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The aim of this paper is to better understand the correspondence between classical plane waves 
propagating in each layer of an anisotropic periodically multilayered medium and Floquet waves. 
The last are linear combinations of the classical plane waves. Their wave number is obtained from 
the eigenvalues of the transfer matrix of one cell of the medium. A Floquet polarization which varies 
with its position in the periodically multilayered medium has been defined. This allows one to define 
a Floquet wave displacement by analogy with the displacement of classical plane waves, and to 
check the equality of the two displacements at any interface separating two layers. The periodically 
multilayered medium is then an equivalent material, considered as homogeneous, and one can draw 
dispersion curves and slowness surfaces which are dispersive. In the low-frequency range, when the 
relation between the Floquet wave numbers and the frequency is linear, the multilayered medium 
can be homogenized; the Floquet polarization at different interfaces tends to a limit which is the 
polarization of the classical plane wave in the homogenized medium. 

PACS numbers: 43.35.Cg 

INTRODUCTION 

Acoustic propagation through anisotropic multilayered 
media has become a subject of intensive study, because of its 
application to nondestructive evaluation, geophysics, etc .... 
Generally speaking, multilayered media are made by stack- 
ing distinct anisotropic media. These multilayered media are 
now studied by the use of the propagator matrix formalism 
which was first developed by Thomson, 1 then furthered by 
Haskell 2 and afterwards by Gilbert and Backus. 3 By writing 
boundary conditions at each interface separating two succes- 
sive layers, a transfer matrix of the whole medium can be 
obtained. This matrix relates the stresses and displacements 
at the last interface to those at the first one. A very interesting 
case is the one of anisotropic periodically multilayered me- 
dia which are P times an anisotropic multilayered medium 
cell, named "superlayer." As an extensive background has 
already been done in previous papers in Refs. 4 and 5, we 
will not do it again. The study of such media leads to Floquet 
waves which correspond to the propagation modes in the 
infinite periodically multilayered medium. They are linear 
combinations of the classical plane waves propagating in 
each layer of the multilayered medium. Many researchers 
such as Gilbert, 6 Schoenberg, 7'8 and Rousseau and Gatignol 9 
have studied periodically multilayered media made up of 
fluid layers. Others, like Richard m and also Gatignol, Rous- 
seau, and Moukemaha 1•'•2 have studied the case of isotropic 
layers. They have obtained solutions involving Floquet 
waves, as did Lhermitte with the propagation of an elastic 
shear wave, normal to the interfaces in a cross-ply fiber re- 
inforced composite. •3 The dispersive behavior of the waves 
in such media has been known for a long time: Brillouin's 
works TM and then Haskell's works in 19532 lead to an inter- 
pretation of the behavior of periodically multilayered media. 

These media behave like mechanical filters: t5 the system 
does not allow the propagation of Floquet waves for stopping 
bands in frequency or in angle though it allows it for others. 
In 1984, transversally isotropic media were studied by 
Hclbig •6 who presented dispersive curves and slowness sur- 
faces and who used the long-wavelength approximation. This 

approximation permils equivalent elastic constants for a mul- 
tilayered medium. t•be obtained. The same year Shoenberg, 8 
who studied alternating fluid/solid layers, specified that the 
homogenized medium which models the behavior of the pe- 
riodically multilayered medium in the long-wavelength do- 
main must have the same slowness surfaces as those of the 

multilayered medium. 
Several works •7'•8 have dealt with the dispersion in 

fiber-reinforced composites. More recently, Gatignol, Rous- 
seau, and Moukemaha 9'n'•2 have obtained solutions of the 
dispersion equation•in fluid or isotropic periodically stratified 
media. For normallincidence, the number of troughs between 
two stopping bands of the reflection coefficient in water is 
directly related to the number of superlayers in the medium. 
Rousseau TM has shown propagative and evanescent zones for 
Floquet waves in fluid or solid layers, for a given oblique 
incident wave. In 1988 •s and in 1992, •9 Braga and Hermann 
obtained the sixth-order dispersion equation as a function of 
the first three invariants of the transfer matrix of one super- 
layer. It was obtained for multilayered media in which the 
layers are, first, orthotropic and, second, have a plane of 
symmetry parallel to their interfaces. By using the Stroh ma- 
trix formalism for such media, 2ø they have shown that the 
eigenvalues of the transfer matrix are either real and inverse 
each to each or complex conjugate. Moreover, they have 
related these properties to the dispersion curves: one can ob- 
tain either propagative waves (i.e., passing bands in fre- 
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quency) or nonpropagative waves which correspond to the 
stopping bands of the Brillouin's dispersion spectrum. The 
displacements of these waves which are Floquet waves can 
also be divided into plane~strain and antiplane-strain move- 
ments. For orthotropic layers oriented in a plane of symme- 
try, four Floquet waves are enough to describe the behavior 
of the plane strains of the stratified medium, from a fourth- 
order dispersion equation for which the algebraic solution is 
given in Ref. 15. The curves obtained in the case of a 00/90 ø 
material for which each layer is at 90 ø to the previous one 
have been checked by Lhermitte at normal incidence, •3'2• 
when an elastic shear wave propagates. At the same time, the 
works of Chimenti and Nayfeh 22'23 enabled us to give the 
exact solutions for the propagation of an horizontally polar- 
ized shear wave along an axis of symmetry for each ortho- 
tropic layer. Dispersion curves for several incidences were 
obtained. In 1991, Nayfeb gave 24 the properties of the trans- 
fer matrix of one superlayer, for monoclinic media where the 
second-order axis is perpendicular to the interfaces. He de- 
duced from them dispersion curves and velocity surfaces, for 
the most general case of periodically multilayered media. In 
1993, Hosten and Castaings 25'26 have studied absorbing mul- 
tilayered media and used the propagator matrix formalism. 
The dispersion of surface waves has formed the subject of 
thorough studies such as the study of the Rayleigh waves 27a8 
and Lamb waves. 29-34 

