluctuations and this phe-

nomenon increases for a more important standard deviation r�
as observed by comparing the two figures. The rays disturb-

ance increases with the propagation distance increase for a

given characteristic length l� as shown by the figures; on the

contrary, at a fixed position, smaller the characteristic length

l� is, more important the disturbance of rays is. Caustics (due

to multi-pathing) and shadow areas (in which no ray pene-

trates) may occur at large distances from the source as shown

in Figs. 2 and 3; see also Ref. 32 for an analysis of the caustics

occurrence in turbulent media. The ray method is no longer

valid to calculate the field amplitude at caustics where it is

predicted infinite. On the other hand, as explained later, the

occurrence of caustics does not alter the validity of the sto-

chastic model developed in Sec. III.

C. Fluctuation of travel times in random media

In order to find out how the travel times can be disturbed

by the random velocity field, a screen is positioned perpen-

dicularly to the initial propagation direction and then the

travel times are recorded when the rays reach the screen.

Screens have been set in six positions from x=l� ¼ 10 to

x=l� ¼ 60. For each given normalized distance x=l�, the time

fluctuations T0ðyÞ ¼ TðyÞ � E½TðyÞ� are shown in Fig. 4 with

the following Gaussian random medium: r� ¼ 1:8� 10�3

and l� ¼ 0:1m. As to the results shown in Fig. 4, after propa-

gation in a random medium (whose average velocity c0 is

2472 m/s), the travel time field becomes itself a random pro-

cess, whose values vary from �0:5 ls to 0:5 ls for a propa-

gation distance shorter than 6 m. The results also show

that the time fluctuations are faster when the distance x=l�
increases. There are transversal correlations of travel time

between neighboring rays since the curves are continuous.

The dependencies of the travel time fluctuations between

two neighboring x=l� positions can be also observed and are

related to the existence of a time longitudinal correlation.

In fact, the geometrical optics method is time consuming

while it is used to calculate the wave propagation for a long

distance in an inhomogeneous medium. And for the wave

propagation in a random medium, a single result is not repre-

sentative; hence one needs to generate a large number of ran-

dom velocity fields in which ray tracings are carried out.

Therefore, a deterministic model is not convenient for pro-

viding a fast simulation of the propagation in a random me-

dium. That is why we propose in the following a stochastic

model. This model does not need as input a deterministic ve-

locity field but just the statistical properties of the random

field.

III. SIMULATING THE PROPAGATION OF AN
ACOUSTIC WAVE IN RANDOM MEDIA VIA A
STOCHASTIC MODEL

A new fast technique to simulate the propagation of an

acoustic wave in a random medium is presented in this sec-

tion. First, the wave propagation in a mean homogeneous

medium is calculated using simple geometrical optics, and

the velocity of the homogeneous medium is chosen as the av-

erage value c0 of the real random medium. We assume that

the fluctuations of velocity field are quite weak ðr� � 1Þ.
FIG. 2. Ray tracing through a Gaussian random field with r� ¼ 1:8
�10�3; x=l� ¼ 0:1m.

FIG. 3. Ray tracing through a Gaussian random field with r� ¼ 3:5� 10�3;
x=l� ¼ 0:1 m.
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The developed stochastic propagation model consists in

keeping the amplitudes modeled by geometrical optics in the

mean homogeneous velocity medium and in only modifying

the corresponding travel times by a set of travel time correc-

tions provided by a random field generator. The principle of

this stochastic propagation model is summed up by the fol-

lowing formula:

TðrÞ ¼ E½TðrÞ� þ T0ðrÞ; (13)

where T(r) is the total travel time, E½TðrÞ� the time average

in the mean homogeneous medium, and T0ðrÞ is the random

fluctuation. These time corrections are randomly generated

but they must respect the statistical moments (average, var-

iance, correlation functions) of the travel times in a random

medium. In fact, these moments are the inputs of the random

field generator and are function of the statistical properties of

the random medium.

