

Chapitre 4

FORMULATION ANALYTIQUE DE PROBLEMES
LINEAIRES FONDAMENTAUX DE
L'ACOUSTIQUE EN MILIEU FLUIDE
HOMOGENE, INDEPENDANT DU TEMPS ET AU
REPOS: LES SOLUTIONS FONDAMENTALES EN
COORDONNEES CARTESIENNES

Solutions de l'équation de propagation

Equation de propagation

Equation de Helmholtz

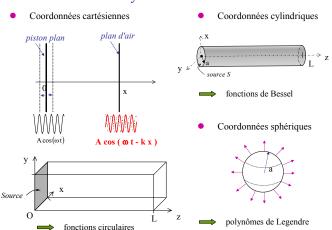
$$\left(\Delta - \frac{1}{c_0^2} \frac{\partial^2}{\partial t^2}\right) \hat{\mathbf{p}}(\vec{\mathbf{r}};t) = -\hat{\mathbf{f}}(\vec{\mathbf{r}};t)$$

$$\left(\Delta + \frac{\omega^2}{c_0^2}\right) \hat{P}(\vec{r}; \omega) = -\hat{F}(\vec{r}; \omega)$$

- Pas de solution générale connue en dehors du cas de propagation unidimensionnel
- Si les frontières du domaine coïncident avec des surfaces de coordonnées curvilignes séparables
 - solutions à variables séparées
 - "base" sur laquelle toute solution peut être développée

famille complète

Choix de système de coordonnées



AMPLITUDE DES ONDES EN COORDONNEES CARTESIENNES, CYLINDRIQUES ET SPHERIQUES (1/3)

Flux d'énergie
 Φ ∞ | Â

proportionnel à la surface traversée et à l'amplitude de l'onde au carré

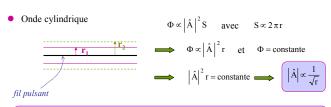
 $\Phi = \text{constante}$ $\left| \hat{A}_1 \right|^2 S_1 = \left| \hat{A}_2 \right|^2 S_2$

Onde plane

 $S_1 = S_2$

Toute onde dont l'amplitude est indépendante du point, dans un espace donné, a un caractère **plan** dans cet espace.

AMPLITUDE DES ONDES EN COORDONNEES CARTESIENNES, CYLINDRIQUES ET SPHERIQUES (2/3)

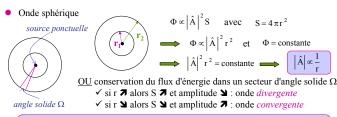


Toute onde dont l'amplitude décroît en $1/\sqrt{r}$ dans un certain espace, a un caractère cylindrique dans cet espace.

Application : départ en vacances sur l'autoroute

En première approche, le bruit émis par l'autoroute peut être modélisé par un champ à caractère cylindrique

AMPLITUDE DES ONDES EN COORDONNEES CARTESIENNES, CYLINDRIQUES ET SPHERIQUES (3/3)



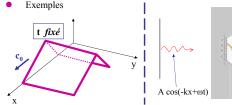
Toute onde dont l'amplitude décroît en 1/r dans un certain espace, a un caractère sphérique dans cet espace.

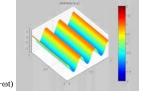
Application: voiture seule en rase campagne

En première approche, la voiture est une source ponctuelle vis à vis de l'habitation (champ à caractère sphérique)

Problèmes à 1 dimension

- Toutes les variables du problème dépendent d'une seule coordonnée
 - $\hat{p}(x;t)$, $\vec{v}(x;t)$, $\hat{\varphi}(x;t)$
 - champs uniformes dans un plan perpendiculaire à la coordonnée
 - champs d'ondes planes

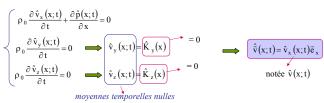




Bon choix de repère $\mathcal{R} = (0, \vec{e}_x, \vec{e}_y, \vec{e}_z)$

- Direction du vecteur vitesse (1D)
- Bon choix de repère $\mathcal{R} = (0, \vec{e}_x, \vec{e}_y, \vec{e}_z)$ \Longrightarrow coordonnée x $\hat{\vec{v}}(x;t) = \hat{v}_{y}(x;t)\vec{e}_{y} + \hat{v}_{y}(x;t)\vec{e}_{y} + \hat{v}_{z}(x;t)\vec{e}_{z}$
- Equation d'Euler

$$\rho_0 \frac{\partial \hat{\vec{v}}}{\partial t} + \overline{\text{grad}} \, \hat{p} = \vec{0} \qquad \Longrightarrow \qquad \rho_0 \frac{\partial \hat{\vec{v}}(x;t)}{\partial t} + \frac{\partial \hat{p}(x;t)}{\partial x} \vec{e}_x = \vec{0}$$



Equations de l'acoustique en unidimensionnel

Lois fondamentales

$$\begin{array}{c} \checkmark \quad \rho_0 \, \frac{\partial \, \hat{\hat{v}}}{\partial \, t} + \overline{\text{grad}} \, \hat{p} = \vec{0} \\ \\ \checkmark \quad \frac{\partial \, \hat{\rho}}{\partial \, t} + \rho_0 \, \text{div} \, \hat{\hat{v}} = 0 \\ \\ \checkmark \quad \hat{p} = c_0^2 \, \hat{\rho} \end{array} \qquad \begin{array}{c} \checkmark \qquad \left(\begin{array}{c} \rho_0 \, \frac{\partial \, \hat{v}(x;t)}{\partial \, t} + \frac{\partial \, \hat{p}(x;t)}{\partial \, x} = 0 \\ \\ \frac{\partial \, \hat{\rho}(x;t)}{\partial \, t} + \rho_0 \, \frac{\partial \, \hat{v}(x;t)}{\partial \, x} = 0 \\ \\ \checkmark \qquad \left(\begin{array}{c} \hat{p}(x;t) + \frac{\partial \, \hat{p}(x;t)}{\partial \, x} = 0 \\ \\ \hat{p}(x;t) = c_0^2 \, \hat{\rho}(x;t) \end{array} \right) \end{array}$$

- Equation de propagation
- $\checkmark \left(\Delta \frac{1}{c_0^2} \frac{\partial^2}{\partial t^2}\right) \hat{p} = 0$

Solution générale en unidimensionnel

- Equation de propagation $\left(\frac{\partial^2}{\partial x^2} \frac{1}{c_0^2} \frac{\partial^2}{\partial t^2}\right) \hat{p}(x;t) = 0$

