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Acoustic propagation through thick composites has become a subject of intensive study due to 
their application to nondestructive evaluation. The anisotropic multilayered media are now 
usually studied by the propagator matrix formalism. Though this formalism is very convenient, 
it leads to numerical instabilities for thick composites at high frequencies. These numerical 
instabilities come from the combination of very high exponential terms which reduces the 
dynamics of the calculation. A very interesting case is the one of anisotropic periodically 
multilayered media. The method developed in this paper uses Floquet waves which correspond 
to the modes of an infinite periodically multilayered medium. They are linear combinations of 
the real waves propagating in each layer of the medium. The Floquet wave numbers are the 
eigenvalues of the propagation matrix of one period of the medium. The anisotropic periodically 
multilayered medium can then be considered as a dummy medium in which the Floquet waves 
propagate. High exponential terms can be avoided through a judicious choice of reference of the 
Floquet waves’ amplitudes. This method enabled us to calculate reflection coefficients up until 
40 MHz, of thick composites of carbone/epoxy placed in water. Furthermore, it has permitted 
us to not have a limitation for a single layer of any given material, at any given frequency. 

1. INTRODUCTION 

Acoustic propagation through anisotropic multilay- 
ered media has become a subject of intensive study, be- 
cause of their application to nondestructive evaluation, 
geophysics, etc. Generally speaking, multilayered media 
are made by the stacking of distinct anisotropic media. A 
very interesting case is the one of anisotropic periodically 
multilayered media which are a P-times reproduction of an 
anisotropic multilayered medium cell. 

The propagator matrix formalism which was first de- 
veloped by Thomson,’ then furthered by Haskell,’ and af- 
terwards by Gilbert and Backus, is a convenient general 
method for treating such media. Periodically layered Auid 
media were studied by Gilbert4 and by Schoenberg’ who 
has also examined alternating fluid/solid layers6 Helbig 
has analyzed transversely isotropic periodically media with 
the long-wavelength approximation.7 Further, Gatignol, 
Rousseau, and Moukemaha have studied the propagation 
in an isotropic periodically stratified mediums-” for a 
given incidence. They have obtained solutions involving 
Floquet waves, as did Lhermitte with the propagation of an 
elastic shear wave, normal to the interfaces in a cross-ply 
fiber reinforced composite. ‘* 

Though the propagator matrix formalism is very use- 
ful, it yields numerical instabilities when the whole thick- 
ness of the medium and/or the frequency of the incident 
wave become large. These difficulties are caused by the 
components of certain matrix products12 which are infinite 
or very small and bring about losses of accurency during 
the calculation. l3 Chimenti and Nayfeh14 have noticed that 
a direct approach to the problem, i.e., the resolution of a 6n 
equations system with 6n unknowns where n is the number 
of layers, leads to numerically stable results but is limited 
by the computer memory. 

In the isotropic case, Hosten” has limited exponential 
terms when they become high, because they will balance 
each one with the other. Dunkint2 expanded upon by 
Levesque and Piche16 both separate the propagation matrix 
into submatrices. In the isotropic case, the latest have 
solved the problem. 

In the anisotropic case, we propose a physical ap- 
proach using Floquet waves and using a judicious choice of 
reference for the amplitudes of these waves, according to 
their direction of propagation in the whole medium. In the 
case of an anisotropic homogeneous medium of any thick- 
ness, surrounded by two different media, our method per- 
mits us to eliminate infinite terms and thus to have no 
limitation in frequency or in angle of incidence. In the case 
of anisotropic periodically multilayered media, the method 
permits us to significantly improve our results, and to push 
back the limit of calculation. 

II. FORMALISM USED FOR PROPAGATION 
EQUATIONS 

Let us consider a periodically multilayered medium 
which is a reproduction of P “superlayers,” each one made 
by the stacking of Q distinct anisotropic media (see Fig. 
1). Media 0 and N+ 1 above and below the periodically 
multilayered medium are semi-infinite. We study the 
acoustic propagation of waves which are generated by an 
oblique incident wave propagating in the media 0. Let us 
define: 

x3, the axis of stacked layers; 
q, the number of the layer in a superlayer: l<q<Q; 
p, the number of a “superlayer”: l<p<P; 
n, the number of the layer (p,q): n = (p- 1 )Q+q; 
h,, the thickness of the layer; 
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FIG. 1. Periodically multilayered medium. 

z,~ , the position on the x3 axis of the interface between 
two layers n and IZ + 1 such as z,, =z, _ t + h, and z. =O. 