A. Inputs of the stochastic model: statistical moments
of the travel time fluctuations

The theoretical relationships between the statistical

moments of travel times and the statistical moments of the

random velocity field are established by using the perturba-

tion method.26,27 This theory shows that the average and var-

iance of travel times obtained after propagation of an

incident plane wave in a random medium vary with the prop-

agation distance x. An approximation of the average is

E½TðxÞ� ¼ x

c0

�
ffiffiffi
p
p r2

�

8c0

x2

l�
þ Oðx3�2Þ; (14)

and the variance is also approximated as

r2
TðxÞ ¼

ffiffiffi
p
p

4

r2
�

c2
0

l2�
x

l�
þ p

32

r2
�

c2
0

l2
�

x

l�

� �4

þ Oðx9�4Þ: (15)

To model travel time correlations similar to those modeled

in Fig. 4 using geometrical optics, we use as inputs of the

stochastic model the correlation coefficient [Eq. (6)]. For a

plane wave, the correlation coefficient in the “transversal”

plane (see Fig. 5) is different from that in the propagation

(“longitudinal”) direction. In the transversal plane, the travel

time correlation coefficient is the same as that of the velocity

field, so the corresponding transversal correlation function is

also an isotropic function, given by

CTðqÞ ¼ r2
TðxÞR�ðqÞ; (16)

where r2
TðxÞ is the travel time variance defined in Eq. (15),

R�ðqÞ is the velocity correlation coefficient given by Eq. (6),

and q is the distance between two different points r?1; r?2 in

the transversal plane (see Fig. 5): q ¼ kr?2 � r?1k. So the

characteristic length in the transversal plane is the same as

that of the velocity medium: l? ¼ l�, since their correlation

coefficients are the same R?ðqÞ ¼ R�ðqÞ, which is shown in

Fig. 6.

The longitudinal correlation function, which character-

izes the travel time correlation along the propagation direc-

tion, is not an isotropic function but depends on the direction

CLðx1; x2Þ ¼
x<
4c2

0

r2
�

ffiffiffiffiffiffiffi
ðpÞ

p
l�; (17)

FIG. 5. Definitions of the “transversal plane” and of the “longitudinal” prop-

agation direction.

FIG. 4. Travel time fluctuations for different propagation distances, calcu-

lated by the geometrical optics method.
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where x1 and x2 are two propagation distances and

x< ¼ minðx1; x2Þ: (18)

The longitudinal correlation coefficient is obtained by

RLðx1; x2Þ ¼
CLðx1; x2Þ

rTðx1ÞrTðx2Þ
; (19)

hence

RLðx1; x2Þ ¼
x<ffiffiffiffiffiffiffiffiffi
x1x2
p ¼

� ffiffiffiffiffiffiffiffiffiffiffi
x2=x1

p
for x2 < x1ffiffiffiffiffiffiffiffiffiffiffi

x1=x2

p
for x2 > x1

: (20)

For a given propagation distance x1, the evolution of versus

x2 is presented in Fig. 7.

Once the analytical expressions of travel times statistical

moments are obtained, we can use them as inputs of a ran-

dom field generator to generate a set of travel time

corrections.

B. Principle of the phase aberration for the stochastic
simulation of the propagation in random media

In this section, we are going to be interested in the sto-

chastic simulation of the propagation in random media using

a random generator. Importing the travel time statistical

moments in the random generator, the fluctuation parts of

travel times in the whole space can be obtained, which ena-

bles to simulate the influence of the random velocity. The

random field generator presented here is based on the

spectral representation method,12 simple to implement and

very efficient. First, a two-dimensional random time field in

the transversal plane of a plane wave propagation is gener-

ated. In this transversal plane, the travel time field is iso-

tropic as the velocity field. The algorithm will then be

extended to the three-dimensional case.

1. Spectral representation of a two-dimensional
process

During incident plane wave propagation into a random

medium, a transversal two-dimensional screen r?ðy; zÞ (see

Fig. 5) is set in order to measure the arrival time of the wave

on every point of this screen. By locating this screen at dif-

ferent positions (propagation distances), a two-dimensional

travel time field Tðr?Þ on the screen r? can be obtained and

we consider the fluctuation part T0ðr?Þ of the travel time

[defined in Eq. (13)] as a two-dimensional isotropic random

process. In fact, by using the formula proposed by Shinozuka

and Jan,12 the random time field T0ðr?Þ can be simulated by

a series of cosine functions weighted by functions An

T0ðr?Þ ¼
ffiffiffi
2
p XN

n¼1

An cosðnn � r? þ unÞ; (21)

