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Abstract

The aim of the paper is to describe the physical phenomenon of the excitation of modal waves, such as Lamb waves, in an-

isotropic multilayered media by a monochromatic incident beam and then by a time depending signal. A modal beam is generated in

the structure and, due to the anisotropy of the media constituting the structure, is deviated with respect to the sagittal plane of the

incident bounded beam. Using a stationary phase approach, it is possible to determine the deviation direction of the modal beam in

the far field at a given frequency. This direction is normal to the modal curve, at the point corresponding to the main modal wave

vector. Using Lagrange multipliers, it is possible to obtain the equation of an oblique plane in which the modal beam reradiates in

the external fluid. As the modal waves are dispersive, the group velocity and the direction of propagation of the principal modal

wave vary with the frequency. So, in the far field, for a time depending signal, the different monochromatic components of the main

modal wave are found in different directions. In general, the main crest line of this modal wave packet is not a straight line. � 2002

Elsevier Science B.V. All rights reserved.
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1. Introduction

For some configurations in the ultrasonic testing of
anisotropic multilayered plane structures, modal waves
[1] (which include guided waves such as Lamb waves,
surface waves such as Rayleigh waves, or interface
waves) can be locally excited in the structure by an
emitter transducer immersed in an external fluid. Since
the incident field is a bounded beam, a modal wave
beam is generated in the structure. In fact, besides
the main modal wave generated by the incident plane
wave of the acoustic beam axis at a characteristic pair
(angle h of the acoustic beam axis, frequency), also are
excited the neighbouring modal waves in the structure.
Due to the anisotropy of the media constituting the
structure, the most energetic part of the modal beam is
deviated with respect to the sagittal plane of the incident

bounded beam [2]. In the far field, this modal beam
reradiates in the external fluid, along an oblique plane
which contains the reflected direction of the acoustic
beam axis (see Fig. 1).

2. Modal curves and dispersion

The structures considered here are very general and
are made up of one or several plane anisotropic layers,
the practical application being to composite media. In
such structures, modal waves, which propagate with a
phase velocity Vph in the direction of the layers plane,
can be brought to the fore: they can be analogous to
Lamb waves when the structure is finite in depth, or
Rayleigh-type when the structure is a semi-infinite pe-
riodic medium. In the last case, several Rayleigh wave
families do exist and are dispersive, like Lamb waves;
these waves have been called ‘‘multilayered Rayleigh
waves’’ [3].
When the anisotropic multilayered structure is in

contact with vacuum, the writing of the boundary con-
ditions leads to a dispersion relation for modal waves:

x ¼ F ðkx; kyÞ; ð1Þ
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where x is the angular frequency of the waves, kx and ky
are the components of the current wave vector on the x-
and y-axis of the interface plane z ¼ 0 (see Fig. 1). For a
given propagation direction (angle u), Vph can be plotted
as a multi-valued function of the angular frequency x,
which gives dispersion curves for the corresponding
modal waves (Lamb or Rayleigh-type). For a given
frequency x and a given direction u, there may be a
number of possible values for Vph, corresponding to
different families of modal waves. When u varies with x
constant, plotting Vph leads to a number of modal curves
F, given implicitly by Eq. (1) in the ðkx; kyÞ plane. It is
more usual [4,5] to draw the so-called ‘‘slowness
curves’’, by plotting k~kkK=xk as a function of u, where~kkK

is the modal wave vector, with the components kx and ky .
As an example, Figs. 2 and 3 show, respectively, the

slowness curves for Lamb modes in a structure made up
of two layers of carbon/epoxy (with fibers orthogonal
from one layer to the other) and the slowness curves for
‘‘multilayered Rayleigh modes’’ in an infinite periodically
multilayered medium (with fibers of each layer 45� ro-
tated with respect to the previous one). The character-
istics of the media can be found in [3]. Contrary to the
case of classical slowness surfaces for plane waves in
infinite homogeneous media, these modal slowness
curves depend on the frequency.

3. Beam effect

Generally speaking, the field generated by an emitter
transducer can be obtained by a decomposition in plane
waves which involves a double spatial Fourier transform
[6]. For example, using a coordinate system attached to
the insonified interface, the acoustical pressure can be
written such that

P̂Pincðx; y; z; t;xÞ

¼
Z Z

ÂAEðkx; ky ; a;xÞeiðkxxþkyyþkzz�xtÞ dkx dky ; ð2Þ

where a denotes the characteristic length of the impact
region of the beam in the vicinity of the interface and kz
is given by the dispersion relation in the fluid:

c0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y þ k2z

q
¼ x; ð3Þ

where c0 denotes the velocity of sound. ÂA
E is an ampli-

tude function which depends on the particular boundary
condition on the emitter. It presents a strongly marked
maximum for a pair ðkx0 ; ky0Þ which corresponds to the

Fig. 2. Slowness curves for Lamb modes for two layers of a 0�/90�
carbon/epoxy structure, fH ¼ 1 MHz mm.

