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Summary

The aim of this paper is to express in a correct manner the radiation conditions in terms of Floquet waves in an
infinite anisotropic periodically multilayered medium. These waves are linear combinations of the classical plane waves
propagating in each layer of the medium and are defined by the eigen vectors of the transfer matrix of the unit cell of the
medium, termed "period". As the propagation reference of each Floquet wave is only known at each interface separating
two successive periods (stroboscopic effect), the corresponding pseudo Floquet wave number which thus can be defined
just gives an apparent propagation direction and not the effective propagation direction of a propagative Floquet wave.
The propagation direction for each propagative Floquet wave is given by the sign of its normal power flux, involving

its corresponding eigen vector. The problem is first analysed in isotropic periodically multilayered media with normal
incidence and then extended to anisotropic periodically multilayered media.

PACS no. 43.20.Fn, 43.35.Cg

1. Introduction transmission problem of a periodically semi-infinite strati-
fied structure. Many studies deal with a wave propagation
Ultrasonic propagation through multilayered media has be-n a direction parallel to the layers (see [12] and references
come a subject of intensive study in the last few years. Genereontained therein). In this case, by using continuum mixture
ally speaking, multilayered media are made up by the stackequations, the composite medium is replaced by a homoge-
ing of distinct anisotropic media. Here, we are interested inneous, yet dispersive medium. In the case of this paper, the
anisotropic periodically multilayered media, bounded by adiscontinuous character of the structure is conserved at any
first layer which is contiguous to some fluid continuous half scale (except for the low frequency domain of homogenisa-
space. Such media are composed of an anisotropic multilaytion), and the waves we consider here partly propagate in the
ered medium cell, called "period" or "superlayer”, which is P direction perpendicular to the layers. In this case, the phys-
times repeated. These media are now studied by use of propéeal feature of the radiation condition is not obvious, since
gator matrices [1, 2, 3, 4, 5]: the transfer matrix of one periodthe bulk waves are indefinitely reflected on the interfaces as
can be found from the boundary conditions at each interfacehey propagate far and far in the medium.
separating two successive layers. It allows the displacement Section 2 recalls the basic problem of radiation condi-
and stress vector at the interface separating two successifyns for homogeneous media and sets the problem for mul-
periods (i.e. a period interface) to be expressed as a functiofilayered media. The purpose of section 3 is to show in the
of that at the previous period interface. The transfer matriXsimp|est case of one-dimensional medium how to write the
eigen vectors lead to the Floquet waves. These waves are litorrect radiation condition. Finally, the calculus is extended
ear combinations of the classical plane waves propagating ifo the case of general anisotropic periodically multilayered
each layer of the multilayered medium [6, 7, 8, 9, 10, 11, 12]. media in section 4.
Though they are not plane waves in general, these particular
solutions play the role of plane waves for infinite periodi-
cally multilayered media: any solution may be expressed as
a linear combination of these waves. This permits to go from
one period interface to another one by means of a diagona. The basic problem of radiation conditions for
matrix. As an extensive background has already been donein multilayered media
previous papers [13, 14, 15, 16, 17], we will not do it again.
Nevertheless, it is worth mentioning the main contributions Since Sommerfeld’s work, it is well known that the solu-
to the study of the propagation direction of the Floquet wavestion of monochromatic propagation problems in (partly) un-
(see section 2.3). bounded media involves extra conditions at infinity. These
The aim of the paper is to express in a correct manner theonditions express the fact that the elementary solutions
radiation conditions for Floguet waves in a infinite periodi- (monopoles or plane waves) which are involved in the inte-
cally multilayered medium, in order to solve the reflection- gral representation of the field do propagate towards infinity,
so excluding any reflection in the boundlessness directions.
Received 7 July 2000, We focus here on the radiation conditions for plane waves
accepted 21 March 2000. since these waves are the basic concept in the case of multi-
* Also with: Universi€ de Picardie Jules Verne, IUT de I'Aisne, layered media. SUbS,equently’ the harmonic time dependence
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2.1. The homogeneous case

)
X
€

When the unbounded space region is a homogeneou
medium, there is no real difficulty in writing the expected
radiation condition since the plane waves propagate in the 20
medium at infinity. The problem then reduces to sort out the
progressive plane waves which may be considered as propa- P=1
gating towards infinity, among all the possible waves. ;
In the case of an absorbing material, the amplitude of the 1
generalised progressive plane waves decreases in the dirgc-
tion they propagate and a simple argument of boundedness
gives the actual condition. If there is no absorption, the ar- "
gument may be a little more subtle since the wave amplitude !
phase has to be examined. For an isotropic medium, the ra- 2,
diation condition is classically based on the direction of the
wave vector. In fact, in this simple case, phase velocity di- p h
rection and energy velocity direction are the same. i
However, in the anisotropic case, these two directions arge Zp
different in general and the choice must be done betweel
either looking at the phase velocity direction or studying the X3
propagation direction of the plane wave energy (Poyntin
vector or group velocity) [18, 19, 20]. Itis clear that this last Figure 1. Geometry of the infinite periodically anisotropic multilay-
point of view is the right one. For example, let us consider theered medium.
case of the reflection- transmission at the interface separating
two distinct semi-infinite media, one of which is anisotropic. L
Then it may be shown that for some configurations, a radi_propagates towards |nf!n|ty, t.h e wave front encounters new
ation condition based on the wave vector would lead to aand new structural configurations.
reflection coefficient with a magnitude greater than one. In
particular, this situation occurs when the slowness surface€.3. The case of an infinite periodically multilayered
of the anisotropic medium present inflexion points [21, 22]. medium

