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A stable method to model the acoustic response of multilayered structures
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Le Mans Cedex, France
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A general approach to determine the acoustic reflection and transmission coefficients of

multilayered panels is proposed in this paper. Contrary to the Transfer Matrix Method (TMM), this

method does not become unstable for high frequencies or large layer thicknesses. This method is

shown to be as general as the TMM and mathematically equivalent. Its principle is to consider a so

called Information Vector which contains all the information necessary to deduce the State Vector

through a Translation Matrix. The Information Vector is of reduced length compared to that of the

State Vector and can be propagated in any layer without involving exponentially growing terms. In

addition, this method enables the coupling between any type of physical media as far as proper

boundary relations can be written. Moreover, the method does not lead to an enlargement of the

systems’ size in the case of interfaces between media of different physical type. Finally, this

method can be easily implemented in numerical codes. The method is validated on three cases

classically encountered in acoustic problems. However, it is general enough to model any type of

multilayered problems in any field of applied physics. VC 2013 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4790629]

I. INTRODUCTION

The Thomson-Haskell method7,8,12–15,20–22 also known

as the Transfer Matrix Method (TMM) is often used in vari-

ous domains of physical modelling (in acoustics to model

sound packages or composite materials, in electromagnetism,

in geodynamics, etc). This method computes the response of

planar multilayered systems presented in Fig. 1. Each layer

is of infinite extent in the lateral directions and the structure

is excited by an incident monochromatic plane wave. Basi-

cally, the method consists in decomposing the wave fields in

each layer into forward and backward waves and in applying

the boundary conditions at each layer interfaces. This

method is very convenient because of its flexibility: the prop-

agation in a layer is performed with matrix multiplication

and media of different physical types (solids, fluids, visco-

elastic and poroelastic materials, etc) can be coupled through

interface matrices. The TMM is also shown to be fast. For

structures with invariance by rotation around the thickness

direction, a Cartesian coordinate system can be attached to

the configuration such that the polarization of the wave is in

the incident plane. Boundary relations, leading to Snell-

Descartes laws, show that the propagation is in the same

plane as the incident wave thereby reducing the 3D problem

to a 2D one.

The principle of the TMM is to consider a State Vector,

whose components depend on the position along the layer

thickness. For example, in mechanical applications, this vec-

tor merges the particle displacements with the stresses

applied on a surface perpendicular to the thickness of the

sample. The Transfer Matrix of a layer provides linear rela-

tions between the values of the State Vector on each sides of

the layer. It can be shown that, for a given layer, the length

of this vector is equal to the number of the waves (both for-

ward and backward waves being considered). As the number

of waves depends on the physical nature of the medium in

the layer, a natural consequence is that the length of the State

Vector is not always constant along the thickness of a multi-

layered structure when it consists of different types of media.

Consequently, the TMM is, theoretically, a general method

to predict reflection and transmission coefficient of multilay-

ered structures. It has been applied successfully in a huge

number of cases, see, for example, Refs. 1–3, 8, 12, and 14.

Extensions have also been proposed, for example, to take the

finite size effects of panels into account.18

Even though the method is exact from a mathematical

point of view, divergences can occur in its results. It is espe-

cially the case for high frequencies and/or large layer thick-

nesses. The reason of this divergence is a bad numerical

evaluation of the involved exponential terms by finite-

arithmetics computers. This is a classical and well known

numerical problem which has been observed by several

authors in many fields of physics4,9,16,17,19 and some

FIG. 1. Panel composed of n layers.a)olivier.dazel@univ-lemans.fr.
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strategies have been proposed to avoid this problem. Never-

theless, none of the proposed techniques was shown to be

both sufficiently general to model all kinds of problem and

simple enough to be implemented without a prohibiting cost.

For example, most of the techniques proposed in geome-

chanics9,17 and for the ultrasonic propagation in composite

materials4,19 concerns transmission problems composed of

layers of analog physical medium and no example is found

in the literature of a stable technique that can be applied to

rigid backing problems.

Among the above techniques, one particular category of

methods10,19,23,24 strongly inspire the authors. They are

based on recursive approaches. In 1997, Yang proposed a

spectral recursive method to model electromagnetic waves in

generalized anisotropic layered media.24 Even if this tech-

nique was only devoted to a single type of medium and

applied to a transmission problem, it can be extended and

generalized. This is the purpose of the present paper. Hence,

a stable numerical method is developed and proposed to

model wave propagation in multilayered structures. Contrary

to the TMM approach, the principle of the present approach

is not to propagate the whole State Vector in a layer; only

the non redundant information is propagated. One key point

is that this method is mathematically equivalent to the TMM

and can thereby be considered as exact.