The propagation equations in each layer use the same 
form as the one developed by Rokhlin et al. i7*‘* and com- 
pleted by Ribeiro et al. 1972o 
neous waveform.21*22 

with the help of the inhomoge- 

Generally speaking, an oblique incident wave propa- 
gating in the plane x10x3 defined in Fig. 1 generates six 
plane waves with different velocities in an anisotropic layer 
surrounded by two media.23 

Let us note: 
v, the datum index of each wave: l<r,<6; 
(‘J)nq, the direction of propagation vector of the wave 
(v) in the layer q; 
(T)kq, the wave number vector of the wave (7) in the 
layer q; 
(v)m’J, the slowness vector of the wave (v) in the layer 
4; 
(v)Pq, the polarization vector of the wave (q) in the 
layer q; 
cq)Vq, the propagation velocity of the wave (q) in the 
layer q. 

The slowness vector is related to the direction of the 
propagation vector and to the wave number vector by the 
following relation: 

(‘7)m9= (?l)n4/(71)Vq= (ll)k4/w, (1) 

where o is the natural frequency of the incident wave. 
The plane wave propagation equation or Christoffel 

equation is written24’25 by the use of Einstein’s convention 

consisting in summing inferior indexes twice repeated (no 
summation on q): 

(C~~~“)n~(q’nf-pq((q)VQ)2~i~)‘q)PQ~=0, (2) 

where pq is the volumetric mass of the material in the layer 
q and c&l are elastic constants of the layer q. 

This equation can also be written as a function of the 
slowness vector:17 

with 

(11)~~=,~kr(~7)m~(7j~~-pqsik. (3) 

In the chosen reference system (see Fig. 1 ), the Snell- 
Descartes law imposes that the projection of the wave 
number vector (or of the slowness vector) upon a plane 
parallel to interfaces would be maintained, i.e., (11)~~: 
= wm; =; . . . = (‘n,y and (@mz = 0, Vr], Vq. There is 
equality of the parallel components to the x1 axis of the 
slowness vectors of all existing waves; we will call this 
component ml. Reducing the 6 X 6 determinant of (tl)G$ to 
zero yields an equation of the sixth degree for (‘~)wz! with 
real factors if the attenuation is neglected. If (‘7)~j is real, 
the wave is homogeneous (or propagative); if (‘J)wz~ is 
complex, the wave is inhomogeneous.20Z22 For each wave 
(q) of which the slowness vector has been determined, Eq. 
(3) enables us to calculate (‘J)pP normalized by the hermit- 
ian norm ]I I] defined by 

l lpl12=e&~ (4) 

where p;f: is the conjugate complex of Pk. 
By introducing the slowness vector, the displacement 

vector of the wave (7) in the layer q can be written as 

(v)up.rr= (vlap.4. (?l)p9e-iw((‘1)mq.x-~). (5) 
Stresses are expressed as a function of displacements 

by 

(6) 

where (q)apJ is the complex amplitude of the particle dis- 
placement tied to the wave (7) in the layer n and (v)tiQ is 
the displacement vector of the wave (7) in the layer IZ. The 
total displacement vector in the layer yt is expressed by 

UP’Q, 2 (7lQP4* (7) 
7]=1 

Ill. FORMALISM OF TRANSFER MATRICES 

Subsequently, we can note the following: 
{ } a six-dimensional column vector; 
( > a six-dimensional line vector; 
[ ] a (6x6) matrix; 
T a transpose operation; 
X& the coefficient of the matrix [x] at crth row and /?th 
column. 
Let { Wq(x3)} be the (6X 1) column vector made up 

of the three components of the vector Up’4 and the three 
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components (T#,Tp;9,TpiQ) of the stress vector applied to 
a surface parallel to the interfaces, and in the layer Q of a 
“superlayer” p for z4- 1 <x, <zp. Furthermore, let {GPP) 
be the (6x 1 j column vector containing the amplitudes 
(7)&Q of the six waves propagating in the layer 4 of a 
“superlayer” p. 