@ 2 medium 0

gq=Q

=

Fortunately, when an infinite multilayered medium presents
a periodic law for the order of its layers, it will be seen
subsequently that itis possible to express radiation conditions
When the medium which extends to infinity is no longer ho- (see Figure 1 for the geometry of the medium). Same way as
mogeneous, writing a consistent radiation condition becomedn the general case of an infinite multilayered medium (see
a real problem which may have no solution. Indeed, the scatS€ection 2.2), no progressive wave is available at infinity and
tering of waves by the inhomogeneities prevents progressiv@ther basic solutions have to be found in order to express
plane waves from existing in the medium, even at infinity. radiation condition. These basic solutions are the so-called
When the wave length is much longer than the charac-Floguet waves which are particular arrangements of forward
teristic length of the inhomogeneity, the difficulty may be @nd backward plane waves in each layer.
bypassed: for low frequency wave propagation, the inhomo- Floguet waves are the eigen solutions of the transfer matrix
geneous medium may be replaced by an equivalent homogé= of the unit cell of the periodic medium. For such solutions,
neous medium for which progressive plane waves do existhe physical field variables are simultaneously multiplied by
again and may be used to express radiation conditions. ~ the same numbex (the relevant eigen value) when they are
Apart from the validity domain of homogenisation, there compared upon a distance equal to the length h of the period
is no general method to express te radiation condition in thdn the direction normal to the layers. In general, the eigen
infinite medium. The difficulty is clearly enlightened in the Values of the matrix- are different so that the Floquet waves
case of aninfinite plane multilayered medium. Indeed, at eactfre independent solutions. As a consequence, for a given
interface separating two successive layers, any progressigcidence, the general solution in the multilayered medium
plane wave undergoes a reflection effect, so that forwards anfl@y be expressed as a linear combination of these eigen
backwards progressive waves are simultaneously present iolutions. A propagative Floquet wave is obtained when the
the layers at more and more far-off distances. If the layerec€igen value is complex with its magnitude equal to one. In
medium does not follow a particular law for the stacking this case, it may be interesting to write this eigen value in the
of the layers, then writing a radiation condition becomes form:
an unsolvable problem. Indeed, the monochromatic hypoth- \ = e—i® (1)
esis assumes that a transient propagation phenomenon has ’
evolved for an infinite time. In the present case, no final sit-wherey appears as a common phase change in the ampli-
uation may be reached by a transient wave since as long asfttides of the physical field variables. When the eigen value

2.2. The case of a stratified medium
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does not have its magnitude equal to one, the associated Fldluid or isotropic layers, some authors [4, 5, 27, 28] have
guet wave is said to be inhomogeneous, as a generalisation tfypassed the difficulty by introducing a small absorption in
the so-called inhomogeneous plane waves. The Floquet wavéhe medium. In this case, the eigen values of the transfer
form leads to interpret the behavior of periodically multilay- matrix are complex but their magnitude is no longer equal
ered media as mechanical filters [2, 23, 24, 25]: the systento one. The corresponding Floquet waves are thus always
does not allow Floquet waves propagation for frequencies innhomogeneous. As mentioned above, the decreasing direc-
stopping bands (for a fixed incident angle) or for angles intion is easily found and permits the radiation conditions to be
stopping bands (for a fixed frequency), though it allows it written. For propagative Floquet waves, the key was briefly
for others. These bands correspond to the case where all trgiven by Rousseau and Gatignol [6, 8] for two fluids, and,
Floquet waves are inhomogeneous. afterwards, for isotropic layers in a superlayer: the sign of the
In order to write the radiation conditions in an infinite normal power flux of each propagative Floquet wave gives
periodically multilayered medium, it is essential to be able its propagation direction.
to determine the propagation direction of the Floquet waves. It should be noted that, in the present case of propagative
It is very easy to know the decreasing direction of inho- Floquet waves, this discrepancy between energy velocity and
mogeneous Floquet waves, since it is found that half of thephase velocity has nothing to do with any anisotropic effect
Floguet waves have their amplitude which increases expo{see section 2.1): the observation may be displayed on the
nentially. Then, a simple argument of boundedness of thesimple case of one-dimensional periodic media. For these
solution leads to the choice of Floquet waves the amplitudesimple periodic structures, it may be shown that once out
of which tends to zero: this is the case when the magnitudeof two, the energetic propagation direction is opposed to the
of the eigen value is less than one as it will be seen in sectiopropagation direction that would have been deduced from
3.3.1. On the other hand, in the case of propagative Floguethe study of the pseudo Floquet wave number’s sign.
waves (magnitude of the eigen value equal to one), the def- It should be noted that the same problem would be en-
inition of the propagation direction is not a so simple task countered in various types of periodically structures. As an
and the radiation condition can not be deduced from a sinexample, in the case of periodically layered piezoelectric
gle boundedness argument (see section 3.3.2). In this casmedia, the only difference would be the order of the transfer
for the corresponding eigen solution, the physical variablesmatrix which would be changed froif6 x 6) to (8 x 8)
undergo simultaneously a same change in the phase of theitue to the presence of extra two variables form the electric
amplitude upon a distance h normal to the layers. The pefield [29]. In the case of periodic wave guides, Bradley [30]
riodically multilayered medium could be thus considered asrefers to Bloch wave functions and points out that the Bloch
a homogeneous medium in which the Floquet waves wouldvave number (equivalent to the pseudo Floquet wave num-
propagate. By analogy with homogeneous media, it is temptber) is multivalued and he does not propose a solution to the
ing to define a pseudo Floguet wave number in the directionproblem, except in the case of the uniform wave guide limit.
normal to the layers, by using the phase variation across
each period, and to determine the propagation direction from
the sign of this pseudo Floquet wave number. The pseud®. Floquet waves strobe effect in infinite isotropic
Floquet wave numbarcan be defined such that: periodically multilayered media

= Kb, 2) In order to understand why the sign of the real part of the
whereh is the thickness of one period. Hence, using equationpseudo Floguet wave vector does not give the Floquet wave
D): propagation direction, let us now consider the case of normal

)\ = o-inh 3) incidence propagation ir_l a peri_odic medium composed with

’ the reproduction of two isotropic layers. Most of the results

However, note that the phase reference comes from a digeresented in this section have been given by Rousseau and
crete information, namely the field values at the interfacesGatignol [6, 8] and afterwards by Moukemaha [9]. However,
separating two successive periods: so it is not a continuou# seems interesting to us to emphasise some aspects of Flo-
concept. Moreover, the definition itself of the phase shift quet wave physical properties and to develop some results
is subjected to some indeterminacy, since its value is knowrwhich were just briefly mentioned by these authors.
only within some additive constant equal to an integer num-
ber times27. As a consequence, phase data are too poo
to allow the definition of an effective propagation direction.
Therefore, it is not possible to determine the propagation di-Let us consider a semi infinite fluid 0 in contact with a semi-
rection of the Floquet wave by examining the pseudo Floqueinfinite stratified medium, a3 = 0 (see Figure 2). The
wave vector. It happens that several authors [11, 24, 26] didstratified medium is a periodically multilayered medium, re-
not see the restrictive side of this stroboscopic effect. Theproduction of an infinite number of unit cells, termed "peri-
situation is identical if one wants to determine if a wheel ods", each one made by the stacking of two distinct isotropic
turns clockwise or anticlockwise, just by flashing it peri- media numbered 1 and 2. As the wave in the fluid O prop-
odically. More inspection is necessary to determine the acagates with normal incidence, the transmitted waves in the
tual propagation direction of propagative Floquet waves. Forstratified medium are longitudinal waves.