Fig. 3. Slowness curves for ‘‘multilayered Rayleigh modes’’, 0�/45�/90�/
135� carbon/epoxy structure, f ¼ 2:5 MHz.

Fig. 1. Geometry of the problem.
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acoustic beam axis. Then, the reflected acoustic field in
the fluid may be expressed in the following form:

P̂Prefðx; y; z; t;xÞ ¼
Z Z

ÂAEðkx; ky ; a;xÞRðkx; ky ; h; ~qq;xÞ

� eiðkxxþkyy�kzz�xtÞ dkx dky ; ð4Þ

where h denotes the characteristic thickness of the
structure and the adimensional parameter ~qq is repre-
sentative of the ratio of the density of the fluid to that of
the layers. The reflection coefficient Rðkx; ky ; h; ~qq;xÞ of
each plane wave depends on the geometrical and phys-
ical properties of the multilayered structure (and of the
external fluid). Notably, the singularities of the reflec-
tion coefficient Rðkx; ky ; h; ~qq;xÞ are close to the solutions
of the modal equation (1) in the complex domain C2 in
ðkx; kyÞ. Thus, if the wave vector components ðkx0 ; ky0Þ of
the acoustic beam axis belong to the modal curve at the
given frequency x, i.e. for an adequate pair of values
(angle h of the acoustic beam axis, frequency), the sig-
nificant domain of integration for the double integral (4)
contains a part of this modal curve, along which the
reflection coefficient has quasi singularities. From a
physical point of view, these quasi singularities corre-
spond to a quasi resonance phenomenon, in the sense
that the corresponding modal waves are generated in the
structure by the incident bounded beam. The modal
waves corresponding to the values ðkx0 ; ky0Þ are not the
only waves which are excited, but also are excited all
the modal waves in the neighbourhood of this point on
the modal curve. In other words, all the modal waves
in the domain of integration participate to this quasi
resonant phenomenon. As a result, a bounded modal
wave beam is generated in the structure (see Fig. 1). In
the integral (4), besides the contribution which gives
classically the specular acoustic beam in the direction
symmetric to the acoustic beam axis, there is, in the
present case, a second part which is significantly impor-
tant along the modal curve. For the acoustic pressure of
the external fluid, this part can be theoretically expressed
in terms of a single integral along the modal curveF [2]:

P̂PKðx; y; z; t;xÞ ¼
Z
F

ÂAKðkx; a; h;xÞeiðkxxþkyy�kzz�xtÞ dkx:

ð5Þ
In the vicinity of the modal curve F, the reduction of
the twofold integral (4) in the single integral (5) may be
justified under the assumption that ~qq � 1. In this case,
the phase term of the reflected field,

U ¼ kxxþ kyy � kzz� xt; ð6Þ
can be considered as a constant across a small strip re-
gion on both sides of the modal curve F, whereas the
phase of the reflection coefficient undergoes an abrupt
change. In (5), x is fixed, ky is a function of kx via the
modal dispersion relation (1) and kz depends on kx and
ky through the fluid dispersion equation (3). However, in

this integral, the main contribution remains that of the
central point ðkx0 ; ky0Þ of the incident beam spectrum,
which belongs, as a hypothesis, to the modal curve F.

4. Angular deviation of the modal beam

Let us suppose now that the phase term (6) of the
reflected field varies rapidly, compared to the amplitude
function ÂAKðkx; a; h;xÞ, when ~kkK follows the slowness
curve F. This is the case under a far field hypothesis
with respect to the impact region of the incident beam.
An argument of stationary phase may then be intro-
duced which permits the angular deviation of the modal
beam to be predicted. This deviation occurs in the group
direction, normal to the modal curve, at the point cor-
responding to the main modal wave vector ~kkK0

of the
acoustic beam axis, associated to the main contribution
of the beam spectrum in the integral (5) (see Fig. 4).
Here, the angular dispersion due to the anisotropy plays
a fundamental role: the modal curve is not circular and,
as a consequence, the group direction is no more in the
sagittal plane [2].