Here we treat the case of a multilayered medium in 
which all the layers are anisotropic and arbitrary oriented. 
The first aim of this paper is to be more specific about the 
correspondence between Floquet wave displacement and 
classical wave displacement, at any interface of the multilay- 
ered medium. A Floquet polarization vector can then be de- 
fined at any interface separating two successive layers. By 
analogy with classical plane-wave displacement, one can de- 
fine Floquet wave displacement and check the identity be- 
tween these two displacements at the interface separating 
two successive layers. The notion of an equivalent medium 
to the periodically multilayered medium is then stronger and 
dispersion curves and slowness surfaces can be drawn. An 
interesting case is the one of the behavior of the multilayered 
medium in the long-wavelength domain. By reconstructing 
the time echographic signal, it can be shown that the peri- 
odically multilayered medium behaves like an homogeneous 
medium. 

I. FORMALISM OF FLOQUET WAVES 

Let us consider a periodically multilayered medium 
which is a reproduction of P superlayers, each one made by 
the stacking of Q distinct anisotropic media (see Fig. 1). 
Media 0 and N+! above and below the periodically multi- 
layered medium are semi-infinite. We study the acoustic 
propagation of waves which are generated by an oblique in- 
cident wave propagating in the media 0. 

Let us define x 3 as the axis of stacked layers, q as the 
number of the layer in a superlayer: 1 <•q<•Q, p as the num- 
ber of a superlayer: 1 •<p•<P, and h as the thickness of a 
superlayer. 

The propagation equations in each layer use the same 
form as the one developed by Rokhlin et al. 35'36 and com- 

p=l 

p=P 

•'•medium 0 • 

n=l q=l 

zl n=2 q=2 
z2 

•Q-1 n=O. q=Q 
zQ 

n = (p-1).Q + q 

z(P-1)Q 
n=(P-1)Q+l q=l 

z(P-1)Q+l n=(P-1)O.+2 
z(P-1)Q+2 

•; / zPø'l n:N:F'Q q:Q 

FIG. 1. Periodically multilayered medium. 

pieted by Ribeiro eta/. 37'38 with the help of the inhomoge- 
neous wave form. 39'40 Generally speaking, an oblique inci- 
dent wave propagating in the plane xiOx 3 defined in Fig. 1 
generates six plane waves with different velocities in an an- 
isotropic layer surrounded by two media. 

Let us note that r/is the label of the waves propagating 
in each layer q: l•<•T•6, a• is the natural frequency of the 
incident wave, (•)n q is the direction of the propagation vector 
of the wave (r/) in the layer q, ('•)k q is the wave number 
vector of the wave (•/) in the layer q, ('•)m q is the slowness 
vector of the wave (r/) in the layer q, ('•)1 • is the polarization 
vector of the wave (r/) in the layer q, (v)V• is the propagation 
velocity of the wave (•/) in the layer q, ('•)a p'• is the complex 
amplitude of the particle displacement corresponding to the 
wave (•) in the layer n:(p-1)Q+q, and ('•)u p'• is the 
displacement vector of the wave (•/) in the layer n. 

The slowness vector is related to the direction of the 

propagation vector and to the wave number vector by the 
following relation: 

(,•)n q (,•)k q 
- ( •)mq = ('•J-V q to 

The vectors ('t)nq and (v)pq are normalized by the hermitian 
norm defined by 

IIRII 2 (2) 

where R• is the conjugate complex of 
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By introducing the slowness vector, the displacement 
vector of the wave (r•) in the layer q of the superlayer p can 
be written as 

(•)11 p'q= (•7)aP'q (•i)Pqe-itø((rl)mqx-t). (3) 
The total displacement vector in the layer n is expressed by 

6 

uP,q= ("uP,q. (4) 

Subsequently, we can note that { } is a six-dimensional 
column vector, ( ) is a six-dimensional line vector, [ ] is a 
(6X6) matrix, T is a transpose operation, and Xq• is the 
coefficient of the matrix [X q] at the ath row and •h column. 

