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The present work aims at contributing to the investigation of an analytical method to describe

Lamb waves which undergoes Lamb waves coupling when propagating along the rough surfaces of

finite extent of isotropic, solid, and infinite plates. The motions considered are assumed to be

independent of one of the coordinates for which the component of the displacement is equal to zero

(two-dimensional problem). In some respect, the analytical approach is an extension of an

analytical model describing the coupling of SH waves due to ridges (on the surface of a plate)

parallel to the polarization of the waves, but it is treated in a somewhat different manner because

the acoustic field involves here both the longitudinal and the transversal displacements of the Lamb

waves. The formalism relies on an integral formulation, using Green’s functions which permit to

express Lamb waves perturbations, to describe the coupling process between the longitudinal and

the transversal components of the forward and the backward propagating Lamb waves, due to the

roughness (including the effects of both its depth and its slope). A methodology is given to solve

the problem, and results on specific examples (periodic and random rough surfaces) are discussed

in order to support the method. VC 2011 American Institute of Physics. [doi:10.1063/1.3552920]

I. INTRODUCTION

The work herein presented aims at providing an ana-

lytical model, suitable to highlight the coupling of Lamb

waves due to scattering on small one-dimensional irregu-

larities (parallel ridges) of part of the surfaces of homoge-

neous solid plates. The literature abounds with many

papers in which such topics are of principal focus (see

Refs. 1–20 and references contained therein), but it is still

a challenging topic to obtain tractable and accurate model-

ing to predict the properties of these fields, having in mind

the characterization of the roughness of the boundaries of

waveguides. In some respect, the alternative analytical

model proposed in the present paper is built upon an ana-

lytical model describing SH waves which undergoes scat-

tering (then induces modal coupling) when propagating

along the ridged surface of an isotropic solid plate (the

ridges being parallel to the polarization of the SH waves

considered).21–24 The waveguide considered is a two-

dimensional (x, z) isotropic solid plate in vacuum assumed

to be infinite in the y direction, bounded by two parallel

surfaces perpendicular to the z axis and having a one-

dimensional shape perturbation (small ridges parallel to the

y axis of finite extent along the x axis). The two-dimen-

sional Lamb waves considered are assumed to propagate

in the plane (x, z) perpendicular to the y axis with longitu-

dinal and transversal polarizations perpendicular to the y
axis also (we consider motions independent of the y coor-

dinate for which the y component of the displacement is

equal to zero).

As mentioned above, the analytical problem treated here

relies fundamentally on the same basic formalism as the one

used when only SH waves propagate. But it is treated in a

somewhat different manner because the displacement field

involves here x and z components of both the longitudinal

and the transversal displacements of Lamb waves (these four

quantities will henceforth be referred to as the four compo-

nents of classical plane waves (CCPW) of the displacement

field). More particularly, the discussion concerns both (i) the

formalism relying on an integral formulation (four coupled

integrals) to describe the coupling process (between these

four CCPW) due to the roughness of the boundaries of the

plate (described by its depth and its slope, and by its length

along the x axis), (ii) the expression of the perturbation of

each incident (CCPW) at the rough part due to the rough-

ness, using an adapted Green’s function in the regularly

shaped plate that bounds outwardly the perturbed surfaces of

the rough part of the plate considered. With this Green’s

function, the integral formulation permits to represent the x
and z components of the longitudinal and transversal dis-

placement which constitute the Lamb waves perturbations.

Thus, the aim of the paper is twofold: first, to describe

the continuously distributed CCPW coupling (along the dis-

tributed slight geometrical perturbation of finite extent along

the x axis) through the method relying on the Green’s theo-

rem and the associated integral formulation mentioned

above, second, to discuss results on specific examples to sup-

port the method. Note that periodically isotropic plates are

considered in order to analyze more deeply the capabilities

of the method, especially through the phenomena which

occur when considering situations that correspond to the

phase-matching between the spatial periodicity of the rough-

ness and the wavelength of the longitudinal and the transver-

sal Lamb waves.
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II. THE FUNDAMENTAL PROBLEM

A. The corrugated plate

The setup is considered as a two-dimensional domain

(x, z), homogeneous solid plate in vacuum, assumed to be in-

finite in the y direction, bounded by two parallel surfaces

perpendicular to the z axis and having 1D shape perturbation

(small ridges parallel to the y axis) over a finite length along

the x axis (Fig. 1), the solid being characterized by its density

q and its two Lamé coefficients k and l. The ridged surfaces

are set respectively at the coordinates z 1 and z 2 (which

depend on the coordinate x) and their shape is defined by the

local unit vectors n 1 and n 2 normal to the real surfaces of

the plate, outwardly directed, given by:

n q ¼ N�1
q @ xh q e x þ �1ð Þ q

e z

� �
; q ¼ 1; 2; (1a)

e x and e z denoting the unit vectors that have, respectively,

the positive direction of the x and z coordinates, with

Nq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @ xh q

� � 2
q

: (1b)

They are assumed to be small deviations from the regularly

shaped surfaces (set at 6Lz=2) bounding outwardly the per-

turbed surfaces. The small distance between both surfaces

(the regular one and the corrugated one) are denoted

h 1 ¼ ðL z=2Þ þ z 1 and h 2 ¼ ðL z=2Þ � z 2. An inner plate

with regularly shaped surfaces z ¼ 6d=2 is defined as being

surrounded by the 1D corrugation.