5. Analysis of the reradiation by using Lagrange multi-

pliers

Let Mðx; y; zÞ be given in the far field. The main plane
wave at this point (at a given time t) is given by the
stationary phase method, using Eq. (6):

dU ¼ 0() xdkx þ y dky � zdkz ¼ 0: ð7Þ
However, dkx, dky , dkz are not independent in Eq. (7).
Two cases are now to be considered.
Let us first examine the case of the specular reflected

beam, except modal excitation.
Besides Eq. (7), there is one constraint given by the

dispersion equation in the fluid (for a given frequency):

x ¼ Xðkx; ky ; kzÞ ¼ c0k~kkk ¼ constant: ð8Þ

Fig. 4. Obtention of the main group direction of the modal wave field,

for a particular branch of the modal curve.
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Using Lagrange multiplier theory, the main local solu-
tion is among the solutions of the following stationary
condition:

dðU � srXÞ ¼ 0() x
�

� sr
oX
okx

�
dkx þ y

�
� sr

oX
oky

�
dky

� z
�

þ sr
oX
okz

�
dkz ¼ 0; ð9Þ

where dkx, dky , dkz are now independent variations and
sr is a Lagrange multiplier. Conversely, given kx, ky (and
kz through Eq. (8)), the set of points Mðx; y; zÞ where the
wave vector ðkx; ky ; kzÞ is locally dominant is a straight
line (a ray) given by

x ¼ sr
oX
okx

; y ¼ sr
oX
oky

; z ¼ �sr
oX
okz

: ð10Þ

Noticing that ðoX=okx; oX=oky ;�oX=okzÞ are the com-
ponents of the (reflected) group velocity ~VVspec in the fluid,
it appears that the Lagrange multiplier sr may be in-
terpreted as a time delay along the ray from the origin
(the impact region in the far field hypothesis) to the
observation point M . As the fluid is isotropic, Eq. (10)
reduces to the classical ray equation

OM
��!

¼ sr~VVspec ¼ src0
~kkR

k
; ð11Þ

where ~kkR is the wave vector of the reflected acoustic
beam axis.
Let us now examine the case of the reradiation of the

excited modal wave beam.
In this case, the integration point ðkx; kyÞ belongs to

the modal curve F (see Fig. 4) where the reflection co-
efficient R undergoes an abrupt phase variation. As the
current wave vector verifies now the two relations (1)
and (8), two multipliers are now needed. Then the sta-
tionary principle takes the form

dðU � srX � smF Þ ¼ 0() x
�

� sr
oX
okx

� sm
oF
okx

�
dkx

þ y
�

� sr
oX
oky

� sm
oF
oky

�
dky

� z
�

þ sr
oX
okz

�
dkz ¼ 0:

ð12Þ
The set of points Mðx; y; zÞ of the physical space where a
given wave vector is locally dominant is found in the
plane defined parametrically by the equations

x ¼ sr
oX
okx

þ sm
oF
okx

; y ¼ sr
oX
oky

þ sm
oF
oky

;

z ¼ �sr
oX
okz

: ð13Þ

These equations may be written in the condensed form

OM
��!

¼ sr~VVspec þ sm~VVgmod ; ð14Þ

where ~VVgmod is the modal group velocity. Eq. (14) shows
clearly that the multipliers sm and sr are time delays
along the modal direction and the reradiated ray, re-
spectively (see Fig. 5). As a conclusion, it can be seen in
this case that all the nonspecular effects observed by
Neubauer [7] and modelized by several authors, among
them those of [8,9], are to be searched for in this oblique
plane and not in the sagittal plane. In this context, a bi-
dimensional modelization of the acoustic beam becomes
insufficient.

6. Time depending signal

For a time depending signal, the group velocity and
the propagation direction of the main modal wave vary
with the frequency. Let x1 and x2 be two different fre-
quential components of the signal. For the same direc-
tion of all the main modal wave vectors ~kkK0

, these two
monochromatic components will propagate following
two different group directions d1 and d2 with two differ-
ent group velocities ~VVgmod1 and

~VVgmod2 (see Fig. 6). In the far
field, the monochromatic components of the signal are

Fig. 5. Oblique plane in which the modal beam reradiates in the ex-

ternal fluid.

Fig. 6. Propagation of a time depending signal.
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separated. Thus, at a given time, all the waves consti-
tuting the modal wave packet will be found on a main
crest line which is not, in general, a straight line.
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