Let {,//)o.q} be the (6X1) column vector containing the 
amplitudes (*)a p'q of the six waves propagating in the layer q 
of a superlayer p: 

{.•?'q}=((1)aP'q,(2)aP'q,(3)aP'q,(4)aP'q,(5)aP'q,(6)aP'q)r. (5) 

Gradually, by equalizing the displacements and the 
stresses at the interface separating two successive layers, one 
can obtain the transfer matrix [4p] of one superlayer, 4'4• 
which allows the amplitude displacements of the waves 
propagating or decreasing in the first layer of the superlayer 
p + 1 to be expressed as a function of those in the first layer 
of the former superlayer p. That is to say, 

{. d•v +,,•} = [,]{.•?,•}, (6) 

with [•] given in Ref. 4. 
The transfer matrix of the whole periodically multilay- 

ered medium is [dO] P , where P is the number of 
superlayers. 5,42-44 

As an extension of Floquet theory, 435 the eigenvalues 
('•)k of Jr], which are of course the same as those of [4p], are 
related to the Floquet slownesses through an exponential 
form 

('•) k = e -i,o( "m•h. (7) 
The component following the x 3 axis of the Floquet slowness 
vectors is (*)mr, for a given incidence corresponding to m i . 
The Floquet slowness vectors are of course related Io the 
Floquet wave numbers (*)kf by Eq. (1). 

Let us define 

[E] as the eigenvector matrix of [•] and {..)7p,1} as the (6X 1) 
column vector containing the six complex amplitudes of the 
Floquet waves, at the first interface of the layer 1 in the 
superlayer p. {..)rp, l} is related to {Ld? 'l} by the following 
relation, which is a change of basis: 

(8) 

From Eqs. (6) and (8), we finally obtain a matricial re- 
lation between the amplitudes of the Floquet waves at the 
first interface of the layer 1 in the superlayer p + 1 as a func- 
tion of those in the superlayer p: 

= 
with 

[. -•f] = [•]- •[dp][•] = diag(('•)X). (9) 

We then have six Floquet waves which correspond to the 
classical plane waves propagating in an infinite periodically 
multilayered medium, considered as an homogeneous 
material. 1537,19 

Equation (10) allows the amplitudes of the Floquet 
waves in the first layer of the superlayer p+l to be ex- 
pressed as a function of those in the first layer of the first 
superlayer: 

II. RELATION BETWEEN CLASSICAL PLANE WAVES 
AND FLOQUET WAVES AT EACH INTERFACE 

SEPARATING TWO LAYERS 

The displacement amplitudes of Floquet waves can also 
be defined in each layer q of a superlayer p from the dis- 
placement amplitudes of the classical plane waves in the 
same layer. Indeed, the matrix [•] is the eigenvector matrix 
of [qb] which permits one to express the displacement ampli- 
tudes of the plane waves in the first layer of a superlayer as 
a function of those in the first layer of the next superlayer. 
But one can also define the transfer matrix [4pq], which al- 
lows the displacement amplitude of the waves in the layer q 
of the superlayer p to be expressed as a function of those in 
the layer q of the next superlayer. The matrix [4p] we have 
previously defined is then [•1]. These matrices [•q] are ex- 
pressed as 

[qbq] = [Aq] I II [A •][.•Z•][A •] -• 
a=q-1 
q•l 

(q x I-[ [Aq], 

where [A '• and [, 'X4 •] are given in Ref. 4. All the matrices 
[4pq] have the same eigenvalues defined by Eq. (7) but have 
different eigenvectors. The Floquet waves remain the same 
but are expressed by a linear combination of the classical 
plane waves which is different according to the layer q. 

Let us define: [E q] as the eigenvector matrix of [{I• q] and 
{.*•'q} as the (6x 1) column vector containing the six com- 
plex amplitudes of the Floquet waves, at the first interface of 
the layer q in the "superlayer" p. Similar to Eq. (811, let us 
define 

III. DISPLACEMENT OF ONE FLOQUET WAVE 

Subsequently, we will consider a periodically multilay- 
ered medium in which only one Floquet wave propagates. 
Let (fi) be the datum index of this wave. Among the waves 
(r]), the column vector {.5 •ø"•} thus has only one component 
(/3) which is not equal to zero. Indeed, by choosing judicious 
boundary conditions, one can manage to have only one Flo- 
quet wave in the multilayered medium. As the system is 
linear, the real propagation can again be found by the super- 
position of all the (/3) "states." 
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A. Preliminary equations 

Remark: Einstein's convention is not used because of the 

ambiguity on fl. 
The eigenvector associated with the eigenvalue (t•)k of 

the matrix [•q] is the fith column {V•) of the eigenvector 
matrix [Eq]. That is to say, 

[,vq{ = %}. (13) 
•e • th component of this equation is 

6 

• •q •q --(fl)•q (14) • •a • a•-- '• • •' 

From Eq. (6) and by recurrence, one can find 

which amounts to writing, for each layer q, 

6 

(*)a p+i'q= • ([•]•),• (•)a •'q (16) 
•=1 

For one Floquet wave (fl), Eq. (12) can be written as 

(*)a p'q= • {•).•'q. (17) 

B. Definition of a Floquet polarization vector 

The displacement •of the classical plane wave at the in- 
terface separating the layer q from the layer q + 1 of the first 
superlayer at x 3 =z• can be written as the following, omitting 
the factor e-i•ø(m•x•-t): 

6 

ul,q+l(zq)= • (,•)al,q+l I•!,,py+• from Eqs. (3) and (4) 
r/=l 

6 

•q+l (fi) •j7-1,q+l (r/)pq+l with Eq. (17) 

6 

=(fi)•2,-t,q+l E =q+l {r/)pq+l 
•7=1 

Let us define the Floquet polarization vector (•1• +l by 
6 

(•I)U+I= E •q+l (r/)pq+l 

6 

-(fi).•Fl,q+ 1 • (")a l'q (n)Pq+]. (18) 

