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ABSTRACT:
Using heat maps provides frame and relevance to topics covered in physical acoustics courses as students can

more easily visualize complex ideas and situations. Students can also form a much better understanding of the

physical phenomena involved and build more advanced critical thinking when heat maps are used. It is the aim

of the paper to provide ways for students to interact with heat maps by using two examples: first, the

interaction of a plane wave (not only monochromatic) with an interface separating a fluid and a solid medium

and, second, the interaction of an acoustic beam with such an interface (including a solid layer). These heat

maps permit both to describe non-specular effects for the reflected acoustic beam due to the generation of a

modal wave and, in the case of anisotropic media, highlight the difference between the direction predicted by

Snell-Descartes law and that predicted by energy flux. VC 2022 Acoustical Society of America.
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I. INTRODUCTION

In many acoustic (among other fields) problems, it is

very difficult to express all of the complexities of the

physical phenomena by using only mathematical formula-

tions of the problems and analytical methods for their res-

olution. Commonly used and very informative in research,

plots of the spatial representation of acoustic fields are not

well documented for teaching (to the authors’ knowledge).

More advanced insight is usually requested by every moti-

vated student. In reality, to explain the essential features

of the behavior of acoustic problems, detailed illustrations

(pictures, graphics, heat maps, plots, etc.) may help the

students to gain a deep insight into the role of fundamental

physical laws and understand how the most important

parameters affect the behavior. More particularly, using

heat maps provides frame and relevance to topics covered

in physical acoustics courses as students can more easily

visualize complex ideas and situations (total reflection,

interferences, far field, critical angles, etc.). Students can

also form a much better understanding of the physical phe-

nomena involved and can build more advanced critical

thinking when heat maps are applied. The aim of the paper

is twofold: first, to provide ways for students to interact

with heat maps, which provide spatial representations of

the phenomena involved, by using two examples presented

in Secs. II and III; and, second, to describe (for the

attention of fellow educators) how such heat maps could

be used in a lesson using the authors’ experience and give

tips to reproduce some of them.

In Sec. II, the interaction of a plane wave (not only

monochromatic) with an interface separating a fluid from

a solid medium is discussed. The approach involves three

kinds of incident waves: a rectangular wave (Sec. II A), a

sine wave modulated by a shaped-like Gaussian function

(Sec. II B), and a monochromatic wave (Sec. II C). Some

examples of practical use are given in Sec. II D. In Sec.

III, the interaction of a bidimensional incident Gaussian

bounded beam with plane solid structures is presented.

There are two main advantages of using heat maps to

emphasize the phenomena involved. One advantage is to

highlight the difference between the direction predicted by

Snell-Descartes law and the direction of the energy flux in

the case of anisotropic media (Sec. III B). The other

advantage is to emphasize the non-specular reflection

when a generalized modal wave is generated (Sec. III C).

Note that pedagogically speaking, a back and forth

between plane wave propagation and more or less direc-

tional beam propagation during courses permits us to

establish a connection between the propagation direction

of reflected and transmitted waves predicted by Snell-

Descartes law and the direction propagation of energy. In

the frame of the decomposition into plane waves, the

Appendix provides some calculus and an algorithm and

programming tips using matrix computation software for a

fluid/fluid structure, which can be easily adapted in solid

media.

a)This paper is part of a special issue on Education in Acoustics.
b)Electronic mail: catherine.potel@univ-lemans.fr
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II. INTERACTION OF A PLANE WAVE WITH AN
INTERFACE SEPARATING A SEMI-INFINITE FLUID
AND A SEMI-INFINITE ISOTROPIC SOLID

Let

A ¼ f nð Þ; (1a)

where

n ¼ n �OM� cot

a
(1b)

denotes the particle displacement amplitude of a plane wave

propagating in a fluid medium at any given point, Mðx; zÞ, O
is the origin of a coordinate system, where a is the length

scale of the signal, n is the propagation direction, and c 0 is

the adiabatic speed of sound. We consider that this wave

interacts with a plane interface located at z ¼ 0, separating

the fluid medium from an isotropic solid medium (Lam�e
coefficients k and l). So, it creates, classically, a longitudi-

nal reflected wave and two transmitted waves [a pressure

wave (P) and a shear vertical wave (SV)], whose propaga-

tion directions can be predicted by Snell-Descartes law. The

aim of this section is to gradually show to the students how

the shape of the function, f , affects the acoustic field while

the critical angles (measured from the normal to the inter-

face) and the reflection and transmission coefficients remain

the same in each case. Here, for brevity, the case of incident

angles greater than the first critical angle is considered only

for monochromatic plane waves. It should be noted that all

of this section can either precede or follow a full academic

presentation (basic equations and their analytical solutions,

results, and discussions), depending on whether the students

are receptive or not to a mathematical presentation.