where nn ¼ ðnn1; nn2Þ is the wave vector, and

An ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ST?ðnnÞDnn

p
; n ¼ 1; 2; � � � ;N; (22)

where ST?ðnÞ is the so-called spectral density function of the

two-dimensional random process, and Dnn denotes the wave

vector step. In Eq. (21), each cosine function can be consid-

ered as a real Fourier mode corresponding to a simple plane

wave (see Fig. 8) characterized by its wave vector nn (whose

angle with respect to the y-axis is hn), its phase un and its

amplitude An. We chose to define the modulus of each mode

nn ¼ jnnj linearly distributed in the range ½nmin; nmax� with

the step Dn

nn ¼ nmin þ ðn� 1ÞDn; (23)

with Dn ¼ ðnmax � nminÞ=ðN � 1Þ and nmax ¼ �nmin. We

define here that Dnn ¼ Dn.

FIG. 6. Transversal correlation coefficient of travel time.

FIG. 7. Longitudinal correlation coefficient RL of travel time versus x2.
FIG. 8. Single Fourier mode characterized by its wave vector nn whose

direction is specified by hn, its amplitude An , and its phase un.
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To generate a two-dimensional homogeneous isotropic

random field, the spatial distribution of those Fourier modes

should be uniform. Therefore, the direction hn of each mode

should be uniformly and randomly distributed from 0 to 2p;

its probability density function is

Pr½0 � hn � 2p� ¼ 1

2p
; (24)

and the distribution for un is also homogeneous from 0 to p.

The spectral density function of the two-dimensional random

process is given by the Fourier transform of the correlation

function CTðqÞ defined by Eq. (16)

STðnÞ ¼
1

2p

ð
R

e�iq�nCTðqÞ dq; (25)

with q ¼ jr?2 � r?1j is the distance between two points in

the transversal plane. For a Gaussian random velocity field,

the coefficient R�ðqÞ of the correlation function CTðqÞ takes

the form of Eq. (6) and the equation becomes

STðnÞ ¼
r2

T

2p

ð1
�1

e�ðq=l�Þ2 e�iq�n dq ¼ r2
Tl2
�

4p
e�

n2 l2�
4 ; (26)

which is also a Gaussian function. Since the modes direc-

tions are uniformly distributed in space [Eq. (24)], the spec-

tral density function is isotropic, then we have

STðnÞ ¼ STðnÞ; (27)

where n ¼ jnj. The normalized spectral density function of a

Gaussian random field STðnÞ=r2
T is shown in Fig. 9. Applying

the random generator corresponding to Eq. (21), a simulation

of travel time fluctuation on a two-dimensional transversal

plane located at x ¼ 30l� is shown in Fig. 10. The continuity

of travel times which are modeled are consistent with that

obtained with the deterministic simulation (see Fig. 4). There

are two major types of errors introduced by the use of this

stochastic simulation. The first is due to the estimation of the

statistics of the underlying random field from a limited data

set. Here we suppose that an incident plane wave propagates

in an ideal random velocity field (e.g., the Gaussian random

field) for which the analytical expression of the statistics

exists. The second type of errors is called “within simulation

error”14 and these errors are caused by the choice of the fre-

quency step Dn and the definition of the spectral range

½nmin; nmax�. Numerically, the spectral range can be defined as

the boundaries of the spectral density function of the two-

dimensional process shown in Fig. 9. To study the spectral

range influence on the accuracy of the stochastic simulation,

we can compare the theoretical two-dimensional covariance

function given by Eq. (16) with the simulated covariance

function. In the used configuration, nmax varies from 2=l� to

8=l�; the frequency step is fixed for Dn ¼ 0:16=l�. The results

are illustrated in Fig. 11: the spectral range of the converged

results matches well the spectral range of the spectral density

function (see Fig. 9) that means jnmaxj � 6=l�. In fact, outside

the spectral range STðnnÞ ¼ 0 (see Fig. 9), then An ¼ 0

(according to Eq. (22) the mode n has no contribution to the

series Eq. (21)). There is no need to take into account the

modes outside the spectral range. We chose to fix the spectral

range as follows: �6=l� ¼ nmin < nn < nmax ¼ 6=l�. Once

the spectral range is fixed, the influence of the step Dn on the

simulation accuracy can be examined. Fig. 12 shows that for

Dn ¼ 2:47=l� (the corresponding modes number is N¼ 6) the

accuracy is very poor; for Dn ¼ 1:65=l� (N¼ 9) the accuracy

is satisfying and for Dn ¼ 0:70=l� (N¼ 18), the accuracy is

excellent. So we have chosen Dn ¼ 0:70=l�.