Section II introduces the configuration of interest and

the notations used in the present work. Section III presents

the method from an abstract point of view. These two sec-

tions illustrate the generality of the approach. In order to

help the reader to understand the approach, examples are

also given in these two sections. These ones are associated

with the application cases presented in Sec. IV.

II. CONFIGURATION OF INTEREST

In this work, multilayered panels as in Fig. 1 are consid-

ered. A Cartesian {x, y, z} coordinate-system is used. The

panel is assumed to be infinite along the x and y axis. The z
axis corresponds to the thickness direction. The different

layers of the panel can be associated with several types of

medium encountered in mechanics (elastic or viscoelastic

solids, fluid media— air or any gas, equivalent fluid model,

limp model—, isotropic or transverse isotropic poroelastic

material…). However the proposed method is sufficiently

general to be adapted to piezoelectric materials or to electro-

magnetic media. Each layer is assumed homogeneous (i.e.,

with constant physical properties). Concerning excitation, a

monochromatic (angular frequency x and convention ejxt

with j ¼
ffiffiffiffiffiffiffi
�1
p

) plane wave with a fx; zg wave number

denoted by fkx; kyg is considered. In this paper, ½I�� denotes

the identity matrix of size �. Even if it is not considered in

this work, the proposed technique can be applied in the case

of diffuse field excitation without restriction by the classical

angular integration or to lineic sources through a spatial Fou-

rier Transform. If the panel is supposed to be invariant by

rotation around the z-axis, the polarization of the incident

plane wave can be considered to be in the {x, z} plane and

the wave number component in the y direction ky is equal to

zero. Hence, in this case, kx is given by

kx ¼ k0 sinðhÞ; (1)

for all the layers where k0 is the wave number in the incident

medium and h is the incident angle. This 2D assumption will

be considered in the examples of Sec. IV but is not necessary

in the general case presented in Sec. III. Two termination

conditions can be considered on the right-hand side of the

structure: it can be bounded by a rigid wall or waves are radi-

ated into a semi-infinite medium.

Let n be the number of layers in the panel. They are then

separated by n þ 1 interfaces which are labelled from 0 to n;

interface 0 is the one with the incident medium and interface

n is associated to the termination. Hence, layer i is limited by

interfaces i – 1 and i. Each interface is determined by its

coordinate zi, i 2 f0::ng and the thickness of layer i is

di ¼ zi � zi�1. Finally let 2mi denote the number of waves in

the layer.

For each layer, a State Vector (denoted by SðzÞ) is con-

sidered. We are mostly interested in the evaluation of this vec-

tor at the interfaces of the multilayer panel. Hence, one

defines:

Sþi ¼ lim
z!zþi

SðzÞ; S�i ¼ lim
z!z�i

SðzÞ: (2)

We can notice that Sþn is only defined in the case of a trans-

mission problem. Examples of State Vector, associated to

the cases presented in Sec. IV, are given in Table I. u refers

to displacements and r to stresses; indices denote directions.

For poroelastic materials (PEM), fields are associated with

the stress decoupled formulation.6 Note that an adequate

choice of the State Vector of a layer consists in using compo-

nents that are continuous fields at the interfaces.

For a given layer (i) with constant physical properties,

the length of the State Vector is equal to the number 2mi of

waves. The Transfer Matrix ½Mi� is deduced from the linear

application which associates the values of the components of

the State Vector at both sides of the layer. ½Mi� is thus a

f2mi � 2mig matrix:

Sþi�1 ¼ ½Mi�S�i : (3)

The expression for ½Mi� can be obtained for example with

the Stroh formalism: the State Vector can be shown to be the

solution of a first order partial derivative equation:

@SðzÞ
@z
¼ �½ai�SðzÞ; zi�1 < z < zi: (4)

As ½ai� is constant in the layer, ½Mi� can be formally written

with a matrix exponential:

TABLE I. State Vectors associated to different kinds of media.