A. Rectangular incident signal

The advantage in first using a rectangular incident sig-

nal (see Fig. 1),

f nð Þ ¼ rect nð Þ; (2)

is that due to the finite spatial width of the signal, the differ-

ent waves are clearly separated. There is just a “mixing”

zone for approximatively jx=aj � 4 and �1 � z=a � 4, but

it is possible to clearly identify the transmitted P- and SV-

waves and see that the rays predicted by Snell-Descartes

law [black lines in Fig. 1(b)] are perpendicular to the wave

planes.1–3 It is also interesting to notice that the width of the

transmitted signal depends on the speeds of sound in each

medium and the boundary conditions are satisfied at the

interface at z ¼ 0.

B. Sine modulated by a shaped-like Gaussian
function

Then, an incident signal of the form

f nð Þ ¼ cosðkanÞ= 1þ n 2
� �

; (3)

where k (m�1), analogous to a wave number corresponding

to a “local” wavelength k with a� k, presents the advan-

tage to be similar to a more realistic signal, like a “burst.”

As the amplitude of the signal tends to zero when n tends to

61, it is also possible to well separate, relatively, the inci-

dent from the reflected plane waves (see Fig. 2 for

jx=aj � 10). However, the total field in the fluid medium,

which is the sum of the incident and reflected fields, presents

some interference pattern forms which can be seen when

jx=aj � 5. These pattern forms prefigure those which appear

in the whole fluid domain when the plane wave is mono-

chromatic (Fig. 3). It is interesting to show to the students

that the total transmitted field of Fig. 2(c) is the summation

of the longitudinal (pressure) field [Fig. 2(a)] and the shear

vertical field [Fig. 2(b)].

C. Monochromatic incident wave

Finally, when the incident wave is of the form

FIG. 1. (Color online) Snapshot at a given time, t, of the normalized normal stress, T zz=l, in the plane, ðx; zÞ, perpendicular to the interface plane, ðx; yÞ,
when a rectangular plane wave [see Eq. (2)] propagating in a fluid medium interacts with an interface between the fluid medium and an isotropic solid

medium, located at z=a ¼ 0 (l is the second Lam�e coefficient). The incident angle is smaller than that of the first critical angle. The (a) three-dimensional

(3D) representation and (b) top view of Fig. 1(a) are shown. The black lines represent the incident, reflected, and transmitted propagation directions, such as

was predicted by Snell-Descartes law.
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f nð Þ ¼ cosðkanÞ; (4)

it is interesting to observe the interference fringes in over-

lapping incident and reflected fields in Fig. 3: the interfer-

ence pattern forms of Fig. 2 are now present in the whole

fluid medium.

When the incident angle is comprised between the two

critical angles, the P-wave is evanescent in the isotropic solid

medium [Fig. 4(a)]. Even if the propagative transmitted field is

globally a SV field, there is still a small region in the vicinity

of the interface which presents a small perturbation due to the

evanescent wave. When the incident angle is greater than

the second critical angle, the exponential decreasing form

of the acoustic field can easily be observed in Fig. 4(b).

D. Practical use in class

Generally speaking, students struggle to have a spatial

mental representation of an acoustic field, and although they

are very familiar with using plane waves (often mainly

monochromatic plane waves), they find it difficult to view

them. The authors find it very useful to start by folding a

sheet of A4 paper into a crenel shape and moving it around

the classroom to simulate the interaction of a non-

monochromatic plane wave with an interface. After drawing

a horizontal line on the blackboard (simulating a plane inter-

face), placing this sheet of paper on the blackboard permits

us to simulate the incident wave, reflected wave, and trans-

mitted wave and, thus, makes it possible to understand what

Fig. 1(a) represents.

The practical use of the above-described heat maps in

the classroom (according to the experience of the authors)

depends on the academic level of the students and the pur-

pose of their training.

• Undergraduate students preparing for a vocational degree,

which does not require high mathematical skills, usually

focus their interests and goals on applied studies.

Therefore, first, one can ask the students what are, in their

opinion, the phenomena involved in the interaction of a

plane wave with an interface separating two semi-infinite

media (fluid or solid). Second, to answer their questions

and further introduce the physical phenomena, it is very

useful to use (i) the slowness curves (see Sec. III B) to

make it possible to comprehend the notion of critical

angles and (ii) the heat maps to visualize the physical phe-

nomena. Pedagogically speaking, the gradual transition

from a non-monochromatic plane wave to a monochro-

matic plane wave has the advantage of preparing the

interference pattern form, which can be seen in Figs. 2–4.

