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An anisotropic multilayered medium is studied using the method of transfer matrices, 
developed by Thomson [J. Appl. Phys. 21, 89 (1950)] and Haskell [Bull. Seismol. Soc. Am. 
43, 17 (1953)]. The propagation equations in each layer of the multilayered medium 
use the form developed by Rokhlin et aL [J. Acoust. Soc. Am. 79, 906-918 (1986); J. Appl. 
Phys. 59 (11), 3672-3677 (1986)]. Physical explanations are given, notably when a 
layer is made up of a monoclinic crystal system medium. The displacement amplitudes of the 
waves in one layer may be expressed as a function of those in another layer using a 
propagation matrix form, which is equivalent to relating the displacement stresses of a layer 
to those in another layer. An anisotropic periodically multilayered medium is then 
studied by using a propagation matrix that has particular properties: a determinant equal to 
one and eigenvalues corresponding to the propagation of the Floquet waves. An example 
of such a medium with the axis of symmetry of each layer perpendicular to the interfaces is 
then presented together with the associated reflection coefficients as a function of the 
frequency or of the incident angle. 

PACS numbers: 43.35.Cg, 43.20. Gp 

INTRODUCTION 

The aeronautic industry uses more and more compos- 
ite materials, because of their better mechanical properties 
for a given weight, such as carbon epoxy. They are often 
made from an assembling of layers in whic h the carbon 
fibers all have the same orientation, each layer being itself 
at a given angle from those which surround it. These mul- 
tilayered media are thus anisotropic, and the ultrasonic 
propagation of such media has formed the subject of a 
number of works, often restricted to isotropic layers. The 
solutions are thus obtained simply, notably by the use of 
the propagation matrix form first developed by Thomson,• 
then furthered by Haskell 2 and afterwards by Gilbert and 
Backus. 3 This form allows one to express the displacement 
and the stresses at an interface between two layers from 
those assumed known at the interface between the other 

two layers. Notably, Schoenberg 4 has studied fluid period- 
ically stratified media and further, Gatignol, Rousseau, 
and Moukemaha have studied the propagation in an iso- 
tropic periodically stratified media, •-7 for a given inci- 
dence, and have obtained solutions involving Floquet 
waves. Lhermitte has obtained results for the propagation 
of an elastic shear wave normal to the interfaces in a cross- 

ply fiber reinforced composite, for elastic wavelengths com- 
parable to or different from the composite period? Schoe- 
nberg has studied stratified anisotropic media, 9 with 
applications to geophysics, and Helbig has treated the case 
of transversely isotropic media) ø The important works of 
Chimenti and Nayfeh • •'•2 have related to anisotropic media 
in which the most general symmetry corresponds to a mon- 
oclinic crystal system in which the axis of symmetry is 
perpendicular to the interfaces. They have obtained partic- 
ular properties about propagation matrices: determinant 
equal to 1, reciprocal eigenvalues to each other, and have 

shown up the relationships between generalized Floquet 
waves and solutions to the wave equation. We have built 
upon this foundation, a very general form on the propaga- 
tion in stratified media where each layer has any given 
anisotropy and any given thickness. The amplitudes of dis- 
placements of the waves in each layer are expressed in 
terms of those in the next layer. The propagation equations 
use the form developed by Rokhlin eta/. 13'14 and com- 
pleted by Ribeiro et al. 15,16 We have then studied a period- 
ically multilayered media made from the repetition of the 
above-studied stratified media, which leads us, by using 
propagation matrices, to study Floquet waves and to show 
the specific properties of such materials. 

I. FORMALISM USED FOR PROPAGATION 
EQUATIONS 

In any stratified media (see Fig. 1), we can study the 
acoustic propagation of waves that are generated by an 
oblique incident wave propagating in the media O. Each 
layer of the stratified media has any given thickness. We 
define the following: x 3 is the axis of stacked layers; q is the 
layer number: 1 <q<Q; hq is the thickness of the layer; zq is 
the position on the x 3 axis of the interface between two 
layers q and q+ 1 such as Zq•Zq_ I +hq and Zo=0. 