5.1. Period transfer matrix and Floquet waves
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WP atz,, by means of a matricial relation (see corresponding
© calculus in Appendix Al):
fluid (O 2, ® WPHL — WP (5)
i @ ¢, h, _ x: . . . .
M I, P=1 where 7 is the period transfer matrix. In the simple case
z 2 . . . . . .
1 @ Z considered in this sectiom, is a (2x 2) matrix.
h Cl 2 p=2
s ©) As a consequence, whatever the state verdrat z,,
2 Z, the state vectorV?*! at the next period interfacg,;; can
be deduced from the matricial relation (5). Among all the
Zp1 D possible state vectodd’?, some are particular: these vectors
h p are the eigen vectord)) of the matrix~ and define the
[®)
Zp @ Floquet waves. They are such that:
h p+1
Zp+1 G) TV = )\V (6)
| Here, as the matrix is of the 2nd-order, there are two eigen
¥ x, valuesM\ and )\ such that:

Wy — ) ) and @y = @) @ (7)

Figure 2. Geometry of the periodic medium composed of two

isotropic layers. Normal incidence.
As a consequence, if the state vector is proportional to the

particular state vectdf)V (8 = 1, 2) atz,, the state vector at
the next period interface,; will be obtained from equation

h h (5), with V instead of\V:
p+1 p+2 - Byyptl — 7 Byp, (8)
% Zp+1 X3
which reads, using equation (6):
9P PP
classical plane wavef T ] (Bhp+1 — (B)y (Bhyp . (9)
B)gP By, PL Bl ®),,P This is summarised in Figure 3.
Floguet waves ) 01 o Since the eigen values of the transfer matrix are distinct,
7 = I e eigen vectors of the matrix are independent. As a conse-
T 7P ) O th tors of the mat dependent. A
®\ f guence, the Floquet waves are independent solutions so that,

for any solution, the state vectbV? atz, may be expressed
gs a linear combination of the eigen vectory and(?y:

Figure 3. Passage from one superlayer to the next one for the gener
wave solutions and for the Floquet waves.
q wp = e (L 4 2)Fp (2)1;, (10)

with (WFr, BFr) e 2,

Define:Vg, V1, Va: Velocity of the longitudinal wave prop- o -
agating in medium 0, 1 or Z,, Z;, Z»: Acousticimpedance ~ and by omitting the-*'* factor. - _
of medium 0, 1 or 2k, hy: Thickness of the layers 1and 2~ According to equations (5), (7) and (9), it is possible to
with & = hy + ho. 71, T»: Flight time in layers 1 and 2 with ~ obtain:
71 = hy/Vi andry = hy/V,. w: Natural angular frequency bl p_ (D (y (1) 2)rp (2)y (2)
of the incident wave (harmonic time dependence conventionW =TWP=TFR ATV R EAEY. (1)

iwt . H i i i
el). z,: co-ordinate with respect to they-axis of the in- By identification with equation (9) witlip + 1) in place of
terface separating periggfrom the next periogh + 1, with p, the Floquet amplitudes at the period interfacg; are

Zp+1 = zp + handz = 0. The corresponding interface  yeqyced from those at the previous period interfaday the
will be termed ‘period interfacé. following relation:

Let us define the state vectdy? atzs = z, by:

B)Fp+1 — (B)y (B)j:p, B=1,2. (12)
we={l, (@) _— .
Ty Step by step, it is possible to obtain:
wherew, andT), are the normal displacement and stress at B)Fp — ((g)A)p BF0 g=1,2 (13)

r3 = Zp.
The use of the boundary conditions, at the interface sepapence, using equations (10) and (13):
rating two successive layers, i.e. equalling stresses and dis-
placements, leads to expréd&*! atz,,, as a function of WP = WF0 (NP My 4 GF0(@N)P @y, (14)
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When(®)) is written in the following form:

(ﬁ)/\ _ e,i(ﬁ)

?, (15)
with (¥ ¢ a linear function of the thickness of a period)?
can be seen as the solution of a differential equation with
constant coefficients, which is a very simple application of

Floguet's theorem (see Appendix A2).

3.2. Period transfer matrix eigen values

The eigen values of are the same as those of any similar
matrix of . Let us define the period transfer mat@xof the
amplitudes such that:

AP = @ AP (16)
where AP is the displacement amplitude vector such that:

(Dgp

(17)

zone |

® 5 ON
D 35 ON

Im(a)

=

zone |l

0 05

Re@ )

03

e-fit}

(2)gP

with Mg? and®a? the displacement amplitudes of the clas-
sical longitudinal plane waves propagating up and down in
the first layer of the periog. Their phase origin reference is
taken atrs = zp_1.

T and ® are similar matrices, both period transfer matri-
ces, related by the following relation:

$ = (B") 'rB, (18)

Inthe particular case we are interestedbrtas the following
form [6, 8, 9]:

.|

wherex denotes the complex conjugate. The expressions o
«, v and B! are given in Appendix Al.

oy

s (19)

Figure 4. Representation of in the complex plane, when the fre-
guency varies from 0 to 50 MHz.