B. The basic formulation

An harmonic [with a time factor exp i x tð Þ], incoming

Lamb wave at the input of the ridged part x 2 0; ‘ð Þ of a

plate, characterized by its amplitude (depending on

both coordinates x and z), is propagating along the plate [do-

main D, x 2 0; 1ð Þ ; z 2 z 1; z 2ð Þ]. The displacement field

û x; z; tð Þ is assumed to be polarized perpendicularly to the y
axis [i.e., in the plane (x,z) perpendicularly to the ridges]:

û x; z; tð Þ ¼ Û x; zð Þ exp i x tð Þ
¼ Ûx x; zð Þ e x þ Ûz x; zð Þ e z

� �
exp i x tð Þ: (2a)

Its complex amplitude separates into two parts, namely the

longitudinal one ÛL x; zð Þ and the shear one ÛT x; zð Þ:

Û x; zð Þ ¼ ÛL x; zð Þ þ ÛT x; zð Þ; (2b)

the x and z components of each wave satisfying the following

requirements:

curl ÛL

� �
� e y ¼ 0; i:e:; @z ÛL x

x; zð Þ ¼ @x ÛL z
x; zð Þ; (3a)

div ÛT ¼ 0; i:e:; @z ÛT z
x; zð Þ ¼ �@x ÛT x

x; zð Þ: (3b)

Its behavior is governed by the set of equations, including the

propagation equation and the boundary conditions [domain D,

x 2 0; 1ð Þ ; z 2 z 1; z 2ð Þ], which takes the following form:

@2
xx þ @2

zz þ k2
g

� �
Ûg j

x; zð Þ ¼ �f̂g j
x; zð Þ; g ¼ L; T;

j ¼ x; z; 8 x; zð Þ 2 D ; (4a)

T x; zð Þ � nq ¼ 0; 8 x 2 0; 1ð Þ ; z ¼ zq xð Þ ;
q ¼ 1; 2 ; (4b)

8>>><
>>>:

where k g ¼ x=c g, cL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 2lð Þ=q

p
, and cT ¼

ffiffiffiffiffiffiffiffi
l=q

p
being the speeds of, respectively, the longitudinal wave and

the shear wave in the homogeneous solid plate, where

f̂g j
x; zð Þ represents the source strength, and where T x; zð Þ rep-

resents the stress tensor of the total field.

Accounting for expression [Eqs. (1a) and (1b)] of the

unit vector nq, the boundary conditions [Eq. (4b)] on the

ridged part of the surfaces zq ðq ¼ 1; 2Þ of the real wave-

guide take the following form:

@xhq

� �
T̂xx x; zq

� �
þ �1ð Þq T̂x z x; zq

� �
¼ 0; 8x; q¼ 1; 2; (5a)

@xhq

� �
T̂xz x; zq

� �
þ �1ð Þq T̂z z x; zq

� �
¼ 0; 8x; q¼ 1; 2: (5b)

Hence, invoking the Hooke’s law

T i j ¼ k div Û
� �

di j þ l
@ ûi

@ xj
þ @ ûj

@ xi

	 

; i and j being given;

(6a)

and accounting for both equations [Eqs. (3a) and (3b)] and

the following expression of the normal derivative in the

direction of nq on the rough boundaries, namely

@nq
¼ N�1

q @xhq

� �
@xþ �1ð Þq@z

� �
; z¼ zq; q¼ 1; 2; (6b)

these boundary conditions imply straightforwardly

@n q

ÛL x

ÛT x

" #
¼ �1ð Þ qþ1 @x ÛL z

þ ÛT z

� � 1

1

� �
þ @z

ÛT x

ÛL x

" #( )

� 1

l
@xhq

� �
k @z ÛL z

þ ÛT z

� � 1

1

� �

þ kþ lð Þ @x ÛL x
þ ÛT x

� � 1

1

� �
þ l @x

ÛT x

ÛL x

" #)
;

(7a)

@nq

ÛLz

ÛTz

" #
¼ �1ð Þqþ1 k

kþ 2l
@x ÛLx

þ ÛTx

� � 1

1

� �

þ@z
ÛTz

ÛLz

" #)
�

@xhq

� �
kþ 2l

l@z ÛLx
þ ÛTx

� � 1

1

� �

þ kþ lð Þ@x ÛLz
þ ÛTz

� � 1

1

� �

þ kþ 2lð Þ@x
ÛTz

ÛLz

" #)
; (7b)

FIG. 1. Sketch of the 2D waveguide with surfaces having small deviations

from the regular shape. (a) General view, (b) zoom on the corrugation.
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8x; z ¼ z q; q ¼ 1; 2:

These normal derivatives appear hereafter (Sec. III B) in the

integral formulation. They will be expressed in using these

last equations [Eqs. (7a) and (7b)].