This Floquet polarization vector at the interface separating 
the layer q from the layer q + 1 is thus a linear combination 
of the polarization vectors of the waves propagating in the 
material which constitutes the layer q + 1.45 We obtain 

i11 ,q + 1 (Zq) = (fi).•J F1 'q + 1 (fl)p•f + 1 (19) 
When written like this, the displacement has the form of the 
displacement of the Floquet wave (fi) at the interface sepa- 

rating the layer q from the layer q+l; its amplitude is 
(•).½•q'q+]. Let us name •P'q+i(zn) the displacement of the 
Floquet wave (fi) defined by Eq. (20) with the help of the 
.Floqu•! polarization vector at x 3 = z, with n = (p - 1 )Q + q, 
i.e., atany interface separating two layers: 

• p,q+l(Zn)=(fl).•p,q+l (fi)pt]+l. (20) 
The interest of this formulation is that one can define a com- 

plex polarization vector of the Floquet waves at each inter- 
face separating two layers. Indeed, Eq. (18) defines the Flo- 
quet polarization vector in the first superlayer. Since the 
medium is periodical and as the Floquet waves are the modes 
of this infinite medium, the Floquet polarization vector must 
be unchanged by a translation of the period. This amounts to 
demonstrating that the Floquet Wave displacement defined by 
Eq. (20) corresponds to the real wave displacement at any 
interface deduced from translation of a period. 

Remark: The Floquet polarization vector (fi)p•+l we 
have defined by,.Eq. (18) is not normalized, in order not to 
complicate the formula. (B).57•'q+1 is thus the displacement 
amplitude of the Floquet wave (/3), related to the non- 
normalized vector; the exact displacement amplitude is then 

C. Verification of the validity of the writing at each 
interface separating two successive layers 

We have just seen that ul'q+l(Zq)=t•l'q+l(Zq) in the 
first superlayer. Physically, as the Floquet waves are linear 
combinations of the classical pla•e waves, the displacements 
of'these two ,kinds of waves are also equal at each interface 
of the inultilSyered medium. Thus we have to check the 
equality between the displacement of the classical plane 
waves and the displacement of the Floquet waves, in the 
superlayer p + 1 at x 3 = zn, - 1 with n' =pQ + q, omitting the 
factor e -iw(m•x•-t). In order to do that, we assume that the 
Floquet polarization vector, which is different at each inter- 
face, is known. 

From Eqs. (10) and (20), the displacement of the Floquet 
wave (fl) at x 3 =z,,- 1 is 

• P+ l'q(Zn'- 1) = (fi)'•2•l'q (•)P•f((fi)•,)P. (21) 
At the same interface, the displacement of a classical plane 
wave is 

IlP+ l'q(Znt_ l) = 
6 

E (n)ap+l'q (•)Isq 

6(6 r/=l 

by applying (16) 

•=1 a=l 

(,•)pq 

with (17) and 
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Hence 

•7=1 

because (•)•'q does not depend on a 
6 

•=1 

by applying (14) and because ((•))•)P is 

an eigenvalue of [qbq]P 

6 

= • ((•)k)p (V)ai,q (v)pq with Eq. (17) 
•/=1 

6 

=((/•)•.)P• (rt)al,q (*)pq 
r]=l 

because ((•)h) p does not depend on r] 

=((t•)h)P (•).5 xa'q (•)P'Jf by applying (17) 
=d•+i'q(z,,_]). from (21) 

(23) 

D. Variation of the Floquet polarization vector 

Equation (18) defines a Floquet polarization vector 
(t•)p•+• at the interface separating the layer q from the layer 
q + 1, as a linear combination of the polarization vectors of 
the waves propagating in the material which constitutes the 
layer q + 1. By defining a virtual interface which separates a 
layer into two parts and keeps the same properties, one can 
define a Floquet polarization vector at this interface in an 
analogous way to the one of Sec. III B and then have a Flo- 
quet polarization vector at any point of the periodically mul- 
tilayered medium. We have checked on an example that the 
Floquet polarization vector varies according to its position in 
the multilayered medium. This variation is weak in the long- 
wavelength domain as we will see in Sec. IV C. The Floquet 
waves have an elliptic polarization and thus an elliptic move- 
ment of the particles for each mode, even if the wave is 
propagative. 

We have just demonstrated that a Floquet polarization 
vector which is different according to its position in the mul- 
tilayered medium enables us to write, by analogy with the 
classical plane waves, a displacement of the Floquet waves. 
As the Floquet waves are linear combinations of the classical 
plane waves in each layer, the displacement of the latter is 
equal to the one of the Floquet waves. Defining a Floquet 
polarization vector permits one to check it. This result can be 
found again in a physical way: indeed, if we choose bound- 
ary conditions at the first interface of the multilayered me- 

dium in order to have only one Floquet wave propagating, 
we will again find the same boundary conditions at the inter- 
face separating the first superlayer from the next, since the 
Floquet waves are propagation modes of the infinite periodi- 
cally multilayered medium. 