and 

cJf-psP)=( Wap,q (‘UaP,q (3)~q,(4),p,s,(5)p,q,(6)ap,4)T 9 3 

{Pq(x3)} can be expressed as a function of {J.-PQ) 
using the following equation: 

{Wp~q(zq))= [B4] [~]{~p~4)e--io(m*rl--t), 

with 

(8) 

[fl] =diag(e-io(‘)m%), 

(6X6) diagonal matrix ~=1,...,6 

B&=A$ for a= 1, 2, 3 and B&= -imA&, for a=4, 5, 6 
where [AQ1 is given in the Appendix. 

The displacements and stresses at x3==zq can be ex- 
pressed as a function of those at x,=z,-~ by the following 
relation: 

Cwp’Q(z,))= [ Bql [SYq [Bql -‘cwp’q(zq-*)). (9) 

The matrix [X4]=[B~[.SFj[B’J’j-* is the propagation 
matrix in the layer q.8Y23126 

By expressing displacements and stresses for two suc- 
cessive layers Q (zqV1<x3<iq) and q+l (zq<x3<zq+r), 
followed by equaling them at the interface xs=zq, we ob- 
tain the amplitudes of the waves in the layer q+ 1 as func- 
tions of those in the layer q, in a superlayer p. 

{dP*q+l)= [Aq+‘]-‘[Aq] [2F]{dP*4). (10) 

It is possible to express the amplitudes of the first layer 
of the “superlayer”p as a function of those in the first layer 
of the “superlayer” p+ 1, by means of a propagation ma- 
trix [@I defined by 

{dp+‘J)= [q{.!d~‘} 2 (11) 

where 

L@l=~A1l-l( q~~IA’l~~l~Aql-‘)~A1l~~‘l, (12) 

or else 

[3-]=[A’][+][A’]-‘= q~QIAq][SF’][Aq]-l. 

(13) 
From Refs. 23 and 27, the eigenvalues (v);1 of [fl, 

which are of course the same as those of [@I, are related to 
the Floquet wave numbers through the medium of the Flo- 
quet slownesses associated to the Floquet wave numbers 
W7Zf: 

( 7);1= eiJv)mfh, (14) 

with 

The component following the x3 axis of the Floquet 
slowness vectors is (q)rnf for a given incidence correspond- 
ing to ml. 

By recurrence, one can find 

{&3!~+1J)=pD]P{.!d’J3. (1% 
In fact, the amplitudes of the waves in the first layer of 

the “superlayer” P+ 1 are the amplitudes of fictitious 
waves, because the “superlayer” P+ 1 does not exist. 

IV. NUMERICAL INSTABILITIES 

The transfer matrix form is very useful, notably when 
P or Q are great: the size of the final system, coming from 
boundary conditions, will never exceed ( 18 X 18). But it 
yields important numerical instabilities1s14 when the 
waves vanish inside a layer. 

It is quite easy to understand why numerical instabil- 
ities appear for a great kh: we have seen Sec. III that the 
eigenvalues of the propagation matrix [@)I, tied to the Flo- 
quet wave numbers, are exponential and function of the 
product ( iw(q)mfh). When oh and P are great and when 
the waves (77) become inhomogeneous, the real part of 
exp[(iw”7’mfh)Pj becomes very high in absolute value. 
These factors, combined with the first order values, bring 
out losses in precision. 

As mentioned in the Introduction, Hosten” suggests 
that it is possible, in the isotropic case, to limit the expo- 
nential terms when they become high, because they will 
balance each one with the other. But in the anisotropic 
case, it is quite impossible to foresee which term is going to 
balance the other. Dunkin’” expanded upon by Levesque16 
both separate the propagation matrix [@)I into submatrices. 

We propose to solve the problem by a physical ap- 
proach using Floquet waves. 

A. The use of the Floquet waves 

Let us define: 
[E], the eigenvector matrix of [@I; 
{Fp*‘), the (6X 1) column vector containing the six 

complex amplitudes of the Floquet waves, at the first in- 
terface of the layer 1 in the “superlayer” p. 