III. SOLUTIONS FOR THE COUPLED LAMB WAVE
PERTURBATIONS

Each component Ûgj
ðg ¼ L; T ; j ¼ x; zÞ of the displace-

ment field of each CCPW is expressed as the sum of the

incoming Lamb wave Ûinc
g j

and the scattered wave Ûscatt
gj

Ûgj
¼ Ûinc

gj
þ Ûscatt

gj
: (8a)

The scattered wave is assumed to behave as the superposi-

tion of Lamb waves labeled r;mð Þ

Ûscatt
gj
¼
X2

r¼1

X1
m¼0

Û r;mð Þ
gj

; (8b)

where the superscript ðr;mÞ represents successively Lamb

waves as follows:

ð1; 0Þ for A0, ð2; 0Þ for S0, ð1; 1Þ for A1, …, r denoting

the antisymmetrical ðr ¼ 1Þ and symmetrical ðr ¼ 2Þmodes.

A. The integral formulation without roughness

1. Integral formulation

Henceforth, the following notations will be used:

F̂inc
gj

x; zð Þ¼
ðþ1
�1

ðLz=2

�Lz=2

Ginc
g x; z; x0; z0ð Þ f̂ inc

gj
x0; z0ð Þdx0dz0; (9a)

0ð ÞĈ inc
g x; zð Þ Ûinc

gj

n o
¼
X

c¼1;2

�1ð Þc
ðþ1
�1

dx0 Ginc
g x; z; x0; zcð Þ

h

�@zc
Ûinc

gj
x0; zcð Þ�Ûinc

gj
x0; zcð Þ@zc

Ginc
g x; z; x0; zcð Þ

i
zc¼ �1ð ÞcLz=2

:

(9b)

The four CCPW without roughness (in the external unper-

turbed waveguide), namely x (j ¼ 1) and z (j ¼ 2) compo-

nents of both the longitudinal (g ¼ L) and the transversal

(g ¼ T) displacements of the incident Lamb waves
0ð ÞÛinc

gj
x; zð Þ (the only one which exists without roughness),

governed by the problem stated above [Eqs. (3a), (3b), (4a),

(7a), and (7b)], are solutions of the four coupled integral

equations, which involves the domain D 0 ¼ x 2 �1;ð½
1Þ; z 2 �L z=2; L z=2ð Þ �, written as follows,25,26

0ð ÞÛinc
gj

x; zð Þ ¼ F̂inc
g j

x; zð Þ þ 0ð ÞĈinc
g x; zð Þ 0ð ÞÛinc

gj

n o
; (10)

and are subjected to the boundary conditions [Eqs. (7a) and (7b)].

The first term F̂inc
gj

x; zð Þ in the right hand side of this in-

tegral equation is the convolution product of a Green’s func-

tion (field created by an elementary source) Ginc
g by a source

strength f̂ inc
gj

x; zð Þ. This first term represents the field created

by sources emitting inside the plate. The second term

accounts for the field reflected from the boundaries of the

plate. This second term involves the same Green’s function

and the same field as those involved in the first term, and

involves also their first derivative with respect to the coordi-

nate normal to the boundaries.

When the Green’s function is chosen in such a way that

the second term (surface integral) vanishes, the first term

represents the field which is solution of the set of Eqs. (4a)

and (4b) (Lamb wave) because, in this situation, the Green’s

function represents the elementary field which satisfies the

boundary conditions Eq. (4b) of the Lamb wave considered

(situation considered below, Sec. III B).

It is worth noting that the coupling between the four

CCPW considered here, expressed through the boundary con-

ditions (7a) and (7b), implies that the function ð0ÞĈinc
g x; zð Þ

f 0ð ÞÛinc
gj
g depends not only on the CCPW considered 0ð ÞÛinc

gj

but depends also on the other ones.

2. Components of classical plane wave (CCPW)
without roughness

The solutions without roughness are given by the well-

known expressions of the Lamb waves, namely for the x and

z components of the symmetrical and antisymmetrical Lamb

waves, respectively, ðg ¼ L; TÞ, (Ref. 27) the superscript

(inc) being omitted:

ð0ÞÛgx
zð Þ ¼ P̂gx

cos kg z
z

� �
e�i kxx;

ð0ÞÛgz
zð Þ ¼ P̂g z

sin kg z
z

� �
e�i kxx;

(
(11a)

ð0ÞÛgx
zð Þ ¼ Q̂ g x

sin kg z
z

� �
e�i kxx;

ð0ÞÛgz
zð Þ ¼ Q̂ g z

cos kg z
z

� �
e�i kxx;

(
(11b)