FIG. 2. (Color online) Snapshot at a given time, t, of the normalized normal stress, T zz=l, in the plane, ðx; zÞ, perpendicular to the interface plane, ðx; yÞ,
when a sine modulated by a Gaussian-like function [see Eq. (3)] propagating in a fluid medium interacts with an interface between the fluid medium and an

isotropic solid medium, located at z=a ¼ 0. The incident angle is less than to the first critical angle. The black lines represent the incident, reflected, and

transmitted propagation directions, such as was predicted by Snell-Descartes law. (a) Only the transmitted pressure wave field in the isotropic solid medium,

(b) only the shear wave field in the isotropic solid medium, and (c) the sum of the pressure field and shear field are shown.
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• On the other hand, undergraduate students who intend to

undertake a master’s degree are able and willing to carry

out to the end a number of mathematical calculations,

and depending on their state of tiredness or motivation,

which any teacher can perceive when teaching, showing

the heat maps in the middle of somewhat difficult calcu-

lations helps to re-motivate them. They generally ask

many questions and, finally, link together physical

FIG. 3. (Color online) Snapshot at a given time, t, of the normalized normal stress, T zz=l, in the plane, ðx; zÞ, perpendicular to the interface plane, ðx; yÞ,
when a monochromatic plane wave [see Eq. (4)] propagating in a fluid medium interacts with an interface between the fluid medium and an isotropic solid

medium located at z=a ¼ 0. The incident angle is smaller than the first critical angle. The black lines represent the incident, reflected, and transmitted propa-

gation directions, such as was predicted by Snell-Descartes law. (a) Only the transmitted pressure wave field in the isotropic solid medium, (b) only the shear

wave field in the isotropic solid medium, and (c) the sum of the pressure field and shear field are shown.

FIG. 4. (Color online) Snapshot at a given time, t, of the normalized normal stress, T zz=l, in the plane, ðx; zÞ, perpendicular to the interface plane, ðx; yÞ,
when a monochromatic plane wave [see Eq. (4)] propagating in a fluid medium interacts with an interface between the fluid medium and an isotropic solid

medium located at z=a ¼ 0. (a) The incident angle is comprised between the two critical angles. (b) The incident angle is greater than that of the second crit-

ical angle.
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phenomena and acoustic field calculations. In addition

to these seminars, numerical practical works can be

offered, which allow students to vary themselves with

the parameters of an experiment. They do not plot the

heat maps of Figs. 1–4, but they use part of research soft-

ware which allows them to draw reflection and transmis-

sion coefficients for displacement amplitude and energy,

for any structure, namely, medium 1/medium 2 or

medium 1/medium 2/medium 3. These coefficients can

be plotted as a function of the incident angle and/or the

frequency of the incident wave. Time signals can also be

plotted. Students can choose different material proper-

ties, different thicknesses, different types of incident

waves, etc., and then they can explain, physically, why

such reflection and transmission coefficients correspond

to such types of waves, can detect echoes, and can inter-

pret both in terms of nondestructive testing (NDT) and

several types of waves (Lamb waves, etc.).

III. INTERACTION OF AN INCIDENT GAUSSIAN
BOUNDED BEAM WITH PLANE SOLID STRUCTURE

Even if the case of a plane wave is very educative in the

learning process of students, it is also interesting to show

them some more realistic situations involving acoustic

bounded beams to simulate the acoustic field produced by a

transducer (diameter denoted 2a). This is an opportunity to

show them simulations closer to a real situation other than

the one using plane waves and talk about NDT, emphasizing

the need to know the characteristics of the materials

used, the critical angles, etc., to comprehend how to conduct

an experiment. The model chosen here is bidimensional.

The incident beam is decomposed into monochromatic

plane waves through a Fourier representation of the field4–13

(in the Appendix, see the basic equations and some tips

compute the different fields using matrix computation soft-

ware). The emitting transducer is modelized by a vibrating

plane immersed in a fluid medium (see Fig. 12 in the

FIG. 5. (Color online) Heat map of the modulus of the stress vector for an incident monochromatic Gaussian bounded beam propagating in a fluid medium

(k0a ¼ 60), which interacts with an interface between the fluid medium and an isotropic solid medium, located at z=a ¼ 0. The emitting transducer is situ-

ated in the upper left angle of the figures ðx=a ¼ 0; z=a ¼ �5Þ. The black lines represent the incident acoustic axis of the emitter transducer and the reflected

and transmitted propagation directions, such as was predicted by Snell-Descartes law. The incident angle is (a) smaller than the first critical angle, (b) com-

prised between the two critical angles, and (c) greater than the second critical angle.
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Appendix). It is excited by a monochromatic signal such

that the vibration amplitude is a Gaussian function,

exp ð�x2
e=a2Þ, of the coordinate xe on the plane emitter. To

obtain a well collimated beam, the characteristic product

k 0a (where k 0 ¼ x=c 0) is chosen relatively high (k 0a � 60

in the following examples), but an example is given in Fig.

13 in the Appendix for a lower k 0a.