{Yp>l} is related to {&,‘) by the following relation, 
which is a change of basis: 

{&P’)= [E]{PJ} , (16) 
that is to say, 

~~~J), [a] -‘{Jp’}. (17) 
From Rq. ( 11) we obtain at the end a matricial rela- 

tion between the amplitudes of the Floquet waves at the 
first interface of the layer 1 in the %uperlayer” p+ 1 as a 
function of those in the %uperlayer” p: 

{.9-~+‘J)=[q-‘[aq [q{3q. (18) 
These waves are Floquet waves because the matrix 

[ZJ] =[Z]-‘[@][Z] is diagonal: 
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[Zf] =diag((“)d). (19) 
We have then six Floquet waves which correspond to 

the classical plane waves propagating in an infinite period- 
ically multilayered medium, considered as a homogeneous 
materia1.27-29 Let us consider this dummy medium in 
which the Floquet waves propagate. At any given plane 
parallel to the interface, it is possible to express a displace- 
ments and stresses vector which does not have any real 
meaning: indeed, these waves are linear combinations of 
the real waves propagating in each layer of the medium. 

But this vector corresponds to the real displacements 
and stresses vector at the reference interface by means of a 
change of basis, and thus at any interface which can be 
deduced from the periodicity of the medium. 

B. Boundary conditions 

From Eqs. (8) and ( 16) the displacements and 
stresses vector at the first interface of the first layer in the 
first “superlayer” (x3 =zO) as a function of the amplitudes 
of the Floquet waves at the same interface: 

{w’J(zo)}= [B’] [~]{~“‘}e-~~(~l~l-~). (20) 

Though the “superlayer” P+ 1 does not exist, we can 
also express the displacements and stresses vector at the 
interface x3 ‘zpQ: the boundary conditions just need to be 
satisfied at the interface. 

{wP+l,l (zpQ)}=; [B’] [~]{~P+l~l}e-io(mlxl--t). (21) 
Moreover, by using Eqs. ( 18) and ( 19) and by recur- 

rence, one can find 

{p-p+‘+ [&“f]p{.y-*J}. (22) 
Finally, using Eqs. (21) and (22) we obtain the dis- 

placements and stresses at the last interface as a function of 
the amplitude of the Floquet waves at the first interface: 

{ wP+l,l (z,)}= [B’] [s] [~f]P{~l~l)e-io(mlxl-t). 

(23) 
As [X] is a diagonal matrix, [Zf]’ 

=diag[exp( iwcv) mfhP)] where Ph is the thickness of the 
entire periodically multilayered medium. [G$@]’ is thus the 
propagation matrix of a dummy homogeneous medium. 

C. Change of reference 

Now let us consider a homogeneous medium sur- 
rounded by two different media (see Fig. 2). An incident 
wave propagating in the medium 0 generates six waves in 
the medium 1 (see Sec. II): three of them, numbered by 
q= 1, 2, 3 for instance, propagate (or decrease if the wave 
?,J is inhomogeneous) in the x3 direction and the three oth- 
ers, numbered by 7,7=4, 5, 6 for instance, propagate (or 
decrease) in the opposite direction. 

Suppose that the waves ( 1) and (4) are inhomoge- 
neous and that the reference is taken at x3=zo. The am- 
plitude of the wave ( 1) is negligible at the interface x3=zl 
and so, it is easy to equal it to zero. The amplitude of the 
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FIG. 2. Homogeneous medium surrounded by two other media. 

wave (4) is finite at the interface x3=zl because of the 
mode conversion, but is infinite at the interface x3=zo be- 
cause of the reference taken at x3=zo. This amplitude is 
then multiplied by very small factors, which leads to losses 
of precision and then to numerical instabilities. 

In order to avoid this, the reference for the waves prop- 
agating (or decreasing) in the x3 direction is taken at 
x3=zo. The reference for the waves propagating (or de- 
creasing) in the opposite direction is taken at x3 =zl. 

The total displacement is then expressed by the follow- 
ing equation: 

3 

U= (c (s),(rl)p,- io(~)m3(q-q$ 
\ q=l 

6 

+ 1 (Il),(ll)pe-io’“‘m3(x3-zl) 
1 

e-io(m~xl-t)~ (24) 
77=4 

The numerical instabilities that we have in this case are 
solved by the change of reference for the amplitudes of the 
waves in a single layer. 