Medium State Vector Medium State Vector Medium State Vector

Fluid uz

–––

p

8<
:

9=
;

Isotropic solid rxz

uz

–––

rzz

ux

8>>>><
>>>>:

9>>>>=
>>>>;

PEM r̂xz

us
z

ut
z

–––

r̂zz

p
us

x

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
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½Mi� ¼ expð½ai�diÞ: (5)

A more convenient expression can be written with a prelimi-

nary diagonalization of ½ai� ¼ ½Ui�½ki�½Ui��1
, where ½Ui� is

the matrix of eigenvectors and ½ki� the diagonal matrix of the

eigenvalues of ½ai�. Equation (5) is now rewritten as:

½Mi� ¼ ½Ui�½expðkidiÞ�½Ui��1: (6)

The diagonalization of ½ai� is straightforward if one considers

the expression of the State Vector SðzÞ as a function of the

amplitudes q of the 2mi waves in the layer:

SðzÞ ¼ ½AiðzÞ�q; ½AiðzÞ� ¼ ½AiðziÞ�½DiðzÞ�; (7)

where ½DiðzÞ� is the diagonal matrix whose nth term is equal

to expðjkzðnÞðz� ziÞÞ where kzðnÞ is the wave number along

the z direction associated with the nth wave. The Transfer

Matrix can be rewritten as

½Mi� ¼ ½Aiðzi�1Þ�½AiðziÞ��1 ¼ ½AiðziÞ�½Diðzi�1Þ�½AiðziÞ��1:

(8)

A direct comparison of expressions (6) and (8) indicates that

½ki�=j is the diagonal matrix of z–component of the wave vec-

tor and that ½Ui� ¼ ½AiðziÞ�. Note that for the given layer, the

z–origin can be chosen equal to zi so that ½AiðziÞ� does not

involve exponential terms. Examples and explicit expres-

sions for ½ai�; ½Ui� and ½ki� are given in Appendix A for the

media considered in Sec. IV.

In the case of multilayered structures composed of sev-

eral materials of the same physical type and with an adequate

choice of components for the State Vector (i.e. associated to

continuous fields), the global Transfer Matrix is obtained by

matrix multiplication. Reflection and transmission coeffi-

cients are deduced from the global matrices. In the case of a

panel composed of several types of media, it is not always

possible to directly exhibit a Transfer Matrix, but it was

shown possible to consider a global linear system which is

deduced from both boundary relations and individual Trans-

fer Matrices. This system is generally of larger size and its

numerical implementation is not straightforward. The proce-

dure is presented, for example, in Ref. 3 and detailed in

Ref. 1 to which the reader can refer for further details.

III. PROPOSED APPROACH TO MODEL
MULTILAYERED STRUCTURES

A. General overview of the proposed method

The general idea of the proposed method is to rewrite

the State Vector as:

S6
i ¼ ½X6

i �X6
i ; (9)

wherein X6
i is thus called Information Vector. Its compo-

nents can correspond either to physical fields or any combi-

nation of them which can be adequately chosen. Regardless

of the significance of the components of this vector, an im-

portant aspect is that the State Vector can always be deduced

from it. That is the reason why another quantity ½X6
i �, called

Translation matrix, needs also to be determined so as to link

the State and the Information Vectors. The method will then

consist in an initialization step and two steps in case of rig-

idly bounded problems. For transmission in a semi-infinite

medium problem, a third step needs to be considered.

Step 0 (initialization) consists in determining the Trans-

lation Matrix associated with the termination condition. The

two different cases should be individually considered. For

the rigid backing configuration, all displacements are equal

to zero, the only unknowns are the normal stresses; these

stresses are the components of X�n . ½X�n � is then a Boolean

matrix, whose expression is straightforward. For the trans-

mission problem, Xþn corresponds to the transmission coeffi-

cients in the semi-infinite medium and ½X�n � follows from the

expressions of stresses and displacements in terms of these

amplitudes. The expressions for Translation matrices are

given in Table II for the case of a fluid (considered in the

examples of Sec. IV).

Step 1 consists in determining the value of ½X�0 � which

is deduced successively from the Translation Matrix ½X6
n � at

the termination interface. Each interface is considered in a

decreasing manner. Note that values of the Information Vec-

tors remain unknown for the moment.

