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Abstract 
The aim of the presentation is to study analytically the propagation of modal waves (like Lamb waves) in a rough fluid 
plate, in order to interpret the decay of Lamb modes which are observed experimentally and theoretically in solid plates 
with a rough interface. The analytical method employed here uses modal wave expansion, expressing locally the 
roughness as an operator acting on the acoustic pressure. The expansion coefficient corresponding to a given modal 
wave can be expressed as the sum of the direct field when interfaces are rigid plane (without roughness) and of a 
diffused field created by the mode coupling due to the roughness. 
 

Introduction 
Rough surfaces are of industrial interest, in the aim of 
improving the wetting of the glue in bounded structures 
for example. Guided waves like Lamb waves in solid 
structures are very useful to control such structures and 
may give some information on the quality of the 
wetting1-3.  
 
Former theoretical and experimental studies have 
permitted to bring to the fore a decay of a Lamb mode, 
with a probable energy transfer between modes.  
 

In order to better understand these energy transfer 
phenomena, the present work aims to study in detail the 
case of the propagation of modal waves which propagate 
in a fluid layer with a rough surface, by expressing the 
field as a modal expansion. The coefficients of the 
expansion are function of the projection of the incident 
field on the eigenfunctions and of the energy transfer 
between modes (mode coupling) due to the roughness.  

Former studies 

Theoretical model in solid media 
A 3D model has been developed for an anisotropic plate 
in vacuum (with a randomly rough surface on one side, 
the other side being considered as the reference side, see 
Fig. 1), characterized by its thickness d, its density ρ and 
its (6x6) elastic constant matrix ( )αβc , in order to study 
the propagation of Lamb waves4.  
A perturbation method permits to express the dispersion 
equation of the rough plate as a sum of the dispersion 
equation of the plate with roughless surfaces and of a 
perturbation : 
 ( ) ( ) ( ) 0,kF,kF,kF 1101 =ωδ+ω≈ω  , (1) 

where the complex number k1 is the projection of the 
wave number vector on the x1-axis. For a given angular 
frequency ω , the solution of Eq. (1) is of the form 

 k1 = k0 + δ k1 , (2) 
where k0 is the (real) solution of the dispersion equation 
F0(k1,ω) = 0 corresponding to the dispersion equation for 
Lamb modes in a plate with plane surfaces, and δ k1 is a 
small complex perturbation due to the roughness. The 
real and imaginary parts of the wavenumber k1 are related 
respectively to the shift frequency and to the attenuation 
of the wave. Two mechanisms contribute to the decay of 
a Lamb mode: its decay into bulk elastic waves and its 
decay into other Lamb modes, with an energy transfer 
between modes. This attenuation of the studied Lamb 
mode can be interpreted as a phenomenon of 
decoherence of the longitudinal and transversal waves, 
which cannot interfere constructively at each interface of 
the plate, in order to be recombined and to give Lamb 
waves. 
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Figure 1: Geometry of the problem for an 
anisotropic plate. 

Comparison with experimental results 
Experimental5 and numerical studies have been done on a 
rough shot blasted glass plate. They are in very good 
agreement for some modes, but are less good for other 
modes : the influence of the spatial wavelengths, through 
the Power Density Spectrum of the rough profile which 
makes several spatial wavelengths appear, has to be taken 
into account. 



 

 

Finite element method simulation in a fluid 
plate 
In the general case, when the wavelength of the Lamb 
wave is close to the grating spacing, reflected waves are 
observed and a phonon relation is written between the 
incident signal, the converted mode and the phonon 
related to the grating, like in the elastic case6. In order to 
visualize the phenomenon of decoherence, a simplified 
problem was studied using Finite Element Code, that of a 
"fluid" rough plate, with a periodically roughness (see 
Fig. 2). 
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Figure 2: Fluid plate with a periodic roughness, of 
spatial period Λ . 

Analytical model in a fluid plate, using 
modal wave decomposition 
In order to better understand the transfer energy 
phenomena between modes, an analytical model is 
currently developed for the acoustic pressure in a fluid 
plate. The fluid plate is characterized by its thickness d, 
its density 0ρ , and the speed of sound 0c . The boundary 

surfaces dx3 =  and 0x3 =  are respectively a plane 
rigid wall, and a rough rigid wall with a weak variation 
( )0,xh 1 , which can be locally expressed as a time 

operator ( )t;x,xb̂ 31  acting on the acoustic pressure 

which depends on the spatial coordinates. 
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Figure 3: Fluid plate between a rigid wall and a 
rough boundary surface 

The problem 
The fundamental equations of the problem are written as 
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where 2
tt∂  and n∂  stand respectively for 22 t∂∂  and 

n∂∂ , n
r

 being the normal to the boundaries, ( )t;rp̂
r

 is 

the complex pressure at a point r
r

 for a given time t , f̂  
and û  are respectively bulk and surface sources factors, 
( )t;x,xb̂ 31  is an operator upon the time which modelises 

the effect of the roughness ( 0b̂ =  for the plane rigid wall 
set at dx 3 =  in Fig. 3). 

The 1D transverse eigenvalue problem, associated to the 
problem (3), for a Neuman condition at the boundaries, is 
expressed as 
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where the eigenvalues mk  and the eigenfunctions 

(normalised orthogonal) mψ  are given respectively by 

 ∈π= m,dmk m  (4-a) 

and ( ) ( ) ( )3m0m3m xkcosd2x δ−=ψ   . (4-b) 

The pressure field ( )t;x,xp̂ 31  can thus be written 

approximately as an expansion on these eigenmodes 

 ( ) ( ) ( )∑ ψ=
m

3m1m31 xt;xât;x,xp̂   , (5) 

where the coefficients mâ  are given by  

 ( ) ( ) ( )∫ ψ=
d

0 33m311m xdxt;x,xp̂t;xâ   , (6) 

denoted ( )t;x,xp̂m 31  below. 