Let us apply the above method to the dummy homo- 
geneous medium defined in Sec. IV B: according to the 
direction of propagation of the Floquet waves, the refer- 
ence will be taken at x3=zo or at x,==zpQ, which amounts 
to expressing the amplitudes of the Floquet waves in an- 
other basis, by means of a diagonal matrix [Z?] defined by 

If modulus of (X&>’ is superior to 1 

then gvs= l/(Z$Jp else %‘7,=1. (25) 

The change of basis gives 

{F’J}= [ z?]{Y’J}, (26) 

where {s ‘,I} is the (6 X 1) vector containing the complex 
amplitudes of the Floquet waves of which references are 
taken at different interfaces. 

Finally, we obtain the displacements and stresses vec- 
tors at x3 =zo and at x3 =zpe: 

{ w’J(z,>}= [ B’ 

{f,j7P+l,l (zp,D= 
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FIG. 3. Modulus of the reflection coefficient in water for one layer of 
carbon epoxy which the sixth folded axis is oriented parallel to the Ox, 
axis, as a function of the angle of incidence. P= 1; f= 10 MHz. 

If the wave 7 is inhomogeneous in the direction x3 < 0, 
the product of the two matrices [@]’ and [8?] gives a 
diagonal matrix which the 77~ term is equal to 1 instead of 
being infinite. 

By writing boundary conditions at x3=z0 and at 
xj =zpQ, one can obtain at most 18 equations with 18 un- 
knowns including reflection and transmission coefficients. 
The connection between the Floquet waves and the reflec- 
tion coefficient(s) is given in Sec. V B through an example. 

V. APPLICATION TO CARBON/EPOXY COMPOSITES 

A. Case of a single layer of carbon/epoxy 

In the case of a medium made by a single layer of any 
given material, there is no limitation of thickness of the 
layer and/or of the frequency of the incident wave. An 
example of a reflection coefficient in amplitude in water for 
a medium made up by a layer of carbon epoxy, immersed 
in water, is given in Fig. 3 as a function of the angle of 
incidence. 

The material used is a hexagonal crystal system me- 
dium with five independent elastic constants. If the sixth- 
order symmetry A, axis is parallel to the Ox, axis, these 
constants are3e 

cii= 13.5 GN/m2; c,,=6.3 GN/m2; 

ci3=5.5 GN/m2; c33= 125.9 GN/m2; 

c~= 6.2 GN/m”. 

The volumetric mass of the carbon-epoxy is 1577 
kg/m3, the thickness of the layer is equal to 20 mm, and 
the frequency of the incident wave is equal to 10 MHz. 

6. Case of a periodically multilayered medium W/90 

Now let us consider a medium made by stacked iden- 
tical hexagonal layers, each layer being at 90” to the pre- 
vious, and immersed in water. 

An example of the reflection and transmission coe5- 
cients in amplitude in water for a periodically multilayered 
medium made from layers of carbon epoxy is given in Fig. 
4, as a function of the frequency. Each layer of a superlayer 

Reflection coef 
1 

0.8 

0.6 - 

0.4 

0.2 I I I I ‘1’ ’ I ,w I I 
Trsnsmission coefficient 

1 

08 

0.6 

0.4 

02 

0 
0 10 20 30 40 

(MHz) 

FIG. 4. Modulus of the reflection and transmission coefficients in water 
for a periodically multilayered medium V/90” made from layers of carbon 
epoxy, as a function of the frequency. P= 50; a= IO". 

is 0.13 mm thick and the periodically multilayered medium 
is 13 mm thick. 

This representation allows us to observe easily stop- 
ping bands in frequency when the reflection coefficient is 
equal to 1. The minima of the reflection coefficient corre- 
spond to Lamb modes. If the method described above is 
not applied, the computation is valid only until about 6 
MHz. Though Levesque and PichC16 have observed that it 
is more difficult to obtain a correct transmission coefficient 
than a reflection coefficient, the transmission coefficient 
presented in Fig. 4 corresponds exactly to the reflection 
coefficient for the energy conservation. These coefficients 
permit us to give directions to nondestructive evaluation: 
indeed, when the reflection coefficient is equal to 1, the 
wave does not penetrate the end of the medium. So, in 
order to detect a defect, it would be preferable to take a 