E. Results 

We can now assess our results on Floquet waves and 
classical plane waves. Just as classical plane waves, Floquet 
waves are the modes of the infinite medium in which they 
propagate. Moreover, when each layer of the multilayered 
medium is a monoclinic crystal system medium with a 
second-order axis perpendicular to the interfaces, the multi- 
layered medium also has a second-order axis perpendicular 
to the interfaces. In such a medium, the waves propagate in 
the same way in two opposite directions, 4 and then the com- 
ponents following the x 3 axis of the slowness vectors are 
opposite to each other. The determinant of the propagation 
matrix of the medium is then equal to one and its eigenvalues 
are complex conjugate. 4J539'24 When the medium is homog- 
eneous, the propagation matrix is [.'•d q] and when it is a 
multilayered medium, the propagation matrix is [.•]. Both 
matrices are defined in Sec. I. On the other hand, the F!oquet 
slowness vectors and the F!oquet wave number vector are 
defined by analogy with those in an homogeneous medium. 
The F!oquet polarization vector is indeed the direction of the 
wave displacement and is a constant vector in planes parallel 
to the interfaces. But since it varies according to x 3, it is not 
a constant vector in planes perpendicular to the wave direc- 
tion of propagation or to the slowness vector, which amounts 
to saying that the Floquet waves are not plane waves. 

IV. DISPERSION CURVES AND SLOWNESS 
SURFACES 

As we have just seen the strong analogy between clas- 
sical plane waves and Floquet waves, we can draw slowness 
surfaces, as for any waves. Similar surfaces have already 
been drawn by Nayfeb. 24 The method we propose in order to 
draw such surfaces is available even if the axis of symmetry 
is not perpendicular to the interfaces, which is the case 
Nayfeb 24 has treated. 

From Eq. (10), the eigenvalues of [•] can be written in 
a trigonometric form 

('•)h = e -- io, 1%•sh = pe io, (24) 
and thus 

- i•o ('•m/h = In p- i 0[ 2 z']. (25) 
It has been shown in Ref. 15 that a periodically multi- 

layered media behaves as a mechanic filter: for some bands 
in frequency named stopping bands, Floquet waves are not 
propagative, though they are for others bands. Stopping 
bands occur when (*)rnf is complex. Floquet waves are thus 
propagative when (*)rn I is real. 

('•)mf real implies 

{p=l {p=l (26) ('•)mf= O/•oh, or else ('•)kfh = O, 
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TABLE I. Elastic constants in GPa for a carbon/epoxy medium. 

Cll C12 C13 C33 C44 

13.5 6.3 5.5 19__5.9 6.2 

where ('•)kf is the component following the x 3 axis of the 
Floquet wave number vector for a given incidence corre- 
sponding to rn•, 

( 't)kf= to (v)m/, (27) 
and 0 is the angle included between -•r and •-. 

The variations of the Floquet wave numbers or slow- 
nesses as a function of the frequency for a given incidence 
(dispersion curves), or as a function of the incident angle for 
a given frequency (slowness surfaces), give an indication of 
the possibility of considering a possible homogenization of 
the material. In this way, as Schoenberg specifies s in the case 
of alternating fluid/solid layers, the homogenized medium 
which models the behavior of the periodically multilayered 
medium in the long-wavelength domain must have the same 
slowness surface as the one of the multilayered medium and 
must be nondispersive. 

We have seen in Sec. III E that when each layer of the 
multilayered medium is a moroclinic crystal system medium 
with a second-order axis perpendicular to the interfaces, the 
eigenvalues of the matrix [(b] are complex conjugate. © 
In the case of ('•)m/being real, the projections on the x3 axis 
of the Floquet slowness vectors are opposite to each other. 
The dispersion curves and the slowness surfaces are then 
symmetrical to the x t axis. This is the case of media made up 
of stacked identical hexagonal layers of carbon/epoxy, each 
being at 90 ø to the previous one (0ø/90 ø medium) or at 45 ø to 
the previous one (0ø/45ø/90ø/-45 ø medium). 

The material used is an hexagonal crystal system me- 
dium with five independent elastic constants. If the sixth- 
order symmetry A 6 axis is parallel to the Ox 3 axis, these 
constants are given in Table I. 21 The volumetric mass of the 
carbon-epoxy is 1577 kg/m3; each layer of the superlayer is 
0.13 mm thick. 

A. Dispersion curves 

For a given incident angle, one can draw the variations 
of the Floquet wave numbers with frequency, or else, which 

is equivalent from Eq. (26), the variations of the argument 0 
of ('•Jk with frequency. Nayfeh 24 has drawn the phase veloc- 
ity as a function of the wave number, which gives the same 
information. For an homogeneous material, the relation be- 
tween 0 and to is linear. For carbon/epoxy 00/90 ø or 0ø/45ø/ 
900/-45 ø media in normal incidence, we obtain the same 
curves as those presented by Lhermitte. 21 

For an incident angle equal to 10 ø in water, Fig. 2 pre- 
sents the dispersion curves of an infinite periodically multi- 
layered medium in carbon/epoxy 00/450/900/-45 ø. Six Flo- 
quet waves propagate. Until 1 MHz, 0=function (to) are 
straight lines. The medium can thus be considered as homog- 
eneous. The more the frequency increases, the more the 
slownesses are great, i.e., the more the Floquet velocities 
decrease. Moreover, the first critical angle in a 0 ø layer of 

FIG. 2. Dispersion curves for a carbon/epoxy 0ø/45ø190øl-45ø multilayered 
medium at an incident angle in water equal to 10 ø. 

carbon/epoxy is equal to 9.4 ø. Thus there are two inhomoge- 
neous waves in the first layer of a superlayer. Yet there are 
six curves at the considered angle, 10ø: the six Floquet waves 
in the multilayered medium are thus propagative. As the Flo- 
quet waves are linear combinations of the classical plane 
waves propagating in each layer, there is a reconstruction of 
the plane waves of which some are inhomogeneous in the 
first layer, to give Floquet waves which are all propagative. 