FIG. 9. Normalized spectral density function STðnÞ=r2
T of a Gaussian

process.

FIG. 10. Realization of travel time fluctuation on a screen for

x ¼ 30 l�; l� ¼ 0:1 m, and r� ¼ 0:0018.

FIG. 11. Comparison between the theoretical (red line) and simulated covar-

iance functions obtained for nmax ¼ 2=l� (blue), 4=l� (green), 6=l� (purple),

8=l� (black), and Dn ¼ 0:16=l�.
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2. Three-dimensional random process simulation

To simulate the travel time of an incident plane wave in

a three dimensional space (T0ðr?Þ ! T0ðrÞ), the spatial cor-

relation of travel times between two neighboring points lying

on the longitudinal direction should be taken into account.

According to Eq. (15), the travel time variance increases

with the propagation distance x and in the longitudinal direc-

tion, the time covariance function is different from that in

the transversal plane. Consequently, the three dimensional

simulation cannot be generated by a simple extension of the

two dimensional process but the modeling of a three dimen-

sional non homogeneous anisotropic random field is needed.

The Fourier transform Eq. (26) takes the new form

STðnÞ ¼
1

ð2pÞ2
ð ð

R2
e�ir�nCTðrÞ dq dx; (28)

where rðq; xÞ denotes the three dimensional coordinates and

where the correlation function C(r) is no longer isotropic

since the travel time correlation in the transversal plane is

different from that in the propagation direction. We need to

take into account the longitudinal correlation function

CLðx1; x2Þ into the three dimensional random field simula-

tion. But CLðx1; x2Þ is a non symmetrical function and there

is no analytical expression of its spectral density function.

Thus, an approximation is done, which consists in replacing

it by a symmetrical Gaussian function and in choosing an

approximated longitudinal characteristic length lk

CLðx1; x2Þ 	 C
LðhÞ ¼ r2
Te
�h2=l2k ; (29)

where h ¼ jx2 � x1j. Then the total correlation function is

written as

CðrÞ ¼ CTðqÞC
LðhÞ: (30)

By applying one dimensional Fourier transform of Eq. (29),

the spectral density function in the longitudinal direction is

given by

SLðnÞ ¼
r2

Tlkffiffiffi
p
p e

ðnlkÞ
2

4 ; (31)

which is also a Gaussian function. Hence the total spectral

density function can be obtained by combining the transver-

sal spectral density function and the longitudinal one

SðnÞ ¼ STðn1; n2ÞSLðn3Þ ¼
jnjl2

� lk
2
ffiffiffi
p
p e

ðn1 lkÞ
2þðn2 l�Þ2þðn3 l�Þ2

4 ; (32)

with the projections of n on the three axis defined by

n1 ¼ jnj cos b
n2 ¼ jnj cos a sin b
n3 ¼ jnj sin a sin b

;

8<
: (33)

where a 2 ½0; 2p½ denotes the azimuth angle and b 2 ½0; p�
the polar angle (see Fig. 13).

Then the three-dimensional travel time fluctuations are

modeled by

SðnÞ ¼ STðn1; n2ÞSLðn3Þ ¼
r2

Tl2� lk

8ðpÞ3=2
e
ðn1 lkÞ

2þðn2 l�Þ2þðn3 l�Þ2

4 : (34)

The variance of the time fluctuation increases with the propa-

gation distance x and the three-dimensional phase coherence

is insured by the correlation function [Eq. (30)]. The time

fluctuations calculated by the stochastic model with Eq. (30)

on screens at six positions from x=l� ¼ 10 to x=l� ¼ 60 (as

done using the geometrical optics in Fig. 4) are shown in

Fig. 14. For the results at one given position, the curve

smoothness represents the transversal correlation of time

fluctuations in the transversal plane, which is consistent with

the results shown in Fig. 4. Then we calculate the variances

of time fluctuations at each position and compare in Table I

with those calculated from the deterministic model results

(shown in Fig. 4) and the theoretical values given by Eq.