A. Case of an interface between semi-infinite fluid
medium and semi-infinite isotropic solid medium

The choice of k 0a ¼ 60 permits us to obtain several

acoustic beams centered on the directions predicted by

Snell-Descartes law (see Fig. 5). When the incident angle of

the acoustic axis of the incident beam is greater than the crit-

ical angles [Fig. 5(c)], all of the transmitted waves are eva-

nescent, and it is worthwhile to make the students notice

that even if the acoustic field is mostly null in the solid,

there is a small region in the vicinity of the interface where

the stress is nonzero due to the fact that the boundary condi-

tions must be fulfilled. Note that the black double-headed

arrows in Fig. 5(a) are just there to remind the students that

for the longitudinal wave, the particles vibrate in a direction

parallel to the propagation direction vector, and for the shear

wave, they vibrate in a direction perpendicular to the propa-

gation direction vector.

B. Case of an interface between semi-infinite fluid
medium and semi-infinite anisotropic solid medium

When an anisotropic solid medium is involved, it is

very useful to draw the slowness surfaces given by the ends

of the slowness vector of each wave propagating in the

medium

m ¼ n=V; (5)

where V is the speed of each wave, drawn from a fixed

point, O. Figure 6 shows the intersection of the slowness

surfaces with the plane ðOxyÞ for an unidirectional compos-

ite medium for which the A6-axis is perpendicular to an

interface fluid/solid [i.e., the solid is transversally isotropic,

the isotropic plane is the plane ðOxyÞ of the interface]. In

anisotropic media, the propagation direction does not gener-

ally coincide with the direction of the energy velocity.1–3,14

This last direction can be easily deduced graphically by the

use of the slowness curves: at a given incident angle (which

corresponds to a given projection, m x, of the slowness vec-

tor, m, onto the interface, materialized by the intersection

between a dotted vertical line and the x axis), the direction

of the energy propagation, i.e., of the group velocity, is per-

pendicular to the tangent of the slowness curves at the inter-

section between the curves and the vertical line (see the

small blue arrows in Fig. 6). It is particularly useful for the

students to combine these properties with the heat map of

Fig. 7: the transmitted bounded beams of the quasi-

longitudinal waves and quasi-shear vertical waves are cen-

tered on the white lines corresponding to the direction of the

energy velocity and not on the black lines corresponding to

the propagation directions predicted by Snell-Descartes law.

It should be noted that due to the symmetries, shear horizon-

tal (SH) waves do not propagate.

C. Case of generalized modal waves

The aim of this section is to show the interest of the

heat maps in the case of the generation of modal waves,15

such as surface waves and guided waves, by the incident

beam. For a given incident angle of the acoustic axis of the

transducer and (in the case of Lamb waves) its main fre-

quency, there is a progressive re-emission in the incident

FIG. 7. (Color online) Heat map of the modulus of the stress vector for an

incident monochromatic Gaussian bounded beam propagating in water

(k0a ¼ 170), which interacts with an interface between the fluid medium and

an anisotropic solid medium, located at z=a ¼ 0 (unidirectional carbon-epoxy

medium, A6-axis perpendicular to the interface, incident angle equal to 21.7�;
see Fig. 6). The emitting transducer is situated at ðx=a ¼ 0; z=a ¼ �5Þ. The

black lines represent the incident acoustic axis of the emitter transducer, the

reflected, and transmitted propagation directions, such as was predicted by

Snell-Descartes law (SDL). The white lines in the solid represent the direction

of the energy velocity.

FIG. 6. (Color online) Slowness curves of water and an anisotropic solid

medium (unidirectional carbon-epoxy medium, A6-axis perpendicular to

the interface). For a projection, m x ¼ 0:25 ls mm�1, of the slowness vector

onto the interface, the small blue arrows show the direction of the energy

velocities of the quasi-longitudinal (QL), quasi-shear vertical (QSV), and

quasi-shear horizontal (QSH) waves.
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medium of the energy conveyed by the modal wave: this

phenomenon is well known as “leaky waves.” Therefore,

the reflected wave may appear as slightly translated with

respect to the impact zone, and a “null zone” may appear

due to the fact that the specular reflected beam and the leaky

wave are out of phase.

1. Generalized Rayleigh waves

When the incident angle of the acoustic axis of an inci-

dent bounded beam propagating in a fluid corresponds to the

propagation of a Rayleigh wave in the solid, it is well known

that there is a radiation of the Rayleigh beam field in the

fluid with a null reflection and a non-specular reflection.1–3

These fields can be easily observed in Fig. 8, together with

the surface wave.

2. Generalized Lamb waves

In the same way, when the incident angle of the acous-

tic axis of an incident bounded beam propagating in a fluid

corresponds to the propagation of a Lamb wave in an isotro-

pic layer immersed in the fluid, it is also well known that

there is a radiation of the Lamb beam field in the fluid with

a null reflection and a non-specular reflection (and non-

specular transmission).12,16 These fields can be easily

observed in Fig. 9, together with the guided wave.