(the amplitudes P̂gx
and P̂g z

, respectively Q̂ g x
and Q̂ g z

, being

not independent one from the others), the wavenumbers k x and

kg z
being solutions of the following Rayleigh-Lamb equations,

for the symmetrical and antisymmetrical modes respectively,

tan k T z
L z=2ð Þ

tan k L z
L z=2ð Þ ¼ �

4 k 2
x k L z

k T z

k 2
T z
� k 2

x

� �2
; (11c)

tan k T z
L z=2ð Þ

tan k L z
L z=2ð Þ ¼ �

k 2
Tz
� k2

x

� �2

4 k 2
x k L z

k T z

; (11d)

where (dispersion equation)

k 2
x þ k 2

g z
¼ k 2

g; g ¼ L; T: (11e)

In the formalism used herein, the solution without roughness

depends on the sources that are set on the surfaces of the

plate which are located along the x axis upstream from the

roughness so that an incoming Lamb wave traveling in the x
direction is generated at the input of the rough part of the do-

main (D) of interest. The source strength f̂gj
x; zð Þ [Eq. (4a)] is

then achieved by assuming a continuous distribution of fluc-

tuating (namely harmonic) displacements on the surfaces

z ¼ 6Lz=2 of the plate which is a given function of the posi-

tion x. Herein, this continuous distribution must be written as

the superposition of four functions of the abscissa x, each
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one being assumed to generate one of the four given CCPW

(x- and z-components of longitudinal and transversal dis-

placements). Actually, the capacity of real sources for gener-

ating such displacement fields depends critically upon the

spatial distribution of amplitude and phase of surface dis-

placement over their surfaces (the source control procedure

is beyond the scope of this paper).

The Green’s functions, which enable differential equa-

tions and boundary conditions to be combined into integral

equations, are introduced here in such a way that the four

source functions F̂inc
g j

x; zð Þ which appear in the right-hand side

of Eq. (10) represent the amplitude of each mode 0ð ÞÛinc
gj

of the

incoming Lamb wave in the whole domain (D 0) without

roughness. Therefore, the Green’s functions must be chosen in

such a way that the surface integral in Eq. (10) vanishes:

0ð ÞĈ inc
g x; zð Þ 0ð ÞÛinc

gj

n o
¼ 0: (12)

as mentioned above [below Eq. (10)].

3. The Green’s functions

For a given Lamb wave [denoted ðr;mÞ in Eq. (8b) and

in the following Sec. III B] the Green’s functions chosen are

governed by the set of equations, including the propagation

equation and the boundary conditions [in the domain D 0,

x 2 �1; 1ð Þ; z 2 �L z=2; L z=2ð Þ]:

@ 2
x x þ @ 2

z z þ k 2
g

� �
G g x; z; x0; z0ð Þ ¼ �d x� x0ð Þ d z� z0ð Þ;

8 x; zð Þ 2 D0; (13a)

@z � ikg Y g
� �

G g ¼ 0; 8x ; z ¼ �L z=2; (13b)

@z þ ikg Y g
� �

G g ¼ 0; 8x ; z ¼ þL z=2; (13c)

8>>>>>><
>>>>>>:

with

Y g ¼ �i
k g z

k g
tan k g z

L z=2
� �

; (13d)

d being the Dirac function, and k g z
being given in Eq. (11e).

It can be readily verified that Eq. (12) is satisfied with

these Green’s functions because they satisfy such boundary

conditions.

This Green’s functions G g x; z; x0; z0ð Þ, solutions of Eqs.

(13a)–(13c), is represented herein by a Fourier integral (in v),

both for the longitudinal (g ¼ L) and transversal (g ¼ T) waves:

G g x; z; x 0; z 0ð Þ ¼
ðþ1
�1

h g x; z; v; z 0ð Þ exp i v x 0ð Þ dv: (14)

Invoking the dispersion relationship

v 2 þ j2
g z
¼ k 2

g; (15)

and inserting expression (14) into Eq. (13a) givesðþ1
�1

@ 2
z z þ j2

g z

h i
h g x; z; v; z 0ð Þ exp i v x 0ð Þ dv

¼ �d x� x 0ð Þ d z� z 0ð Þ: (16a)

Hence, multiplying this equation by exp �i v x0ð Þ, integrating

over the coordinate x, and applying the result

1

2 p

ðþ1
�1

exp i v� v0ð Þ x0½ � d x0 ¼ d v� v0ð Þ; (16b)

leads to

@ 2
z z þ j2

g z

h i
h g x; z; v; z 0ð Þ ¼ � 1

2 p
exp �i v xð Þ d z� z 0ð Þ:

(17)

The solution h g, subjected to the boundary conditions (13b)

and (13c), can be expressed as follows:25,26

h g x; z; v; z 0ð Þ ¼ � exp �i v xð Þ
2 p

cos jg z
z< þ jg z

� k g z

� �
Lz=2ð Þ þ b

� �
cos jg z

z> � jg z
� k g z

� �
Lz=2ð Þ � b

� �
jg z

sin jg z
� k g z

� �
L z þ 2 b

� � ; (18a)

where
z> ¼ z and z< ¼ z 0 if z > z 0; (18b)

z> ¼ z 0 and z< ¼ z if z < z 0; (18c)

with b ¼ 0 and p=2 for even (cosine) and odd (sine) Lamb

waves, respectively.