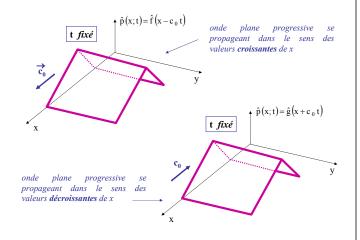
- Report dans l'équation de propagation

$$\begin{split} \frac{1}{c_0^2} & \left(\frac{\partial^2 \hat{p}}{\partial u^2} + \frac{\partial^2 \hat{p}}{\partial v^2} - 2 \frac{\partial^2 \hat{p}}{\partial u \partial v} \right) - \frac{1}{c_0^2} \left(\frac{\partial^2 \hat{p}}{\partial u^2} + \frac{\partial^2 \hat{p}}{\partial v^2} + 2 \frac{\partial^2 \hat{p}}{\partial u \partial v} \right) = 0 \\ & \Longrightarrow \quad \frac{\partial^2 \hat{p}}{\partial u \partial v} = 0 \quad \Longrightarrow \quad \hat{p} = \hat{f}(u) + \hat{g}(v) \end{split}$$

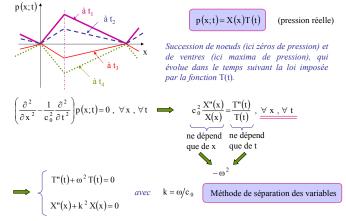
Solution générale

Solution générale
$$\widehat{\hat{p}}(x;t) = \hat{f}\left(t - \frac{x}{c_0}\right) + \hat{g}\left(t + \frac{x}{c_0}\right)$$
 ou
$$\widehat{p}(x;t) = \hat{f}\left(x - c_0 t\right) + \hat{g}\left(x + c_0 t\right)$$
 ou
$$\widehat{p}(x;t) = \hat{f}\left[\kappa(x - c_0 t)\right] + \hat{g}\left[\kappa(x + c_0 t)\right]$$

Cas particulier: ondes planes progressives (1D)



Cas particulier (1D): ondes planes stationnaires (1/2)



Cas particulier (1D): ondes planes stationnaires (2/2)

- $X(x) = A\cos(kx) + B\sin(kx)$ • $X''(x) + k^2 X(x) = 0$ $X(x) = \hat{C} e^{ikx} + \hat{D} e^{-ikx}$
- $T(t) = E \cos(\omega t) + F \sin(\omega t)$ $T''(t) + \omega^2 T(t) = 0$ $T(t) = \hat{G} e^{i\omega t} + \hat{H} e^{-i\omega t}$
 - Une onde stationnaire est nécessairement sinusoïdale en t.

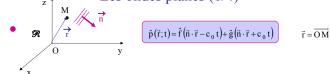
En pratique, choix d'une convention temporelle ou e^{-iωt}

L'une ou l'autre convention conduit au même résultat réel.

Ondes planes progressives et stationnaires

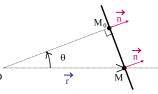
- $p(x;t) = A\cos(kx)\cos(\omega t) = \frac{A}{2}[\cos(kx \omega t) + \cos(kx + \omega t)]$ onde plane progressive + onde plane progressive onde plane stationnaire exemple:
- $p(x;t) = A \cos(k x \omega t) = A \cos(k x) \cos(\omega t) + A \sin(k x) \sin(\omega t)$ onde plane onde plane onde plane stationnaire stationnaire
- $e^{i(kx+\omega t)} = e^{ikx} e^{i\omega t}$ MAIS $\Re \left[e^{i(kx+\omega t)} \right] = \cos(kx+\omega t) \neq \Re \left(e^{ikx} \right) \Re \left(e^{i\omega t} \right)$

Les ondes planes (1/4)



 $F\left[\kappa\left(c_{0}t-\vec{n}\cdot\vec{r}\right)\right]$

A 1 instant donné, en tout point M tel que $\vec{n} \cdot \vec{r} = constante$



la valeur de la variable de champ (grandeur physique) est la même.

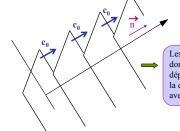
Ces points sont situés dans un même plan, appelé plan d'onde (surface d'onde plane), perpendiculaire à la direction de n :

 $\vec{n} \cdot \vec{r} = \vec{n} \cdot \overrightarrow{OM} = OM \cos \theta = OM_0$

Les ondes planes (2/4)

• <u>Lorsque le temps varie</u>, suivre une valeur donnée de F \Longrightarrow $(c_0 t - \vec{n} \cdot \vec{r}) = constante$ $c.\dot{a}.d.$ $d(c_0 t - \vec{n} \cdot \vec{r}) = 0$ soit $\vec{n} \cdot \frac{d\vec{r}}{dt} = c_0$

vitesse à laquelle doit se déplacer un point géométrique M pour suivre une valeur donnée de F



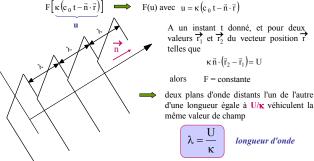
Les plans d'onde qui véhiculent une valeur

si $\vec{r} / / \vec{n} \implies \frac{d\vec{r}}{dt} = c_0 \vec{n}$

donnée de la variable de champ F, se déplacent parallèlement à eux-mêmes dans la direction n qui leur est perpendiculaire, et avec la vitesse de propagation co.

Les ondes planes (3/4)

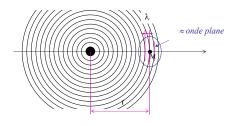
Cas particulier d'une onde plane périodique : F périodique de période U



cas particulier des champs *monochromatiques*: $C\cos(\omega t - k \vec{n} \cdot \vec{r} + \alpha) \longrightarrow U = 2\pi$

Les ondes planes (4/4)

Validité de l'hypothèse d'onde plane



Approximation "onde quasi plane" d'un champ au voisinage d'un point d'observation M: cas d'un champ sphérique en hypothèse de champ lointain ($r >> \lambda$).

Les ondes planes monochromatiques (1/4)

- Onde monochromatique : propagation à 1 fréquence (pulsation ω donnée)
 - fréquence imposée par une source émettant en permanence
 - mouvement forcé, régime établi, acoustique linéaire
- Toute grandeur peut s'écrire $\hat{\mathbf{u}}(\mathbf{x};t) = \hat{\mathbf{U}}(\mathbf{x})e^{i\omega t}$

$$\hat{p}(x;t) = \hat{P}(x)e^{i\omega t}, \quad \hat{\vec{v}}(x;t) = \hat{\vec{V}}(x)e^{i\omega t}, \quad \hat{\phi}(x;t) = \hat{\Phi}(x)e^{i\omega t}, \dots$$

Equation de Helmholtz

$$\frac{\left(\frac{\partial^{2}}{\partial x^{2}} - \frac{1}{c_{0}^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \hat{p}(x;t) = 0 \qquad \qquad \left[\frac{\partial^{2}}{\partial x^{2}} + \left(\frac{\omega}{c_{0}}\right)^{2}\right] \hat{p}(x) e^{i\omega t} = 0, \quad \underline{\forall x, \forall t}$$

$$\Rightarrow \left[\frac{\partial^{2}}{\partial x^{2}} + \left(\frac{\omega}{c_{0}}\right)^{2}\right] \hat{p}(x) = 0, \quad \underline{\forall x}$$

$$\Rightarrow \left[\frac{\partial^{2}}{\partial x^{2}} + \left(\frac{\omega}{c_{0}}\right)^{2}\right] \hat{p}(x) = 0, \quad \underline{\forall x}$$

$$\Rightarrow \left[\left(\frac{\partial^{2}}{\partial x^{2}} + k_{0}^{2}\right) \hat{p}(x) = 0, \quad \forall x\right]$$

