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The influence of absorption upon behavior of the reflection coefficient in water for an anisotropic 
periodically multilayered medium is studied. From observing a trough of the experimental reflection 
coefficient of a carbon/epoxy composite immersed in water, the propagation modes of the Roquet 
waves in an infinite anisotropic periodically multilayered medium in vacuum have been studied. 
This was explained by a mode that we called the multilayered Rayleigh mode. This mode results 
from a combination of the Floquet waves which propagate in a periodically multilazyered medium. 
This occurs when all the Floquet waves are inhomogeneous. Analyzing the results obtained in the 
isotropic case permits the more complicated cases to be explained. By analogy with the isotropic 
case, the multilayered Raybigh wave is related to the poles and the zeros of the reflection 
coefficient. The existence of a critical attenuation becomes evident when the reflection coefficient in 
water for the multilayered medium reaches zero. 0 I995 American Institute of Physics. 

I. INTRODUCTION 

Ultrasonic surface waves are separated into different cat- 
egories, corresponding to the type of interface separating the 
two different media: Rayleigh waves (vacuutinjkite isotro- 
pic medium), Love waves (vacuum/thin layerfinjinite sub- 
strate), Scholte waves (liqui&injnite substrate), Stoneley 
waves (soZi&soZid), and others.‘-” Subsequently, we are par- 
ticularly interested in Rayleigh waves, especially in general- 
ized Rayleigh waves or leaky Rayleigh waves. In a homoge- 
neous isotropic medium, the Rayleigh wave is made up of 
the combination of two inhomogeneous waves, a longitudi- 
nal and a transversal wave. Their phase velocities in a direc- 
tion contained in the interface plane are identical. The am- 
plitude of the Rayleigh wave decreases with depth, measured 
out from the free surface. When the vacuum is replaced by a 
fluid, the Rayleigh wave becomes the generalized Rayleigh 
wave, also named “leaky Royleigh wave” because its energy 
leaks into the fluid.4 Quentin, Derem, and Poiree5 have 
shown that the ge.neralized Rayleigh wave can be modeled as 
a composite of thre.e evanescent plane waves: one in the fluid 
and two in the isotropic solid. Moreover, the behavior of the 
leaky Rayleigh wave is related to the pole of the reflection 
coefficient. The wave numbers corresponding to the pole and 
to the zero of the reflection coefficient are conjugated 
complexes.6 In this case the modulus of the reflection coef- 
ficient is equal to 1 whereas its phase varies from m to ---‘IT. 
Tn experiments a trough of the reflection coefficient is ob- 
served. This can be explained in a physical way: the trans- 
ducer beams are bounded and the media are more or less 
absorbent.7 This can be modeled by taking intq account the 
evanescent plane waves:’ The solution should take the form 
of six evanescent plane waves. Another method consists of 
modeling the absorption of the solid.” The principal factor 
that controls the depth of the minimum of the reflected am- 
plitude is the “shear wave attenuation per wavelength,“9*1D 
whereas the variation of the longitudinal wave attenuation or 
of the volumetric mass of the solid medium does not change 

this depth significantly. There is a critical value of the shear 
wave attenuation for which zero reflection occurs at the Ray- 
leigh critical angle. For liquid/solid/liquid interfaces, the am- 
plitude of the minima of the reflection coefficient (Lamb 
waves), depends on the product Fd: the frequency of the 
incident wave multiplied by the thickness of thk solid.“Y’2 
When this product is small, the absorption has little effect on 
the shape of the curves, and when it is large the last mini- 
mum occurs at the critical Rayleigh angle and corresponds to 
the propagation of a Rayleigh wave. The ratio of the solid 
density to the fluid density also modifies the reflection wef- 
ficient behavior.13 For a liqnid/solid/ser~li-iil~ite substrate 
structure, an infinite number of modes exists if the velocity 
of the shear waves in the layer is inferior to the velocity of 
the shear waves in the substrate.” This has been detailed in 
Ref. 14. Chimenti and co-workers” as well as Bogy and 
Gracewski” have studied the reflection coefficient as a func- 
tion of the product Fd. In the case of a very thin viscoelastic 
layer between two semi-infinite substrates, the reflection co- 
efficient presents a trough similar to that obtained at the Ray- 
leigh critical angle for an interface liquid/soZid.‘6 In the case 
of a vacuum/isotropic stratified media/semi-injnite substrate 
structure, Rousseau, Pouliquen, and Defebvre et al. ‘7V’8 have 
considered a plane surface wave propagating along an axis 
parallel to the interfaces. They have established the corre- 
sponding system of propagation equations by writing bound- 
ary conditions: the vanishing of a determinant permits the 
velocity of this surface wave to be established. This veiqcity 
approaches asymptotically the Rayleigh velocity in the layer 
in contact with the vacuum for high frequencies, and that in 
the substrate for low frequencies. Bogy and Gracewski” 
have studied the propagation in a lossy water/isotropic strati- 
jied media/semi-injinite substrate structure and have applied 
it to a lossy water&lver/nickeUcopper structure. In addition, 
the results have been confirme.d by Levesque and Pichk,“” 
who were able to eliminate the numerical problems that pre- 
viously existed. The propagative Rayleigh mo$es are all the 
more numerous when the product Fd increases. Nayfeh and 
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FIG. 1. Interface vacuum-semi-infinite isotropic solid. 