3.3. Strobe effect of Floquet waves

In each layer, there are two classical plane waves: one propa-
gates in thexs > 0 direction, and the other propagates in the
opposite direction. As the Floquet waves are a linear combi-
nation of these two plane waves, the linear combination being
different according to the layer, it is not possible, a priori,
to assign a propagation direction to the Floquet waves. In-
deed, from the wave propagation point of view, the multiple
feflections on each interface do not give any information on
the propagation direction. In the case of evanescent Floquet

It can be shown [6, 8, 9] that the eigen values of the transfef/aves, the radiation condition is very easy to write (see sec-

matrix ®, which are identical to those of the matrix, are
solutions of the following equation:

M s2Re(a)) +1 =0, (20)
which gives
BN\ = Re(a) £ /Re(a)2 &1, f=1,2. (21)
The corresponding eigen vectors®fare:
_ v _

and are related to the eigen vectorsrdby the relation:
@y =B'¥e. p=1,2, (23)

From equation (A12) given in the Appendix, according to the
variations ofa as a function of the natural frequeneyfour

tion 3.3.1). But, in the case of propagative Floquet waves, the
normal power flux of each Floquet wave has to be calculated
(see section 3.3.2)

3.3.1. The case of evanescent Floquet waves

Take M\ and®)\ such thafMA| < 1 and|®A| > 1.

From equation (12) it can be seen that at each interface
separating two successive superlayers, the amplitig@
is multiplied by ()X of magnitude less than one: thus, the
amplitude of this Floquet wave decreases in an exponential
way in the directionzs > 0. On the contrary, the ampli-
tude (2)F0 is multiplied by >\ of magnitude greater than
one: thus, the amplitude of this Floquet wave increases in
an exponential way in the directiary > 0. Therefore, the
radiation condition consists in keeping the Floquet wave for

zones in the complex plane [6, 9] can be defined (see Figurevhich the amplitude decreases at infinity, that is to say such

4, with Z; = 4.8 MRayl, hy = 0.13mm, V; = 3000 m/s,
Zy = 3MRayl, ho = 0.013mm andV> = 2500 m/s, rep-
resentative values for carbon/epoxy). In zones | and I, th
eigen value$" A and(>)\ have unit magnitude and are com-
plexe conjugates: the Floquet waves are thus propagative. |
zones Il and IV, the eigen valué§)\ and )\ are real and
reciprocal: the Floquet waves are thus evanescent.

€,

that|(V)| < 1.

3.3.2. The case of propagative Floquet waves

ke have seen in section 3.1 that for a Floquet wave, the
state vector at the period interfaeg; is obtained by a
simple multiplication of the state vector at the previous period
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information As mentioned in the Introduction, the situation
is the same as determining if a wheel turns clockwise or anti-
clockwise, just by flashing it periodically. As a consequence,
the sign of the pseudo Floquet wave number vetarjust

A « X B gives an apparent propagation direction and not the effective
—@ ®o—> propagation direction. This is the reason why condition (27),
X3 first given in [24] and later in [26], iS not correct to express
the radiation condition in a semi infinite medium:

T, Sm ((BI\
I Re(Dk) >0 arg (N) <0 & Sm() < 0. (27)

? Re ((DN)
| 1
Note here that due to the harmonic time dependence con-

@y P B pr1 = g Oxn @), ventione @t equation (27) is slightly different in reference
[24] and [26].
Figure 5. Strobe effect for Floguet waves. Inadequacy of a pseudg CONdition (28), given afterwards in [11], by noticing that
wave number. if er < arg((®)) < +x then the imaginary part df)A

has the same sign as its argument, is not correct either:

periodp +1
h

Y

interfacez,: %e((ﬁ)n) >0 & arg ((ﬁ))\) <0& %m((ﬁ))\) < 0. (28)
@rpptt — O\ Bhypr g =12, (24)  We will see in section 3.4 that conditions (27) and (28) lead
_ _ _ to a reflection coefficient of magnitude greater than one.
where here{®)\ is complex with magnitude equal to one. As mentioned in [6, 8, 9], the right radiation condition is

As the two interfaces are separated by distdnd®y anal-  given by the positive sign of the normal power flux of the

ogy with the propagation in homogeneous media, a pseudgelevant propagative Floquet wave. This power flux can be
Floquet wave number vect6f)s can thus be defined by the calculated by the following relation:

following relation:

1 . * *
oy oy oy B epe(sTe T, @)
(B is not determined from equation (25) in only one way. Wherew andT" are the normal displacement and stress.
Indeed, As far as the Floquet wavg3) is concerned, these dis-
placement and stress are given by the particular state vector
arg ((B),\) modul@r (B)y which is the eigen vector, defined by equations (22) and
Bl = & - (26)  (23).
Finally, the normal power flux of each propagative Floquet
The authors quoted below have fixék by taking wave () can be expressed [6, 8] as:
er < arg(N) < +7. F3 = 7 w* (§Re (a (ﬁ))\*) <:>1). (30)

Through this convention, they consider that a Floquet wavey zone | (see Figure 4), the Floguet wave which cor-
(8) propagates in the direction; > 0 when @k > 0, responds toF; > 0 is associated to the eigen value
whereas it propagates in the opposite direction wHén < WX = Re(a) + iy/ToRe(@)?. In zone I, this is
0. However, one must be conscious of the conventional ast2), _ Re(a)eiy/1 < Re(a)]2. The corresponding calcu-

pect of this definition sincé”)x would have different signs lus are detailed in Appendixes A3 and A4. It should be noted
for different choices. Thus, due to the indeterminacy on thethat the use of condition (28) would lead to cho6%8 in
value of (@), it is illusory to try to define a phase velocity. both zones | and II

Indeed, if(®)x > 0, the corresponding Floquet wave would
propagate in the:s > 0 direction, but only in reference to
points A and B, at each interface separating two successivg.4. Reflection coefficient

superlayers (see Figure 5). In fact, it should be noticed thaL t e+ the ei | iated to the Fl t
the multiplying factor between the state vector at a distance etusno € €igen value associated fo the Floquet wave
which propagate$Fs; > 0), or decreases in the direction

from point A and the state vector at the point A can not be said . - : ) .
P _:(8), . P . . x3 > 0. The reflection coefficierik in fluid O on the semi-
to be equalte™"" **. In other words, in general, if an eigen

) ), infinite two-layered periodic structure can be expressed by
value of the transfer matrix of a superlayer i~ %", the the following relation [6, 8, 9]:

eigen value of the transfer matrix, is note=""%%_ This
constitutes the strobe effect of Floquet waves propagation. R = ro1y + A\t Sa

Here, the phase information isdéscrete and not continuous T v+ oM ea)’ (31)
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25k

MHz

Figure 6. Magnitude of the reflection coefficient using the radiation Figure 7. Comparison of the moduli of the reflection coefficient.
condition given by the normal power flux. Fullline: calculus using the radiation condition given by the normal
power flux ; dotted line: calculus using radiation condition (27).