natural frequency of the incident wave equal to 20 MHz 
rather than to 11 MHz. 

Another example of the reflection and transmission co- 
efficients as a function of the incident angle, for the same 
periodically multilayered medium surrounded above by 
water and below by the titane, is given in Figs. 5 (a), 5 (b), 
and 5(c). 

The titane is an hexagonal crystal system medium with 
five independent elastic constants. If the sixth-order sym- 
metry Ab axis is parallel to the Oxs axis, these constants 
are24 

cll= 162.4 GN/m2; ci2=92.0 GN/m2; 

c13=69.0 GN/m’; c33 = 180.7 GN/m’; 

c@=46.7 GN/m’. 

The volumetric mass of the titane is 4506 kg/m3, the 
periodically multilayered medium is 2.6 mm thick, and the 
frequency of the incident wave is equal to 10 MHz. 

Figure 5 (d) represents the retie&ion coefficient in wa- 
ter as a function of the incident angle for the same period- 
ically multilayered medium immersed in water. 
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FIG. 5. Modulus (a) of the reflection coefficient in water, (b) of the 
transmission coefficient of the longitudinal wave in the titane, (c) of the 
transmission coefficient of the shear wave in the titane, for a periodically 
multilayered medium V/90’ made from layers of carbon epoxy as a func- 
tion of the angle of incidence. The medium is surrounded by water above 
and by titane below. (d) Modulus of the reflection coefficient in water for 
the same periodically multilayered medium immersed in water. (e) Num- 
ber of the Floquet waves which are inhomogeneous in the periodically 
multilayered medium P= 10; f= 10 MHz. 

In order to give a physical interpretation of these re- 
sults we have put Fig. 5 (e) below (a)-(d). This figure 
represents the numbers of the Floquet waves which are 
inhomogeneous in the periodically multilayered medium. 
As this medium is made up by identical hexagonal layers, 
each layer being at 90” to the previous, only four waves 
exist in the medium. That is the reason why the inhomo- 
geneous waves in Fig. 5 (e) are numbered from 0 to 4. On 
this figure, one can see several angular bands which corre- 
spond to four inhomogenous Floquet waves in the period- 
ically multilayered medium: in these bands, for any given 
incident wave in water with any given natural frequency, 
there is total reflection in water, however the medium be- 
low the periodically multilayered medium may be. When 
the incident angle is contained between 24” and 26”, two 
Floquet waves are propagative again: there is transmission 
in the titane because the incident angle is inferior to the 
second critical angle of the titane. When the incident angle 
is contained between 41” and 50”, two Floquet waves be- 
come propagative again: the reflection in water is not total 
for the periodically multilayered medium immersed in ‘wa- 
ter, although it is total when the medium below the peri- 
odically multilayered medium is the titane because the 
waves are inhomogeneous in it. 

1 

0.L 

0.f 

0.’ 

0.; 

C 

P=lO f=4MHz 

0”/45”/90”/-45” 

FIG. 6. Modulus of the reflection coefficient in water for a periodically 
multilayered medium 0”/45”/90”/-45” made from layers of carbon epoxy 
as a function of the angle of incidence. P= 10; f=4 MHz. 

C. Case of periodically multilayered media o”/ 
45"/90"/- 45" and V/45”/ - 45”/ -90 

Let us consider a medium made by stacked identical 
hexagonal layers, each layer being at 45” to the previous, 
immersed in water: it is a 0”/45”/90”/-45” medium. An 
example of the reflection coefficient in amplitude, in water, 
for a periodically multilayered medium made from layers 
of carbon epoxy is given in Fig. 6, as a function of the angle 
of incidence. Each layer of a superlayer is 0.13 mm thick, 
the periodically multilayered medium is 5.72 mm thick, 
and the frequency of the incident wave is equal to 4 MHz. 

Now let us consider a medium made by four stacked 
identical orthotropic layers: the sixth-order symmetry A6 
axis of the first layer is parallel to the Ox1 axis, the second 