The integral (16)–(18) can be handled numerically

straightforwardly (see Sec. III B 2 below)

When using this Green’s function (see next Sec. III B),

for the roughness given by the coordinate z 0 ¼ z 1 < 0, near

the wall set at (�L z=2),

z> ¼ z et z< ¼ z1; (19a)

and for the roughness given by the coordinate z 0 ¼ z 2 > 0,

near the wall set at (þL z=2)

z> ¼ z 2 et z< ¼ z: (19b)

B. The integral formulation with roughness and the
iterative solution

1. The integral formulation

In addition to the notations (9a) and (9b) given above,

the following notations will be used:

Ĉ r;mð Þ
g x; zð Þ Ûgj

n o
¼
X

q¼1;2

ðþ1
�1

dx0 G r;mð Þ
g x; z;x0; z0q

� �h

�@nq
Ûgj

x0; z0q

� �
�Ûgj

x0; z0q

� �
@nq

G r;mð Þ
g x; z;x0; z0q

� �i
z0q¼z0q x0ð Þ

;

(20a)

d Ĉ r;mð Þ
g x; zð Þ ¼ Ĉ r;mð Þ

g x; zð Þ � 0ð ÞĈ r;mð Þ
g x; zð Þ

h i
: (20b)
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The four quasi-CCPW with roughness Û
ðr;mÞ
gj

x; zð Þ, namely x-

(j ¼ 1) and z- (j ¼ 2) components of both the longitudinal

(g ¼ L) and the transversal (g ¼ T) displacements of the

Lamb waves, governed by the problem stated above [Eqs.

(3a), (3b), (4a), (7a), and (7b)], are solutions of the four

coupled integral equations, written as follows,25,26 which

involves the domain D ¼ x 2 �1; 1ð Þ; z 2 z 1; z 2ð Þ½ �:

Û r;mð Þ
gj

x; zð Þ ¼ F̂ r;mð Þ
gj

x; zð Þ þ Ĉ r;mð Þ
g x; zð Þ Ûgj

n o
(21)

and are subjected to the boundary conditions (7a) and (7a).

Owing to the roughness, the second term in the right-

hand side of the integral equation does not vanish. Therefore,

it represents the effect of the roughness on Lamb waves cre-

ated by sources set upward the roughness part of the plate

[function F̂
r;mð Þ

gj
x; zð Þ], which are incident at the input of the

rough part.

As already mentioned, it is worthwhile commenting that

the coupling between the four CCPW considered here,

expressed through the boundary conditions (7a) and (7b),

implies that the function Ĉ r;mð Þ
g x; zð Þ fÛgj

g depends not only

on the CCPW considered Ûgj
but depends also on the other

ones [through Eqs. (7a) and (7b)].

2. Iterative solution

Using an iterative method to express the amplitude of

each mode Û
r;mð Þ

gj
x; zð Þ in the domain D � D0ð Þ, which

assumes that the coupling functions contained in the right-

hand side of Eq. (21) are small quantities compared to the

source term F̂
r;mð Þ

gj
, thus the Nth-order solution of Eq. (21)

for each mode Û
r;mð Þ

gj
x; zð Þ is written as follows:

N½ �Û r;mð Þ
gj

x; zð Þ ¼ 0ð ÞÛ r;mð Þ
gj

x; zð Þ þ 1ð ÞÛ r;mð Þ
gj

x; zð Þ

þ � � � þ Nð ÞÛ r;mð Þ
gj

x; zð Þ; ð22Þ

where N½ �Û
r;mð Þ

gj
x; zð Þ denotes the Nth-order perturbation

expansion for Û
r;mð Þ

gj
x; zð Þ,

0½ �Û r;mð Þ
gj

x;zð Þ¼ 0ð ÞÛ r;mð Þ
gj

x;zð Þ¼ Ûinc
gj

x;zð Þ¼ F̂inc
gj

x; zð Þ; (23)

[Eqs. (10) and (12)] being the zero-order approximation (the

solution without roughness), 1ð ÞÛ
r;mð Þ

gj
x; zð Þ the first order cor-

rection term, and so on.

The solution without roughness being given by Eqs.

(10) and (12), the first-order solutions of Eq. (21) (Born

approximation, discarding the second-order term) are

straightforwardly given by writing

0ð ÞÛ r;mð Þ
gj

x; zð Þ þ 1ð ÞÛ r;mð Þ
gj

x; zð Þ ffi Ŝ r;mð Þ
gj

x; zð Þ

þ Ĉ r;mð Þ
g x; zð Þ Ûinc

gj

n o
; (24)

where Ŝ
r;mð Þ

gj
x; zð Þ ¼ F̂inc

gj
x; zð Þ or 0, depending on whether

r;mð Þ represents the incident wave or not, and where
0ð ÞÛ

r;mð Þ
gj

is given by Eq. (23).