Les ondes planes monochromatiques (3/4)

- Notation $k_0 = \frac{\omega}{c_0}$ source

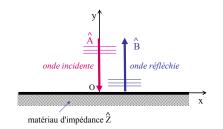
 milieu de propagation $c_0 = \sqrt{\gamma/(\rho_0 \chi_T)}$ masse volumique compressibilité
 - équation de dispersion en fluide non dissipatif : $k = k_0$
 - 1 le nombre d'onde k n'est pas toujours égal à k₀
 - Exemple : terme dissipatif de la forme $R \frac{\partial \hat{p}}{\partial t}$

$$= \left[\frac{\partial^2}{\partial x^2} + R \frac{\partial}{\partial t} - \frac{1}{c_0^2} \frac{\partial^2}{\partial t^2} \right] \hat{p}(x;t) = 0, \ \forall \ x, \ \forall \ t$$

 $\hat{P}(x) = \hat{A} e^{-ikx} + \hat{B} e^{ikx} \implies \left[\frac{\partial^2}{\partial x^2} + i\omega R + \left(\frac{\omega}{c_0} \right)^2 \right] \hat{P}(x) = 0, \ \forall \ x$ $(-k^2 + i\omega R + k^2) \hat{P}(x) = 0, \ \forall \ x$

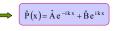
 $(-k^2 + i\omega R + k_0^2)\hat{P}(x) = 0, \forall x$ $k^2 = k_0^2 + i\omega R$ équation de dispersion

Interaction d'une onde plane monochromatique avec une paroi d'admittance non nulle, en incidence normale (1/5)



Les ondes planes monochromatiques (2/4)

- Recherche de solutions $\left[\frac{\partial^2}{\partial x^2} + \left(\frac{\omega}{c_0}\right)^2\right] \hat{P}(x) = 0, \quad \underline{\forall x}$



Report dans l'équation de Helmholtz : $(-k^2 + k_0^2)\hat{P}(x) = 0$, $\frac{\forall x}{}$ avec $k_0 = \omega/c_0$

- $\mathbf{k}^2 = \mathbf{k}_0^2$ équation de dispersion soit $\mathbf{k} = \mathbf{k}_0$ ou $\mathbf{k} = -\mathbf{k}_0$
- $\hat{p}(x;t) = \hat{A}e^{i(-kx+\omega t)} + \hat{B}e^{i(kx+\omega t)}$

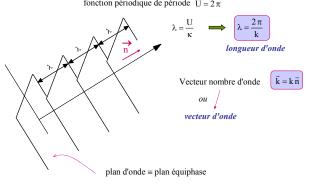
onde plane

progressive vers les x ↗ onde plane

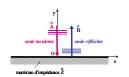
progressive vers les x ↘

Les ondes planes monochromatiques (4/4)

 $F\left[\kappa\left(c_{0}\,t-\vec{n}\cdot\vec{r}\right)\right] \qquad \text{de la forme} \qquad C\cos\left(\omega t-k\,\vec{n}\cdot\vec{r}+\alpha\right)$ fonction périodique de période $U=2\,\pi$

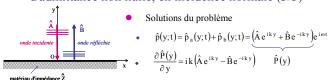


Interaction d'une onde plane monochromatique avec une paroi d'admittance non nulle, en incidence normale (2/5)



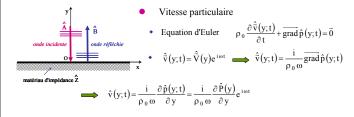
- Equation de propagation
- $\Bigg(\frac{\partial^{\,2}}{\partial\,y^{\,2}} \frac{1}{c_{\,0}^{\,2}}\frac{\partial^{\,2}}{\partial\,t^{\,2}}\Bigg)\hat{p}\big(y;t\big) = 0 \ , \ \forall \ y \geq 0 \,, \ \forall \ t$
- Champ monochromatique $\hat{p}(y;t) = \hat{P}(y)e^{i\omega t}$ incident
- Equation de Helmholtz $\left[\left[\frac{\partial^2}{\partial y^2} + \left(\frac{\omega}{c_0} \right)^2 \right] \hat{\mathbf{p}}(y) = 0, \ \forall \ y \ge 0$
- Conditions aux frontières $\left[\frac{\partial}{\partial n} + i k_0 \hat{\beta}\right] \hat{P}(0) = 0$ avec $\hat{\beta} = \rho_0 c_0 / \hat{Z}$ et $\vec{n} = -\vec{e}_y$
 - $= \left[\left[-\frac{\partial}{\partial y} + i k_0 \hat{\beta} \right] \hat{P}(y) = 0, y = 0 \right]$
- Onde retour B se propage à l'infini

Interaction d'une onde plane monochromatique avec une paroi d'admittance non nulle, en incidence normale (3/5)



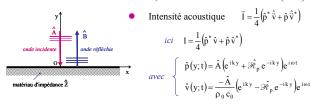
- Conditions aux frontières : $\left[-\frac{\partial}{\partial y} + ik_0 \hat{\beta}\right] \hat{P}(y) = 0$, $y = 0 \implies -ik(\hat{A} \hat{B}) + ik_0 \hat{\beta}(\hat{A} + \hat{B}) = 0$
 - équation de dispersion : $k = k_0$ \implies $\hat{A}(1-\hat{\beta}) = \hat{B}(1+\hat{\beta})$
- Coefficient de réflexion $\Re_{p} = \frac{\hat{\mathbf{B}}}{\hat{\mathbf{A}}} = \frac{1-\hat{\boldsymbol{\beta}}}{1+\hat{\boldsymbol{\beta}}}$ Si $\hat{\boldsymbol{\beta}}=0$ (matériau parfaitement rigide): réflexion totale
- Pression acoustique $\hat{P}(y) = \hat{A}(e^{iky} + \hat{\mathcal{R}}_n e^{-iky}) = \hat{A}[2\hat{\mathcal{R}}_n \cos(ky) + (1 \hat{\mathcal{R}}_n)e^{iky}]$ $\hat{p}(y;t) = \hat{A} \left[2\hat{\mathcal{R}}_{n} \cos(ky) + \left(1 - \hat{\mathcal{R}}_{n} \right) e^{iky} \right] e^{i\omega t}$ partie stationnaire partie propagative

Interaction d'une onde plane monochromatique avec une paroi d'admittance non nulle, en incidence normale (4/5)



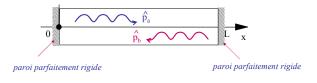
- Pression acoustique $\hat{P}(y) = \hat{A}(e^{iky} + \hat{\mathcal{R}}_{k}e^{-iky})$
 - $\hat{v}\left(y;t\right) = \frac{-k \, \hat{A}}{\rho_{\,0} \, \omega} \left(e^{\,\mathrm{i} \, k \, y} \widehat{\mathscr{R}}_{\,p} \, e^{\,\mathrm{-i} \, k \, y} \right) e^{\,\mathrm{i} \, \omega t} = \frac{-\, \hat{A}}{\rho_{\,0} \, c_0} \left(e^{\,\mathrm{i} \, k \, y} \widehat{\mathscr{R}}_{\,p} \, e^{\,\mathrm{-i} \, k \, y} \right) e^{\,\mathrm{i} \, \omega t}$