layer is at 45” to the first layer, the third layer is at 90” to 
the previous, and the last layer is at 45” to the previous: it 
is a r/45”/-45”/- 90” medium. 

An example of the reflection coefficient in amplitude in 
water for a periodically multilayered medium made from 
layers of carbon epoxy and immersed in water is given in 
Fig. 7, as a function of the angle of incidence. As for the 
0”/45”/90”/-45” medium, each layer of a superlayer is 0.13 
mm thick, the periodically multilayered medium is 5.72 
mm thick, and the frequency of the incident wave is equal 
to 4 MHz. As the modulus of the amplitude reflection 
coefficient of the Fig. 6 is different from the one of Fig. 7, 
one can say that the stacking order of the layers in one 
superlayer has an effect on the reflection coefficient. 

Another example of the reflection coefficient in ampli- 
tude in water for the same periodically multilayered me- 
dium V/45”/--45”/- 90” immersed in water is given in 
Fig. 8. Each layer of a superlayer is 0.13 mm thick, the 
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P= 10 f-4MHz 

o-/45*/-45”/ 90’ 

30 
degree 

60 90 

FIG. 7. Modulus of the reflection coefficient in water for a periodically FIG. 8. Modulus of the reflection coefficient in water for a periodically 
multilayered medium o”/45°/-45”/-90’ made from layers of carbon ep- multilayered medium 00/45”/--4Y/-90’ made from layers of carbon ep- 
oxy as a function of the angle of incidence. P= 10; f=4 MHz. oxy as a function of the angle of incidence. P= 20; f =S MHz. 

periodically multilayered medium is 10.92 mm thick, and 
the frequency of the incident wave is equal to 5 MHz. 

VI. CONCLUSIONS 

From the propagator matrix formalism, we have built 
a propagation model in an anisotropic periodically multi- 
layered medium. This form permits us to express the am- 
plitudes of the waves propagating in one layer of a super- 
layer as a function of those in the same layer of the 
previous super-layer; it is thus possible to study the propa- 
gation in the whole medium by means of the propagation 
matrix of one superlayer. Therefore, the dispersion equa- 
tion of the media corresponds to the characteristic equa- 
tion of the propagation matrix of the periodically multilay- 
ered medium, itself linked to Floquet waves. 

Though the propagator matrix formalism is very con- 
venient, it leads to numerical instabilities when the fre- 
quency and the thickness become great. In order to avoid 
this, we have proposed a physical approach using Floquet 
waves. As these waves correspond to the classical plane 

P = 20 f-5MHz 
r/45*/-45”/ 90” 

degree 
60 90 

waves propagating in an infinite periodically medium, we 
have expressed the propagation equations in the Floquet 
waves basis. The Floquet waves can be considered as waves 
propagating in an equivalent medium which satisfies the 
boundary conditions at the two extreme interfaces. So, the 
reference of the amplitudes of the waves propagating 
downward through the medium, was chosen at the top of it 
and the reference of the amplitudes of the waves propagat- 
ing upward through the medium was chosen at the bottom 
of it. This amounts to expressing the amplitudes of the 
Floquet waves in a different vector basis. As a summary, 
intinite terms in propagation matrices can be balanced by 
means of two basis changes. It is thus easy to return to the 
real amplitudes after the calculation. This method which is 
based on a physical understanding of phenomena permits 
us to present reliection and transmission coefficients at 
high frequencies for thick anisotropic periodically multi- 
layered media. 

APPENDIX 

We give here the 7th column of the matrix [Ay: 

I 
(q)p: 

\ 

(q)q 
(q)p: 

@4)(q) = ’ 4m (?7)e+ C33 q (~)mg(rl)p9+c%(17)m3(~)~+c~~( (~)m~(~)P;+rn,(~)Pf) +c&ml(“)I?j , 
c~lml’“‘P;l+c~,(“)m~‘“)~+c~(~)m~(~)~+c~,((~)m~(“)~~ml(“)~) +c&ml(~)Fj * 

c&ml (o)~+c%3(11)m~(11)~+c~~(~)m9(9)P((~)m~(~)~+m1(~)4) +c&m,c~)q 

, 
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