Chimcnti” have studied composites made up of isotropic or 
transversally isotropic layers immersed in water. 

The aim of this article is to study the propagation of 
what we call multilc~yred Rayleigh HUV~,Y~ and the influence 
of the absorption upon the reflection coefficient behavior in 
water for anisotropic periodically multilayered media. Such 
media are a P times an anisotropic multilayered medium 
eell,,,called “superlayer.” These media are now studied by 
the propagator matrix for~li.‘~-‘” The study of such media 
leads to Floquet waves that are linear combinations of the 
classical plane waves propagating in each layer of the mul- 
tilayered meZum.“7UJ’ They correspond to the propagation 
modes of the infinite periodically multilayered medium, con- 
sidered as a homogeneous material, and have been studied in 
previous works.“““7 

Experiments on composites made of carbon/epoxy layers 
have led us to explain the presence of some minima of the 
reflection coefficient by the propagation of a multilayered 
Raylrigh M~:Y. This designation is justified in Sec. III C 1. 
The aim of this article is to confirm this theory by showing 
that the Floyuet waves CM be combined to give leaky nzul- 
tilayered RuyIeigh MZ-?UI’ES when the former are all inhomoge- 
neous. We then first study the propagation modes of the Flo- 
quet waves in a lossy and nonlossy infinite anisotropic 
periodically multilayered medium in a vacuum, then in the 
presence of fluid, and finally immersed in water. In order to 
make an analogy with the isotropic case, we present in Sec. 
II the background of the results obtained with lossy and non- 
lossy isotropic media. 

II. RAYLEIGH WAVES IN ISOTROPIC SOLIDS 

The Rayleigh wave icrelated to the poles and zeros of 
the reflection coefgcient. We saw in Sec. I that at the Ray- 
leigh critical angle the wave numbers corresponding to the 
pole and to the zero of the reflection coefficient for an inter- 
face liquid&lid are conjugated complexes.’ As explained in 
the Appendix, this reflection coefficient has the form of a 
complex function. The position of poles and zeros of this 
complex function has an influence upon the shape of its 
modulus and its phase.“” 

A. Interface vacuum/infinite isotropic solid 

Let us consider now an isotropic medium unbounded in 
the x1 and x2 directions and occupying the half-space xg > 0 
(see Fig. 1). We define the following parameters: VI. is 

‘*.* 

v 

non lossy 
-. *. steel 1. -, ‘. *. - - - - - - - ‘\ lossy steel 

‘. -_I_-__ 
*.. ____ _... ----e 

25.0 27.5 30.0 

degree 
32.5 35.0 

FIG. 3. Modulus of the i3X3j determinant for an interface vacuum- 
nonlossy and lossy isotropic steel. 

the velocity of the longitudinal wave, V, the velocity of the 
shear wave, V, the velocity of the Rayleigh wave, 
17 = VKIVT, 5= V,lV, 7 kL,T3R the wave-number vector of 
the longitudinal wave (L), shear wave (Tj, or Rayleigh 
wave (.R), and p the volumetric mass. At the interFace at 
x3 =O, equating to zero the normal and tangential stresses in 
order to have nonzero solutions leads to the vanishing of a 
(3X3) determinant which yields an equation of the sixth de- 
gree for T,‘-~ 

~6-X~4+8(3-2.$‘)+16(1-~‘)=0. (1) 

The inhomogeneous longitudinal and shear waves combine 
to yield the Rayleigh wave. 

1. Nonlossy isotropic solid 

If the solid is not viscoelastic, a good approximation of 
the velocity of the Rayleigh wave is given by 

0.87+1.12v 
VR= 1+v 

with OG uSO.5, w 

where v is the Poisson ratio. 
A critical Rayleigh angle can be defined in relation to a 

medium of reference. The critical Rayleigh angle is given by 
the Snell-Descartes law; if this medium is water, the equa- 
tion gives 

8, = Arcsin( VW,/ V,) . (3) 

The projection on the JC~ ‘axis of the wave-number vector of 
the Rayleigh wave is real. Thus, the graphical representation 
of the determinant as a function of a fictitious angle of inci- 
dence 13 (which amounts to the projection on the sl axis of a 
wave-number vector) reaches a minimum equal to zero at 
/3= 8,. .The solid-line curve of Fig. 2 presents such a deter- 
minant for nonlossy steel. The constants are given in Ref. 20: 
V,=5760 m/s; VT==3075 m/s; p=?930 kg/m3. The Ray- 
leigh critical angle is equal to 3 I. 17” by applying Eqs. (2) 
and (3). 
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FW. 3. Interface fluid-isotropic solid. 