Interaction d'une onde plane monochromatique avec une paroi d'admittance non nulle, en incidence normale (5/5)



- $I = \frac{-\hat{A}^*\hat{A}}{4\rho_0 c_0} \Big[\Big(e^{-iky} + \hat{\mathscr{R}}_p^* e^{iky} \Big) \Big(e^{iky} \hat{\mathscr{R}}_p^* e^{-iky} \Big) + \Big(e^{iky} + \hat{\mathscr{R}}_p^* e^{-iky} \Big) \Big(e^{-iky} \hat{\mathscr{R}}_p^* e^{iky} \Big) \Big]$ $I = \frac{-\left|\hat{A}\right|^2}{2\rho_0 c_0} \left[1 - \left|\hat{\mathcal{R}}_p\right|^2\right]$
 - Si la réflexion est totale, $\hat{\mathcal{R}}_p = 1$ \longrightarrow I = 0

Champ acoustique dans un tube de longueur finie (1/D) (1/5)



- t < 0: sources acoustique dans le tube
- t = 0: extinction des sources
- solutions sont cherchées sous la forme d'une superposition d'ondes planes monochromatiques qui vérifient les conditions aux limites aux deux extrémités en x=0 et x=L

Champ acoustique dans un tube de longueur finie (1/D) (2/5)

- $\label{eq:equation} \text{Equation de propagation } \Bigg(\frac{\partial^{\,2}}{\partial\,x^{\,2}} \frac{1}{c_{\,0}^{\,2}} \, \frac{\partial^{\,2}}{\partial\,t^{\,2}} \Bigg) \hat{p}(x;t) = 0 \ , \ \forall \, x \in \! \big[0, L \big] \, , \ \forall \, t \geq 0$
- $\begin{array}{c} \text{Conditions aux frontières} \\ \hline \text{$\hat{v}_{x}(0;t)=0$} \\ \hline \text{$soit$} \\ \hline \\ \text{∂n} \\ \hline \\ \text{$avec$} \\ \hline \\ \text{$\partial (n)=-\partial/\partial x$ en $x=0$ et $\partial/\partial n=+\partial/\partial x$ en $x=L$} \\ \hline \end{array}$
- Source éteinte à t = 0
- Solution cherchée à caractère harmonique \Rightarrow $\hat{p}(x;t) = \hat{P}(x)e^{i\omega t}$
- Equation de Helmholtz
- Conditions aux frontières
- $\begin{cases} \left[\partial_{xx}^2 + (\omega/c_0)^2 \right] \hat{P}(x) = 0 , \forall x \in [0, L], \\ \partial_x \hat{P}(x) = 0 , x = 0 \text{ et } x = L, \end{cases}$

Champ acoustique dans un tube de longueur finie (1/D) (3/5)

- Solutions du problème
 - $\hat{p}(x;t) = \hat{p}_{a}(x;t) + \hat{p}_{b}(x;t) = \underbrace{\left(\hat{A}\,e^{-ikx} + \hat{B}\,e^{\,ikx}\right)}_{\hat{P}(x)} e^{i\omega t}, \quad \forall \ x \in [0,L]$ $\hat{P}(x) \qquad avec \ \acute{e}quation \ de \ dispersion : \ k = k_{0}$ Vitesse particulaire $\hat{v}_{x} = \frac{-1}{i\,\omega\rho_{0}} \partial_{x} \,\hat{p} = \frac{-1}{\rho_{0}\,c_{0}} \left(-\hat{A}\,e^{-ikx} + \hat{B}\,e^{\,ikx}\right) e^{i\omega t}$

$$\begin{cases} \left[\widehat{\sigma}_{xx}^2 + \left(\omega / c_0 \right)^2 \right] \hat{P}(x) = 0 \ , \ \forall \ x \in [0, L], \\ \widehat{\sigma}_x \, \widehat{P}(x) = 0 \ , \ x = 0 \ et \ x = L \ , \end{cases} \quad \Longrightarrow \quad \begin{cases} \left(- \, \hat{A} + \, \hat{B} \right) e^{\, i \, \omega \, t} = 0 \ , \ \forall \ t \ , \\ \left(- \, \hat{A} \, e^{- i \, k \, L} + \, \hat{B} \, e^{\, i \, k \, L} \right) e^{\, i \, \omega \, t} = 0 \ , \ \forall \ t \ . \end{cases}$$

- $\begin{cases} \hat{A} = \hat{B} \\ \hat{A} \left(-e^{-ikL} + e^{ikL} \right) = 0 \end{cases} . \quad soit \quad 2i sin(kL) = 0 \quad c.\dot{a}.d. \quad kL = m\pi \quad , m \in \mathbb{N}$ $\sum_{l=1}^{\infty} k_m = \frac{m\pi}{L} \quad , m \in \mathbb{N}$ $valeurs \ propres$
- Solution triviale $\hat{A}_m = 0$, $\forall m$ <u>SAUF S</u>
- pulsations propres $\omega_m = k_m c_0 = \frac{m \pi c_0}{L}$; fréquences propres $f_m =$

Champ acoustique dans un tube de longueur finie (1/D) (4/5)

- Champ complexe porté par chaque mode m
 - $\hat{p}_{m}(x;t) = \hat{A}_{m}(e^{-ik_{m}x} + e^{ik_{m}x})e^{i\omega_{m}t} = 2\hat{A}_{m}\cos(k_{m}x)e^{i\omega_{m}t}$
 - $\hat{v}_{x_{m}}(x;t) = \frac{-\hat{A}_{m}}{\rho_{0} c_{0}} \left(-e^{-ik_{m}x} + e^{ik_{m}x}\right) e^{i\omega_{m}t} = \frac{-2i\hat{A}_{m}}{\rho_{0} c_{0}} sin(k_{m}x) e^{i\underline{\omega}_{m}t}$
- Champ total: superposition de modes propres

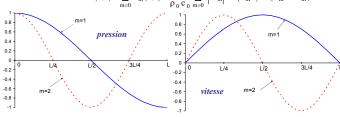
$$\hat{p}(x;t) = \sum_{m=0}^{\infty} \hat{p}_{m}(x;t) = \sum_{m=0}^{\infty} 2 \hat{A}_{m} \cos(k_{m}x) e^{i\omega_{m}t}$$

$$\hat{\mathbf{v}}_{x}(x;t) = \sum_{m=0}^{\infty} \mathbf{v}_{x_{m}}(x;t) = \sum_{m=0}^{\infty} \frac{-2i\hat{\mathbf{A}}_{m}}{\rho_{0}c_{0}} \sin(k_{m}x)e^{i\omega_{m}t}$$

avec
$$\hat{A}_m = |\hat{A}_m| e^{i\alpha_m}$$

Champ acoustique dans un tube de longueur finie (1/D) (5/5)

