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Abstract

In recent years Lamb waves are being used for internal defect detection in multilayered composite plates. Different Lamb modes
generate various stress levels in different layers. As a result, all Lamb modes are not equally sensitive to internal defects of various
layers. A number of studies have been carried out to identify which Lamb mode is most effective for detecting defects in a specific
layer. However, one shortcoming of the Lamb wave inspection technique is that in a symmetrically layered composite plate stress
and displacement magnitudes and energy distribution profiles for all Lamb modes are symmetric about the central plane of the plate.
As a result, the ability of a Lamb mode to detect defects in a specific layer of the plate is identical to its ability to detect defects in the
corresponding layer of mirror symmetry. Hence, from the Lamb wave generated image one cannot distinguish between the defects in
these two layers of mirror symmetry. In this paper it is investigated how by fine-tuning the frequency and the striking angle of the
incident beam in the neighborhood of a Lamb mode one can separately detect internal defects in layers of mirror symmetry in the

upper and lower halves of a plate. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this decade several investigators have tried to use
Lamb waves for detecting internal defects in laminated
composite plates. This is done by scanning the com-
posite plate specimen by two transducers oriented in a
defocused pitch-catch position [11,12,14] or a focused
pitch-catch position such that the receiver is in the null
zone of the reflected beam [4]. Alternatively, the speci-
men can be scanned by only one transducer that acts
both as the transmitter and the receiver to generate and
receive leaky Lamb waves [15].

When one wants to use Lamb waves for detecting
defects inside a plate, one should first know which Lamb
mode to be used for detecting defects at a specific depth
of the plate. To this aim Ditri et al. [5] studied the energy
distribution inside a plate for different Lamb modes and
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tried to relate the energy distribution profile to the de-
fect detection capability of the Lamb modes. For the
frequency-thickness values (fd =4.78 and 6.35 MHz/
mm) considered during the inspection they found that
both symmetric (S,) and antisymmetric (A;) modes have
maximum energy flow rate at the central plane of the
plate. Hence, these modes should be more sensitive to
defects at the central plane than those near the surface.
However, it was later shown by Maslov and Kundu [14]
that symmetric and antisymmetric modes are not
equally sensitive to the defects located at the central
plane of the plate. Energy distribution curves can be
used for correctly predicting the detectability of the
vertical cracks in a plate as Ditri et al. [5] did. However,
this approach is of little use to predict which modes are
sensitive to horizontal cracks or delamination defects.
For such predictions one needs to compute the stress
distribution profiles inside the plate. If a defect releases a
specific component of stress then the Lamb mode, that
produces maximum level of that stress component at the
defect position, should be most sensitive to that defect.
Information on the internal variation of other stress
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components that are not released by the defect is not of
interest since both defective and defect-free specimens
should produce the same levels of those stress compo-
nents.

The importance of computing the internal particle
displacement and stress variation in a specimen for de-
tecting internal defects by Lamb waves and other ul-
trasonic techniques have been recognized by many
investigators [1,16,22]. Maslov and Kundu [14] and
Yang and Kundu [22] computed the internal stress field
variation in a five-layer and a 12-layer composite plate
respectively, for different Lamb modes. They have ex-
perimentally shown that the Lamb mode which pro-
duces the maximum stress level in a specific layer is most
effective in detecting defects in that layer.

2. Motivation

In spite of many advantages of the Lamb wave
technique for detecting internal defects in a composite
plate one major disadvantage of this technique is its
inability to distinguish between defects in layers of
mirror symmetry. If one puts a multilayered composite
beam or plate in a three- or four-point bending machine
then the lower half of the plate is subjected to tension
and the upper half to the compression. Naturally defects
generated due to this loading in the lower and upper
halves of the plate are different. If the Lamb wave
scanning technique cannot distinguish between the de-
fects in layers of mirror symmetry then this technique is
of little use to study the crack initiation and propagation
behavior in composite plates subjected to non-symmet-
ric loading.