2. Lossy isotropic solid 

The Rayleigh wave attenuates during propagation. The 
projection on the xi axis of the wave-number vector of the 
Rayleigh wave is not real and, therefore, the graphical rep- 
resentation of the determinant as a function of a fictitious 
angle of incidence 19 (which amounts to the projection on the 
.x1 axis of a wave-number vector) reaches a minimum 
not equal to zero at B= 19~. The dashed-line curve of 
Fig. 2 presents such a determinant for lossy steel. The con- 
stants are given in Ref. 20: V,=5760( 1 +O.O08j) m/s; 
V,=3075( 1 +O.OI2j) mls; p=7930 kg/m3. 
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FIG. 4. (a) Modulus and lb) phase of the reflection coefficient in water for 
semi-infinite nonlossy steel [solid line) and semi-infinite lossy steel (dashed 
line). 

B. interface fluid/infinite isotropic solid 

Let us consider two setni-infinite media separated by a 
plane interface (see Fig. 3). An oblique incident wave propa- 
gates in the fluid. The incident plane is defined by (0,x t ,x,) 
and the interface by (0,x i ,x$. 

By writing boundary conditions at the interface, one can 
obtain the reflection coefficient 5X of the longitudinal wave 
in the fluid of the following form:3*62’o 

gated complexes, the modulus of the reflection coefficient is 
equa1 to one, and its phase varies from n- to -71: If the solid 
is finite, a trough in the reflection coefficient appears. It van- 
ishes when the thickness of the medium increases. 

The equation C= 0 leads to Eq. (1) which permits us to 
find the velocity of the Rayleigh wave. 

2. Lossy isotropic solid 
c-r 

%I=-..-- 
C-l-7’ 

A surface wave exists if the denominator of (32 is equal to 
zero. The equation C = - 7, which allows us to determine the 
pole of the reflection coefficient, corresponds to a general- 
ized Rayleigh wave. The wave number k; corresponding to 
the solution of this equation is complex. In the cases we are 
interested in, the real part is quite equal to the Rayleigh wave 
number found in Sec. II Al for an interface vaculli~n~)illf)s~~ 
isotropic solid. The imaginary part is related to the leakage 
of the wave in the liquid. 

I. Noniossy isotropic solid 

The wave number kf corresponding to the solution of 
the equation C= r, which gives the zero of the numerator of 
the reflection coefficient, is the conjugate complex of the 
pole. The reflection coefficient is then proportional to 
(k,--kf)l(kt -k;j, where ki is the projection on the x1 axis 
of the wave-number vector of the homogeneous incident 
wave which is real. This function is of the form of the func- 
tion ,f(zj studied in the Appendix. AS ki and k: are conju- 

The pole and the zero of the reflection coefficient are no 
longer conjugated complexes. As can be seen in the Appen- 
dix, the modulus of the reflection coefficient presents a mini- 
mum at the critical Rayleigh angle. This is observed in ex- 
perimental conditions.” 

Figure 4 presents the modulus and the phase of the re- 
flection coefficient in water for the nonlossy steel (solid line) 
and for the lossy steel (dashed line) we studied in the former 
paragraph. The velocity of the longitudinal wave in water is 
equal to 1380 m/s and the volumetric mass is equal to 1000 
kg/m”. 

As mentioned in Sec. L7*“*‘” the principal factor that con- 
trols the depth of the minimum of the reflected amplitude is 
1,. This is the shear wave attenuation per wavelength. The 
velocity of the shear wave is given by the following equa- 
tion: 

VT= vt 
1 +jl,l2rr’ 

where V, is the velocity of the shear wave in the nonlossy 
medium. 
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FIG. 5. hlodulus and  phase of the reflection coefficient in water for a  semi- 
infinite Iossy steel, according to the value of the shear” wave attenuation per  
wavelength t.figure from Ref. 1iJj. 

These phenomena are also linked to bounded beams. 
In 3.973, Bertoni and Tamir7 provided the first comprehen- 
sive theoretical explanation of beam reflection from lossy 
and nonlossy half-spaces: “the reflected beam is shifted from 
the position predicted by geometrical acoustics” and is ac- 
companied by a weaker field. “W ithin the reflected beam, 
the acoustic field exhibits an intensity minimum or null,” 
whether the medium is lossy or nonlossy. They have calcu- 
bated the reflected field near the Rayleigh angle by assuming 
thrat the incident beamwidth is large compared to the wave- 
length in the liquid, which allows tbe re.flection coefficient to 
be approximated. They have also shown, among other things, 
that the depth of the minimum of the reflection coefficient 
depends on the absorption and on the angular deviation from 
the Rayleigh angle. 