wherery; is the reflection coefficient of the fluid 0/ medium 1

interface:
VARSI ¢ ' ' '
= 7. 32

o1 Z 1 Zo (32) | i
The calculus have been performed with the same medium
properties as in Figure £; = 4.8 MRayl, h; = 0.13mm, ar n
Vi = 3000m/s, Z> = 3MRayl, hy = 0.013mm andV, =
2500 m/s. The fluid 0 is water wittZ, = 1.48 MRayl and 3 .
Vo = 1480 m/s. il ;

The reflection coefficient (see its magnitude in Figure 6) 2t .
has been calculated by using, for propagative Floquet waves, : ;
the radiation condition given by the normal power flux. The 1t : : : 1
magnitude is always less than or equal to one, and stopping m
bands can be observed. The comparison of this coefficien
with the coefficient calculated using radiation condition (27) MHz

is shown in Figure 7. It appears clearly that when the two

curves do not coincide, the reflection coefficient is much Figure 8. Comparison of the moduli of the reflection coefficient.

greater than one and may tend to infinity. The use of radiation:| jine: calculus using the radiation condition given by the normal
condition (28) leads to the same conclusions (see Figure 8)ower flux ; dotted line: calculus using radiation condition (28).

In this case, it can be observed that the calculus is correct

once out of two.

—
o

elastic anisotropic media (see Figure 1). Each layer of the

period may have any thickness. Medium 0 above the peri-
4. Radiation conditions in an infinite anisotropic odically multilayered medium is semi-infinite. The study of

periodically multilayered medium the acoustic propagation of waves which are generated by an

oblique incident wave propagating in medium 0 with a prop-
We have just seen for a very simple configuration how theagation vector contained in tHe;z3) plane, as defined in
radiation condition has to be handled in the case of prop+igure 1, has been carried out in previous works [13, 14, 15]:
agative Floguet waves. The aim of this section is to extenctherefore, we will not explain it again with much details but
this method to infinite anisotropic periodically multilayered we will restrict to give the keys to understand what follows.
media. Let WP be the state vector at the period interfage= z,,
made up of the three components of the displacement vector
@? and the three componentdyy, T, TT5) of the stress
vector applied to a surface parallel to the interfaces. Further-
Let us now consider a semi-infinite periodically multilay- more, let.A? be the(6 x 1) column vector containing the
ered medium which is a reproduction of an infinite number displacement amplitud&)a? of the six classical plane waves
of "periods", each one made up by the stackin@dfistinct propagating in the first layer of the perigdl < n < 6).

4.1. Background on transfer matrices
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Namely, the state vector is written such that: uj, j = 1,2,3, correspond to the first three components of
WP or Oy andTs;, j = 1,2,3 to the last three compo-
T P or (B
WP = (ulf ub ub, T8, TP TE)', (33)  nents of WP or V. Therefore, for each Floguet wayg),

equation (39) can be written as:

and the amplitude vector such that: 1
F; = @Ziw( By, (B)Vl* + (B)Vg By,

By, Blyr 4 Byx By, (40)

whereT denotes the transpose operation. By, Bpx 4 Bpx (B)V:;).

The (6 x 6) period transfer matrix® for amplitudes vec-
tors as defined in [13] and [14], allows the displacementNote that if= andy are respectively the eigenvector matrices
amplitudes of the classical plane waves in the first layer ofof the period transfer matrix of amplitudek and of the
the period(p + 1) to be expressed as a function of those period matrix of stress-displacement they are related by
in the first layer of the previous period p, by means of the the following relation:
following matricial relation, already written in section 3.2:

P — <(1)ap,(z)ap,(3)ap,(4)ap,(5)ap,(6)ap>T, (34)

= = B9, (41)
AP — $ AP, (35) . . . .
@ andt being similar matrices as a consequence of equation
37).
In short, the period transfer matrix of amplitudésis
first calculated. Then, its eigen values and its eigen vector
matrix are numerically calculated. Next, the eigen vector
matrix of the period transfer matrix of stress-displacement
is calculated by means of equation (41). Each coluffivi
of this eigen vector matrix corresponds to the state vector
WP of the Floquet wave associated to the eigen véflke
Finally, the normal power flux of the Floquet wayg) is
numerically evaluated by means of equation (40).

In the same way, equation (5) which expresses the matriciaﬁ
relation between the state veckiP*+! at the period interface
zp+1 and the state vectofV'? at the previous period interface
zp remains:

WPHL = PP, (36)

wherer is here of the 6-th order.
It has been seen in section 3.2 thds related to® by the
following relation:

-1

P = (31) TB*, (37) 4.3. Radiation conditions and reflection coefficients for
semi-infinite anisotropic periodically multilayered
where B! is here a(6 x 6) matrix which depends only on media

the incident wave and on th‘f characteristics of the mediump, yhe case of the reflection and transmission problem at the
constituting they = 1 layer. B' is defined in reference [14]. i ierface separating the fluid and the semi-infinite stratified
medium, radiation conditions have to be written. In the same
way as in section 3.3, in the case of propagative Floquet
4.2. Calculus of the normal power flux of each Floquet  waves, the pseudo Floquet wave number associated to each
wave propagative Floquet wave gives only an apparent propagation

Inthe same way as in equation (10), section 3.1, the state Vecoprecnon. The cqrrect_ rad|_at|on condition is given by the
tor WP atz, can be expressed on the Floquet wave basis as §hergy propagation direction of each propagative Floquet

linear combination of the six eigen vectdf), 1 < 3 < 6:
e In the case of propagative Floquet wavé§)\| = 1,
and the radiation condition is given by the choice of the

6
— &) B
WP = Z( ‘Fr Oy, (38) Floguet wave with:

B=1
_ By > 0. (42)
It should be noted that the~'(k121—«%) factor has been
omitted in equation (38} being the projection of the wave e In the case of inhomogeneous Floquet Wa\}/@éN #1,

vector of the incident wave on the -axis. and the radiation condition is simply given by the choice:
As explained in section 3.1, each eigen vedtdV is a )
particular state vectdV? (see equation (33) for the position Al < 1. (43)

of each element in the state vector matrix). As a consequence,
in the following expression of the normal power flux [31]
using Einstein’s convention,