IV. CONCLUSION

To conclude, an attempt was made to show how the use

of heat maps may help, profoundly, to convey interpreta-

tions of the physical phenomena and give the role played by

parameters. Thus, making links between mathematical for-

mulations and their physical meaning and visualizing com-

plex situations, students can build more advanced critical

thinking. Specifically, we have shown that it is very useful,

while teaching the propagation of acoustic waves in solid

media, to present various heat maps to the students (heat

maps in a lower frequency range, i.e., products k 0a lower

than those used above, are, of course, also eligible to

apply—see the Appendix). Finally, the main aim of the

paper was to illustrate these abovementioned purposes by

providing examples of heat maps, which can be used during

lessons for (i) non-monochromatic plane waves in a fluid/

isotropic solid interface, (ii) interaction of an acoustic beam

with a fluid/solid interface (including anisotropic solid), and

(iii) the same interaction (acoustic beam) when generalized

Lamb waves and Rayleigh waves are generated.

APPENDIX: THE DECOMPOSITION INTO PLANE
WAVES PRINCIPLE FOR A FLUID/FLUID STRUCTURE,
AND ITS COMPUTATION

This appendix aims at explaining the decomposition

into plane waves, which are principle in the basic case of the

interaction of a bounded beam with an interface separating

two fluid media, to help a reader to quite easily obtain heat

maps similar to those given in this article. In particular, this

appendix provides (i) the basic equations using spatial

Fourier transforms, (ii) a method using matrix computation

to calculate these Fourier transforms without using a fast

Fourier transform (FFT) algorithm.

1. Incident field

The acoustic fields generated in a fluid labelled “0” by a

finite-size emitter are acoustic beams, which are often called

“bounded beams” just because the emitter has a finite size

[see Fig. 10, in the case of a two-dimensional (2D) problem,

invariant in the direction, y e]. These types of bounded

beams can be classically modeled as a continuous summa-

tion of monochromatic plane waves propagating in all

FIG. 8. (Color online) Heat map of the modulus of the stress vector for an inci-

dent monochromatic Gaussian bounded beam propagating in water

(k0a ¼ 60), which interacts with an interface between the fluid medium and an

isotropic solid medium, located at z=a ¼ 0, for an incident angle corresponding

to the propagation of a Rayleigh wave in the solid. The emitting transducer is

situated at the upper left angle of the figure ðx=a ¼ 0; z=a ¼ �5Þ. The black

lines represent the incident acoustic axis of the emitting transducer, the

reflected, and transmitted propagation directions, such as was predicted by

Snell-Descartes law.

FIG. 9. (Color online) Heat map of the modulus of the stress vector for an

incident monochromatic Gaussian bounded beam propagating in water

(k0a ¼ 170), which interacts with an isotropic layer immersed in water

(interfaces located at z=a ¼ 1 and z=a ¼ 1:5), for an incident angle corre-

sponding to the propagation of a Lamb wave in the solid. The emitting

transducer is situated at ðx=a ¼ 0; z=a ¼ 0Þ. The white lines represent some

reflections of the partial waves in the solid, corresponding to the incident

acoustic axis of the emitting transducer, such as was predicted by Snell-

Descartes law.
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directions of the half space (see Goodman.4) Each plane wave

has its own amplitude, Â eðk x e
Þ, and its own wavenumber vec-

tor, k 0 ¼ x=c 0 n e ¼ k x e
e x e
þ k 0 z e

e z e
, where x is the angu-

lar frequency of the waves. Note that the wave number, k 0 z e
,

may be complex (then, it is written as k̂ 0 z) since the evanes-

cent plane waves may be taken into account. Mðx e; z eÞ is any

point of the half-space, z e > 0, n e is the propagation direction

vector of the wave, c 0 is the propagation velocity of the wave,

and B e ¼ ðe x e
; e z e
Þ is the orthonormal basis associated with

the coordinate system R e ¼ ðO e; x e; z eÞ.4–13

As a result of the linearity of the field equations, the

complex incident acoustic pressure, p̂incðxe; ze; tÞ
¼ P̂incðxe; zeÞexp ð�ixtÞ, can, thus, be expressed as a super-

position of a (theoretically) infinite number of plane waves,

which takes the form of the following Fourier transform

[omitting the exp ð�ixtÞ factor]4 such that

P̂inc xe;zeð Þ¼
ðþ1
�1

Âe kxeð Þexp i kxe
xeþ k̂0ze

ze

� �h i
dkxe

; (A1)

where k̂0ze
is given by the following dispersion equation:

k2
x e
þ k̂

2

0ze
¼ kk0 k ¼ k2

0 ¼ ðx=c 0Þ2; (A2)

which is nothing but the necessary condition for the solution

equation (A1) to satisfy the propagation equation. Due to

the choice of the time factor, exp ð�i x tÞ, we must choose

k̂0ze
so that Refk̂0ze

g � 0 or Imfk̂0ze
g � 0.