At the Rayleigh critical angle, a  zero reflection occurs 
for a critical value of I,= I,. The depth of the minimum of 
the reflection coefficient is rnasimum for IO and kf is real. 
After this critical value of I,, the depth of the minimum 
decreases and the sign of the imaginary part of J$ changes. 
The variations of the depth of the minimum of the modulus 
and of the phase of the reflection coefficient is shown in Fig. 
5  (estracted from Ref. 10): ‘ii,=5740 ntis: V,=3 142 m/s; 
p=7930 kg/m”; and I, vnries from 0.0003 to 1.0 Nplh. 

The modulus of the numerator and of the denominator of 
the reflection coefficient present a minimum of the Rayleigh 
critical angle, as can be observed in Fig. 6  for the same steel 
we used previously in Fi g. 4. The value of the minimum of 
the denominator for the nonlossy steel is not equal to zero 
because of the presence of the fluid in the place of a  vacuum. 
This value is equal to that of the numerator: the modulus of 
tbe reflection a~efticient is thus equal to one. As far as dis- 
tance between the pole and the zero is concerned, it can be 
seen in the Appendix that this distance is equal to IH r [ 2  IBz1 
depencl ing on whether z’,’ is like or unlike 22 : this distance is 
then obtained from the minima of the numerator and of the 
denominator of the modulus off(z) . If we call 113, I the value 
of the numerator and lB21 the value of the denominator of 
the reflection coefficient at the Rayleigh critical angle, we 
observe that jB,[-tjBzl for It<& and IB,[-IB,I for Z,>Z, 
are quite constant (see Table I>. For I,= 1,, the zero of the 
reflection coefficient is on the real axis. As a conclusion, the 
distance between the pole and the zero of the reflection co- 
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FIG. 6. hfodulus of the (a) numerator  and  (b) denominator of the reflection 
coefficient in water semi-infinite nonlossy steel (solid line) and  semi-infinite 
Iossy steel (dashed linej. 

efficient is obtained from the minimum of the numerator and 
the minimum of the denominator of the modulus of this co- 
efficient. It practically does not vary. 

III. MULTILAYERED RAYLEIGH WAVES IN 
ANISOTROPIC PERIODICALLY MULTILAYERED 
MEDIA 

A. Formalism of Floquet waves for such a medium 
(background) 

Let us now consider a periodically multilayered medium 
which is a reproduction of P “superlayers,” each one made 
by the stacking of Q distinct anisotropic media (see Fig. 7). 
Media 0 and Nf 1 above and below the periodically multi- 
layered medium are semi-infinite. The study of the acoustic 
propagation of waves that are generated by an oblique inci- 
dent wave propagating in the media 0 has been carried out in 

TABLE I. Values of the sum or of the substract ion of the numerator  and  of 
the denominator of the reflection coefficient for different values of at tenua- 
tion, for steel. 

l,(NPlX) p321+p3,1 (x10-6) 

lo/IO 5.039 
tot4 5.039 
w 5.039 
E,,=0.0727 5.052 
2&l 5.006 
41, 5.000 
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FIG. 7. Periodically multilayered medium. 

previous ,~rks;“~-“~ we therefore first give a quick summary 
of these main results. We define the following: 0 is the angle 
of incidence, {Wp'y(z,)} the (6X1) displacement and 
stresses column vector at -yj = zg ) and [@I the (6X6j transfer 
matrix of one superlayer de.fined in Refs. 33 and 34. 

The transfer matrix of the whole periodically multilay- 
ered medium is [a]’ where P is the number of superlayers. 
The matrix [Q] allows the displacement amplitudes of the 
plane waves in the first layer of a superlayer to be expressed 
as a function of those in the fist layer of the next superlayer. 
The waves that allow this by the means of a diagonal matrix 
are the Floquet waves. They are thus obtained by diagonal- 
izing [@)I. These six Floquet waves are the propagation 
modes of an infinite periodically multilayered medium, con- 
sidered as a homogeneous material. They are linear combi- 
nations of the classical waves propagating in each layer of 

the multilayered medium. The linear combination is simply 
diff2rent according to the layer.“6S37 As in every homoge- 
neous medium, three of the six Floquet waves propagate (or 
decrease) in the x1 direction and three of them propagate (or 
decrease) in the opposite direction. As the Floquet wave 
numbers are related to the eigenvalues of [@,I the value of the 
modulus of these eigenvalues with respect to 1 will allow the 
direction of decreasing of the inhomogeneous Floquet waves 
to be known. 

One of the interests in using the Floquet analysis is that 
the propagation equations are expressed in the Floquet wave 
basis. Indeed, these waves are the waves propagating in an 
homogeneous medium which satisfies the boundary condi- 
tions at the top and at the bottom of the multilayered me- 
dium. By writing them down, one can obtain the reflection 
and transmission coefficients in the media 0 and N+ 1. 