Step 2 consists in finding ½X�0 �. The State Vector in the

incident medium S�0 can then be written on two different

forms. The first one is by Eq. (9) in which ½X�0 � is deduced

from Step 1. The second form is derived from the expression

of the field in the incident medium written from the excita-

tion and the unknown reflection coefficient which gives

S�0 ¼ ½X�0 �X�0 ¼ ½X0�Rþ E0: (10)

E0 corresponds to the excitation and R is the unknown vector

of reflection coefficients. Expressions for ½X0� and E0 are

given in Table III for a illustration. Since Eq. (10) is a linear

problem in R and X�0 , the unknowns are derived from:

X�0
R

� �
¼ ½½X�0 �j � ½X0���1

E0: (11)

For rigid backing configurations where R is the only

unknown, this is the final step. For transmission problems, an

additional (third) step is needed. It consists in deducing the

TABLE II. Translation matrices at interface n for a fluid.

Fluid on a rigid backing Transmission in a semi-infinite fluid

½X�n � ¼
0

1

� �
; ½X�n � ¼ f pðznÞg

½Xþn � ¼
� cosðhÞ

jxZ0

1

2
64

3
75; ½Xþn � ¼ fTg

TABLE III. Expressions of ½X0� and E0 for a fluid of specific impedance Z0

and for an incident plane wave with angle h and angular frequency x.

½X0� E0

cosðhÞ
jxZ0

1

2
64

3
75 � cosðhÞ

jxZ0

1

8><
>:

9>=
>;

083506-3 Dazel et al. J. Appl. Phys. 113, 083506 (2013)



transmission coefficients from the values of X�0 . A succes-

sive determination of the Information Vectors is preformed

to determine Xþn and the hence the transmission coefficients.

B. Definition of propagation operators and numerical
implementation

This subsection concerns the definition of matrix opera-

tors illustrated in Fig. 2. In the first step, it is necessary to

define two operators which express the transfer of Transla-

tion matrices, as follows:

½Xþi�1� ¼ T i ð½X�i �Þ; ½X�i � ¼ U i ð½Xþi �Þ: (12)

T i expresses the transfer in layer i and U i the transfer over

the interface i. Note that T i only depends on the physical

properties of layer i and U i only on the interface type. Due to

this, these operators can be implemented separately in inde-

pendent subroutines. T (respectively, U) is associated with a

subroutine whose inputs are ½X�i � and the properties of the

layer (respectively, the type of interface).

If a rigid backing configuration is considered ½X�n � is

known. If the termination condition is associated to a semi-

infinite medium, ½Xþn � is known and

½X�n � ¼ Unð½Xþn �Þ: (13)

½X�0 � can then be deduced from

½X�0 � ¼ U0ðT 1ðU1ðT 2ð::::ðT nð½X�n �Þ::::ÞÞÞÞÞ: (14)

For step 3, the Information Vector X�0 is transferred to-

ward the interface n. Operators are then defined as:

X�i ¼ W iðXþi�1Þ; Xþi ¼ V iðX�i Þ: (15)

Wi represents the transfer of the Information Vector in layer

i and V i is associated to the one at interface i. Hence, Xþn can

be deduced from X�0 :

Xþn ¼ VnðWnðVn�1ð:::ðW1ðV0ðX�0 ÞÞÞ:::ÞÞÞ: (16)

One important remark is that problems of instability

only occur inside the layers and not at the interfaces. Then, a

key point is that T and W should not be numerically

divergent.

C. Size of the information vector

We are now interested in the comparison of the length

of State and Information Vectors. In layer i, in which 2mi

waves are travelling, the size of the State Vector is classi-

cally of size 2mi. One basic remark is that the Transfer Ma-

trix of this layer is determined independently from the other

layers. During its numerical derivation, no assumption is

made on the links between components of the State Vector:

they are considered as independent one from the other. One

cause of the divergence of the TMM can then be understood:

if a numerical error modifies one component of the State

Vector because of finite arithmetics, even in an infinitesimal

manner, this error is amplified at the other side of the layer.

In the proposed method, the approach is a bit different; the

idea is to first consider one side of the panel (the termination

condition) and directly expresses the interdependencies on

the fields. This has the advantage of reducing the number of

needed parameters. Moreover, it can be shown that the size

of the Information Vector is equal to mi. Hence, only the

minimal information is transferred thereby reducing the pos-

sibility of numerical divergence.

D. Transfer in a layer, T andW operators

Reducing the number of unknowns is not sufficient, the

method should also control exponentially growing term. In

this subsection, expressions of T andW are provided as well

as a discussion of the stability of the method. Note that this

presentation is purely formal and independent of the type of

the medium. To simplify notations, index i is omitted in all

this subsection. The number of wave in the medium is

denoted m, the thickness of the layer by d. Hence, Xþ and

X� will refer to Xþi�1 and X�i (the same notation is consid-

ered for the State Vector S).