The normal displacement (or normal velocity, ŵ 0) of

the front face of the emitting transducer can be given either

experimentally or analytically. Assuming that the front face

(assimilated, here, to a line of length, b) vibrates following

its first mode, W 0 cos ðpxe=bÞ � W0 ½1� ðpxe=bÞ2	, a

Gaussian profile can be a good approximation of this veloc-

ity (which is, thus, assumed to be known),

ŵ0 xe; tð Þ ¼ Ŵ0 xeð Þexp �ixtð Þ

¼ W0 exp �x2
e=a2

� �
exp �ixtð Þ; (A3)

where a ¼ b=p is the nominal radius of the emitter. Using

the Euler equation,

q0@ŵ=@ tþrp̂ ¼ 0; (A4)

where q 0 is the density of the fluid, ŵ is the particle velocity

vector, and the normal particle velocity, ŵ z e, in the fluid is

given as a function of the acoustic pressure by

ŵze
xe; ze; tð Þ ¼ k0ze

=ðq0xÞp̂inc xe; ze; tð Þ
¼ Ŵze

xe; zeð Þexp �ixtð Þ; (A5)

which, using Eq. (A1), leads to

Ŵze xe; ze ¼ 0ð Þ ¼ 1

q0x

ðþ1
�1

k̂0ze Âe kxeð Þexp ikxe xeð Þ dkxe :

(A6)

Assuming that the normal velocity of the front face of the

emitter and the normal particle velocity of the fluid are equal

at ze ¼ 0, the amplitude of each plane wave can then be cal-

culated by means of an inverse Fourier transform,

Âe kxeð Þ ¼
q0x

2 p k0ze

ðþ1
�1

Ŵ0 xeð Þexp �ikxe
xeð Þ dxe; (A7)

and, therefore, since the amplitudes, Âeðkxe
Þ, are known,

the whole pressure field in fluid 0 can be calculated using

the Fourier transform equation (A1), as it can be seen in

Fig. 11.

2. The interaction of the incident field with a plane
interface separating two fluid media

The study of the interaction of each plane wave with

the interface separating fluid 0 from fluid 1 (celerity, c 1, and

density, q 1) needs a change of coordinate system: a new

coordinate system, R ¼ ðOe; x; zÞ, linked to a –plane parallel

to the interface and located at a distance, d, from it, is

deduced from Re by a rotation angle, h, around ye (incident

angle of the acoustic beam, O ez e ; see Fig. 12).

FIG. 10. Schematic diagram of the plane waves which constitute the acous-

tic bounded beam created by an emitter in a fluid medium.

FIG. 11. (Color online) Cartography of the acoustic pressure field in a fluid

(adimensional frequency, k0a ¼ 15) with four cuts at ze ¼ 0, ze ¼ 2:5a,

ze ¼ 5a, and ze ¼ 7:5a.

J. Acoust. Soc. Am. 152 (2), August 2022 Potel et al. 761

https://doi.org/10.1121/10.0013013

https://doi.org/10.1121/10.0013013


The coordinates of a given point, M, in this new coordi-

nate system are denoted by Mðx; zÞ, and the components of

each wave vector, k0, are denoted by ðkx; k̂0zÞ. These com-

ponents depend on kxe
through the dispersion equation (A2)

and the following equations:

kx ¼ kxe
cos hþ k̂0ze

sin h; (A8a)

k̂0z ¼ �kxe
sin hþ k̂0ze

cos h: (A8b)

It should be noted that the invariance of the dot product,

k0 �OeM ¼ kxe
xe þ k̂0ze

ze ¼ kxxþ k̂0zz; (A9)

leads to the following expression for the incident acoustic

pressure, P̂inc, in the fluid 0 in the coordinate system, R,

such that

P̂inc x; zð Þ ¼
ðþ1
�1

Â
0
e kxeð Þexp ik̂0z z� dð Þ

� �
exp ikxxð Þdkxe

;

(A10)

where

Â
0
e kxeð Þ ¼ Âe kxeð Þexp ik̂0zd

� �
: (A11)

Note that the amplitudes Âeðkxe
Þ and Â

0
eðkxe
Þ are, respec-

tively, referenced at points O e and O 0 (see Fig. 12).