- Champ réel porté par chaque mode m
 - pression $p_m(x;t) = \text{Re}\left[\hat{p}_m(x;t)\right] = 2\left|\hat{A}_m\right|\cos\left(k_mx\right)\cos\left(\omega_mt + \alpha_m\right)$
 - vitesse $v_m(x;t) = \text{Re}\left[\hat{v}_m(x;t)\right] = \frac{2\left|\hat{A}_m\right|}{\rho_0\,c_0}\sin\left(k_mx\right)\sin\left(\omega_mt + \alpha_m\right)$ Champ total réel : superposition de modes propres
- - $p(x;t) = \sum_{m=0}^{\infty} p_m(x;t) = 2 \sum_{m=0}^{\infty} |\hat{A}_m| \cos(k_m x) \cos(\omega_m t + \alpha_m)$
 - $v(x;t) = \sum_{m=0}^{\infty} v_m(x;t) = \frac{2}{\rho_0 c_0} \sum_{m=0}^{\infty} \left| \hat{A}_m \right| \sin(k_m x) \sin(\omega_m t + \alpha_m)$ vitesse



Solutions de problèmes à 3 dimensions (1/5)

- $\left[\Delta \frac{1}{c^{\frac{2}{3}}} \frac{\partial^{2}}{\partial t^{2}}\right] \hat{p}(\vec{r};t) = 0, \forall \vec{r} \in \mathcal{V}, \forall t$ Equation de propagation
- $\left| \Delta + \left(\frac{\omega}{c_0} \right)^2 \right| \hat{P}(\vec{r}; \omega) = 0 , \forall \vec{r} \in \mathcal{V}$ Equation de Helmholtz

Pas de solution générale connue à l'équation de Helmholtz en dehors du cas de propagation

Solutions à variables séparées ou représentation intégrale

- Coordonnées cartésiennes $\hat{p}(x, y, z; t) = \hat{X}(x)\hat{Y}(y)\hat{Z}(z)\hat{T}(t)$
- Coordonnées cylindriques $\hat{p}(r, \psi, z; t) = \hat{R}(r)\hat{\Psi}(\psi)\hat{Z}(z)\hat{T}(t)$
- $\hat{p}(r, \theta, \psi; t) = \hat{R}(r)\hat{\Theta}(\theta)\hat{\Psi}(\psi)\hat{T}(t)$ · Coordonnées sphériques

Solution à variables séparées ≡ Base sur laquelle toute solution de problème peut être exprimée

Solutions de problèmes à 3 dimensions (2/5)

Equation de propagation

$$\left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} + \frac{\partial^{2}}{\partial z^{2}} - \frac{1}{c_{0}^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \hat{p}(x, y, z; t) = 0 , \forall (x, y, z) \in \mathscr{Y}, \forall t$$

- Solutions à variables séparées $\hat{p}(x, y, z; t) = \hat{X}(x)\hat{Y}(y)\hat{Z}(z)\hat{T}(t)$
 - $-\frac{1}{\hat{X}}\frac{\partial^{2}\hat{X}}{\partial x^{2}} + \frac{1}{\hat{Y}}\frac{\partial^{2}\hat{Y}}{\partial y^{2}} + \frac{1}{\hat{Z}}\frac{\partial^{2}\hat{Z}}{\partial z^{2}} = \frac{1}{\hat{T}}\frac{1}{c_{0}^{2}}\frac{\partial^{2}\hat{T}}{\partial t^{2}}, \ \forall \ (x,y,z) \in \mathscr{V}, \ \forall \ t$ fonction de x v z $= -k_0^2 \qquad on \ pose \quad k_0^2 \ c_0^2 = \omega^2$ $\frac{\partial^2 \hat{T}}{\partial t^2} + \omega^2 \ \hat{T} = 0 \ , \ \forall \ t \implies \begin{cases} e^{i\omega t} \\ e^{-i\omega t} \end{cases}$ choix d'une convention temporelle $\hat{T}(t) = \hat{G} e^{i\omega t}$

Solutions de problèmes à 3 dimensions (3/5)

Solutions à variables séparées - solution en x

$$\frac{1}{\hat{X}} \frac{\partial^2 \hat{X}}{\partial x^2} = -\frac{1}{\hat{Y}} \frac{\partial^2 \hat{Y}}{\partial y^2} - \frac{1}{\hat{Z}} \frac{\partial^2 \hat{Z}}{\partial z^2} - k_0^2, \ \forall \ (x,y,z) \in \mathscr{V}$$
fonction de x fonction de y,z

$$= -k_x^2$$

$$\frac{\partial^2 \hat{X}}{\partial x^2} + k_x^2 \hat{X} = 0, \ \forall \ x \implies \begin{cases} \hat{X}(x) = \hat{A} e^{-ik_x x} + \hat{B} e^{ik_x x} \\ ou \ \hat{X}(x) = \hat{A}' \cos(k_x x) + \hat{B}' \sin(k_x x) \\ avec \ \hat{A}' = \hat{A} + \hat{B} \ et \ \hat{B}' = i(\hat{B} - \hat{A}) \end{cases}$$

Solutions de problèmes à 3 dimensions (4/5)

Solutions à variables séparées - solution en y

$$\frac{1}{\hat{Y}} \frac{\partial^{2} \hat{Y}}{\partial y^{2}} = -\frac{1}{\hat{Z}} \frac{\partial^{2} \hat{Z}}{\partial z^{2}} - k_{0}^{2} + k_{x}^{2}, \quad \forall (y, z) \in \mathscr{V}$$
fonction de y fonction de z
$$= -k_{y}^{2}$$

$$\Rightarrow \frac{\partial^{2} \hat{Y}}{\partial y^{2}} + k_{y}^{2} \hat{Y} = 0, \quad \forall y \Rightarrow \hat{Y}(y) = \hat{C} e^{-ik_{y}y} + \hat{D} e^{ik_{y}y}$$
ou $\hat{Y}(y) = \hat{C} e^{-ik_{y}y} + \hat{D} e^{ik_{y}y}$

Solutions à variables séparées - solution en z

$$\underbrace{\frac{1}{Z} \frac{\partial^2 \hat{Z}}{\partial z^2}}_{\text{fonction de z}} = -k_0^2 + k_x^2 + k_y^2, \quad \forall \ z \in \mathcal{V}$$

Solutions de problèmes à 3 dimensions (5/5)

Solutions à variables séparées

$$\hat{p}(x, y, z; t) = \underbrace{\left(\hat{A} e^{-ik_x x} + \hat{B} e^{ik_x x}\right)}_{X(x)} \underbrace{\left(\hat{C} e^{-ik_y y} + \hat{D} e^{ik_y y}\right)}_{Y(y)} \underbrace{\left(\hat{E} e^{-ik_z z} + \hat{F} e^{ik_z z}\right)}_{Z(z)} e^{i\omega t}$$