It follows that the first order perturbation term has the

form, for any superscripts r;mð Þ,

1ð ÞÛ r;mð Þ
gj

x; zð Þ ffi d Ĉ r;mð Þ
g x; zð Þ ð0ÞÛinc

gj

n o
: (25)

In this last expression, the scattered Lamb wave ðr;mÞ,
which does not exist at the zero-order approximation

(ð0ÞÛ
ðr;mÞ
gj
¼ 0 without roughness), appears to be created by a

“secondary” source which represents the effect on this Lamb

wave ðr;mÞ of the scattering of the incident wave ð0ÞÛinc
gj

on

the rough surface. This secondary source behaves as a sur-

face source (on the boundary of the plate) whose strength, at

each location of the roughness, is proportional to both: (i)

the amplitude and its first normal derivative (in the direction

n q on the rough boundary) of the incident Lamb wave

(which provides energy to the system), (ii) and the operator

d Ĉ r;mð Þ
g acting on them, which departs from the operator

d Ĉinc
g ¼ Ĉinc

g � 0ð ÞĈinc
g because it is associated to the scat-

tered wave considered ðr;mÞ.
Finally, the [Nth]-order correction terms of the iterative

solutions of Eq. (21) are given by

Nð ÞÛ r;mð Þ
gj

x; zð Þ ffi
X2

a¼1

X1
r¼0

d Ĉðr;mÞg
N�1ð ÞÛ a;rð Þ

gj

n o
; (26)

where superscripts (a,r) denote the Lamb waves considered.

It is worthwhile commenting that the right hand side in-

tegral represents the boundary modal coupling due to the

shape profile of the roughness.

3. Numerical computation

Despite the quite complicated form of these four

coupled integral equations, it is a straightforward, if tedious,

procedure to numerically solve them. First the Green’s func-

tion must be calculated. In evaluating this Green’s function

numerically, there are two possible approaches.

In a first approach, the integrals are numerically integrated

directly along the contour C Q1ð! �1Þ; P1ð¼ �k g � i eÞ;
�

O; P 2ð¼ þk g þ i eÞ; Q 2ð! þ1Þg shown in Fig. 2, where e
is a small quantity.28 This contour is deformed onto the real

axis, in order to avoid the poles of the integrand, above

(below) any poles on the negative (positive) real axis. In the

results presented in Fig. 2, the contour C is limited to a finite

interval ½Q 1;Q 2� (the integrals converge always very rapidly).

FIG. 2. Complex integration path in the complex plane of v.
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In a second approach, the contour C is closed by a semi-

circle of infinite radius in the upper (lower) half-plane v
depending on respectively x < x 0 (x > x 0) with the singular-

ity of the integrand at v ¼ �k g (v ¼ þk g) excluded from the

area enclosed (branch cuts, Fig. 3).

Using Cauchy’s theorem, the integrals can be expressed as

the sum of residue terms plus an integral along the branch cuts.

The poles are defined by [see Eq. (18a)]

sin jg z
� kzg

� �
L z þ 2b

� �
¼ 0; (27)

[jg z
depending on v through Eq. (15)], which occurs when

v¼6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k
ðr;mÞ
x

� �2

�2pp
Lz

k
ðr;mÞ
g z
� 2pp

Lz

	 
2
s

; if b¼ 0; (28a)

and when

v¼6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k
ðr;mÞ
x

� �2

�2 p�1ð Þp
Lz

k
ðr;mÞ
gz
� 2 p�1ð Þp

Lz

	 
2
s

;

if b¼p=2; ð28bÞ

p being an integer.

It is worthwhile to point out that the residue contribu-

tions can be interpreted as a superposition of symmetrical

(b ¼ 0) and antisymmetrical (b ¼ p=2) Lamb waves and

that the first two residues are predominant, the other ones do

not contribute significantly (this is related to the rapid con-

vergence in the first approach mentioned above). In this pres-

ent approach, the integrals along the branch cuts must be

calculated numerically, leading to calculus which takes more

time than those in the first approach.

IV. RESULTS AND DISCUSSION

Being concerned by the efficiency of the method, we

give several applications here: those where (i) the roughness,

which can be considered as very thin regarding the character-

istic dimension of the acoustic domain, is a one dimensional

periodically corrugated surface; (ii) relationships (dispersion

law and phase matching law) between the spatial period of

the corrugation and the x-components of the wavenumbers

considered (incident and scattered Lamb waves) are, in the

frequency range chosen, such as both a stop-band for the

incident Lamb wave (primary wave) and a phase matching

for the contra-propagative purely scattered Lamb wave con-

sidered (counter-propagative secondary wave); (iii) a quasi-

random roughness, yet typical of engineering problems,

induces a decreasing of the amplitude of a Lamb wave when

propagating along the rough surface. For an incident Lamb

wave A0 and a scattered Lamb wave S0, the phase-matching

relationships are represented in Fig. 4 for the results given in

Figs. 5 and 6, and, for an incident Lamb wave S0 and a

scattered Lamb wave A1, they are represented in Fig. 7 for

the results given in Fig. 8. The material constituting the

solid plate is aluminum, characterized by its density

q ¼ 2700 kg:m�3, and the speeds of longitudinal and

transversal waves cL ¼ 6430 m:s�1 and cT ¼ 3140 m:s�1,

respectively.