It is possible to make an analogy with the propagation of 
a disturbance along a chain of atoms separated by springs 
which represent the joining power between atoms. t4'46-4s 
Until the first stopping band in frequency, the dispersion 
curves have a sinusoidal variation along the g axis, in the 
first Brillouin zone. The curves are named acoustical 

branches and each branch corresponds to a longitudina 
mode or to a transversal mode. The Floquet wave propaga- 
tion velocity can be deduced from the slopes of the curves. If 
the chain of atoms consists of two kinds of atoms, optical 
branches add to the acoustical branches after the first stop- 
ping band in frequency. The look of these acoustical and 
optical branches in the case of a diatomic chain, as can be 
seen in Ref. 14, for instance, enables us to consider the 

curves in Fig. 2 until 1.8 MHz as acoustical branches and 
from 1.9 MHz as optical branches. 

We will go back over the homogenization in Sec. V. 

B. Slowness surfaces 

For a given frequency, the variations of the Floquet 
slownesses can be drawn as a function of the angle of inci- 
dence in the multilayered medium. A development in the 
long-wavelength domain which has been done by 
Lhermitte 2• for 0ø/90 ø and 0ø/45ø/90ø/-45 ø materials gives 
equivalent elastic constants (see Table II) for these two ma- 
terials. Both have the properties of tetragonal crystal system 

TABLE 11. Elastic constants in GPa fo{ homogenized 00/90" and 0ø/45D0"/ 
--45" materials. 

ell Cl 2 C13 C33 C44 C66 

00/90 ø 69.7 5.6 5.9 13.5 4.6 6.2 
00/45ø/90ø/-45 ø 56.8 18.5 5.9 13.5 4.6 19.1 
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until f.h = 0.65 MHzmm 

f= 2.5 IVlHz 

its/rain 

FIG. 3. Floquet slowness surfaces for a 00/90 ø medium, valid until 2.5 MHz 
(fh =0.65 MHz mm). 

media. Of course, this homogenization is only valid in a 
low-frequency range: the wavelength is much greater than 
the thickness of one superlayer. 

(1) For a carbon/epoxy 00/90 ø multilayered medium, 
Fig. 3 gives the Floquet slowness surfaces for an incident 
frequency inferior or equal to 2.5 MHz (i.e., fh=0.65 
MHz mm). These surfaces are exactly the same as those ob- 
tained by drawing the slowness surfaces of the homogenized 
material in a classical way. The elastic constants of this ma- 
terial have been calculated by a development in the long- 
wavelength domain (see Table II). From 3 MHz (i.e, fh 
=0.78 MHz mm), the slowness surfaces progressively alter 
in the Ox 3 direction and the angular stopping bands neatly 
appear in Fig. 4. If the slowness surfaces of Fig. 3 (for a 
frequency inferior or equal to 2.5 MHz, i.e., fh=0.65 

-- f.h = 0.26 IVlHz.•mn 

• • f.h = 1.04 IVlHz.lmn 

I- 

f -- f= 1 UHz 
:: -- f= 4 MHz 

gshmn 

FIG. 4. Floquet slowness surfaces for a 0o/90 ø medium at I and 4 MHz. 

•ntil fh = 0.52 MHz.lmn 

...... ....... 
...... 

f= 1MHz 

I• shmn g shmn 

! f.h = 1.04 MHz.•mn 

...... ....... 

...... ....... 
: f= 2MHz : f= 2.5 MHz 

FIG. 5. Floquet slowness surfaces for a 0ø/45ø/90ø/-45 ø material according; 
to the frequency. 

MHz mm) are superimposed to the surfaces obtained for a 
frequency equal to 4 MHz (i.e., fh = 1.04 MHz mm), Fig. 4. 
is obtained. We notice a weak distortion of the surface cor- 

responding to the quasilongitudinal waves around the x•. 
axis, the axis of stacked layers. For weak incidence, the ho- 
mogenization is thus valid for the quasilongitudinal waves. 
This result will be found again in Sec. V. On the other hand, 
the surfaces corresponding to the quasitransversal waves are, 
not much distorted in the vicinity of the x• axis, parallel to 
the interfaces. The homogenization is thus valid for grazing: 
shear waves. 

(2) For a carbon/epoxy 00/450/900/-45 ø medium, Fig. 
5(a) gives the Floquet slowness surfaces for an incident fre- 
quency inferior or equal to 1 MHz (i.e., fh =0.52 MHz mm). 
These surfaces are exactly the same as those obtained by 
drawing the slowness surfaces of the homogenized matefta] 
in a classical way. The elastic constants of this material have 
been calculated by a development in the long-wavelength 
domain (see Table lI). From 1.5 MHz (i.e., fh=0.78 
MHz mm), the slowness surfaces progressively alter and the, 
angular stopping bands neatly appear in Fig. 5. 