The validity of these radiation conditions is brought to the
fore by calculating reflection coefficients.
By applying conditions (42) or (43), itis possible to choose
1. the three Floguet waves which propagate or decrease in the
by = @ZW( &Tsuj + Tiju), (39) 23 > 0 direction and then to obtain the displacement and
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Table 1. Elastic constants in GPa for a carbon/epoxy medium fro
reference [33] when the sixth-order symmetty axis is parallel to

the (Ox3) axis. 1

0.8
c11 C12 c13 €33 Ca4 p (kg/m®) 06

04 | a)
13.7 7.1 6.7 126 5.8 1577 0.2

0

: [

2
stress vectodV? at the first interface at; = z, which . b)
amounts to expressing the radiation condition:

0
. 0 10 20 30 40 50 60 70 80 90

WO = Z (8) 0+ (ﬁ)v-ﬁ-’ (44) degree
B=1

Figure 9. Infinite 0/45°/90°/135" medium;f = 3 MHz. a) Mag-
where (OF0+ and B+, (8 = 1,2,3), are respectively nitude of the reflection coefficient in water. b) Number of inhomo-

the amplitudes and the eigen vectors associated to each geneeus Floquetwaves as a funtion of the incidence angle.
these three Floguet waves. Note that the Floquet amplitudes

are referenced at; = zj. It is then possible, by use of
the boundary conditions at the first interface, to calculate
the reflection coefficients. As a result of the good choice

of radiation condition, the calculated reflection coefficient . . .
. . by the corresponding eigen value of the matrix.
appears with a magnitude less or equal to one.

. : By analogy with the propagation of classical plane waves
The calculus is performed on a medium made up. . .
. . . in homogeneous media, the propagation of the Floquet waves
with stacked identical hexagonal layers of carbon/epoxy, ; e AL p
. . can be interpreted as propagation in a medium "equivalent
each one 45 rotated with respect to the previous one to the stratified medium. However, the notion of "equivalent”
(0°/45°/90°/135° medium). Each layer of this composite ) ’ q

: ) ) : medium can only be understood in the literal sense for the
plate is 0.12 mm thick. The elastic constants used in th . . .
) : w frequency domain of homogenisation. Apart from this
model are those determined by Hosten and Castaings [32, 3 . c . . .
. : ase, this notion is only an image, related to the interpretation
(see Table I). The volumetric mass of each layer is equa : . .
N - of the Floquet eigen values, from period to period. Moreover,
to 1577 kg/m*. The semi-infinite medium above the mul- .~ . .
. L ) . . this interpretation must not let forget that, even if the Floquet
tilayered medium is water: the volumetric mass is equal to . . I .
) - . waves are defined in the whole stratified medium, they are
1000 kg/m? and the velocity of the longitudinal wave is equal . . . S .
only characterised from interface to interface, i.e. in adiscrete

to 1480 m/s. The reflection coefficient which magnitude is .
- way. As a consequence, there occurs a spatial strobe effect.
presented in Figure 9a) has been calculated for a frequency . . . T .
An illustration of this problem is given when one tries

equal to 3 MHz. It is possible to see on Figure 9b) that the . i
. ; o define a pseudo Floguet wave number, using the phase

stopping bands correspond to Floguet waves which are all” ™. . .
variation across each period. As the propagation of the cor-

inhomogeneous. Note that around®36ne Floquet wave is . . .
. . . responding Floquet wave is only referenced at each interface
propagative. Though the corresponding magnitude of the re-

. - . .Feparating two successive periods, the sign of the real part
flection coefficient on Figure 9a) seems to be equal to one, i )
is less than one. of the pseudo Floquet wave number gives only an apparent

propagation direction and not the effective propagation di-
rection of the propagative Floquet wave. As a consequence,
the only possibility to define a propagation direction with a
5. Conclusion physical meaning is to consider the sign of the normal power
flux of each Floquet wave.
The aim of this paper was to define the propagation direction To sum up, whereas the radiation condition for inhomo-
of Floquet waves and to express in a correct way the radiatiorgeneous Floquet waves is very easy to write (by keeping
conditions. These Floquet waves propagate or decrease in tranly the waves for which the magnitude of the correspond-
periodically multilayered medium and are particular propa-ing eigen value is less than one), in the case of propagative
gation modes of the infinite periodically medium. Floguet Floquet waves, the radiation condition needs to depart from
waves are linear combinations of the classical plane waveshe consideration of the pseudo Floquet wave number and to
which propagate or decrease in each layer of the multilayturn towards an energy criterion. However, a few authors did
ered medium. Any stress and displacement state vector at goropose to deduce the propagation direction from the study of
interface separating two successive periods can be deducdbe pseudo Floguet wave number sign. It is the main purpose
from the one at the previous period interface by means of af the present work to show that this is the wrong choice,
matricial relation, involving the period transfer matrix. Flo- when compared to the correct propagation direction deduced
guet waves are associated to the eigen vectors of this matrikom energetic considerations. In order to clarify this point,

which are particular state vectors. For these particular solu-
tions, the passage from one period interface to another one is
then possible by a simple multiplication of the eigen vector
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we first considered the simple case of the propagation at norSame way as for the amplitudes, a relationship may be found
mal incidence in isotropic periodically multilayered media, between the displacement-stress vectorat= (, 1 and
each period being made up of two layers. The calculus of &hat atrs = (,41:

reflection coefficient using the correct radiation condition has

been compared with the one using the apparent propagation { Wn+2 } —r { Wn, } : (A8)
direction. With an energetic criterion, the magnitude of the Tnt2 Cnta T fe .

reflection coefficient keeps equal or less than one, whereas it
may tend to infinity with a pseudo wave number criterion. Fi- With
nally the study has been extended to anisotropic periodically