In Fig. 4 (resp. Fig. 7), the solid lines represent the dis-

persion curves for S0 and A0 (resp. S0 and A1) Lamb waves

given by the Rayleigh–Lamb Eq. (27) and the dashed lines

represent the phase-matching (phonon relationship) for A0

(resp. S0) Lamb waves given by

k inc
x þ kðr;mÞx � 2 p

K
¼ 0: (29)

FIG. 3. Complex integration paths in the complex plane of v. (a) x > x 0, the

integration path (a) is closed by a semicircle of infinite radius in the lower

half-plane, (b) x < x 0, the integration path (b) is closed by a semicircle of

infinite radius in the upper half-plane.

FIG. 4. Dispersion curves (thin solid lines) and coupling curve (thick solid

line) of Lamb waves, in the plane (frequency� thickness f � L z; wave num-

ber�thickness kðr;mÞx � L z).
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The roughness considered in Figs. 5 and 6 is a periodically

sawtooth profile (isosceles triangles shown in Fig. 9) of finite

extent ‘, of depth h, and of spatial period K, set at one

of the boundaries of the plate as presented in Sec. II A.

The frequency range of interest, given by the product

f L z 2 1:0; 1:3ð Þ MHz mm, is represented with gray in

Fig. 4. It is chosen in such a way that the phase matching

given by Eq. (29) occurs. The roughness considered in Fig. 8

is a sinusoidal profile set at one of the boundaries of the plate

as shown in Fig. 10 (the notations are the same as those used

for the sawtooth profile).

For three values of the number of teeth ‘=K (10, 20, and

30), Figs. 5(a) and 5(b) show, respectively, at the input

(x ¼ 0) and at the output (x ¼ ‘) of the corrugated domain

(z ¼ L z=4), the x-component of the normalized displacement

of the back-scattered Lamb wave A0 (created by its strong

coupling with the incoming Lamb wave S0 through the saw-

tooth corrugated surface) as a function of the frequency, in

the frequency range where the phase-matching mentioned

above occurs (the normalizing factor being the amplitude of

the x-component of the incident wave). At x ¼ 0, the shape

of the curve [Fig. 5(a)] is the one expected, i.e.,

FIG. 5. Modulus of the normalized x-component Û r¼1;m¼0ð Þ
xN

of the dis-

placement field of the scattered Lamb wave A0 at the points (a)

x ¼ 0; z ¼ Lz=4ð Þ and (b) x ¼ ‘; z ¼ Lz=4ð Þ, as a function of the product

frequency�thickness (f � L z). Modulus of the normalized z component

Û r¼1;m¼0ð Þ
zN

of the displacement field of the scattered Lamb wave A0 at

the points (c) x ¼ 0; z ¼ Lz=4ð Þ and (d) x ¼ ‘; z ¼ Lz=4ð Þ, as a function of

the product frequency�thickness (f � L z). Full solid line: ‘ ¼ 10 K;

dashed line: ‘ ¼ 20 K; dotted line: ‘ ¼ 30 K where ‘ is the length of

corrugation. Sawtooth profile (see Fig. 9).

FIG. 6. Normalized square of the z-component Û r¼1;m¼0ð Þ
z of the displace-

ment field of the scattered Lamb wave A0 at the point x ¼ 0; z ¼ Lz=2ð Þ as a

function of the product frequency�thickness (f � L z). Sawtooth profile (see

Fig. 9).

FIG. 7. Dispersion curves (thin solid lines) and coupling curve (thick solid

line) of Lamb waves, in the plane (frequency� thickness f � L z; wave num-

ber�thickness kðr;mÞx � L z).
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approximately a cardinal sine (sinc).29 At x ¼ ‘ [Fig. 5(b)], it

vanishes because this backward wave is not created at the

output of the corrugation domain. The situations presented

on Figs. 5(c) and 5(d) are the same as the preceding ones

Figs. 5(a) and 5(b) except that the component of the Lamb

wave A0 considered is the z-component. The results show

that the amplitude, which is normalized by the same factor

as the one used in the x-component, is lower. This is due to

the fact that the z-component of the longitudinal wave van-

ishes (it is evanescent in this frequency range).

Figure 6 presents the theoretical result obtained here for

the square of the z component of the displacement field

expressed at the input of the roughness x ¼ 0, on the upper

surface of the plate z ¼ L z=2, normalized to unity, as a func-

tion of the frequency, in the frequency range mentioned

above. Especially concerning the shape of the curves, this

result shows a good agreement with those available in the

literature.29

A backscattered Lamb wave A1, created by its strong

coupling with the incoming Lamb wave S0 through the sinu-

soidal corrugated surface, is presented in Fig. 8 as a function

of the normalized coordinates, namely the coordinate x=K
and z= Lz=2ð Þ. The scales give the relative amplitude of each

CCPW (ÛLx
; ÛLz

; ÛTx
; and ÛTz

). The periodic oscillations

which appear from the right part to the left part of the

diagrams are directly linked to the phase-matching relation-

ship which occurs at the frequency given by f Lz

¼ 1:975 MHz:mm (Fig. 7). As predicted, the wave is created

from the right to the left. The x-components are antisymmet-

rical and the z components are symmetrical with respect to

z ¼ 0, as expected.