.
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Fig. 1. (a) Relative orientations of the transmitter, receiver and the
plate specimen and (b) schematic of the internal defects in the five
layers of the composite plate specimen.

This research was undertaken to modify the current
Lamb wave scanning technique so that identical defects
in layers of mirror symmetry can be discriminated from
one another. To this aim internal displacement and
stress fields in a multilayered composite plate, having
layers of mirror symmetry, are computed. Kundu et al.
[12] and Maslov and Kundu [14] scanned a five-layer
composite plate by different Lamb modes. Fig. 1 shows
the pitch-catch arrangement of the transmitter (T) and
the receiver (R) for scanning this specimen. The speci-
men was scanned by moving the transmitter and the
receiver simultaneously in the x;—x, plane without al-
tering the relative positions of T and R. The Lamb wave
propagation direction is the x; direction. This specimen
is considered here for theoretically computing the in-
ternal stress and displacement profiles.

3. Specimen description

The specimen is a five-layer metal matrix composite
plate of dimension 80 x 33 x 1.97 mm?. Five layers or
plies of SCS-6 fibers in Ti-6Al-4V matrix are oriented in
90° and 0° directions in alternate layers. SCS is a
copyrighted/registered name by the fiber manufacturer,
the Textron Inc. This fiber has a carbon core of about 25
pum diameter, two concentric layers of silicon carbide
(SiC) surround the carbon core and finally two very thin
(a few microns thick) layers of carbon coating are placed
on the outside. The overall fiber diameter is about 152
um. The fibers in the top, middle and bottom layers are
oriented in the x, direction or along the length of the
plate; the other two plies are in the x; direction or along
the width of the plate (see Fig. 1). The composite was
made by the foil-fiber-foil technique. The internal flaws,
shown in Fig. 1, were intentionally introduced in the
plate during the fabrication process. The first (top) and
the fifth (bottom) layers of fibers did not have any flaw.
The left part of the second layer fibers was coated with
boron nitride to impede the formation of good bonding
between the fibers and the matrix as schematically
shown in Fig. 1. The fibers in the third layer were in-
tentionally broken near the middle. The fourth layer had
two areas of missing fibers, on the left side five fibers and
on the right side 10 fibers were removed. Photographs of
the third and fourth layers are shown in Fig. 2. These
photographs were taken before fabricating the speci-
men. Broken and missing fiber zones can be clearly seen
in these photographs.

Fig. 1 shows how the specimen was scanned by
propagating Lamb waves in the direction normal to the
fibers of layers 1, 3 and 5 and parallel to the fibers of
layers 2 and 4. Before investigating the images generated
by Lamb waves we first scanned the specimen by the
normal incidence C-scan technique. The C-scan images
are shown in Fig. 3. Three images of Fig. 3 are generated
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(b)

Fig. 2. Photograph of (a) the broken fibers of the third layer and (b)
missing fibers of the fourth layer, taken before fabricating the specimen
[12].

1MWmm «

Fig. 3. Conventional C-scan images generated by 10 MHz (top and mid-
dle) and 75 MHz (bottom) focused transducers used in the pulse-echo
mode. The back surface echo is omitted for constructing the top and
bottom images and it is considered for the middle image. Broken fibers
and missing fibers can be faintly seen in some of these images [12].

by 10 MHz (top and middle) and 75 MHz (bottom)
focused transducers used in the pulse-echo mode. The
transducer axis is positioned normal to the plate speci-
men. For the top and bottom images the gate position is
such that the reflected signals from the middle of the

Table 1
Elastic properties of Ti and SiC

layer are received and the back surface echo is omitted,
hence the internal defects should clearly be seen in these
two images; for the middle image the back surface is
recorded. In all these three images the debond can be
clearly seen. The missing and broken fibers can be faintly
seen in some images. However, delamination is the only
defect that can be clearly seen in all three images.