Media 0 and Q+ 1 above and below the stratified me- 
dia are semi-infinite. The propagation equations in each 
layer use the same form as the one developed by Rokhlin 
et al. 13,14 and completed by Ribeiro et al. 15,16 with the help 
of inhomogeneous waveform.]7']s 
A. Slowness vector and slowness surface 

Generally speaking, three plane waves with different 
velocities propagate in an anisotropic media q, for any 
given direction of propagation nq: two are named quasi- 
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FIG. I. Multilayered media. 

transverse and the other quasilongitudinal. 19'2ø A normal- 
ized polarization vector Pq is associated with each wave. 
The three polarization vectors constitute an orthonormal 
basis. It is useful, for each layer q, to introduce the slow- 
ness vector m q, which can be defined by the following re- 
lation: 

mq•-•nq/V q, (1) 

where n q is the wave direction of propagation in the layer 
q and V q is the wave propagation velocity in the layer q, 
often called phase velocity. 

If the wave is monochromatic, it is related to the wave- 
number vector by the following relation: 

m q = kq/o, ( 2 ) 

where k q is the wave-number vector of the wave in the 

layer q and o is the natural frequency of the incident wave. 
The ends of the slowness vector m q, drawn from a fixed 

point 0 is named the slowness surface. One sheet of the 
slowness surface matches with each wave. For each mate- 

dal making up the layers, three sheets of the slowness sur- 
face are therefore obtained, of which the intersections with 
a plane are presented in Fig. 2. 

Let us consider an oblique incident wave and choose 
the 0x• axis such that the direction of propagation of this 
wave is in the plane x•Ox 3 defined in Fig. 1. This choice 
does not change the generality of the problem. In each 
layer the wave generates several waves numbered by (•/). 
In the chosen reference system (see Fig. 1), the Snell- 
Descartes law imposes that the projection of the wave- 
number vector (or of the slowness vector) upon a plane 
parallel to interfaces would be maintained, i.e., 
(•)•1__(•)•2__.. • (•)m• "'! .... 1-- ' ("m• and = O, •/r/, Vq. There is 
an equality of the parallel components to the x• axis of the 
slowness vectors of all existing waves; we will call this 
component mi. 

The intersection of the line x•=tn• with the three 
sheets of the slowness surface g•ves us six slowhess vectors. 
A maximum number of six waves therefore exist in each 

layer. In the case of two semi-infinite media separated by 

FIG. 2. Three sheets of a slowness surface. 

an interface, it is necessary to choose among the six waves 
which are consistent with free field boundary condi- 
tions. 13'•5 Among the six waves, three will be selected by 
these criterion and matched to the waves actually gener- 
ated at the considered interface. In our case, each layer lies 
between two plane interfaces, the different reflections be- 
tween them implying that, generally, six waves exist. The 
datum index */, of each one of these waves, thus varies from 
I to6. 

For a given wave and incidence, it may not have any 
intersection with one or several slowness surfaces traces. 

Nevertheless, the matching waves exist, even though they 
cannot be determined by this geometric construction and 
their slowness vectors are complex? 48 The waves are at- 
tenuated following a direction perpendicular to the inter- 
faces and are called inhomogeneous waves. 

B. Propagation equation 

The plane wave propagation equation or Christoffel 
equation is written 19'2ø by the use of Einstein's convention 
consisting in summing indexes twice repeated: 

where Onp, is the polarization vector of the wave (,/) in 
the layer q, (") V • is the propagation velocity of the wave 
(*/) in the layer q, (n)n q is the direction of propagation 
vector of the wave (,/) in the layer q, pq is the volumetric 
mass of the material in the layer q, and c•,t is the elastic 
constants of the layer q. 

This equation can also be written as a function of the 
slowness vector • 

{•)G•/•' (n)P •=0 
with 
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The elastic constants c•t can be registered by two 
other indexes a and fi varying from 1 to 6 such as: cq•: 
=c/qj/•t (Ref. 20) with (ij),•a (kl)•-}fi, and (11)<-}1 
(22)<-,2 (33)•-3 (23)- • •4 (13)<-,5 (12)•6. 

C. Determination of slowness and polarization 
vectors 

Following the above, for a given incident wave, rn t is 
known V•/, Vq (Snell-Descartes' law). Moreover, 
(•)rn•=0V,/, ¾q. The only unknown slowness vector com- 
ponent of the wave (r/) in the layer q is thus (•>rn•. But Eq. 
(3) has nonzero solutions for OOp• if the determinant of 
{•)G•/• is zero. Reducing the 6X6 determinant to zero 
yields an equation of the sixth degree for (")rn• with real 
factors if the attenuation is neglected so that the rigidities 
are real. The resolution of this equation, made clear in Ref. 
14, gives six real or complex conjugate each to each root, 
which allow us to obtain the six slowness vectors for each 

wave (,/) in the layer q. Another method, developed by 
Manda121 yields both eigenvalues and eigenvectors. 