Finally, it is of interest to investigate the modeling pre-

sented in this paper when applying it to a class of problem

which is typical of engineering situations, as sanded or shot

blasted plates for example. In this frame, the behavior of the

amplitude of an incoming Lamb wave A0 is investigated

when the roughness is assumed to have a pseudorandom pro-

file which exhibits several spatial periods (usually, in prac-

tice, rough surfaces exhibit a limited number of dominant

spatial periodicities), one of them verifying a phase matching

with the Lamb wave considered for the frequency chosen.

The power spectral density (PSD), namely the Fourier

transform with respect to the abscissa x of the autocovariance

function of the depth of the roughness, as a function of the

inverse adimensional spatial wavelength, is depicted in

Fig. 11. Being given the value of the product of the wave-

number kx of the Lamb wave A0 along the x axis by the

FIG. 8. (Color online) Modulus of the displacement fields which constitute

the scattered Lamb wave A1 as a function of the adimensionalized locations

x=K (abscissa) and 2z=Lz (ordinate). (a) x-component Û
r¼1;m¼1ð Þ

L x
of the

longitudinal wave, (b) x-component Û
r¼1;m¼1ð Þ

T x
of the transversal wave, (c)

z-component Û
r¼1;m¼1ð Þ

L z
of the longitudinal wave and (d) z-component

Û
r¼1;m¼1ð Þ

T z
of the transversal wave. Sinusoidal profile (see Fig. 10).

FIG. 9. Regularly distributed sawtooth profile on one side of the plate used

for Figs. 5 and 6. Spatial period K, height of the teeth h, length of roughness

‘, thickness of the outer waveguide L z, thickness of the inner waveguide d
such that L z=K ¼ 0:686, h=d ¼ 0:043.

FIG. 10. Sinusoidal profile on one side of the plate used for Fig. 8. Spatial

period K, height of the teeth h, length of roughness ‘, thickness of the outer

waveguide L z, thickness of the inner waveguide d such that L z=K ¼ 0:625,

h=d ¼ 0:02, ‘=K ¼ 20.
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length ‘ of the roughness kx‘ ¼ 25:6ð Þ, the phase-matching

relationship kx ¼ p=K leads to an inverse adimensional spa-

tial period ‘=K ffi 8 which is very close to one of the maxima

of the PSD.

This result leads to eight oscillations in the amplitude of

the Lamb wave A0 as a function of the adimensional dis-

tance kxx along the rough part of the plate as shown in Figs.

12(a) and 12(b) [the first four appear clearly over the interval

0; ‘=2ð Þ].
Figures 12(a) and 12(b) show, respectively, the ampli-

tude (arbitrary unit) of the components ÛL z
and ÛT z

of the

displacement field in the middle z ¼ 0ð Þof the plate along its

rough part [the components ÛL x
and ÛT x

vanish at the coor-

dinate z ¼ 0ð Þ]. The mean decreasing can be interpreted as

an exponential decreasing exp �jxxð Þ, leading to an adimen-

sional attenuation factor jxLz of the order of magnitude of

0.01–0.03. This result is consistent with those obtained

experimentally with a shot blasted isotropic plate having

approximately the same average adimensional depth of

roughness.30

V. SUMMARY AND CONCLUSION

This contribution to the investigation of a new method

to solve problems of scattering of Lamb waves on rough

surfaces of finite extent, in homogeneous solid plates of infi-

nite extent, involves four coupled scalar integral equations

and adapted Green’s functions for each component of each

classical plane wave. The theoretical results can be handled

straightforwardly numerically when the corrugations are

assumed to be small deviations from the regularly shaped

surface of the plate. Especially, the Fourier integrals which

express the Green’s functions converge very rapidly, empha-

sizing the role played by the first two poles, thus leading to

both the symmetrical and antisymmetrical Lamb waves con-

sidered. These theoretical results show that both the depth

and the slope of the roughness play important roles in the

scattering process, i.e., when the incident field propagating

along the corrugated part of the waveguide undergoes scat-

tering, initiating the coupling of Lamb waves.

The examples presented have highlighted the advantage

of the method in having given expected results when retro-

diffusion (backward scattering) occurs, that is when a stop-

band plays a very important role for the Lamb waves con-

sidered, and when a Lamb wave A0 propagates along a

quasirandom roughness. Given the specificity of these exam-

ples, there is seen to be quite close agreement between theo-

retical and expected results, thereby supporting the method

presented in this paper. Therefore, it seems that this method

provides a viable approach to solve the class of problems

considered, having in mind means of predicting the effects

of roughness in engineering problems. Actually, it remains

to be seen whether the proposed methodology is efficient

when applied to problems of real engineering significance.
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