The 2m eigenvalues of ½a� in expression (6) can be num-

bered in decreasing order of real part

Reðk1Þ > Reðk2Þ > :: > Reðk2mÞ: (17)

The first m eigenvalues have positive real part and the last m
have negative real part. Wave vectors are ordered similarly.

Uk denotes the kth column of the eigenvector matrix and let

Wk be the kth row of ½W� ¼ ½U��1
. The Transfer Matrix (6)

can then be written as the sum of 2m matrices:

½M� ¼
X2m

k¼1

ekkdUkWk: (18)

The main idea of the method is to isolate the first m – 1

terms. ½U� and ½W� are then split into:

½U� ¼ ½U1:::Um�1j½Ur��; ½W� ¼
W1

�
Wm�1

½Wr�

2
64

3
75: (19)

½Ur� and ½Wr�, respectively, correspond to the m þ 1 last col-

umns (respectively, rows) of ½U� (respectively, ½W�). The

Transfer Matrix in Eq. (18) now becomesFIG. 2. Transfer of Translation matrices and Information Vectors.
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½M� ¼
Xm�1

k¼1

ekk dUkWk þ ekm d½a0�; (20)

where

½a0� ¼ ½Ur�

1

eðkmþ1�kmÞd

. .
.

eðk2m�kmÞd

2
664

3
775½Wr�: (21)

This separation is of utmost importance. It can be observed that

the real part of exponential arguments in ½a0� is all negative.

Once the decomposition of the Transfer Matrix is done,

an adequate choice of Xþ remains. Sþ is now written as:

Sþ ¼ ½M�½X��X�

¼
Xm�1

k¼1

ekk dUkWk½X�� þ ekm d½a0�½X��
 !

X�: (22)

Exponential terms in the first part of this expression can for-

mally be integrated in Xþ

Xþ ¼

ek1d

. .
.

ekm�1d

ekmd

2
6664

3
7775

W1½X��

�

Wm�1½X��
Wm½X��

2
6664

3
7775

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
½N0 �

X�: (23)

As the Wk vectors are linearly independent and ½X�� is asso-

ciated to independent fields, ½N0� is invertible. ½N0� can then

be interpreted as the projection of the Translation Matrix on

the m leading eigenvectors. Relation (23), including expo-

nentially growing terms, is only an intermediate result and

will not be evaluated in the numerical code. The only rela-

tion needed between Information Vector is its reciprocal

X� ¼ WðXþÞ ¼ ½N0��1

e�k1d

. .
.

e�km�1d

e�kmd

2
6664

3
7775Xþ:

(24)

This relation is numerically stable. Moreover, as ½N0� is of

reduce size, its inversion is obtained using Cramer formulas

which are numerically exact.

The real interest of the choice in Eq. (23) for Xþ is that

Eq. (24) can be inserted in Eq. (22) to control exponential

growing terms:

Sþ¼
Xm�1

k¼1

UkXþk

þ½a0�½X��½N0��1

eðkm�k1Þd

. .
.

eðkm�km�1Þd

1

2
6664

3
7775Xþ: (25)

It is observed that no exponential terms exist in the sum and

that the remaining part does not contain exponentially grow-

ing terms. This form is also similar to that Eq. (9) and pro-

vides the expression of T :

½Xþ� ¼ T ½X�� ¼ ½U1j:::jUm�1j0�

þ½a0�½X��½N0��1

eðkm�k1Þd

. .
.

eðkm�km�1Þd

1

2
66664

3
77775:
(26)

From a mathematical point of view, this method is exact

as no simplification is made. The method is stable as expres-

sions (24) and (26) do not involve exponentially growing

terms.

E. Interface transfer, U and V operators

Interface i is considered to give expressions for U and V.

As in the previous subsection, index i will be omitted for

simplification. Exponent þ (respectively, –) will refer to me-

dium i (respectively, i – 1). Three types of interfaces should

be considered separately dependent on the number of waves

in the media on both sides of the interface. For the interfaces

considered in Sec. IV, a summary of these relations is given

in Table IV.

TABLE IV. Relations between State Vectors at interfaces between different media.