For understanding and analyzing the Lamb wave
generated images one should compute the internal stress
and displacement profiles when Lamb waves propagate
in the direction normal to the fibers of layers 1, 3 and 5.
In other words, the fiber orientation relative to the
Lamb wave propagation direction is 90° for layers 1, 3
and 5, and 0° for layers 2 and 4. During the experiment
the specimen was immersed in water. That is why the
theoretical stress and displacement profiles are com-
puted for the composite plate immersed in water for
leaky Lamb wave propagation.

4. Numerical computation

A number of investigators have studied the mechanics
of elastic wave propagation in multilayered anisotropic
solids [3,7,13,16,18-20,22]. Since this theory is already
available in the literature, our purpose here is not to
present the theory again but to use it to compute the
internal stress and displacement fields to get an insight
how to use Lamb modes most effectively to detect in-
ternal defects in multilayered composite plates. Yang
and Kundu [22] studied the leaky Lamb wave propa-
gation in multilayered composite plates. Results pre-
sented below are obtained following their technique for
the composite plate immersed in water.

For computing internal stresses and displacements in
a multilayered plate one needs to know all elastic con-
stants of individual layers. However, the authors did not
know the five independent elastic constants of individual
layers of hexagonal symmetry and could not measure
those easily. Only the density (4.1 gm/cm?®) of the plate
could be measured without any difficulty. P-wave speed
(1.49 km/s) and density (1 gm/cm?) of the coupling fluid
(water) were also known to the authors.

Huang et al. [6] gave elastic properties of titanium
(Ti) and SiC for SCS-6 fiber reinforced titanium matrix.
These properties are listed in Table 1.

Material ~ Young’s Modulus Poisson’s ratio (v) Lame’s first constant (1, GPa) Shear modulus (G, GPa) Density (p, gm/cm?)
(E, GPa)

Ti* 121.6 0.35 103.3 45.1 5.4

Ti® 96.5 - 55.9 37.1 4.5

Sic? 415.0 0.17 914 177.4 3.2

Sic? 431.0 - 176 172.0 32

“Ref. [6].

®Ref. [21].
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From the above table the stress—strain relation for Ti
and SiC can be written in the following form. In the
constitutive matrix (or [C] matrix) a range is given for
each element. This range is obtained from the two sets of
values of the elastic constants given in Table 1.

Stress—strain relation for Ti,

posite plate of 1.97 mm total thickness are shown in Fig.
4 by black diamond symbols connected by continuous
lines. These are computed with the individual layer
properties given in Eq. (3) and Lamb waves propagating
normal to the fiber direction of the top layer (see Fig. 1).
Lamb modes are numbered from 1 to 7 from left (low

on 130.1-193.5 55.9-103.3  55.9-103.3 0 0 &1l

(%) 130.1-193.3 55.9-103.3 0 0 (%)

o | _ 130.1-193.3 0 0 €33 (1)
023 37.1-45.1 0 0 2823

031 37.1-45.1 0 2831

12 37.1-45.1 2812

and for SiC,

g 446-520 91.4-176 91.4-176 0 0 0 &1l

02 446-520 91.4-176 0 0 0 &

033 _ 446-520 0 0 0 €33 (2)
073 172-177.4 0 0 2823

3] 172-177.4 0 2831

g12 172-177.4 2812

The constitutive matrices for both Ti and SiC in Egs. (1)
and (2) are isotropic and have two independent elastic
constants. However, SiC fiber reinforced Ti matrix
composite has hexagonal symmetry. Hence, the [C]
matrix for the composite will be anisotropic and will
have five independent elastic constants. Experimental
values of phase velocity for different Lamb modes at
various frequencies, as obtained by Kundu et al. [12] are
shown by open triangles in Fig. 4. A total of twenty
triangles are shown in this figure.