The displacements and stresses vectors at .r,=O are 
given by 

{~7'.*(~)}~[~']~~][~~{~~~~'}e-'"!"l"l-'~, 6) 
where the used matrices are defined in Ref. 34, (:j;‘*‘) is the 
(6X 1) vector containing the complex amplitudes of the Flo- 
quet waves and then represents the new basis in which the 
propagation eqquations are expressed. Subsequently, Floquet 
waves propagating in a multilayered medium will be used as 
classical waves propagating in a homogeneous medium, 
which is physically more transparent. The major difference 
results from the dispersive character of the Floquet waves. 

B. Experimental multilayered Rayieigh mode 

We have measured the reflection coefficient in water at 
8=28.2”, for a medium made up of stacked identical hexago- 
nal layers of carbon/epoxy, each being at 45” to the previous 
one (0”/45”/90”/135” medium). This composite plate consists 
of six superlayers, each layer being 0.12 mm thick. It was 
supplied by Aerospatiale (France). As the aim of the experi- 
ment was not to calculate the elastic constants of the plate, 
but to validate our model, we used the elastic constants de- 
termined by Hosten and Castaings’“‘“” (see constants A in 
Table II): These constants are complex, which amounts to 
saying that the medium is a lossy one. The volumetric mass 
of each layer is equal to 1577 kg/m”. The experimental re- 
flection coefficient presents a trough at 3.2 MHz (see Fig. 8). 
This trough is found on the modeled coefficient for a lossy 
medium at 3.17 MHz but is not found when the medium is 
considered as non lossy (i.e., the elastic constants are taken 
as real). The vanishing of this mode can be interpreted as a 
lack of radiation in the medium opposed to the 
insonification.4’-“3 As this mode appears for an incident 
angle greater than the critical angles in each layer of the 

TABLE II. Elastic constants in GPa for a carbon/epoxy medium from Refs. 4 and 44 if the sixth-order 
’ symmetry A, axis is parallel to the (0.r~) axis. 

CIl Cl2 Cl3 c.33 c44 p (kg/m31 

Constants A 13.7-f-O.13j 7.1fO.04j 6.7+0.04j 126+0.73j 5.8fO.lj 1577 
for rn=fctQ”) 

Constants B 13.5f0.13j 6.3f0.04j 5.5+0.04j 125.9+0.73j 6.2+O.lj 1580 
for ?X=fct(B) 

6156 J. Appl. Phys., Vol. 77, No. 12, 15 June 1995 C. Potel and J.-F. de Bellevai 

Downloaded 29 Apr 2003 to 195.221.243.132. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp



0.0 
0.0 2.0 4.0 6.0 8.0 10.0 

MHZ 

FIG. 8. Modulus of the reflection coefficient for a  0”/4S”/90”/135” medium 
made of six suprrl3yers 3t H-A, -? 7”~ Calculus done  with constants A of 
Table II. 

medium, the side opposed to the insonification of the plate 
lrsq very small displacement amplitudes and so has a very 
weak radiation. The radiation is all the more weak since the 
thickness is sizable. Moreover, the energetic balance for 
plane waves and for a medium which is nonlossy and which 
has no radiation on the side sheltered from the emission, 
shows that all the energy is reflected. In the case of water 
there is only one  type of wave in the incident medium: The 
reflection coefficient is thus equal to one. This hypothesis is 
confirmed by the calcul&ion of the reflection coefficient for a 
nonlossy 0”/45”/90”/13S” medium made of two superlayers 
and thus being three times less thicker:3” The displacement 
amplitudes of the Floquet waves on the sheltered side of the 
plate are much greater than those when the medium is made 
of six superlayers. The beginning of this mode can be ob- 
ser??ed in Fig. 9. As the thickness of the medium is not size- 
able this mode is a Lamb mode. Above a certain thickness 
the medium responds as if it were infinite and so the Lamb 
mode becomes a multilayered Rayleigh mode. This phenom- 
enon can also he observed on a reflection coefficient as a 
function of the incident angle instead of the incident fre- 
quency. This is presented as an example, in Fig. 10, where 
for a 0”/4S”/9c)“l135” medium consisted of five superlayers, 

0.0 cwpm- - F- ~ ----..“.____ 
0.0 2.0 4.0 6.0 8.0 10.0 

iwlz 

FIG 9. Modulus of the reflection coefficient for 0”/45”/90”/135” media at 
8-28.2”. Calculus done  with constants A of Table II. Thick line: P=2, 
nonlossy mrdinm; thin line: P=6, nonlossy medium; dotted line: P=6. lossy 
medium. 

0.8 

0.6 
~ P=5 : non  lossy 

0.0 4  
0.0 20.0 40.0 60.0 80.0 100.0 

degree 

FIG. 10. Modulus of the reflection coefficient for 0”/45”/90”/135” media; 
f= 3  MHz. Calculus done  with constants B of Table II. 

each layer being 0.13 mm thick. The elastic constants were 
determined by Lhermitte* (see constants B, Table IT). The 
volumetric mass of each layer is equal to 1580 kg/m”. 