(15). As the theoretical prediction, the time fluctuations cal-

culated by the stochastic model increase with the propaga-

tion distance, and the variance growths of these three models

are consistent. Finally, the correlation between curves of two

successive positions can be observed in Fig. 14, as already

seen with the deterministic results shown in Fig. 4. This con-

sistency comes from the account of the longitudinal correla-

tion in the stochastic modeling [Eq. (34)].

FIG. 12. Comparison between the theoretical (red line) and simulated covar-

iance functions obtained for Dn ¼ 2:47=l� (blue), 1:65=l� (green), 1:10=l�
(purple), 0:70=l� (black), and nmax ¼ 6=l�.

FIG. 13. Wave vector geometry of a single Fourier mode.
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We have presented here the principle of the stochastic

model and its application to an incident plane wave in a ran-

dom medium. The statistical behaviors of the travel time

fluctuations calculated by the stochastic model by taking into

account the theoretical time variance and correlation func-

tions are consistent with the results given by the determinis-

tic model.

It has to be noticed that caustics will not call into ques-

tion the validity of this stochastic model. In the mean homo-

geneous velocity medium used for the amplitude calculation,

caustics will not occur, contrary to an inhomogeneous me-

dium, if we assume an unbounded medium including no

large scattering object able to focus rays by reflection or

refraction. The presence of caustics does also not interfere

with the statistical results of the propagation field in terms of

travel times (analytical expressions Eqs. (14) and (15)). The

used correlation functions are Gaussian ensuring a spatial

smoothing of the modeled travel times.

This stochastic model is applied in Sec. IV to a practical

case, the realistic acoustic beam generated by a transducer.

IV. APPLICATION: SIMULATION OF THE ACOUSTIC
WAVE BEAM EMITTED BY A PLANE TRANSDUCER

Ultrasonic techniques are widely used notably in non-

destructive evaluation (NDE) in the aim of characterizing

defects33 or in telemetry for locating immersed objects.34

Modeling is crucial to ensure the ability of the used echo-

graphical methods. The simulation of a whole echography

mainly requires two modelling steps, one dedicated to trans-

ducer radiation and one to scattering from flaws in solids33,35

or from immersed targets.34 The acoustic/elastodynamic

beam radiated by a transducer in a fluid or in an isotropic,

anisotropic and/or heterogeneous solid specimen has been

modeled by Gengembre and Lh�emery36,37 using geometrical

optics. Using both the deterministic model (geometrical

optics1,36) and the stochastic model, the acoustic beam prop-

agation can be simulated in our studied random velocity

field. We will see that the stochastic model is much faster

than geometrical optics. The results calculated by geometri-

cal optics are taken as references; by comparing them with

the results obtained with the stochastic model, the stochastic

model will be validated.

The acoustic wave beam generated by a transducer and

then propagating in a fluid can be modeled by the radiation

of a distribution of particle velocity sources at points

r0ðy0; z0Þ over the surface P0. The Rayleigh integral describes

the acoustic scalar field potential uvðr; tÞ at the considered

field observation point r due to the sources v(t) located on

the radiating surface P0 (see Fig. 15)

uvðr; tÞ ¼ vðtÞ �
ð ð

r02P0

dðt� TðrÞÞ
2pjr� r0j

dr0; (35)

where v(t) is the uniform particle velocity on the surface

P0; � represents the convolution, jr� r0j ¼ ½x2 þ ðy� y0Þ2
þðz� z0Þ2�1=2

denotes the acoustic path between a source

point r0ð0; y0; z0Þ and an observation point r(x, y, z) and this

path gives rise to a delay TðrÞ ¼ jr� r0j=c0 in a homogene-

ous fluid medium of sound velocity c0. Then the acoustic

beam field is modeled as the sum of contributions due to

FIG. 14. Travel time fluctuations for different propagation distances, cal-

culated by the stochastic simulation. The standard deviations of the random

velocity field is r� ¼ 0:0018, the transversal characteristic length is

l? ¼ 0:01m ðl? ¼ l�Þ, and the longitudinal characteristic length is lk ¼ 3m.

TABLE I. Comparison of variances of time fluctuations (�10�13s2) calcu-

lated on screens at different positions from x=l� ¼ 10 to x=l� ¼ 60, knowing

that the travel time averages on the screens vary from 0:40� 10�3s to

2:40� 10�3s. Theoretical values given by Eq. (15); variances of determinis-

tic model calculated from the time fluctuations shown in Fig. 4; variances of

stochastic model calculated from the time fluctuations shown in Fig. 14.