C. Floquet wave polarization 

We have seen in Sec. III D that the Floquet polarization 
vector varies according to its position in the multilayered 
medium. As an example, for the 00/90 ø medium studied in 
the former paragraph, Fig. 6 presents the Floquet polariza-. 
tion vector of a Floquet wave (fl) at different interfaces. The: 
index q = 1 refers to (glp} and q =2 refers to (g)P•. We clearly 
observe at 4 MHz (i.e, fh = 1.04 MHz mm) that the Floquet 
polarizations are not equal in the whole multilayered me-. 
dium. In the long-wavelength domain, the multilayered me-. 
dium can be homogenized as in the former paragraph. As this; 
medium is homogeneous, the polarizations of the waves; 
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q=2 

f=4 MHZ 

x = -1.489 

FIG. 6. Floquet polarizations for a carbon/expoy 00/90 ø medium at an inci- 
dent angle equal to 10 ø in water, for an incident frequency equal to 4 MHz 
(i.e., fh = 1.04 MHz ram), and (•lk=- 1.489. 

propagating in it are the same whatever the position in the 
medium is. In this case, the polarization of the Floquet wave 
(/•) tends to a limit which is the polarization of the classical 
plane wave in the homogenized medium. Then, for the 0ø/ 
90 ø medium studied in the former paragraph, we have seen 
that the slowness surfaces were the same as those of the 

homogenized material until 2.5 MHz (see Fig. 3). Yet, the 
Floquet polarizations at different interfaces are not at all 
equal (to within a complex constant with its modulus equal 
to 1) to the polarizations of the waves propagating in the 
homogenized medium. On the other hand, the polarizations 
are equal to within about 1% at 0.1 MHz. As an example, 
Fig. 7 presents Floquet polarization vectors at different fre- 
quencies and at different interfaces: the index q= ! refers to 
(•)P} and q = 2 refers to (g)P• for a carbon/epoxy 00/90 ø mul- 
tilayered medium. We observe that in the low-frequency 
range, the Floquet polarizations tend to a rectilinear polariza- 
tion which is the one of the corresponding waves in the ho- 
mogenized medium. In the low-frequency range, the multi- 
layered medium behaves as an homogeneous medium 
without being rigorously identical to it. This explains some 
phenomena, notably in the case of the reconstruction of the 
time echographic signal, as we are going to see in the next 
paragraph. 

The same happens for a greater incident angle: Fig. 8 
presents Floquet polarization vectors at different frequencies 
and at different interfaces, for an incident angle equal to 55 ø . 
We observe that from 2 to 5 MHz, these polarizations are 
quite constant whereas they tend to the rectilinear polariza- 
tion which is the one of the corresponding waves in the ho- 
mogenized medium from 1 MHz: the ellipses become flatter. 

V. RECONSTRUCTION OF THE TIME ECHOGRAPHIC 
SIGNAL IN THE LOW-FREQUENCY RANGE 

In order to better understand the behavior of composite 
materials such as carbon/epoxy materials, we have recon- 
structed the time echographic signal in reflection and in 
transmission from the time signal set by the transducer and 
from the modelized reflection and transmission 

coefficients. 49 The calculation principle is the following: the 
frequency spectrum of the transducer is multiplied by the 
reflection or the transmission modelized coefficient. The in- 

verse fast Fourier transform then gives the reflected or trans- 
mitted time signals. 

• q=2 
I m = -0.552/•s/mm 

f=2 MHz 

m = -0'.5'50 ps/mm 

I ' q=l i q=2 

I f=l •MHz 
I m = -0.550 #s/mm 

q=l , ! q=2 
f=0.1 MHz 

m = -0.550/:s/mm 
f 

homogenised [ 

mediu•m • 
m,,-- -0.548/•s/rnm .1 

FIG. 7. Floquet polarizations for a carbon/expoy 00/90 ø medium at an inci- 
dent angle equal to 5 ø in water, for different frequencies. 

Let us consider a carbon/epoxy 0ø/90 ø medium im- 
mersed in water and made up of 42 superlayers; each layer is 
0.13 mm thick. 

Figure 9(a) presents the transmitted time signal for a 
central frequency of the transducer equal to 2.5 MHz and a 
bandwidth at -6 dB equal to 75%. The incident angle is 
equal to 8 ø. The transmission of Floquet quasilongitudinal or 
quasitransversal waves can be considered. The first echo cor- 
responds to the course through the homogenized material by 
the quasilongitudinal wave. Let us name tl the flight time of 
this wave noted L. The second echo immediately follows the 
first one and corresponds to the crossing of the material by 
the quasitransversal wave (noted T) during a time t 2. Echo 3 
occurs after a flight time equal to 3t•, echo 4 after 2t•+t2, 
and echo 5 after t•+2t 2. This is summarized in Fig. 10; the 
waves are numbered in order of appearance. For example, 
the fourth refracted wave corresponds to a course and return 
course of the quasilongitudinal wave and to a course of the 
quasitransversal wave. Echo 4 then occurs at 2tl + t2 and we 
will name this wave LLT. 