A mode that we call the multilqwed Rayleigh mode 
appears on Fig. 10 for a lossy medium at 0=27.75” whereas 
it does not appear when the medium is a nonlossy one. We  
justify this designation below, in Sec. III C 1. Just as before, 
when the nonlossy stratified medium consists of two super- 
layers, this mode appears. 

In order to confirm that this mode is B multilayered Rq- 
leigrt illode and that it corresponds to a combination of the 
Floquet waves so as to give a leaky muitihyered Rayleigh 
MKZV~, we first study the propagation modes of the Floquet 
waves in a lossy and nonlossy infinite anisotropic periodi- 
cally multilayered medium in a vacuum, then in the presence 
of fluid. There is a strong analogy with the isotropic case, but 
there are three Floquet waves instead of two in the isotropic 
case. 

C. interface vacuum/infinite multilayered medium 

Let us now consider an anisotropic periodically multi- 
layered medium unbounded in the xl and x’~ directions and 
occupying the half-space x3)0. Equation (6) given in Sec. 
III A expresses the stresses and the displacements of the Flo- 
quet waves at the first interface at x3 = 0. As the multilayered 
medium is semi-infinite, we must choose the three Floquet 
waves (among six) which propagate or decrease in the xj 
direction, just as if the medium were homogeneous.  In 
the case we are interested in all the Floquet waves are inho- 
mogeneous. We  can thus apply the infinite radiation 
criterion,30*4sP6 which amounts to saying that we keep the 
three Floquet waves linked to the eigenvalues of the transfer 
matrix [a] of which the modulus is inferior to 1.“” Equating 
to zero the normal and tangential stresses in order to have 
nonzero solutions leads to the vanishing of a  (3X3) determi- 
nant. 

1. Nonlossy stratified medium 

By analogy with the isotropic case, we can say that if 
this (3X3) determinant, represented as a function of a  ficti- 
tious angle of incidence 0, reaches a minimum equal to zero, 
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FIG. 11. Modulus of the (3X3) determinant for an  interface vacuum- FIG. 13. Modulus of the (3X3) determinant for an  interface vacuum-lossy 
infinite nonlossy 0”/45”/904/1 35” medium; f= 3  MHZ. Calculus done  with infinite 0”/45”/90”/135” medium for different values of attenuation; f=3 
constants L3  of Table II. MHz. Calculus done  with constants B of Table IL 

there is propagation of a  leaky multilayered Rayleigh wave. dium. In the case we are now interested in there is a combi- 
Let us apply this reasoning to the 0”/45”/90”/135” medium 
we studied before in Sec. III B for a natural frequency equal 

nation of three inhomogeneous Floquet waves which are 

to 3 MHz. Indeed, a stratified medium is a dispersive 
dispersive and which decrease as a function of x1. This is 

mediums7 and therefore the multilayered Rayleigh Waves are 
why we call it a  multilayered Rayleigh wave. In the isotropic 

also dispersive, which constitutes one difference to the iso- 
case a Rayleigh wave may only appear after the two critical 

tropic case. A minimum equaI to zero is reached in Fig. 11 at 
angles; in the multilayered case, critical angles do not exist, 

0=21.75”. At this angle, a  multilayered Rayleigh mode was 
however, there are stopping bands in which all the Floquet 

observed in Fig. 10 for a lossy medium. A dispersive leaky 
waves are inhomogeneous: A multilayered Rayleigh wat’e 

multilayered Rayleigh wcrve therefore propagates. This mul- 
may appear only in these bands. The use of Floquet waves 

tilayered Rayleigh wave is consequently not only character- 
allows a parallel to be drawn between the behavior of an 

ized by an angle 0= BR , but also by a frequency f = f R . 
isotropic homogeneous medium and the behavior of a  mul- 
tilayered medium in the vicinity of a  Rayleigh angle. 

The same phenomenon is observed when the natural fre- 
quency varies instead of the incident angle. As an example, 
Fig. 12 represents the modulus of the (3X3) determinant at 
0=28.2” for the~0”/45”/90”/135” previously studied in Sec. 
III B. The curve reaches a minimum equal to zero at f= 3.1’7 
MHz, which is the frequency for which a multilayered Ray- 
Zeigh mode appeared in experiments. 

2. Lossy strafified medium 

We  saw in Sec. I that a Rayleigh wave is a combination 
of two inhomogeneous waves, a longitudinal and a transver- 
sal wave, which propagate in a homogeneous isotropic me- 

As in the isotropic case, the graphical representation of 
the (3X3j determinant as a function of a  fictitious angle of 
incidence 0 (which amounts to the projection on the x, axis 
of a  wave-number vector) reaches a minimum not equal to 
zero at 8= OR and f =fR . In order to study the influence of’ 
the absorption upon the determinant and later upon the re- 
flection coefficient, we have varied the attenuation, which 
amounts to changing the imaginary part of the elastic con- 
stants. The imaginary part determined by Castaings” and 
given in Table II is what we call “standard” attenuation. We  
have therefore used elastic constants of which the imaginary 
part had been divided by 10, 5, or 2, or multiplied by 2, 3, or 
5. Subsequently, the captions of Figs. 13-15 composed of 
“110, J5, 12, standard, “2, “3, *5” refer to these modifica- 
tions. 