Position x=l� 10 20 30 40 50 60

Theoretical model 0.90 1.84 2.90 4.25 6.60 8.63

Deterministic model 0.42 0.97 1.18 3.06 6.82 7.95

Stochastic model 0.65 1.36 2.06 2.98 7.03 9.52
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hemispherical sources over the whole radiating surface (see

Fig. 15).

Fig. 15 shows the example of the acoustic field calcu-

lated in a homogeneous medium using the Rayleigh integral

for a 130 mm circular transducer. The source signal is a

Gaussian modulated sinusoidal pulse whose center frequency

is 2 MHz and bandwidth is 60%.

To calculate the acoustic beam in an inhomogeneous

medium, the acoustic paths are calculated using the geomet-

rical optics model (use of Eqs. (10a) and (10b)) for a given

inhomogeneous velocity map as shown in Fig. 1. Compared

to a homogeneous medium, these acoustic paths are no lon-

ger straight lines as the rays illustrated in Figs. 2 and 3 and

the travel time of each path will also be modified. The

impulse response (IR) at each field point is the synthesis of

all contributions from the radiating surface. Since the inter-

ferences of these contributions depend on their respective

amplitude and time of flight delay (time difference between

each contribution), the modification of the travel time from a

homogeneous to an inhomogeneous medium can cause de-

structive interferences when synthesizing the final IR at each

point. Therefore, the amplitude at one point can be randomly

changed from one realization of the medium velocity field to

another. For a large number of calculations at one point car-

ried out with different independent realizations, the probabil-

ity density of field amplitude is obtained at this point. This

probability density is strongly related to the travel time of

each contribution, which can be explained by the example

below. This travel time delay can be modeled using three dif-

ferent methods: the deterministic model (geometrical optics),

the stochastic model and a white noise randomly generated

without spatial correlation. Travel time fluctuations for each

method and for one single realization are shown in Fig. 16.

We can see that the time fluctuations generated by the deter-

ministic and the stochastic models are both smooth due to

the time spatial correlations, contrary to those provided by

the white noise generator. The spatial continuity of these

time fluctuations can influence the final field amplitude on

the observation point because of the phase interferences.

After 500 realizations of field calculation at one point,

we get the probability density of maximum amplitude related

to each model shown in Fig. 17 where the red lines represent

the results in a homogeneous medium and the blue bars

denote the amplitude distributions in the inhomogeneous

media. We note that the distributions of maximum

amplitudes at the observation point predicted by the stochas-

tic model is consistent with the results of the deterministic

model and their distributions are centered on the single value

obtained in the mean homogeneous medium. But with the

white noise, we find that most of amplitudes are smaller than

that in a homogeneous medium; it is due to the fact that the

time delays modeled without spatial correlation can give rise

to destructive interferences.

We now compare the deterministic model and the sto-

chastic model for the calculation of wave beam field in a two

FIG. 15. Transducer of radiating surface P0 and acoustic beam prediction;

each contribution on the transducer surface is a hemispherical source which

is linked to the field point by acoustic paths ln.

FIG. 16. Time fluctuations for each contribution on the transducer surface

(Fig. 15) obtained by three kinds of methods: the deterministic model (geo-

metrical optics), the stochastic model, and the white noise generator.

FIG. 17. Probability density of maximum amplitude at one point calculated by the (a) deterministic model, (b) stochastic model, and (c) white noise time delay.
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dimensional computation zone. Fig. 18 shows an example of

the acoustic beam prediction in an inhomogeneous medium

calculated by geometrical optics for a single realization of

random velocity field. This calculation used the same trans-

ducer as that used in Fig. 15. The random velocity field is

defined by the standard deviation r� ¼ 0:0018 and the char-

acteristic length l� ¼ 0:1m. The beam has been calculated in

a two-dimensional region 0:1m < x < 1:4 m; �0:05 m < y
< 0:05 m. We notice that the main axis of the acoustic beam

is no longer along the axis (y¼ 0). The inhomogeneities of

the random velocity medium give rise to a slight deviation of

the acoustic beam.