Interface Elastic solid-PEM Elastic solid-fluid PEM-fluid

Numb. waves m� ¼ 2=mþ ¼ 3 m� ¼ 2=mþ ¼ 1 m� ¼ 3=mþ ¼ 1

Continuity relations ue
z ¼ ut

z

ue
x ¼ us

x

re
zz ¼ r̂zz � p

re
xz ¼ r̂xz

ue
z ¼ uf

z

re
zz ¼ �pf

ut
z ¼ uf

z

p ¼ pf

Dirichlet conditions 0 ¼ us
z � ut

z re
xz ¼ 0 r̂xz ¼ 0

r̂zz ¼ 0

Unknowns ? ¼ p ue
x ¼ ? us

x ¼ ?

us
z ¼ ?
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The first case corresponds to media of the same physical

type in which m� ¼ mþ. State Vectors at both sides of the

interface are linked by 2mþ continuity relations for displace-

ments and stresses which are written as

S� ¼ ½T�Sþ: (27)

½T� is a square interface matrix of size 2mþ. Note that for

continuous fields, ½T� is equal to the identity matrix ½I2mþ �.
For this case, derivations of U and V are straightforward:

Uð½Xþ�Þ ¼ ½T�½Xþ�; VðX�Þ ¼ X�: (28)

The second case is associated with interfaces for which

m� < mþ. In this case, only 2m� continuity relations on dis-

placements and stress can be written. They are completed by

mþ � m� Dirichlet conditions on components of Sþ. These

two relations can be written as:

½Dþ�Sþ ¼ 0; S� ¼ ½D��Sþ: (29)

½Dþ� is a ðmþ � m�Þ � ð2mþÞ matrix associated to the

Dirichlet relations and ½D�� is a ð2mÞ� � ð2mþÞ matrix asso-

ciated to the continuity relations. For this type of interface,

the simplest and proposed choice for X� is to keep the first

m� components of Xþ:

X� ¼ Xþð1;m�Þ: (30)

The Dirichlet conditions allow to express the remaining

components of Xþ from the kept ones:

Xþðm� þ 1;mþÞ ¼ ½s�X�; (31)

with

½s� ¼ �
�
½Dþ�½Xþð:; m� þ 1 : mþÞ�

	�1

½Dþ�½Xþð:; 1 : m�Þ�:

(32)

The colon symbol “:” is associated to the whole range of

rows or columns. Expressions for U and V are written as:

Uð½Xþ�Þ ¼ ½D��
�
½Xþð:; 1 : m�Þ� þ ½Xþð:; m� þ 1 : mþÞ�½s�

	
(33)

VðX�Þ ¼ ½Im� �
½s�

� �
X�: (34)

The last type of interface is associated to medium for

which m� > mþ. In this case, the components of S� can be

subdivided in three sets: one associated to fields in Sþ,

another to the unknown fields and the last one equal to zero.

An accurate choice for X� is to add the (mþ � m�) unknown

components X0 to the Information Vector X�.

X� ¼ Xþ

X0

� �
: (35)

The derivation of V is then straightforward:

Xþ ¼ VðX�Þ ¼ ½Inþ �
½0�

� �
X�: (36)

Finally U can be written on the form:

Uð½Xþ�Þ ¼ ½½D1�½Xþ�j½D2��: (37)

½D1� is a matrix of dimension ð2m�Þ � ð2mþÞ and expresses

the relations between the components of continuous fields

of Sþ and S�. ½D2� is a Boolean matrix of dimension

ð2m�Þ � ðm� � mþÞ in which the rows are associated to the

unknown components X0.

IV. EXAMPLES

A. Acoustic ceiling

The first example is a commonly used suspended acousti-

cal ceiling which illustrates the ability of the technique to

model multicomponent panels and rigid backing configura-

tions. The panel consists of three layers: a resistive screen of

Material B. modeled with the limp model (layer 1), a porous

material with elastic frame of Material A (layer 2) and an air

cavity of 10 cm (layer 3) in front of a rigid backing (Table V).

The proposed approach is compared to a classical TMM

approach calculated by the Maine3A# software for an angle

of incidence of 45�. ½X�3 � is given in the first column of

Table II and ½X�0 � derived from Eq. (14). In this expression,

the U i and T i operators are derived from the expressions

TABLE V. Material properties.