The slowness vector allows us as well, according to Eq. 
(1), to obtain the wave propagation velocity, ½n)V•, and 
the direction of propagation, 

(•).q-- ø•)mq/ll (rDmqll. (4) 
The Hermitian norm II II is defined by 

Ilmll•=m•' m• ' , (5) 
where rn• is the conjugate complex of m•. 

If the slowness vector is complex, 15j6 i.e., if the wave is 
inhomogeneous, (n)m q can be written in the form: •7'•8 ½n)m q 
=((•)mq)'+i((V)mq)" with ((V)mq)' and ((V)mq)" be- 
longing to R •. If the wave is monochromatic, (('t)m•)' is 
the propagative part and ((r/)mq)" the attenuative part of 
(•)mq: a harmonic plane wave propagates in the direction 
of (('t)mq)' and attenuates exponentially in the direction of 
(01)mq) ". 

For each wave (*/) for which the slowness vector has 
been determined, Eq. (3) enables us to calculate 
(n)P[=((n)P•)'+i((•)P[)" to the nearest factor. This 
vector is then normalized by means of a Hermitian norm. 
The wave (,/) is polarized elliptically: the particle motion 
follows an ellipse that has axes ((•)Pq)' and (('t)Pq)" 
(Refs. 16 and 18). 

D. Monoclinic crystal system med•a 

If each layer is a monoclinic crystal system media with 
a second-order axis perpendicular to the interfaces (or 
with a mirror plane parallel to these), the equation for 
(•)m• is an even polynomial: the roots are opposite to each 
other; It is the case treated by Ref. 11. Indeed, any rotation 
rr about this axis (or any symmetry with respect to this 
plane) leads the media to an indistinguishable configura- 
tion from the first one. Such a transformation is equivalent 
to changing the sign of rn t or •)m•, which is equal in 
value, taking into account that the waves propagate in the 

FIG. 3. Propagation in a layer with a binary axis perpendicular to its 
interface. 

same way in two opposite directions. Then (•)m• and 
-('t)rn• are both roots of Eq. (3), which means that this 
equation is an even polynomial ({'0m• can be either real or 
complex). These facts can be summarized in Fig. 3: if a 
wave with a (•m vector propagates in the considered layer 
and if this layer has a binary axis perpendicular to their 
interfaces, a wave with a (•)m vector or a wave with an 
opposite vector {2)m' will propagate in this layer; one can 
change from (•)m to (2)m' by changing the sign of the third 
component, m 3 and --m 3 are both roots of the equation 
which is therefore an even polynomial. 

With a mirror symmetry (reciprocal binary axis), the 
reasoning is even simpler than the preceding case. This 
expresses in a physical sense that for any incident wave on 
a plane interface separating both such media, a symmetri- 
cal reflected wave with respect to the normal exists. It is of 
course usual for an isotropic media. 

All the materials similar to crystal materials, which 
have an even-order axis perpendicular to the interface, 
have this property (tetragonal, hexagonal, cubic crystal 
systems). Only a third-order axis (trigonal system) does 
not imply this property. 

II. TRANSMISSION EQUATIONS FROM ONE LAYER 
TO THE NEXT 

The change from a layer q to a layer q-t- 1 can be done 
by expressing the relation between the displacements and 
the stresses from one interface to another, for a layer q, or 
by expressing the displacement amplitudes of the six waves 
in each layer q as a function of those in layer q+ 1. First, 
we shall see how to express a six-dimensional vector that 
characterizes the displacements stresses in a layer q (Sec. 
II A), then we shall relate this vector at the lowest inter- 

face of the layer q to the one at the upper interface of the 
same layer, with a propagation matrix (Sec. IIB). Lastly, 
we will relate this propagation matrix of displacement 
stresses to the one of total displacement amplitudes (Sec. 
II C). 

A. Displacements and stresses 

In a classical way, for a monochromatic plane wave 
with natural frequency o, the displacement of the wave •/ 
in the layer q can be expressed as a function of the wave- 
number vector {'t)kq: 

(*/)uq: (*l)aq. (v)pq. e-i{ •n•k•' x or), (6) 
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where (n)a q is the complex amplitude of the particle dis- 
placement tied to the wave (•/) in the layer q. 