_ p292(R2\ " plylpy -1
multilayered media. T=B"H*(B*)" B'H'(B') . (A9)
T and® are similar matrices, both period transfer matrices,
I he followi lation:
Appendix related by the following relation
. . - & = (B') 'rB. Al
Al. Obtention of the period transfer matrix in the case ( ) T (A10)

of a two layers periodic medium [6, 8, 9] With no difficulty, it can be found thad® has the following

o o form [6, 8, 9]:
Generally speaking, in the normal incidence case, the normal
displacement and stress in th¢h layer composed of the | A1l
mediumg, ¢ = 1, 2, are given by: oty | ( )
wy, = ((l)ane—ikq(ws—cn—l) wherex denotes the complex conjugate, with
<:>(2)aneik"(’”3_c"‘1))ei“’t, (A1) a= [cos(wrg) 1S9 sin(wrg)] e T (A12)
T, = wZ, ((1)anefikq(z37<n71) v = &iDyy sin(wr)e i@ (A13)
Feoyyt =1, Al4
+ (g ibalea=to))elet, (42) ae = (A14)
" ’ 172, Zs
512 - 5 Z_ Z_ ) (A15)
wherek, = w/V, andZ, are respectively the wave number X !
and the acoustic impedance of medigm(,—_; is the co- Dy = 1(& @é> (A16)
ordinate with respect to thes-axis of the upper interface of 2\ 2y 7y

thenth layer (see Figure 2).
At z3 = (,, the displacement-stress vector can be written
such that:

Note that expressions (A12) and (A13) are slightly different
from those of reference [6] because of the harmonic time
dependence which is hesgiv?,
{ Wy } _ paye { Da,, }eiwt (A3) If_ z, denotes the _co-ordi_nate with respect.zt?axis of

T, . Wa,, ’ th_e interface separating peripdrom the_next periogh + 1
with 2,41 = 2, + h andzp = 0 (see Figure 1), equations

whereB? and#? have the following form: (A6) and (A8) can be written such that:
pi_| 1 &l } ’ (Ad) APt = @ AP, (A17)
| GiwZ, €iwZ, and WP = ryp, (A18)
and where
21— _elgqhq e+igqhq] . (A5) 4= { gzz } (A19)

If nisan odd number, then= 1. The use of the continuity of ] ] .

normal displacement and stressgt= ¢, andatrs = (g With (a? and?a? the displacement amplitudes of the clas-

provides a relationship between the displacement amplitude§ic@! longitudinal plane waves propagating up and down in
of the plane waves in the-th layer and those in the,+2)-th the first layer of the period p. Their phase origin reference is

layer: taken atrs = z,_;. ' '
The state vectoVV? atzs = z, is defined by:
Vg, Vg,
e R
=\ [
with

) ) wherew,, andT}, are the normal displacement and stress at
$ = (B') B*H?*(B*) B'H. (A7) 23 =2,
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which is the eigen vectdf)V, defined by equations (22) and
Im(a ),

a0 : Im(a ) (23). Hence,

‘ 1 = 75 (Or sa), (A24)

1 1

| w
V1- (@) : /\ T = iwZ (v + (B Sa). (A25)
1 .
1 o o i Ret:) 8 0[N an Re(;) With w andT" from equation (A24) and (A25) and using
\J i@y ‘ equation (A23), the normal power flux is thus given by:
\ |
o

-1

‘ 7Z
T eq F = 71w2 (fy'y* saa* BNy

+a ) 4o <5>A). (A26)
Figure Al. Position ofx in the complex plane, in comparison with

the radius one circle, in the case of propagative Floquet waves. Taking equation (A14) into account and noticing that

|(®\] = 1, one can finally obtain:
A2. Floquet's theorem Fy = Z1w? (%e(a (B\*) (:)1). (A27)

Floquet waves can be introduced by an extension of Floquet's

theorem to the field equations governing the dynamic behava4, Sign of the normal power flux of a propagative
ior of aperiodic continuousnedium, when they are written Floquet wave

in a matrix differential form. Originally, when the periodic

function contains a cosine term in the one-dimensional prob_et us note in this sectionn = o' + io"".

lem, the field equation can be written such as [23] Propagative Floquet waves are associated to the eigen val-
, ues P\ = o/ +£1i\/1&(a')? with |o/| < 1 It can also
0 ' -
_l; + [a + beos(2z)]u = 0. (A21) be noted that, dye to equation (A4 > 1. As a con

Oz seguence, considering the radius one circle in the complex

" / 2 I
Floguet discovered that the general solution of the equatiorPIane’|a. | > /1 &(a)” (see Figure Al)'. .
The sign of the normal power flux defined by equation

could be written: (A27) is given by the sign oRe(a (IA*) o1

u= A1 F(2)e* + AyG(x)e™*". (A22) e Let us consider the case of the Floquet wave associated to

X =o' +iy/1 e(a')2.
In a three-dimensional problem, when the field equations are
written in a matrix differential form, an extension of Floquet's ~ Re(a (ﬁ)/\*) sl = ()Y +a"V1e@)? el
theorem (A21) leads to write the solutions in terms of an s s
exponenti(al m;trix, the eigen values of which are the Floquet = Vie(d) [a” eVl ®(al)2] ’
wave numbers. Inthe case we are interested in (see Figure 1), . (@)= ) .
the multilayered medium is not a periodically continuous Tbe sign_of 3?62(0‘ A*) &1 is thus the sign of
medium: the periodic function isonstant piece by piece @ ‘:),V, 1&(a ), : )
which amounts to equalling b to zero in equation (A20), with If o < 0, Wh'Ch_ corresponds to_ zone Il (see Figure 4),
a depending on the layer medium. This equation becomes thls”expressm_n Is always negaive. )
a simple differential equation with constant coefficients, so lf, ar > ,(,)’ which corresp20nd§ to zone I.(seg Figure 4),
that, strictly speaking, Floquet’s theorem reduces in this case since|a”| > /1 &(a’)? this expression is always

to a very classical result. positive. ) .
e Let us now consider the case of the Floquet wave associ-

ated o\ = o’ ©i/1 (/)2
A3. Calculus of the normal power flux of a propagative Re(a ) &1 = (o)’ @ /1e(@)?2 o1

Floguet wave = /1e(a)? [a” +4/1 @(a')Q].

The normal power flux can be calculated by use of the fol-

i OA*) o1 i ite i
lowing relation: The sign ofiRe(a \P)A*) <1 is thus the opposite sign of

o' +/1e(a)2

1 — If " < 0, which corresponds to zone Il (see Figure 4),
By = @Ziw( &Tw" + T w), (A23) since|a”’| > /1 &(a')?, this expression is always
negative and thulte (o (YA*) &1 is always positive.
wherew andT are the normal displacement and stress. —If &” > 0, which corresponds to zone | (see Fig-
As far as the Floquet wavg3) is concerned, these dis- ure 4), this expression is always positive and thus

placement and stress are given by the particular state vector §Re(a (5)/\*) &1 is always negative.
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Finally, in zone | (see Figure 4), the Floquet wave which [16] C. Potel, J. F. de Belleval: Surface waves in an anisotropic

corresponds td} > 0is associated to the eigen valdé\ = S’GXOd:Cg'LV m;;tz'fggg)?%lmsezd“éq‘éil”f'“e”ce of the absorption.
5 2 . Appl. Phys ~6161.