For incidences higher than 8 ø , the curves become less 
and less legible because of time overlaps and interferences, 
as is shown in Fig. 11(a) at 12 ø. Considering the bandwidth 
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FIG. 8. Floquet polarizations for a carbon/expoy 0o/90 ø medium at an inci- 
dent angle equal to 55 ø in water, for different frequencies. 

of the transducer, an eventual homogenization of the multi- 
layered medium is thus not possible at this incidence; this 
has already been found in Sec. IV C: the slowness surfaces 
of the quasilongitudinal waves at different frequencies only 
superimpose at a weak incidence (see Fig. 4). The central 

FIG. 10. Transmission through a 0ø/90 ø medium. 

frequency of the transducer then must be diminished. In or- 
der to obtain results that may be compared, we have kept 
H/h constant, where H is the thickness of the whole medium 
and h. the wavelength in the material. That is what Hosten 
and Castaing also did in Refs. 26, 50, and 51. For a trans- 
ducer with a central frequency equal to i MHz and for a 
00/90 ø material made up of 105 superlayers, we obtain the 
same curves as those in the former case with a 2.5-MHz 

transducer and with a 00/90 ø medium made up of 42 super- 
layers. The resolution of the reflected and transmitted signals 
is then good until 12 ø as is shown in Fig. 11(b), which jus- 
titles the homogenization for this frequency and for this in- 
cident angle. From 14 ø onward, we only observe the quasi- 
transversal waves, as the quasilongitudinal wave becomes 
inhomog-eneous after the first critical angle at 12.31 ø. 

All the results presented in this section are valid if the 
wavelengths are great in view of the superlayer thickness. 
When the carbon/epoxy multilayered medium is stimulated 
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FIG. 9. Transmitted time signals for a 00/90 ø material made up of (a) 42 
superlayers and (b) for a single layer, 10.92 mm thick, of homogenized 
carbon/epoxy at an incidence equal to 8 ø and for a central frequency equal to 
2.5 MHz. 

FIG. 11. Reflected time signals for a 00/90 ø material made up of (a) 42 and 
(b) 105 superlayers at an incidence equal to 12 ø. A third scale has been 
added as a function of the nondimensional product fX t: the frequency mul- 
tiplied by the time. 
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in a low-frequency range, it behaves as if it was homog- 
enized. In order make these results explicit, we have recon- 
structed the reflected and transmitted time signals in the 
same conditions as previously, but this time for an homog- 
enized layer of carbon/epoxy, so as to eliminate the different 
interferences due to the layered structure of the composite 
material. The elastic constants used are those of Table II, 
calculated by Lhermitte. 21 

Figure 9(b) presents the transmitted time signals for an 
homogenized layer 10.92 mm thick, stimulated by an inci- 
dent wave of which the central frequency is 2.5 MHz, for 
incident angle equal to 8 ø, which corresponds to a multilay- 
ered medium made up of 42 superlayers. At 8 ø, we obtain the 
same transmitted echoes as those in Fig. 9(a). 

The fact that the little oscillations between the echoes 

No. 4 and No. 5 or No. 5 and No. 6 of the time signal for a 
00/90 ø medium [see Fig. 9(a)] are not found on the time 
signal of the homogenized medium does show, as explained 
in Sec. IV C, that even at very low frequencies, the compos- 
ite medium tends to an homogenized medium, without being 
rigorously identical to it. 

VI. CONCLUSIONS 

From the propagator matrix formalism, we have built a 
propagation model in an anisotropic periodically multilay- 
ered medium. The eigenvalues of the transfer matrix of one 
superlayer lead to the Floquet waves. These waves are linear 
combinations of the classical plane waves propagating in 
each layer of the multilayered medium. The aim of this paper 
was to understand the correspondence between classical 
plane waves and Floquet waves better. Defining a Floquet 
polarization vector which is different according to the layer 
and to its position permits expressing the Floquet wave dis- 
placement, which is of course a real displacement, by a for- 
malism very similar to the one used for the classical plane 
waves. Then we checked that the Floquet polarization vector 
is unchanged by a translation of the period of the multilay- 
ered medium, by demonstrating that the Floquet wave dis- 
placement vector is equal, at each interface separating two 
successive layers, to the plane wave displacement in the 
layer at the same interface. The propagation of Floquet 
waves in a multilayered medium is then very similar to the 
propagation in an homogeneous medium and one can draw 
dispersion curves and slowness surfaces as a function of the 
frequency. For some stopping bands in frequency, the Flo- 
quet waves are no longer propagative, which occurs for a 
complex Floquet slowness vector. On the other hand, Floquet 
waves can be propagative though classical plane waves in 
one layer are not propagative: the reconstruction of inhomo- 
geneous classical plane waves then gives propagative Flo- 
quet waves. When the multilayered medium gets a second- 
order axis perpendicular to its interfaces, the dispersion 
curves and the slowness surfaces are symmetrical to the axis 
parallel to the interfaces. When the relation between the Flo- 
quet wave number and the frequency is linear, the multilay- 
ered medium can be considered as homogeneous. Indeed, the 
reconstruction of the time echographic signal of a carbon/ 
epoxy 0o/90 ø material shows that when this multilayered me- 
dium is stimulated in a low-frequency range, it behaves as an 

homogenized medium of the same thickness: there is propa- 
gation of quasilongitudinal and quasitransversal Floquet 
waves and disappearance after the first critical angle of the 
quasilongitudinal wave. The reconstruction of the time signal 
for one homogenized layer of carbon/epoxy gives the same 
results. The Floquet polarization vector at different interfaces 
tends to a limit which is the polarization vector of the clas- 
sical plane wave in the homogenized medium. 
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