70.0 , 

2.6 2.8 3.0 3.2 3.4 3.6 

MHZ 

FIG. 12. Modulus of the (3X3j determinant for an  interface vacuum- 
infinite 0”/45”/90”/135” medium; 8=28.2”. Calculus done  with constants A 
of Table II. 

29.0 31.0 33.0 35.0 

degree 

The more the attenuation increases, the less the mini- 
mum of the modulus of the (3X3) determinant of Fig. 14 is 
marked; however, this minimum occurs at 8= 8, and f=fR . 

D. Interface fluid/infinite multilayered medium 

Let us consider two semi-inhnite media separated by a 
plane interface. The upper medium is water and the lower 
medium is a multilayered medium. An oblique incident wave 
propagates in the fluid. 
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FIG. Id. (a) Modulus and t&J phase of the reflection coefficient in water for 
an inilnitc losy I)‘lWl9oY135” medium, for different values of attenuation; 
f-3 hlH7, Clntculur doue with constants H of Table Il. 

By writing boundary conditions at the interface, with the 
help of Eq. (Af, one can obtain the reflection coefficient R of 
the longitudinal wave in the fluid, from a system of four 

1.0 

0.8 

06 

0.4 

0.2 

0.0 I 7 

3,6 

2.4 2,6 2.8 3.0 32 3.4 3.6 

Ib) MHZ 

FIG, 15. iai Wdulus and 1h1 phase of the reilection coeftirient in water for 
1111 intinite LI”bW/9i)“J135” medrum, for different values of attenuation; 
rj=28.1,“. Calculus done with constants I\ of Table II. 

TABLE III. Values of the numerator and of the denominator of the reflection 
coefficient for different values of attenuation, for a 0%5”/90”/135” medium. 
8,=-27.75” andfR=3 MHz. 

Attenuation lR,l intmm) IB?I kien) IB21tlB,l H= IH,/B21 

Without 5.936 5.936 1 L.872 I 
/2 3.515 7.308 11 A23 0.6170 
I5 5.349 6.469 11.818 0.8268 

/lO 5.628 6.190 11.81X 0.909 I 
Standard 3.133 X.707 11 .x4 0.3599 

“2 0.4253 11.48 I I.905 0.037 I 
*3 2.174 14.19 12.016 0.1532 
“5 6.925 19.29 12.365 0.3SY 

equations. The three Floquet waves that correspond to the 
infinite radiation criterion are thus chosen, as mentioned 
above in Sec. III C. 

1. Nonfossy stratified medium 

When all the Floquet waves are inhomogeneous. the 
modulus of the reflection coeflicient in water is equal to 1. At 
8= BK and f = f R its phase varies from v to - r. The zero 
and the pole of the reflection coefficient are conjugated com- 
plexes. As in the isotropic case, if the stratified medium is 
finite, a trough of the reflection coefficient appears. It van- 
ishes when the thickness of the medium increases. That is 
what happens in Figs. 9 and 10: The Lamb mode appears 
when the medium consists of two supcrlayers. but vanishes 
when the number of superlayers and thus the thickness in- 
creases. As explained in Sec. III 13, this Lamb mode is con- 
verted into a ttmltilqwed Rayleigh mode. 

2. Lossy stratified medium 
As in the isotropic case, the pole and the zero of the 

reflection coefficient are no longer conjugated complexes. 
The modulus of the reflection coefficient presents a mini- 
mum at the critical Rayleigh angle. When the attenuation of 
each layer of the medium varies we can observe in Fig. 14 
the same variations of the modulus and of the phase of the 
reflection coefficient as in Fig. 5 in the isotropic case (see 
Sec. II B 2). A critical value of the attenuation exists in the 
multilayered medium, for which the depth of the minimum 
of the reflection coefficient is at a maxitnum. In our case, this 
critical value is nearly the double of what we call “standard” 
attenuation (see Sec. III C 2). After this critical value the 
depth of the minimum decreases and the sign of the imagi- 
nary part of the pole changes. 

We saw in Sec. II B 2 that the distance between the pole 
and the zero of the reflection coefficient does not vary a great 
deal and is obtained from the minimum of the numerator and 
the minima of the denominator of the tnodulus of the reflec- 
tion coefficient. If we call 161,1 the value of the numerator 
and lBzl the value of the denominator of the reflection cocf- 
ficient at 8= eR and f =fK , we observe that IB I I + 1~~1, 
when the attenuation is multiplied by a number inferior to 2, 
and IB, I - 1~~1, when the attenuation is multiplied by 3 or 5, 
are quite constant for a 0”/45”/90”/135” at 9,=27.75” and 
.fR=3 MHz (see Table III). 
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When the re.flection coefficient is represented as a func- 
tion of the natural ,frequency, the conclusions are the same 
(see Fig. 15). 