The [C] matrix of the individual layers of the five-
layer composite plate are obtained by the trial and error
method by matching the theoretical dispersion curves
with the experimental points. After a number of trials
the following stress—strain relation gave the best fit be-
tween the theoretical curves and the experimental
points,

g 325 103 103 0 O 0 &
(%) 194 92 0 0 0 &2
033 . 194 0 0 0 €33
023 o 51 0 0 2823
031 100 0 2831
ag12 100 2812
3)

where x, is the fiber direction, elastic constants are given
in GPa. Note that c44s = (c2» — ¢23)/2. Theoretical leaky
Lamb wave dispersion curves for the five-layer com-

frequency) to right (high frequency). It should be noted
here that the matching between the experimental values
and the theoretical dispersion curve is good for the five
modes (14 out of the 17 experimental values for these
five modes almost coincide with the theoretical curve).
The sixth and seventh modes did not match that well
with the theoretical curves. This matching can be further
improved by adjusting the elastic properties of the layers
by more trial and error iterations or by implementing
sophisticated optimization schemes such as the simplex
algorithm [2,7-10,17]. After obtaining the elastic prop-
erties with reasonable accuracy our next objective is to
modify the conventional Lamb wave scanning technique
such that the modified technique can discriminate be-
tween the defects in layers of mirror symmetry in the
multilayered composite plate. It should be noted here
that, as expected, the density and all elastic constants of
Eq. (3) are in between the corresponding values for Ti
and SiC given in Egs. (1) and (2). It gives an additional
confidence on the material constants given in Eq. (3).
Stress profiles are computed for different frequency—
phase velocity combinations on and around the second
and third Lamb modes. These frequency—phase velocity
combinations for which stress profiles have been com-
puted are denoted by a;, b;, ¢; and d; (j = 1 and 2) and
shown by eight crosses in Fig. 4. The plots are obtained
for a plane longitudinal wave of a given frequency
striking the composite plate at a specified angle. The
phase velocity is obtained from the incident angle using
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Dispersion Curves
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Fig. 4. Numerically computed dispersion curves (diamond symbols connected by continuous lines). Twenty experimental points are shown by
triangular symbols. Stress plots of Figs. 5, 6 and 8 are generated for eight different frequency—phase velocity combinations (a;, b;, c; and d;, j = 1 and
2); those points are shown by square markers. Cross markers (points ¢; and ¢,) show the frequency—phase velocity combinations used for generating

the two images of Fig. 6. The seven modes are numbered from 1 to 7.

the Snell’s law (Eq. (4)). If the phase velocity frequency
combination is such that it is near a leaky Lamb mode
but does not coincide exactly with the dispersion curve
then the stress and displacement components would
differ from those for the leaky Lamb wave propagation.
It should be mentioned here that for the stress field
computations near Lamb modes the contributions of
incident, reflected and transmitted waves in the upper
and lower fluid half spaces must be considered. The
incident angle should be set such that the phase velocity
computed from the Snell’s law becomes close to a Lamb
mode phase velocity. Because of the presence of the
incident, reflected and transmitted signals the normal
stress components at the top and bottom surfaces of the
plate will not have same values. However, in absence of
the incident plane wave in the fluid only pure Lamb
modes can propagate through the plate and normal
stress components at the top and bottom surfaces be-
come equal.

Images of the composite plate have been generated for
two different frequency—phase velocity combinations (c;
and ¢,); those two points are marked by two squares in
Fig. 4.

Figs. 5 and 6 show the computed stress profiles along
the thickness or depth of the plate for six frequency—
phase velocity combinations, two pairs (a; and b;) near
the second mode and one pair (d;) near the third mode.
Fig. 5 shows the shear stress (o3) variations along the
depth of the plate. Fig. 6 shows the normal stress vari-
ations (o33 in the left column and o; in the right col-
umn). The phase velocity (V) and the incident angle (0)
are related by the Snell’s law,

Vi
sin 0

4)

Vph =

V; is the longitudinal wave speed in the coupling fluid.
For water it is 1.49 km/s.