By introducing the slowness vector, the displacement 
vector of the wave (7) in the layer q can be written as 

(•l)uq=(•l)aq' (n)Pq'e kø(øq)mq'x t) (7) 
The total particle displacement is the sum of the dis- 

placements tied to each wave: 
6 

U q= Z O/)uq' (8) 
•/=1 

Stresses are expressed as a function of displacements 
by 

q__ q 

Tij--Cijkl' OX 1 ' 
q__ q We will set T a-- Tij with the 

change of index as in Sec. I B. 
same convention of 

B. Propagation matrix of displacements and stresses 

( ) a six-dimensional column vector 
( ) a six-dimensional line vector 
[ ] a (6X6) matrix 
r transpose operation 
Xq•B the coefficient of the matrix [X] at ath row and 

/•th column. 
Subsequently, we will use the following notation: 
Let (Wq(x3)) be the (6X 1 ) column vector made up 

of the three components of the vector u q and the three 
components (T•,T•,T•) of the stress vector applied to a 
surface parallel to the interfaces, and in the layer q for 
Zq_ I <X3<Z q and let {•/q} be the (6X 1) column vector 
containing the amplitudes (n)a q of the six waves propagat- 
ing in the layer q: 

q q q q q q q T {W (x3)}= (Ul,U2,u3, T3,T4, Ts) 
and 

{ di•q} = (( l)(lq,(2)aq,(3)•q,(4)aq,(5)aq,(6)aq ) T. 

The column vector {Wq(x3)} can be expressed as a func- 
tion of {•q} using the following equation: 

(wq(x3)}= [Bq] ß [ff/wq(x3--gq_l) ] 

ß (d•q) o e-io. (m 1 -x I -t), (9) 
with 

[•q(s) ] = diag(e -i•ø' 
q __ q (6X6) diagonal matrix •/= 1 ..... 6 Ban-A•n, for a= 1,2,3 

and Bq•n= -iw•q•n for a=4,5,6, where [A q] is given in the 
Appendix. 

The matrix relation (9) enables us to express the dis- 
placement stresses at X3=2q, as a function of those at x 3 
=Zq_ •, by eliminating the common amplitudes 

{Wq(zq_l)) = [B el ø '[•q).e -ia•' (m I 'Xl-t) ' 

{wq(zq)} = [Bq]. [fft•q]. {•q}. e-i,o. (m,. •,-t), 
where 

hence 

{wq(zq)}= [Bq] ß [ffg•q] ß [Bql-l(Wq(zq_l)}. (10) 
The matrix [X q] =[Bq] ß [•]- [B½] - • is the propaga- 

tion matrix in the layer q. 

C. Propagation matrix of displacement amplitudes 

One can as well express the displacement amplitudes 
in the layer q as a function of those in the layer q+ 1, 
instead of expressing the displacement stresses of a layer as 
a function of those in the next layer. In order to do that, 
boundary conditions are written at the interface x3=z q, 
i.e., equal displacement and stress vectors at the interface. 

The principle of the calculation is the following: dis- 
placements and stresses are expressed for the two succes- 
sive layers as q (Zq_i <x 3 <Zq) and q+ 1 

According to Eq. (8), the displacement of each wave 
in two successive layers q and q+ 1 can be expressed. The 
displacements are equal at the interface x 3 =zq, which gives 
us three equations: 

6 

(n)aq. (n)pq. e -i,o' (•)•3 •' hq 

6 

= • (•)aq+ I. (•)pq+ •. (11) 
r/=l 

By expressing the stress vector applied to a surface 
parallel to the interface, which has components 
(T•,T•I,T•) in both successive layers q and q+ 1, and by 
setting them equal at the interface x3--z•, three other equa- 
tions are obtained, with a=3,4,5: 

+,.q+ • . tnp•+•)). (naq+• •a6 ß m I ß (12) 
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In these equations, the only unknowns are the dis- 
placement amplitudes of the waves 

Equations ( 11 ) and (12) permit us to express the am- 
plitudes of the waves in the layer q as functions of those in 
the layer q+ 1, by matrices [A q] and [fit •] which have been 
defined previously, such as: 

{J3fq+l}•[Aq+l] -1- [Aq]-[• 'øq] '{•'q}. (13) 

The matrix [•/•] is just the propagation matrix of the 
layer q at s=hq; 5'22 it has the following properties: 

[•fq(o) ] =J, 

where J is the (6X6) identity matrix, 

[•Fq(s) ] -'= [ •*fq ( -s)], 

[•q(st +s2) ] = [•r•q(s• ) ] ß [•Fq(s2) ]. 