When interacting with the interface, each incident plane

wave of amplitude Â
0
eðkxe
Þ and wave vector k 0ðkxe

Þ propa-

gating in fluid 0 will generate a reflected wave in fluid 0

with wave vector k00ðkxe
Þ and a transmitted wave in fluid 1

with wave vector k1ðkxe
Þ. These three wave vectors have the

same projections on the interface, namely,

k0 � ex ¼ k00 � ex ¼ k1 � ex ¼ kxðkxe
Þ; (A12)

which leads to the well-known Snell-Descartes law. Note

that the wave number k 1 z ¼ k1 � ez must be chosen carefully

to ensure the correct behavior of the transmitted waves at

infinity (see, for example, Ref. 13, Chap. 12, exercise 1.2.1,

p. 151).

Then, the reflection and transmission coefficients (for

the pressure) are classically given by1–3

R̂ ¼ q1k̂0z � q0k̂1z

q1k̂0z þ q0k̂1z

(A13a)

and

T̂ ¼ 2q1k̂0z

q1k̂0z þ q0k̂1z

; (A13b)

where the “carets” recall that the corresponding variables

can take complex values.

The reflected and transmitted fields in fluids 0 and 1 can

then be reconstructed, leading to the following Fourier

transformations:

P̂ref x;zð Þ¼
ðþ1
�1

R̂ kxð ÞÂ
0
e kxeð Þexp i kxx�k̂0z z�dð Þ

� �� 	
dkxe

(A14a)

and

P̂tr x;zð Þ¼
ðþ1
�1

T̂ kxð ÞÂ
0
e kxeð Þexp i kxxþk̂1z z�dð Þ

� �� 	
dkxe

:

(A14b)

3. Calculation of Fourier transforms

The Fourier integrals (A1) and (A14) have the follow-

ing form:

I x; zð Þ ¼
ðþ1
�1

F̂ kxeð Þexp i kxxþ k̂zz
� �� 	

dkxe
; (A15)

where k x and k̂ z are functions of kxe
. It is worthwhile to note

that the integration variable, kxe
, and the space coordinate, x,

are no longer Fourier conjugate variables due to the rotation

of the coordinate axes. So, the FFT algorithm is inappropri-

ate. To calculate the integral (A15), we use a simple classi-

cal trapezoidal method on the basis of the initial sampling

used for kxe
[and using the invariance (A9) of the dot prod-

uct, k 0 �O eM, abovementioned]. The advantage of this

method is to easily show the acoustic fields in the different

media either in the form of heat maps linked to the structure

[i.e., linked to the coordinate system ðOxzÞ] or through cuts

of the acoustic fields in a plane parallel to the structure

(thus, at a given z). Moreover, due to the factorization prop-

erties of the exponential function, a matrix computation

using, for example, MATLAB
VR

or SCILAB software, permits

us to calculate all of the Fourier integrals in a single step.

The procedure is the following.

Using the properties of the exponential function, inte-

gral (A15) is first written as

I x; zð Þ ¼
ðþ1
�1

exp ik̂zz
� �

F̂ kxeð Þexp ikxxð Þ dkxe
: (A16)

FIG. 12. Geometry of the problem for a plane interface separating two fluid

media.
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In the case of the Gaussian beam (A3), the integration domain

may be reduced to a segment ½�k0 þ e; k0 � e	 in such a way

that the singular points are outside of the domain.

For a sampling of the different variables x, z, and kxe
,

leading to, respectively, Nx, Nz, and Nkxe
values, three matri-

ces are built such that

(i) a ðNz 
 Nkxe
Þ matrix corresponding to the term

exp ð i k̂ z z Þ,
(ii) a ðNkxe


 NxÞ matrix corresponding to the term

F̂ ðk x e
Þ (column of Nkxe

values replicated Nx times to

have Nx identical columns, where the first and the

last row are divided by two), and

(iii) a ðNkxe

 NxÞ matrix corresponding to the term

exp ðikxxÞ.

As the trapezoidal method consists in calculating the

integral of the function f ðxÞ over the interval ½a; b	, using the

following summation [here, for a constant step sampling of

ðnþ 1Þ values x i]

ðb

a

f ðxÞ dx ¼ lim
n!þ1

f að Þ
2
þ
Xn�1

i¼1

f xið Þ þ
f bð Þ

2

" #
; (A17)

where D x ¼ ðb� aÞ=n, x 0 ¼ a, and x i ¼ x i�1 þ D x, it

is easy to see that the integral (A16) can be calculated

using matrix products, which can be symbolically written

as

exp i k̂zz
� �h i

� F̂ kxeð Þexp ikxxð Þ
h i

Dkxe
; (A18)

where the matrices in the second set of brackets are multi-

plied term by term and Dkxe
is the step of the sampling for

kxe
. The MATLAB

VR

or SCILAB (for instance) code could be

written as

kxemin ¼ �0.9 * k0;
kxemax ¼ 0.9 * k0;
Nx ¼ length(x); % number of points for x
Nz ¼ length(z); % number of points for z