Using the Green theorem (one dimension), Eq. (3-a) can 
be written as 
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where ( )t;xˆ 1mσ  represents the energy transfer between 

the sources and the eigenmode m , 

( ) ( ) ( ) ( )
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mµγ  the coupling operator  (acting on the time) 

 ( ) ( ) ( )( ) ( )3m33131m xxt;x,xb̂t;x,x ψψ=γ µµ  , (8-b) 

mχ  depending on the wave number mk  and on the 

perturbation induced by the roughness : 



 

 

 ( ) ( )t;0,xt;d,xk 1mm1mm
2
m

2
m γ+γ+=χ  . (9) 

Note that when the wall set at dx 3 =  is rigid (without 

roughness), ( ) 0t;d,x 1m =γµ . 

The solution for a monochromatic source 
A single monochromatic source (angular frequency ω ) is 
set at 0x 1 = . Its strength is given by : 

 ( ) ( ) ( ) ti
3131 exQ̂xt;x,xf̂ ωδ=   , (10-a) 

thus ( ) dxand0x,0t;x,xû 3331 ===   . (10-b) 

The operator ( )t;x,xb̂ 31  becomes then a function 

denoted ( )31 x,xB̂ω . 

Substituting Eqs. (10) into Eq. (7) leads to 

 ( ) ( ) ( )1mm11m
2
x

2
xx xĈŜxxÂk
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 ( )3m xQ̂mŜ =  ,  (12-c) 

 ( ) ( ) ( )∑
≠µ

µµ Γ=
m
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The term ( )1m xĈ  represents the mode coupling due to 

the roughness. 

Using the 1D-Green function ( 0x 1 > ) 
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the solution of Eq. (11), subject to the asymptotic 
condition (3-c), can be expressed as7 : 
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where the first term represents the direct field when 
interfaces are rigid planes (without roughness) and the 
second term the coupling due to the roughness. 

Substituting Eq. (13) into Eq. (14) leads finally to 
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The case of a periodically rough profile : the 
regularly distributed "small cavities" 
As a first approach, the rough profile is assumed to be 
periodically distributed cavities at the interface 0x 3 =  as 

shown in Fig. 4. 

In each cavity (volume 0V ), the pressure variation cp̂  is 

assumed to be uniform and created by the displacement 
cξ  of the surface 0S  between the cavity and the fluid 

plate (Fig. 5). The pressure cp̂  in the small cavity can 

then be written as a function of the ratio 00 VS  and of 

the displacement cξ  of the section 0S  : 

 c
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Figure 4: Fluid plate between a rigid wall and a 
periodically rough interface. 
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Figure 5: Geometry of a small cavity 

Invoking Euler equation, this last expression (15) leads to 
the expression of the complex operator ( )t;x,xb̂ 31  as 

following : 

 ( ) 2
tt

0

0
2
0

31 S
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1t;x,xb̂ ∂=   . (16) 



 

 

When the sources are monochromatic (angular frequency 
ω ), the operator ( )t;x,xb̂ 31  becomes a function 

( )31 x,xB̂ω : 

 ( )
0

02
031 S

V
kx,xB̂ =ω    with   00 ck ω=   . (17) 

The ratio 00 SV  being the equivalent height ( )31 x,xh  

of the cavity, function ( )31 x,xB̂ω  can be expressed as 

 ( ) ( )31
2
031 x,xhkx,xB̂ −=ω   , (18) 

representing the reaction of any point of the surface 
0x 3 = , and makes appear the Power Density Spectrum 

of the profile. 

The particular case of a two modes coupling 
When a monochromatic source generates only the mode 

0m =  in the fluid plate, the function ( )3xQ̂  (see 

Eq. (10-a)) being not orthogonal to ( )30m x=ψ , the only 
mode generated by the mode coupling due to the 
roughness being assumed to be the mode 1m =  (i.e. 

0Ŝ1 = ), therefore the coefficients ( )10 xÂ  and ( )11 xÂ  

are solutions of the coupled integral equations  
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and 
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ki2

e

'xd'xˆ'xÂe
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(19) 

 

 

 

(20) 
Substituting the expression (20) of ( )01 'xÂ  into Eq. (19) 

leads to an integro-differential equation of ( )10 xÂ . The 

zero-order ( )1
)0(

0 xÂ  of ( )10 xÂ  is given by 

 ( )
01

1
01x

x

xki

01
)0(

0 ki2

eŜxÂ
−

−=   ,  (21) 

and the first order ( )1
)1(

0 xÂ  of ( )10 xÂ  is given by 

substituting ( )1
)0(

0 xÂ  for ( )10 xÂ  in the integro-

differential equation of ( )10 xÂ . 

Conclusion 
The analytical model developed here has to be further 
investigated in particular to draw the profile of the 
amplitude of each mode along the interface, in order to 
give an interpretation of the phonon relationship, and then 
to compare with the results obtained using a Finite 
Element Method. From now on, this work permits to 
prove that, when a modal wave is generated in a fluid 
plate with a rough interface, the energy transfer between 
this mode and the other possible modes in the plate can 
be quantified, which leads to a decoherence of the initial 
mode. The adaptation of this kind of problem to more 
sophisticated investigation, especially when dealing with 
Lamb waves propagating into solid plates, with 
multimodal coupling or with random boundaries has also 
to be addressed. 
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