The horizontal axes of Figs. 5 and 6 show the depth
along the plate thickness (or x3) direction (see Fig. 1a)
varying from zero (top of the plate) to 1.97 mm (bottom
of the plate). Since the plate has five layers of identical
thickness the layer interfaces are located at 0.394, 0.788,
1.182 and 1.576 mm. In Figs. 5 and 6 the horizontal axis
is marked at 0.4, 0.8, 1.2 and 1.6 mm, very close to the
layer interface positions. In each plot of Figs. 5 and 6
two curves are shown. Dotted lines correspond to the
frequency—phase velocity combinations that are located
slightly below or left of the Lamb modes and the con-
tinuous lines correspond to the points slightly above or
right of the Lamb modes. The curves in Figs. 5 and 6 are
marked as SIJ-0, F, a; where 0 is the angle of incidence
in degree, F is the signal frequency in MHz, «; identifies
the point (a;, b;, ¢; or d;) of Fig. 4, and SIJ stands for
S13 for shear stress (o13), and S33 or S11 for normal
stresses (g3; or g11). Note that the curves are not sym-
metric about the central plane of the plate. Hence, these
near Lamb modes should be able to distinguish defects
in a layer from similar defects in the layer of mirror
symmetry.

It should be noted here that the continuous curves
give relatively higher values in the lower half of the
plate. o;3 and oy in the lower half of the plate (in the
fourth layer) is much larger than that in the second layer
for frequency—phase velocity combinations correspond-
ing to the points a, and b, of Fig. 4. On the other hand,
for points a; and b, the first and second layer responses
are larger than the fourth and fifth layer responses. This
difference is less prominent for o3;. This general trend is
true for points d; and d, also. However, for the con-
tinuous curves the differences in o3 (or ¢y;) in the upper
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Fig. 5. Shear stress variations inside the composite plate near second (top figures) and third (bottom figure) Lamb modes. Dotted lines have been
generated for the frequency—phase velocity combinations denoted by points a;, b, and d; in Fig. 4. Points a,, b, and d, of Fig. 4 generate the

continuous curves.
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Fig. 6. Normal stress variations inside the composite plate near second and third Lamb modes. Dotted lines have been generated for the frequency—
phase velocity combinations denoted by points a;, b; and d, in Fig. 4. Points a,, b, and d, of Fig. 4 generate the continuous curves. o33 and g, are
shown in the left and right columns, respectively.
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and lower halves of the plate for points d; are not as
much as those for points a; and b;. Hence, results in
Figs. 5 and 6 can be summarized as

1. Stress fields in the neighborhood of a Lamb mode are
not symmetric with respect to the central plane of
symmetry of the plate.

2. If moving in one direction relative to the Lamb mode
causes the stresses to grow in the upper half of the
plate then an opposite direction movement will cause
the stresses to grow in the lower half of the plate.

3. The percentage difference in the stress values between
two layers of mirror symmetry in the lower and upper
halves of the plate is not same for all stress compo-
nents.

4. The percentage difference in the stress values between
two layers of mirror symmetry in the neighborhood
of a Lamb mode varies from one Lamb mode to an-
other.

Is this difference of stresses sufficient to distinguish
between the defects in the upper and lower halves of the
plate? To answer this question two images of the speci-
men have been generated with the frequency—phase
velocity combinations corresponding to points ¢; and ¢,
of Fig. 4. It should be mentioned here that point ¢,
corresponds to the 21° incident angle and 5.15 MHz
signal frequency, and for point ¢, the incident angle is
20° and the signal frequency is 5 MHz. A laboratory-
made ultrasonic scanner was used for generating the
ultrasonic images. A broad band Panametrics trans-
ducer (0.5 in. diameter) was excited using Matec 310
gated amplifier with tone-burst signals from the Wave-
tek function generator. The reflected signal was received
by a Matec receiver and was digitized by a GAGE 40
MHz data acquisition board, and then the received
signal was analyzed. The computer program computed
either the peak to peak or the average amplitude of the
signal in a given time window and then plotted it in a
gray scale with respect to the horizontal (x;, x;) position
of the transducers. The window was set near the first