The matrix [ff•t] caracterizes the amplitude propaga- 
tion of the waves in the layer q. It is expressed in another 
basis by the matrix [Xq]. These matrices only do not de- 
pend on the other layers. Both methods made clear in Secs. 
IIB and II C are equivalent: indeed, in the first case, the 
matrix [B q] is expressed as a function of the matrix [A q] 
used in the second case for the amplitude displacements. 

The column vector (agq) of the displacement ampli- 
tudes of waves enables a more direct approach to the prop- 
agation in the layer q than the column vector (Wq(x3)) of 
the displacement stresses. 5'7 

p=l • 

zo 
n:l q=l 

zl n•2 q=2 

•2 

n=Q 

•Q 

n = (p-1).Q t- q 

xl 

p=P 

n:(P-1)Q+I q=l 

z(P-1)q+l n=(P-1)O.+2 
z{P-1)Q+2 

: 

zPQ-1 n=N=I:K• q=Q 

x3 

FIG. 4. Periodically multilayered media. 

Ill. APPLICATION TO A PERIODICALLY 
MULTILAYERED MEDIA 

Now let us consider a periodically multilayered media 
that is a reproduction of P "superlayers," each one made 
up by the stacking of Q distinct anisotropic media, studied 
previously in Secs. I and II (see Fig. 4). 

Here, q is the number of the layer: l•<q•<Q; p is the 
number of a "superlayer": 1 <p<P; n is the number of the 
layer, n = (p- 1 )Q+q; hq is the thickness of the layer; and 
z, is the position on the x3 axis of the interface between two 
layers q and q+ 1 such as: zn=gn_l+h q and z0=0. 

In order to precisely characterize the waves propagat- 
ing in a layer q in a "superlayer" p, we are led to compli- 
cate a little the notation introduced previously for the dis- 
placement vector and the displacement of the wave (•/) in 
the layer n. All the other parameters depend only upon the 
nature of the material q and not on its position in the 
multilayered media. 

We will use the following notation: 
(•)a p'q complex amplitude of the particle displace- 

ment tied to the wave (•/) 
in the layer n, 

(,•P'q) (6 • 1 ) column vector of (u)aP'q, 
(n)UP'q displacement vector of the wave (•/) in the 

layer n. 
Equation (13) is written, with the new notations: 

[Aq] , [•,•q] .(j3•.p,q)= [Aq+l] .{j•p,q+l). (14) 

Equation (13) also allows us to write the equation 
corresponding to an interface separating two superlayers, 
by substituting in the left-hand member q for Q, and in the 
right-hand member q for I and p for p + 1. 

Looking for the propagation matrix [qb], which per- 
mits us to express the amplitudes of the first layer of the 
superlayer p as a function of those in the first layer of the 
"superlayer" p+ 1, i.e., 

(15) 

we obtain 

2 

[+]=[A •] "( [I q=Q 

ß [A•]. [•l] 

[Aq]' [fffq]' [A q] 
(16) 

or else 

[r] = [A'] ß [do] ß [A•] • 
I 

= 1"[ [Aq] ' [•'•v]' [A v] -1 (17) 
q=Q 

From Ref. 23, [r] can be written in the following form: 

[r]=e i[Alh, h=hl+'"+hQ, (18) 

where [A] is a constant matrix in which the eigenvalues are 
the Floquet wave numbers. 
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It can be seen that [•-] is the product of propagation 
matrices that depend, for a given frequency to and inci- 
dence (thus fixed m I ), only on material properties for each 
layer q of the "superlayer" p. 