E. Stratified medium submerged in water 

In the multilayered Ruyleigh area, that is to say, around 
8= 8, and f= fR, the reflection coefficient when the multi- 
layered medium is submerged in water is the same as the one 
when it is semi-intinite. This is provided that the whole 
thickness is great enough. Indeed, above a certain thickness 
the medium responds as if it were infinite; however, the fluid 
beIowr the stratified medium causes some perturbation, and as 
a result the modulus of the denominator of the reflection 
coefficient does not pass through a minimum. 

IV. CONCLUSION 

The observation of an experimental trough in a reflection 
coefficient in water for a periodicaily stratified medium has 
led us to study the propagation of modes. Indeed, the mod- 
eled coefficient without absorption did not show a trough, 
whereas there is one with absorption. These modes have a 
strong analogy with the leaky Rayleigh waves found in the 
isotropic case; The depth of the trough of the reflection co- 
efficient is linked to the attenuation in the solid, the Rayleigh 
wave is related to the poles and the zeros of the reflection 
coefficient in water. The displacement of them is related to 
the minimum of the numerator and the minimum of the de- 
nominator of the reflection coefficient. In the isotropic case 
the Rayleigh wave is a combination of two inhomogeneous 
waves. By analogy, in the periodically multilayered case, the 
wave we called the multikyered Rayleigh wave is a combi- 
nation of three inhomogeneous Floquet waves. These waves, 
which are the propagation modes of the infinite periodically 
multilayered medium, are thus used as classical waves 
propagating in homogeneous medium. As the Floquet waves 
are dispersive, the multilayered Rayleigh wave is dispersive. 
It is related to the poles and the zeroes of the reflection 
coefficient. When the nonlossy stratified medium is sub- 
merged in water, the vanishing of the Rayleigh mode can be 
interpreted as a lack of radiation in the medium sheltered 
from the emission. If the medium is not thick enough, the 

x - z, 0 +m 

2’ 0 20 +a 

FIG. 16. Variations of the modulus and the phase of the functionf(z), as the 
numerator N(x) and the denominator D(x) of this modulus. 

Lamb mode appears: The pole and the zero of the reflection 
coefficient are not yet conjugated complexes. When the me- 
dium is thick enough the Lamb mode becomes a multiluy- 
ered Rayleigh mode. It can be seen on different curves re- 
lated to 0”/45”/90*/135” carbon/epoxy composites. When the 
stratified medium is a lossy one, a critical attenuation, related 
to the imaginary part of the elastic constants, exists: The 
depth of the minimum of the coefficient reaches a maximum. 
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APPENDiX 

Let us examine the following function of a single com- 
plex variable z: 

i 
z=z’fi;“, (Al) 

with zt=zI,+iz’; and &!!~lz~]. 
z2=~1,+i7,‘; 

If f(z) is the reflection coefficient, z represents the projec- 
tion of the wave number of the incident wave on an axis 
paralle.1 to the interface and contained in the propagation 
plane. f(z) is a function of the single real variable x 
= Z’ - z; if it is represented only as a function of the real 
part of Z. This is the case when the reflection coefficient is 
represented as a function of the angle of incidence for a 
homogeneous incident wave. We thus have 

f(z)= 
z'-zzI)+i(z"-~~) x+il?1 

z-z- I z -z$+i(z”-$) x+iB2 

x=z’-zI], (A3 

with 
i 

B&‘-z;, 
&=z~‘-~I;. 

The modulus of f(z) is written in the following form: 

If(z)1 =g(x) = 
and its phase is of the following form: 

arg[f(z)]=Arctan(:) - Arctan( z). 

(A3j 

The variations of the modulus and of the phase of the func- 
tion f(zj, as well as the numerator N(x) and the denomina- 
tor D(s) of this modulus, are represented in Fig. 16 as a 
function of the variables x or z’ . 

‘This set of equations leads to the following conclusions. 
Forcing Z” to zero corresponds to having a homogeneous 

incident wave: The wave number of the incident wave is 
real. We thus have B1 = - zy and B2 = -zi . 
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If zI = 2:. i.e., if the pole and the zero of the function 
are conjugated complexes, then B, = B2 and lf(&,) 1 = 1. 

The distauce between the pole and the zero of the func- 
tion is equal to IL?, 1 rt /HZ1 according to whether z’,! is like or 
unlike ~3 : This distance is then obtained from the minima of 
the numerritor and of the denominator of the modulus of 
f(:Z). 

For i?’ = eh the phase of f(z) vnries from 9-f to --?r. 
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