Param. Unit Mat. A Mat. B Mat. C Mat. D. Mat. E Mat. F Mat. G Mat. H

/ [1] 0.95 0.9 0.98 0.98

r (Nsm�4) 2 850 2� 106 15� 103 1� 104

a1 [1] 1.05 1.00 1.05 1.0

K (lm) 300 30 100 150

K0 (lm) 900 100 300 350

q1 (kgm�3) 30.9 120 25 2786 5000 2600 30 900

E (MPa) 0.22 10 0.14 73300 0.148 2.5� 104 0.02 5� 103

� [1] 0.25 0 0.3 0.34 0.22 0.3 0 0.3

gs [1] 0.12 0.05 0.1 0 0 0.02 0.05 0.05

d (cm) 3 0.05 2 0.05 0.05 10 5 2
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given in subsections III E and III D. For each layer or inter-

face, the operators are determined with particular expressions

given in Appendices A and B. Table VI indicates which sub-

section of these appendices are needed for U i and T i opera-

tors. Real and imaginary parts of the reflection coefficient are

presented in Fig. 3 calculated with the proposed approach and

the software. A perfect agreement is observed between the

proposed approach and the TMM calculation which verifies

the validity of the approach. In this case, no divergence of the

TMM is observed as the chosen frequency range corresponds

to this type of building acoustics problem.

B. Double wall

The second example is the transmission through a dou-

ble wall construction with a poroelastic layer in between.

The panel then consists of three layers: a concrete wall

(Material F), a natural fibrous material (Material G), and a

wooden wall (Mat. H). Both walls are modeled as elastic sol-

ids. The excitation is close to grazing incidence (85�) and the

frequency range correspond to the audible frequency range

(20 Hz; 20 kHz). Step 3 is in this problem necessary after

step 0-2 to deduce the transmission coefficient. A perfect

agreement is observed on Fig. 4 between the proposed

approach and the TMM below 1.5 kHz where the TMM

becomes unstable contrary to the proposed approach. The

method derived in this paper was also compared to an analyt-

ical model which was specially implemented on this case.

The solution of this problem can be derived from a 16 dof
problem associated to the amplitudes of the waves in the sev-

eral media as well as the unknown reflexion and transmission

coefficient. Origin for the amplitudes of these waves has

been chosen at the origin of the interfaces so as not to have

numerical discrepancies in the solution. A 16� 16 linear

system can be obtained from the 16 boundary relations and

solved to obtain the reference solution. An exact agreement

with the proposed approach is observed below 100 GHz

which was chosen as a maximum. Even if there is no physi-

cal meaning to test the method up to this frequency, the test

indicates the robustness of the proposed approach.

C. Composite material

The last example is the transmission coefficient of a

composite multilayered material. The material is the super-

position of a glass and an aluminum plate of 0.5 mm (called

configuration A). The incident medium is water. The interfa-

ces operators are given in Annexes B 5 and B 6 and the

transfer operators are presented in Annex A 2. Transmission

FIG. 3. Acoustic Ceiling. r: Maine3A real part; *:Maine3A imaginary part;

Solid line: Proposed method real part; Dashed line: Proposed method imagi-

nary part.

FIG. 4. Transmission loss of a double wall. TMM: Solid line: Proposed

method; Dashed line.

TABLE VI. Links between the operator considered to model acoustic ceil-

ing case and appendices.

Operator Appendix

T 3 A 3

U2 B 2

T 2 A 1

U1 B 1

T 1 A 3

U0 1

FIG. 5. Modulus of the transmission coefficient of configuration A versus

angle of incidence (f ¼ 1 MHz). “þ” Floquet method;15 “Solid line”: pro-

posed method.
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coefficient is presented Fig. 5 at 1 MHz and various angles

of incidence. The classical TMM presents divergence for

angles larger than 30� because of the existence of evanescent

waves. The proposed approach perfectly fits with the TMM

before it diverges and is stable for any incidence. The results

are shown in Fig. 6 for a multilayer material with 20 layers

corresponding to 10 periods of the previous material (called

configuration B). Very weak values of the transmission coef-

ficient for angles larger than 30� also illustrate that this prob-

lem is an extreme case. It is remarkable that the proposed

approach does not become unstable for such problem.