The eigenvalues (n)2 of [•-], which are of course the 
same as those of [(1)], are related to the Floquet wave num- 
bers through the medium of the Floquet slownesses asso- 
ciated to the Floquet wave numbers ½n)mf: 

(•l)• =eiø•'(n)mf' h. (19) 
The Floquet slowness vectors have thus, for a given 

incidence corresponding to m•, (V)mf as the component 
following the x3 axis. That is to say that the dispersion 
equation for a periodically multilayered media corresponds 
to the characteristic equation of the matrix [•.].23-25 The 
Floquet waves are linear combinations of the waves prop- 
agating in each homogeneous layer. These waves are prop- 
agation modes of the infinite periodically multilayered me- 
dia. It is thus possible to consider a finite periodically 
multilayered media as a homogeneous material in which 
the Floquet waves propagate. The resolution of such a 
problem therefore, after having determined the character- 
istics of propagation of Floquet waves, amounts to looking 
for a solution, a linear combination of these waves, which 
satisfies the boundary conditions of the media. 

By recurrence, one can find 

e3= [31 [A 
(20) 

We have developed a very general program in order to 
obtain, among others, the reflection and transmission co- 
efficients in the medium surrounding the periodically mul- 
tilayered medium. 

IV. INFLUENCE OF THE MEDIA SURROUNDING THE 
MULTILAYERED MEDIA 

A. Reflection and transmission coefficients in the 
water 

The amplitude of the incident wave is supposed equal 
to 1, which avoids a change in notations for the coefficients 
of the waves. The periodically multilayered media is sur- 
rounded by water (see Fig. 5). 

By applying to water the boundary condition equa- 
tions ( 11 ) and (12), we obtain 8 boundary condition equa- 
tions: 4 for the water/ ( layer n= 1, p= 1, q= 1) interface 
and 4 for the (layer n =N, p----P, q= Q)/water interface. 

Equation (20) provides 6 supplementary equations, 
giving us in all 14 equations, allowing us to obtain the 14 
unknowns: 

{(•/)•1 1'• ,,'s :6unknowns 
{(•)aV, C• : 6 unknowns 

• and if- : 2 unknowns 

14 unknowns. 

As we have, by the matrices [2• •] and/or [(I)], the 
displacement amplitudes (•l)aP'q of the wave (•/) in each 

p--1 

p=P 

v xl 

x3 
transmitted wave 

FIG. 5. Periodically multilayered mediasurrounded by water. 

layer n of the multilayered media, it is possible to calculate 
the amplitudes for each layer n and therefore to know the 
profile of the displacement of the waves. 

B. Reflection and transmission coefficients in 

anisotropic media 

If the media surrounding the periodically multilayered 
media are anisotropic, the method of resolution is the same 
as above, but the number of equations is different; in effect, 
by applying boundary condition equations (11) and (12) 
to an anisotropic media, 12 not 8 boundary condition equa- 
tions are obtained: 6 for the anisotropic media/(layer 
n = 1, p= 1, q= 1) interface and 6 for the (layer n =N, 
p=P, q= Q)/anisotropic media interface. 

Equation (20) provides the 6 supplementary equa- 
tions, giving us in all 18 equations, allowing us to obtain 
the 18 unknowns. We shall call 3• the three reflection 

coefficients and if- the three transmission coefficients: 

u'.t :6unknowns 
((n)a ?,9} : 6 unknowns 

•? : 3 unknowns 
if- : 3 unknowns 

18 unknowns. 

C. Case of Lamb waves 

If the medium surrounding the periodically multilay- 
ered media is a vacuum, boundary condition equations lead 
to a homogeneous system, as the stresses at x3=0 and 
x 3 =P. h are zero values. Reducing to zero the determinant 
( 12X 12) gives us then Lamb modes. 

V. APPLICATION TO A PERIODICALLY 
MULTILAYERED MEDIA 0ø/90 ø 

Now, as an illustration of the possibilities of our gen- 
eral program, let us consider a media made up by stacked 
identical orthotropic layers, each layer being at 90 ø from 
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FIG. 6. Reflection coefficient in water for a periodically multilayered 
medium 0ø/90 ø made from layers of carbon epoxy as a function of the 
frequency. 

the previous, immersed in water. The symmetry of the 
media leads to slownesses of which the third components 
are opposed or conjugate to each other, as explained in Sec. 
ID. 

If we consider that the motion is effected in the plane 
(x•0x3), by only keeping equations corresponding to u•, u 3, 
T 3, and T 5, 4X 4 matrices are obtained. 