289

Fig. 7. Two images of the five layer composite plate specimen gener-
ated by two different frequency—phase velocity combinations, shown
by points ¢; and ¢, in Fig. 4. The top image has been generated by 5.0
MHz signal incident at 20° (point ¢,) and the bottom image has been
produced by 5.15 MHz signal incident at 21° (point ¢;) [12,14].

arrival time of the signal thus reflections from the plate
boundary were avoided.

Generated images are shown in Fig. 7. The 5 MHz
signal, incident at 20°, clearly shows the missing fiber
defects of the fourth layer and the 5.15 MHz signal,
incident at 20°, shows the delamination defect (darker
region) of the second layer. It also faintly shows the
missing fibers of the fourth layer.

Delamination and missing fibers reduce the shear
stress carrying capacity at the defect position. Note that
the compressive normal stress ¢33 can be present at the
defect position from the non-vanishing contact pressure.
Hence, a study of the a3 profile is critical for predicting
the sensitivity of the propagating waves to delamination
and missing fiber type defects. a3 profiles for points ¢,
and ¢, of Fig. 4 are shown in Fig. 8. It should be noted
here that for the 5 MHz signal a5 is very small in the
second layer and it is maximum in the fourth layer. That
is why in Fig. 7 we see that the image generated by the 5
MHz signal clearly shows the missing fiber defects of the
fourth layer and completely ignores the delamination
defect of the second layer. On the other hand for the
5.15 MHz signal (dotted line of Fig. 8) the shear stress is
maximum in the second layer and very small in the
fourth layer. This explains why the image generated by
the 5.15 MHz signal shows the delamination defect

—S13-20,5.0(c2)

s - 0000000000 | $13-21,5.15(c1)
0 3000 N
2 2000 T —\
? 1m0 ’/"‘/\ / ~ ————— \
E 0 4 \/ \"\-_\
5 ‘ r r ;

0 04 0.8 12 16 2
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Fig. 8. Shear stress variations inside the composite plate for frequency—phase velocity combinations, denoted by points ¢; (- - -) and ¢, (—) in Fig. 4.

Corresponding ultrasonic images are shown in Fig. 7.
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(darker region) of the second layer while the missing
fiber defect of the fourth layer is not so clear.

Advantage of the near Lamb mode imaging is clearly
demonstrated here. In the conventional C-scan image
(Fig. 3) the delamination defect guards the missing fiber
defects, but in the near Lamb wave image (Fig. 7) the
delamination defect does not have any effect on the
missing fiber defects when the right frequency-angle
combination is selected.

5. Concluding remarks

In this paper it is shown that one can image a specific
layer in the lower half (or upper half) of a multilayered
composite plate separately from its layer of mirror
symmetry by near Lamb mode imaging. In other words,
defects in two layers of mirror symmetry can be imaged
separately by simply fine tuning the incident angle and/
or the signal frequency in the neighborhood of a Lamb
mode. The incident angle and the signal frequency
should be such that they are close to a Lamb mode but
not exactly on the Lamb mode. The Lamb modes in-
vestigated here show that the nature of asymmetry in the
stress field changes in opposite directions as the point
moves from one side of a Lamb mode curve to the other
side. In other words, if a point on the left side of a
dispersion curve gives larger stress in the upper half of
the plate, a point on the right side of the curve gives
larger stress in the lower half of the plate. For two
consecutive modes it changes, i.e. if a point located
slightly left of mode N gives larger stress in the top half
of the plate then a point located slightly left of mode
(N +1) gives larger stress in the bottom half of the
plate. Experimental results verified the theoretical pre-
dictions.
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