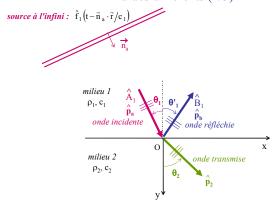
$$\begin{aligned} ou \qquad \hat{\mathbf{p}}(\mathbf{x}, \mathbf{y}, \mathbf{z}; \mathbf{t}) = & \left[\hat{\mathbf{A}}' \cos \left(\mathbf{k}_{x} \, \mathbf{x} \right) + \hat{\mathbf{B}}' \sin \left(\mathbf{k}_{x} \, \mathbf{x} \right) \right] \left[\hat{\mathbf{C}}' \cos \left(\mathbf{k}_{y} \, \mathbf{y} \right) + \hat{\mathbf{D}}' \sin \left(\mathbf{k}_{y} \, \mathbf{y} \right) \right] \\ & \cdot \left[\hat{\mathbf{E}}' \cos \left(\mathbf{k}_{z} \, \mathbf{z} \right) + \hat{\mathbf{F}}' \sin \left(\mathbf{k}_{z} \, \mathbf{z} \right) \right] \cos (\omega t) \end{aligned}$$

$$\hat{p}(x,y,z;t) = \hat{A}_0 \left(e^{-ik_x x} + \hat{\mathcal{R}}_1 e^{ik_x x} \right) \left(e^{-ik_y y} + \hat{\mathcal{R}}_2 e^{ik_y y} \right) \left(e^{-ik_z z} + \hat{\mathcal{R}}_3 e^{ik_z z} \right) e^{i\omega t}$$

$$\begin{split} ou & \quad \hat{p}(x, y, z; t) = \hat{A}'_0 \left[\cos(k_x x) + \hat{\mathcal{R}}'_1 \sin(k_x x) \right] \left[\cos(k_y y) + \hat{\mathcal{R}}'_2 \sin(k_y y) \right] \\ & \quad \cdot \left[\cos(k_z z) + \hat{\mathcal{R}}'_3 \sin(k_z z) \right] \cos(\omega t) . \end{split}$$

sous réserve que:
$$-k_z^2 = -k_0^2 + k_x^2 + k_y^2$$
 soit $\begin{pmatrix} k_x^2 + k_y^2 + k_z^2 = k_0^2 \\ avec & k_0 = \omega/c_0 \end{pmatrix}$

Réflexion et transmission à l'interface entre deux milieux fluides différents (1/3)



Réflexion et transmission à l'interface entre deux milieux fluides différents (3/3)

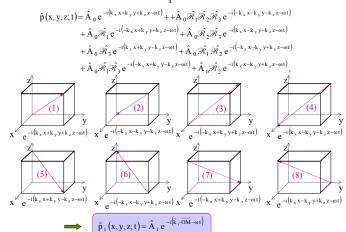
- Lois de Snell-Descartes
 - $\hat{p}_1(x,0;t) = \hat{p}_2(x,0;t), \forall x, y = 0, \forall t$ Conditions aux frontières
 - factorisation d'une fonction de x et de t

$$\hat{p}_{1}(x, y; t) = \hat{f}_{1}\left(t - \frac{\vec{n}_{a} \cdot \vec{r}}{c_{1}}\right) + \hat{g}_{1}\left(t - \frac{\vec{n}_{b} \cdot \vec{r}}{c_{1}}\right) \quad et \quad \hat{p}_{2}(x, y; t) = \hat{f}_{2}\left(t - \frac{\vec{n}_{2} \cdot \vec{r}}{c_{2}}\right)$$

$$\Rightarrow \begin{cases} \text{fonctions égales} : \quad \hat{f}_{1} = \hat{g}_{1} = \hat{f}_{2} \\ \text{et arguments égaux} : \quad t - \frac{\vec{n}_{a} \cdot \vec{r}}{c_{1}} = t - \frac{\vec{n}_{b} \cdot \vec{r}}{c_{2}} = t - \frac{\vec{n}_{2} \cdot \vec{r}}{c_{2}}, \quad \forall x, y = 0, \forall t \end{cases}$$

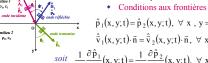
$$\Rightarrow \frac{n_{x_{a}}x}{c_{1}} = \frac{n_{x_{b}}x}{c_{1}} = \frac{n_{x_{2}}x}{c_{2}}, \quad \forall x, y = 0 \end{cases} \xrightarrow{\text{milieu } 1} \begin{cases} \hat{h}_{1} & \hat{h}_{2} & \hat{h}_{2} \\ \hat{h}_{2} & \hat{h}_{3} & \hat{h}_{4} \end{cases} \xrightarrow{\hat{h}_{2}} \begin{cases} \hat{h}_{1} & \hat{h}_{2} \\ \hat{h}_{2} & \hat{h}_{3} \end{cases} \xrightarrow{\hat{h}_{2}} \begin{cases} \hat{h}_{1} & \hat{h}_{2} \\ \hat{h}_{2} & \hat{h}_{3} \end{cases} \xrightarrow{\hat{h}_{3}} \begin{cases} \hat{h}_{1} & \hat{h}_{2} \\ \hat{h}_{3} & \hat{h}_{4} \end{cases} \xrightarrow{\hat{h}_{3}} \begin{cases} \hat{h}_{1} & \hat{h}_{2} \\ \hat{h}_{3} & \hat{h}_{4} \end{cases} \xrightarrow{\hat{h}_{3}} \begin{cases} \hat{h}_{1} & \hat{h}_{3} \\ \hat{h}_{4} & \hat{h}_{4} \end{cases} \xrightarrow{\hat{h}_{4}} \begin{cases} \hat{h}_{1} & \hat{h}_{4} \\ \hat{h}_{4} & \hat{h}_{4} \end{cases} \xrightarrow{\hat{h}_{4}} \begin{cases} \hat{h}_{1} & \hat{h}_{4} \\ \hat{h}_{4} & \hat{h}_{4} \end{cases} \xrightarrow{\hat{h}_{4}} \begin{cases} \hat{h}_{1} & \hat{h}_{4} \\ \hat{h}_{4} & \hat{h}_{4} \end{cases} \xrightarrow{\hat{h}_{4}} \begin{cases} \hat{h}_{1} & \hat{h}_{4} \\ \hat{h}_{4} & \hat{h}_{4} \end{cases} \xrightarrow{\hat{h}_{4}} \begin{cases} \hat{h}_{1} & \hat{h}_{4} \\ \hat{h}_{4} & \hat{h}_{4} \end{cases} \xrightarrow{\hat{h}_{4}} \begin{cases} \hat{h}_{4} & \hat{h}_{4} \\ \hat{h}_{4} & \hat{h}_{4} \end{cases} \xrightarrow{\hat{h}_{4}} \begin{cases} \hat{h}_{4} & \hat{h}_{4} \\ \hat{h}_{4} & \hat{h}_{4} \end{cases} \xrightarrow{\hat{h}_{4}} \begin{cases} \hat{h}_{4} & \hat{h}_{4} \\ \hat{h}_{4} & \hat{h}_{4} \end{cases} \xrightarrow{\hat{h}_{4}} \begin{cases} \hat{h}_{4} & \hat{h}_{4} \\ \hat{h}_{4} & \hat{h}_{4} \end{cases} \xrightarrow{\hat{h}_{4}} \begin{cases} \hat{h}_{4} & \hat{h}_{4} \\ \hat{h}_{4} & \hat{h}_{4} \end{cases} \xrightarrow{\hat{h}_{4}} \begin{cases} \hat{h}_{4} & \hat{h}_{4} \\ \hat{h}_{4} & \hat{h}_{4} \end{cases} \xrightarrow{\hat{h}_{4}} \begin{cases} \hat{h}_{4} & \hat{h}_{4} \\ \hat{h}_{4} & \hat{h}_{4} \end{cases} \xrightarrow{\hat{h}_{4}} \begin{cases} \hat{h}_{4} & \hat{h}_{4} \\ \hat{h}_{4} & \hat{h}_{4} \end{cases} \xrightarrow{\hat{h}_{4}} \begin{cases} \hat{h}_{4} & \hat{h}_{4} \\ \hat{h}_{4} & \hat{h}_{4} \end{cases} \xrightarrow{\hat{h}_{4}} \begin{cases} \hat{h}_{4} & \hat{h}_{4} \\ \hat{h}_{4} & \hat{h}_{4} \end{cases} \xrightarrow{\hat{h}_{4}} \end{cases} \xrightarrow{\hat{h}_{4}} \begin{cases} \hat{h}_{4} & \hat{h}_{4} \\ \hat{h}_{4} & \hat{h}_{4} \end{cases} \xrightarrow{\hat{h}_{4}} \begin{cases} \hat{h}_{4} & \hat{h}_{4} \\ \hat{h}_{4} & \hat{h}_{4} \end{cases} \xrightarrow{\hat{h}_{4}} \end{cases} \xrightarrow{\hat{h}_{4}} \begin{cases} \hat{h}_{4} & \hat{h}_{4} \\ \hat{h}_{4} & \hat{h}_{4} \end{cases} \xrightarrow{\hat{h}_{4}} \begin{cases} \hat{h}_{4} & \hat{h}_{4} \\ \hat{h}_{4} & \hat{h}_{4} \end{cases} \xrightarrow{\hat{h}_{4}} \end{cases} \xrightarrow{\hat{h}_{4}} \begin{cases} \hat{h}_{4} & \hat{h}_{4} \\ \hat{h}_{4} & \hat{h}_{4} \end{cases} \xrightarrow{$$