In this case, the propagation matrix has particular 
properties: det [•']= 1, •/ and 1/•/ are eigenvalues of [•-], 
which is the result of the physical explanation in Sec. I D: 
(•)rn• and -{•)rn• are both roots of Eq. (3). TM 

An example of a reflection coefficient in water for a 
periodically multilayered medium made from layers of car- 
bon epoxy is given in Fig. 6, as a function of the frequency. 
The material used is an hexagonal crystal system medium 
with five independent elastic constants. If the sixth-order 
symmetry .4 6 axis is parallel to the 0x3 axis, these constants 
are? 

c•-----13.5 GN/m2; c•2=6.3 GN/m2; 

c•3=5.5 GN/m2; c33=125.9 GN/m2; 

c44----6.2 GN/m 2. 

The volumetric mass of the carbon-epoxy is 1577 
kg/m 3 and the thickness of each layer of a superlayer is 
equal to 0.13 ram. This representation permits us to ob- 
serve easilly stopping bands in frequency (• = 1). The 
minima of the reflection coefficient correspond to Lamb 
modes. Taking many reflection coefficients as the one 
shown in Fig. 6 and recording the minima as a function of 
the incident angle, permits us to obtain a dispersionlike 
plot of the ultrasonic reflection behavior. Nayfeh and Chi- 
menti have presented results of the same kind. •ø In the 
isotropic case and at normal incidence, Moukemaha 7 has 
shown that the number of oscillations between two stop- 
ping bands is equal to the number of superlayers minus 
one. As an extension of this result we just can say that the 
number of oscillations is related to the number of super- 
layers. 

Two examples of reflection coefficients in water for the 
same periodically multilayered medium are given in Fig. 7, 
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FIG. 7. Reflection coefficients in water for a periodically multilayered 
medium 0ø/90 ø made from layers of carbon epoxy as a function of the 
incident angle. 

as a function of the angle of incidence. The minimum of 
the reflection coefficient (P=6, f=2 MHz) and the max- 
imum of • (P= 11, f=3 MHz) at 31 ø correspond to the 
second critical angle of carbon epoxy. It can be verified for 
other frequencies and other superlayers. 

Vl. CONCLUSIONS 

From a form developed by Rokhlin et al., we have 
built a propagation model in an anisotropic multilayered 
media. This model uses the notion of slowness rather than 

the one of velocity, which permits us to write all the prop- 
agation equations as a function of the slowness vector, no- 
tably if the waves are inhomogeneous. In the particular 
case of a monoclinic crystal system media with a symmetry 
axis perpendicular to the interfaces, reducing the determi- 
nant to zero coming from the propagation equation gives 
us an even order equation, which is justified by the physical 
explanation given in Sees. I-IV. 

The form of the propagation matrices for one layer 
then allows us to express the displacement stresses of one 
layer as a function of those in the next layer. Rather than 
express the displacement stresses at one interface as a func- 
tion of those at the next, we have chosen to relate the 
displacement amplitudes of the waves in one layer to those 
in the next layer. Notably, this permits us to obtain more 
directly the profile of displacement in each layer of the 
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multilayered media. The writing of the boundary condi- 
tions at each interface permits us to obtain a propagation 
matrix (product of propagation matrices in each layer) of 
the multilayered media. These matrices depend only upon 
the nature of the material, the frequency, and the incident 
angle of the incident wave. 

Next we have applied this model to a periodically mul- 
tilayered media made from the reproduction P times of the 
multilayered media studied previously. The propagation 
matrix of this periodically multilayered media is expressed 
as a function of the one of the initial multilayered media. 
Therefore the dispersion equation of the media corre- 
sponds to the characteristic equation of the propagation 
matrix of the periodically multilayered media, itself tied to 
Floquet waves. 

Reflection and transmission coefficients and possibly 
Lamb modes of the media are obtained from boundary 

conditions, depending upon the media surrounding the pe- 
riodically multilayered media. The use of propagation ma- 
trices thus allows us to limit the size of the system to be 
solved, which does not exceed ( 18 X 18) in the most com- 

plex case. 
An application to the aeronautic industry is the one of 

a media made up by stacked identical orthotropic layers, 
each layer being at 90* from the previous, for which exam- 
ples of reflection coefficients are given. The use of period- 
ically multilayered media will permit us to study thick 
media. 

APPœNDIX 

We give here the •/th column of the matrix [A•]: 

(Aq].(n) = 

(nlp• 

c•l 'ml -- 1T•33 -- 3 T•34 • 2T•35 
½4ql 'm I • 1T•43 • 3 T•44 J 2T•45 

ß . ;"rng-I,vq . . ((%n3 cq51't?/I --1•53 •3•54 
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