V. CONCLUSION

A recursive approach was presented in this paper to

determine the acoustic reflection and transmission coeffi-

cients of multilayered panels. Contrary to the Transfer Ma-

trix Method, this new method is not divergent in the case of

dissipative materials or when waves are evanescent. Instead

of transferring the State Vector in the layer, the principle of

this method consists in transferring a so-called Information

Vector. This method was shown to be general and mathe-

matically equivalent to the Transfer Matrix Method. It has

been illustrated on three different cases associated to classi-

cal acoustical problems. Even though only mechanical exam-

ples were presented in this paper, this method can be

extended to any physical problem of multilayered structures.

APPENDIX A: T ANDW OPERATORS

This appendix provides the expressions necessary to

compute T and W operators following the methodology of

Sec. III D for three different media. These operators are

obtained from the eigenvalues ½k� and eigenvectors ½U�,
whose analytical expressions are given. ½W� is deduced from

½U� with a numerical inversion. In this appendix, matrices

are not reordered following the criteria (17). For clarity, ½a�
is also given together with the constitutive laws and motion

equations deduced from the physical models. To shorten

expressions, the index i denoting the layer is omitted in this

appendix.

1. Poroelastic material

The PEM is modeled with the fus; utg representation

and notation according to Ref. 6 which is the simplest way to

express the full Biot theory with the shortest expressions.

This representation yields two motion equations

r̂ij;j ¼ �x2~qsu
s
i � x2~qeq~cut

i;

�p;i ¼ �x2~qeq~cus
i � x2~qequt

i

(A1)

and two constitutive laws:

r̂ij ¼ Âr:us dij þ 2Neij; p ¼ � ~Keqr:ut: (A2)

Expressions for equivalent densities and elastic coefficients

can be found in Refs. 5, 6, and 11. Combining these rela-

tions, the expression of a is obtained:

The eigenvalues of ½a� is deduced from the wave numbers of the Biot waves di.
6

½k� ¼ diag j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

1 � k2
x

q
;�j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

1 � k2
x

q
; j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

2 � k2
x

q
;�j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

2 � k2
x

q
; j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

3 � k2
x

q
;�j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

3 � k2
x

q� �
;

wherein d1 and d2 are associated to the compressional waves and d3 to the shear wave.

FIG. 6. Modulus of the transmission coefficient of config. B versus angle of

incidence (f¼ 1 MHz). “þ” Floquet method;15 “Solid line”: proposed

method.
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The analytical expression of the matrix of eigenvectors reads:

li represents the ratio of displacements for each wave6 and

one defines bi ¼ ki=j and

a1;2 ¼ �jÂd1;2 � j 2Nb2
1;2; a3 ¼ j 2Nb3kx: (A4)

2. Elastic-solid

For an isotropic elastic layer, the partial differential

equation are given by the classical elasticity theory:

rij ¼ kr:u dij þ 2leij; rij;j ¼ �x2qui: (A5)

k and l are the Lam�e coefficients and q is the density of the

medium. Combining these two relations gives:

The eigenvalues of ½a� are easily obtained from the wave

numbers dp and ds of the compressional and shear waves as:

½k� ¼ diag j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

p� k2
x

q
;�j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

p� k2
x

q
; j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

s � k2
x

q
;�j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

s � k2
x

q� �
:

The analytical expression for the matrix of eigenvectors is:

wherein b ¼ k=j and

ap ¼ �jkdp � j 2lb2
p; as ¼ j 2lbskx: (A8)

3. Fluid medium

Fluids can be modelled as perfect fluids, equivalent fluid

(rigid frame) or limp model depending on the choice of com-

pressibility K and density q. One has:

�x2qui ¼ �p; i; p ¼ �Kr:u:

This leads to ½a�:

The eigenvalues of ½a� are obtained straightforward with d
the wave number of the compressional wave:

½k� ¼ diag j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � k2

x

q
;�j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � k2

x

q� �
:

The analytical expression for the matrix of eigenvectors is:

½U� ¼
k=j

�k=j





 jKd2

jKd2

" #
: (A10)

APPENDIX B: INTERFACE OPERATORS U AND V

This appendix provides the expressions of U and V
which are associated to the interfaces. Only different types

of medium are considered here. Subsections are entitled as

follows: the first medium is layer i and the second one is me-

dium i þ 1. In each of them, the expressions of S� and Sþ

are first given. Second, the expressions of ½D� matrices are

provided.

1. Fluid medium—Poroelastic material
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2. Poroelastic material—Fluid medium

3. Equivalent fluid medium—Poroelastic material

4. Poroelastic material—Equivalent fluid medium

5. Fluid medium—Elastic medium

6. Elastic medium— Fluid medium
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