Ondes en espace 3D infini



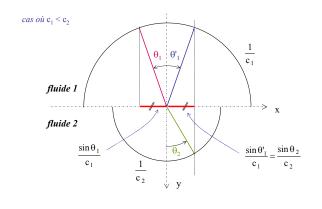
Réflexion et transmission à l'interface entre deux milieux fluides différents (2/3)

- Milieu 1 : problème bien posé
 - · Equation de propagation
- Milieu 2 : problème bien posé
- · Equation de propagation

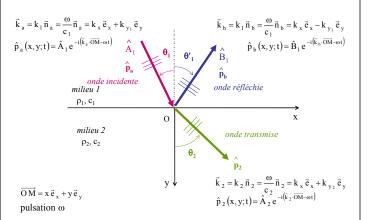


- $\hat{p}_{1}(x, y; t) = \hat{p}_{2}(x, y; t), \forall x, y = 0, \forall t$ $\hat{\vec{v}}_1(x,y;t)\cdot\vec{n}=\hat{\vec{v}}_2(x,y;t)\cdot\vec{n}\,,\ \forall\ x\ ,\ y=0\,,\ \forall\ t$ soit $\frac{1}{\rho_1} \frac{\partial \hat{\mathbf{p}}_1}{\partial y} (\mathbf{x}, \mathbf{y}; \mathbf{t}) = \frac{1}{\rho_2} \frac{\partial \hat{\mathbf{p}}_2}{\partial y} (\mathbf{x}, \mathbf{y}; \mathbf{t}), \ \forall \ \mathbf{x}, \ \mathbf{y} = \mathbf{0}, \ \forall \ \mathbf{t}$
- $\hat{\mathbf{f}}_1 \left(\mathbf{t} \vec{\mathbf{n}}_a \cdot \vec{\mathbf{r}} / \mathbf{c}_1 \right)$
- Milieu 1: solution $\hat{p}_{1}(x, y; t) = \hat{f}_{1}\left(t - \frac{\vec{n}_{a} \cdot \vec{r}}{c_{1}}\right) + \hat{g}_{1}\left(t - \frac{\vec{n}_{b} \cdot \vec{r}}{c_{1}}\right)$
- · Conditions de rayonnement à l'infini
- Milieu 2: solution
 - $\hat{p}_2(x, y; t) = \hat{f}_2\left(t \frac{\vec{n}_2 \cdot \vec{r}}{c}\right)$

Surfaces des lenteurs



Réflexion et transmission à l'interface entre deux milieux fluides différents - régime harmonique (1/12)



Réflexion et transmission à l'interface entre deux milieux fluides différents - régime harmonique (2/12)

- $$\begin{split} & \hat{p}_{1}(x,y;t) = \hat{p}_{a}(x,y;t) + \hat{p}_{b}(x,y;t) = \hat{A}_{1}e^{-i\left[k_{x}x + k_{y_{1}}y \omega t\right]} + \hat{B}_{1}e^{-i\left[k_{x}x k_{y_{1}}y \omega t\right]} \\ & \Longrightarrow \frac{\partial \hat{p}_{1}}{\partial y}(x,y;t) = i\,k_{y_{1}} \left[-\hat{A}_{1}e^{-ik_{y_{1}}y} + \hat{B}_{1}e^{ik_{y_{1}}y} \right] e^{-i\left(k_{x}x \omega t\right)} \end{split}$$
- $\hat{p}_{2}(x, y; t) = \hat{A}_{2} e^{-i(k_{x}x + k_{y_{2}}y \omega t)} \longrightarrow \frac{\partial \hat{p}_{2}}{\partial y}(x, y; t) = -i k_{y_{2}} \hat{A}_{2} e^{-ik_{y_{2}}y} e^{-i(k_{x}x \omega t)}$
- Egalité des pressions en y = 0

Egalité des vitesses normales en y = 0

$$\begin{split} & \Longrightarrow \frac{i\,k_{\,y_{1}}}{\rho_{1}} \left(-\hat{A}_{1} + \hat{B}_{1} \right) e^{-i\left(k_{\,x}x - \omega t\right)} = \frac{-i\,k_{\,y_{2}}}{\rho_{\,2}}\,\hat{A}_{\,2}\,e^{-i\left(k_{\,x}x - \omega t\right)}, \ \forall \ x \ , \ y = 0 \, , \ \forall \ t \\ & \Longrightarrow \left(\frac{k_{\,y_{1}}}{\rho_{\,1}}\,\mathcal{R}_{\,p} + \frac{k_{\,y_{2}}}{\rho_{\,2}}\,\mathcal{T}_{\,p}^{\,p} = \frac{k_{\,y_{1}}}{\rho_{\,1}} \right) \end{split}$$