; 1 S[Re(a)]?. Inzonell, this i$PN = Re(a) & [17] C. Potel, J. F. de Belleval, E. Genay, P. Gatignol: Behavior of

iv/1 & Re(a)]?. Lamb waves and multilayered Rayleigh waves in an anisotropic

periodically multilayered medium: application to the long-
wave length domain. Acustica-Acta acust8&(1996) 738—
748.

[18] E. G. Henneke II: Reflection-refractionof stress wave at a plane
boundary between anisotropic media. J. Acoust. Soc. &m.

References

[1] W. T. Thomson: Transmission of elastic waves through a strat-

ified solid medium. J. Appl Phle (1950) 89-93. (1972) 210-217.
(2] m-eﬁ-i:aéﬁﬁ"éz?:rgéfpggi'oxggz‘lr&%e)‘Q’?VZZ'” multilayered 191 |, G. Merkulov: Ultrasonic waves in crystals. Appl. Mat. Res.
i . e D o . (1963) 321-240.
[3] F. Gilbert, G. E. Backus: Propagator matrices in elastic wave [20] M. J. P. Musgrave: Crystal acoustics. Holden-Day, San Fran-
and vibration problem. Geophysigs (1966) 326-332. cisco, 1970.

[4] K. E. Gilbert: A propagator matrix method for periodically [21] D. Royer, E. Dieulesaint: Ondesastiques dans les solides,
stratified media. J. Acoust. Soc. Aif3 (1983) 137-142. Vol 1: Propagation libre et guék. Masson, 1996.

[5] M. Schoenberg: Properties of a periodically stratified acoustic 1251 5|, Rokhlin, T. K. Bolland, L. Adler: Reflection and refraction
half-space and its relation to a Biot fluid. J. Acoust. Soc. Am. of elastic waves on a plane interface between two generally
73(1983) 61-67. . . . anisotropic media. J. Acoust. Soc. A (1986) 906-918.

[6] M. Rousseau, P. Gatignol: Propagation acoustique dans uns3; grillouin: Wave propagation in periodic structures. 2nd ed.
milieu périodiquement straté#. Acustice64 (1987) 188-194. Dover, New-York, 1953.

[7] P. G. Richards: Elastic wave solutions in stratified media. Geo- [24] A. M. B. Braga, G. Herman: Plane waves in anisotropic layered

physics36 (1971) 798-809. o o composites. — In: Wave Propagation In Structural Composites.
[8] M. Rousseau: Floguetwave propertiesin a periodically layered A.K.Mal, T.C. T. Ting (eds.). ASME, New-York, 1988, AMD
medium. J. Acoust. Soc. An86 (1989) 2369-2376. Vol.90. 81-98.

[9]J. S. Moukmaha: Moglisation des signaux acoustiques o5 p J. Shull, D. E. Chimenti, S. K. Datta: Elastic guided waves

réflechis par un multicouche épiodique - applicationa and the floquet conceptin periodically layered plates. J. Acoust.
I'identification de @fauts par rathodes ultrasonores. PhD Soc. Am.95(1994) 99-108.
Thesis, Univ. Techn. Comggne, France, 1991. _ [26] F. Sun, P. Banks-Lee, H. Peng: Wave propagation theory in
[10] T. Lhermitte, B. Perrin, M. Fink: Ultrasonic spectroscopy in anisotropic periodically layered fluid-saturated porous media.
cross-ply reinforced composites applied to dispersion effects J. Acoust. Soc. Am93(1993) 1277—1285.
characterisation of elastic shear wave. First French Conf. ON[27] M. Schoenberg: Reflection of elastic waves from periodically
Acoust., Suppl. J. Phys., tome 51,, 1990. C21265-C21268. stratified media with interfacial slip. Geophysical prospecting
[11] A. M. B. Braga, G. Hermann: Floguet waves in anisotropic 3(1983) 265-292.
periodicallylayered composites. J. Acoust. Soc. A#{(1992) [28] M. Schoenberg: Plane wave propagation in stratified aniso-
1211-1227. o ) ) _ tropic media. J. Acoust. Soc. ArB5 (1974) 5.
[12] A. H. Nayfeh: Wave propagation in layered anisotropic media [29] g, . Adler: Matrix methods applied to acoustic waves in multi-

with applications of composites. North-Holland, 1995. layers. I[EEE Trans. Ultrason. Ferroelec. Freq. C&T¢1990)
[13] C. Potel, J. F. de Belleval: Propagation in an anisotropic peri- 485-490.
odically multilayered medium. J. Acoust. Soc. A8 (1993) [30] C. E. Bradley: Time harmonic acoustic bloch wave propagation
2669-2677. . . . . in periodic wave guides. Part |. Theory. J. Acoust. Soc. Am.
[14] C. Potel, J. F. de Belleval: Acoustic propagation in anisotropic 96(1994) 1844-1853.
_period_igally multilayered media. A method to solve numerical [31] J. L. Synge: Flux of energy for elastic waves in anisotropic
instabilities. J. App. Phys.4 (1993) 2208-2215. media. Proc. Royal Irish Academy. Sect A, Elastic waves in
[15] C. Potel, J. F. de Belleval, Y. Gargouri: Floquet waves and clas- anisotropic medi&8 (1956) 13-21.
sical plane waves in an anisotropic periodically multilayered [32] B. Hosten, M. Castaings: Transfer matrix of multilayered ab-
medium: applicationto the validity domain of homogenization. sorbing and anisotropic media. Measurements and simulations
J. Acoust. Soc. Am97 (1995) 2815-2825. of ultrasonic wave propagation through composite materials.
J. Acoust. Soc. Am94 (1993) 1488-1495.
[33] M. Castaings: Propagation ultrasonore dans les milieux strat-
ifiés plans constitts de mariaux absorbants et orthotropes.
These de doctorat, Univ. Bordeaux I, 1993.