Nkxe¼ length(kxe); % number of points for kxe
dkxe ¼ kxe(2) - kxe(1); % step sampling for
kxe
F(1) ¼ F(1)/2; % 1st term corresponding to
f(a)/2
F(Nkxe) ¼ F(Nkxe)/2; % last term corre-
sponding to f(b)/2
FF ¼ repmat(F.’, [1 Nx]); % replication of
Nx columns
TF ¼ exp(i*z.’* kz) * (FF .* exp(i*kx.’ * x))
* dkxe;

4. Application to heat maps of acoustic fields

Using the above-described method, heat maps of the

acoustic pressure in fluids 0 and 1 can, thus, be drawn. The

heat maps of Figs. 13(a) and 13(b) show the incident,

reflected, and transmitted fields. In the higher frequency

range [k0a ¼ 212; Fig. 13(a)], the beams are narrow and fol-

low, well, the oblique lines corresponding to Snell-

Descartes law (A12). Moreover, the total field in fluid 0

highlights the interferences between the incident and the

reflected fields. In the lower frequency range [k0a ¼ 12:7,

Fig. 13(b)], the beams are wider and do not follow the Snell-

Descartes law as well as in the higher frequency range.

1B. A. Auld, Acoustic Fields and Waves in Solids (Wiley, New York,

1973).
2J. L. Rose, Ultrasonic Waves in Solid Media (Cambridge University

Press, Cambridge, UK, 1999).
3D. Royer and E. Dieulesaint, Elastic Waves in Solids I: Free and Guided
Propagation (Springer, Berlin, 2000).

4J. W. Goodman, Introduction to Fourier Optics, 4th ed. (Freeman, San

Francisco, 2017).
5J. Pott and J. G. Harris, “Scattering of an acoustic Gaussian beam from a

fluid–solid interface,” J. Acoust. Soc. Am. 76(6), 1829–1837 (1984).
6B. Hosten and M. Deschamps, “Transmission ultrasonore en faisceau

born�e d’une interface plane �a l’aide du spectre angulaire d’ondes planes”

(“Ultrasonic transmission of a bounded beam through a plane interface,

using plane wave angular spectrum method”), Traitement du Signal 2,

195–199 (1985).

FIG. 13. (Color online) Heat maps of the modulus of the acoustic pressure for a fluid 0/fluid 1 structure. c 0 ¼ 1480 m s�1, q0 ¼ 1000 kg m�3, c 1

¼ 5825 m s�1, q1 ¼ 5000 kg m�3, a ¼ 10 mm, and h ¼ 10�. The oblique lines correspond to the incident, reflected, and transmitted rays, such as was pre-

dicted by Snell-Descartes law (A12). (a) f ¼ 2 MHz (k0a ¼ 84:9) and (b) f ¼ 0:3 MHz (k0a ¼ 12:7).

J. Acoust. Soc. Am. 152 (2), August 2022 Potel et al. 763

https://doi.org/10.1121/10.0013013

https://doi.org/10.1121/1.391483
https://doi.org/10.1121/10.0013013


7M. Rousseau and Ph. Gatignol, “Theory of the acoustic bounded beam,”

in Acoustic Interactions with Submerged Elastic Structures, Part I, Series

on Stability, Vibration and Control of Systems Series B, edited by A.

Guran, J. Ripoche, and F. Ziegler (World Scientific, Singapore, 1996),

Vol. 5, pp. 207–241.
8D. Orofino and P. Pedersen, “Efficient angular spectrum decomposition of

acoustic source—Part I: Theory,” IEEE Trans. Ultrason., Ferroelect.,

Freq. Contr. 40(3), 238–249 (1993).
9C. Potel, S. Baly, J. F. de Belleval, M. Lowe, and Ph. Gatignol,

“Deviation of a monochromatic Lamb wave beam in anisotropic multilay-

ered media: Asymptotic analysis, numerical and experimental results,”

IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 52(6), 987–1001 (2005).
10M. E. Schafer, P. A. Lewin, and J. M. Reid, “Propagation through inho-

mogeneous media using the angular spectrum method,” in Proceedings of
the IEEE Ultrasonics Symposium, 1987 pp. 943–945

11M. E. Schafer and P. A. Lewin, “Transducer characterization using

the angular spectrum method,” J. Acoust. Soc. Am. 85, 2204–2214 (1989).

12C. Potel, Ph. Gatignol, and J. F. de Belleval, “Deviation of the

modal waves excited by an ultrasonic monochromatic beam in an aniso-

tropic layer,” C. R. Acad. Sci. Paris, S�erie IIb Mech. 329(11), 815–822

(2001).
13M. Bruneau, Ph. Gatignol, P. Lanceleur, and C. Potel, “Exercices

d’acoustique—Corrig�es d�etaill�es. Rappels de cours” (“Exercices of

acoustics—Detailed solutions. Course reminders”) (C�epaduès

Editions, Toulouse, France, 2021), Problèmes avanc�es (Advanced
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