However, the computation time of the geometrical

optics model is proportional to the number of paths, to the

number of field point to calculate and to the discretization

level on each path. Because of the iterative computation, the

calculation of the acoustic beam by ray tracing in a random

medium is much more expensive than those in a homogene-

ous medium. In this example, the calculating zone ð0:1m <
x < 1:4 m;�0:05 m < y < 0:05 mÞ has 2000 points; the

computation time is about 1.5 h (PC, CPU: Intel Core 2Duo

CPU E6750 2.66 GHz, RAM: 3.25Go). However, the sto-

chastic model developed can simulate faster the propagation

of an acoustic beam in a random medium. This model

considers that the wave propagation in the random media is

the propagation field in a mean homogeneous medium

corrected by some modifications of travel time. So in the

stochastic modeling, the ray paths in such homogeneous

medium are conserved but a correction provided by the sto-

chastic model is operated on the travel times of these rays in

order to take into account the influence of these inhomoge-

neities. The result shown in Fig. 19 is the stochastic simula-

tion of the acoustic beam propagating in an inhomogeneous

medium with the same statistical properties of the velocity

field and the same calculation area as with the deterministic

calculation of Fig. 18. The computation time for the stochas-

tic model on the same computer is only 10 s.

We can see that the acoustic beam predicted by the sto-

chastic model is also slightly distorted. As the stochastic

model does not work on an individual velocity field but on

the statistical functions of velocity, we cannot compare its

results with those of the deterministic model for only one

realization of velocity field. Thus, a large number of realiza-

tions should be made to compare the statistics of the results

obtained with these two models.

In Figs. 20 and 21, the amplitude distributions on one

horizontal line of the previous 2D computation zone are pre-

sented. The red curve represents the amplitude distribution

in a mean homogeneous medium and dotted curves are the

results from a large number of realizations in the random

FIG. 18. Acoustic beam propagation in a inhomogeneous medium calculated

by the deterministic ray tracing model.

FIG. 19. Acoustic beam propagation in a inhomogeneous medium calculated

by the stochastic simulation model.

FIG. 20. Amplitude distributions along the line x¼ 1.4 m calculated by the

deterministic model; the solid (red) curve denotes the result in a mean homo-

geneous medium and the dotted curves denotes the results in the random me-

dium, mean deviation: �10 mm, standard deviation of gaps: 7.3 mm.

FIG. 21. Amplitude distributions along the line x¼ 1.4 m calculated by the

stochastic model; the solid (red) curve denotes the result in a mean homoge-

neous medium and the dotted curves denotes the results in the random me-

dium, mean deviation: �10 mm, standard deviation of gaps: 7.6 mm.
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medium. These amplitude distributions show the wave beam

deviations randomly vary around the central homogeneous

distribution. The stochastic model predicts wave beam devia-

tions of the same order as the deterministic model, which

means that their mean deviations are both about 10 mm for

x¼ 1.4 m and the standard deviation of the gaps are respec-

tively 7.3 mm for the deterministic model and 7.6 mm for the

stochastic model.

V. CONCLUSION

A deterministic model based on geometrical optics has

been devised to simulate the wave propagation in a Gaussian

random celerity field. Using ray tracing, a distortion of an

acoustic incident plane wave has been observed and corre-

sponding fluctuations of travel time have also been obtained.

But this model has the inconvenient to be time consuming. A

new concept of high frequency wave propagation modeling

in a random medium has been developed using a stochastic

modeling. This model can generate the fluctuation part of the

propagation field, due to the random velocity variations in

the propagation medium. The inputs of the random field gen-

erator are the statistical moments of the wave field in a ran-

dom medium which are determined analytically. The

deterministic model and the stochastic model are both

applied to calculate the propagation of a realistic acoustic

beam in a Gaussian random velocity field. First, a large num-

ber of field calculations has shown that both the distribution

of field amplitude and the obtained beam deviation are simi-

lar for the two models. These comparisons between these

two models allow to validate the new stochastic model. This

model developed here for acoustics can be extended to deal

with other wave propagation phenomena. Furthermore, the

stochastic model can be simply coupled with a deterministic

simulation in order to model a more realistic propagation

medium. For instance, a realistic medium can be decom-

posed into two parts: one deterministic part due to stationary

inhomogeneities invariant in time (as a velocity gradient)

and another part due to random fluctuations.
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