Réflexion et transmission à l'interface entre deux milieux fluides différents - régime harmonique (3/12)

Coefficients de réflexion et de transmission en amplitude de pression

$$\begin{cases} -\widehat{\mathcal{H}}_p + \widehat{\mathcal{O}}_p = 1 \\ \frac{k_{y_1}}{\rho_1} \widehat{\mathcal{H}}_p + \frac{k_{y_2}}{\rho_2} \widehat{\mathcal{O}}_p = \frac{k_{y_1}}{\rho_1} \end{cases} \Rightarrow \begin{cases} \widehat{\mathcal{H}}_p = \frac{-k_{y_2}/\rho_2 + k_{y_1}/\rho_1}{k_{y_2}/\rho_2 + k_{y_1}/\rho_1} \\ \widehat{\mathcal{O}}_p = \frac{2k_{y_1}/\rho_1}{k_{y_2}/\rho_2 + k_{y_1}/\rho_1} \end{cases}$$

$$ou$$

$$\begin{cases} \widehat{\mathcal{H}}_p = \frac{-\cos\theta_2/Z_2 + \cos\theta_1/Z_1}{\cos\theta_2/Z_2 + \cos\theta_1/Z_1} \\ \widehat{\mathcal{O}}_p = \frac{2\cos\theta_1/Z_1}{\cos\theta_2/Z_2 + \cos\theta_1/Z_1} \end{cases}$$

$$ou$$

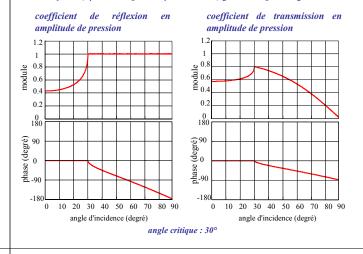
$$\begin{cases} \widehat{\mathcal{H}}_p = \frac{Z_2/\cos\theta_2 - Z_1/\cos\theta_1}{Z_1/\cos\theta_1 + Z_2/\cos\theta_2} \\ \widehat{\mathcal{O}}_p = \frac{Z_2/\cos\theta_2}{Z_1/\cos\theta_1 + Z_2/\cos\theta_2} \end{cases}$$

$$\frac{2Z_2/\cos\theta_2}{Z_1/\cos\theta_1 + Z_2/\cos\theta_2}$$

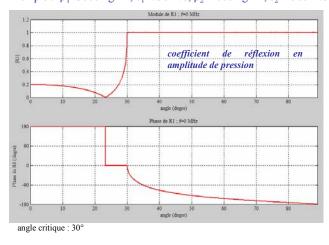
$$avec \quad Z_1 = \rho_1 c_1 \quad ; \quad Z_2 = \rho_2 c_2 \quad impédances caractéristiques$$

$$k_{y_1} = k_1 \cos\theta_1 \quad ; \quad k_{y_2} = k_2 \cos\theta_2$$

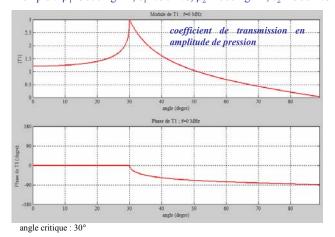
Exemple: ρ_1 =2000 kg/m³, c_1 =750 m/s, ρ_2 =2500 kg/m³, c_2 =1500 m/s

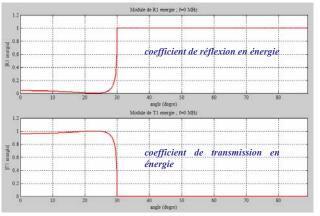


Exemple: ρ_1 =3000 kg/m³, c_1 =750 m/s, ρ_2 =1000 kg/m³, c_2 =1500 m/s

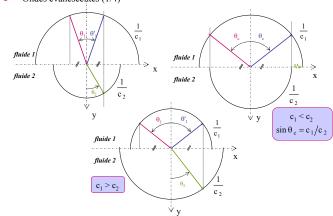


Exemple: $\rho_1 = 3000 \text{ kg/m}^3$, $c_1 = 750 \text{ m/s}$, $\rho_2 = 1000 \text{ kg/m}^3$, $c_2 = 1500 \text{ m/s}$

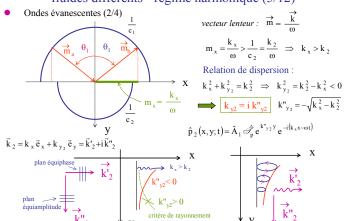




Réflexion et transmission à l'interface entre deux milieux

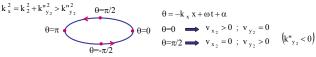


Réflexion et transmission à l'interface entre deux milieux fluides différents - régime harmonique (5/12)



Réflexion et transmission à l'interface entre deux milieux fluides différents - régime harmonique (6/12)

- Ondes évanescentes (3/4) $\hat{\vec{V}}_{2} = \hat{V}_{2} \vec{n}_{2} = \hat{V}_{2} \left[\left(k_{x} / k_{2} \right) \vec{e}_{x} + \underbrace{\left(k_{y_{2}} / k_{2} \right) \vec{e}_{y}}_{i \ k''_{y_{2}}} \right] = \underbrace{\hat{V}_{2}}_{2} \left[\left(k_{x} / k_{2} \right) \vec{e}_{x} + i \left(k''_{y_{2}} / k_{2} \right) \vec{e}_{y} \right]$
- $\hat{\bar{v}}_{2}(x,y;t) = |\hat{V}_{2}| \left[\left(k_{x}/k_{2}\right) \hat{\bar{e}}_{x} + i \left(k_{y_{2}}^{"}/k_{2}\right) \hat{\bar{e}}_{y} \right] \exp\left(k_{y_{3}}^{"},y\right) \exp i \left(-k_{x} x + \omega t + \alpha\right)$
- $\left(\frac{v_{x_2}}{|\hat{V}_2|(k_x/k_2)\exp(k_{v_y}^{"},y)}\right)^2 + \left(\frac{v_{y_2}}{|\hat{V}_2|(k_{v_y}^{"},k_2)\exp(k_{v_y}^{"},y)}\right)^2 = 1$



Réflexion et transmission à l'interface entre deux milieux fluides différents - régime harmonique (7/12)

Ondes évanescentes (4/4)

angle critique: 30°

$$\begin{array}{c} \text{coefficient de réflexion:} \quad \hat{\mathscr{R}_p} = \frac{-k_{y_2}/\rho_2 + k_{y_1}/\rho_1}{k_{y_2}/\rho_2 + k_{y_1}/\rho_1} \qquad \text{avec} \qquad k_{y_2} = i \, k''_{y_2} \\ \\ \Longrightarrow \quad \hat{\mathscr{R}_p} = \frac{-i \, k''_{y_2}/\rho_2 + k_{y_1}/\rho_1}{i \, k''_{y_2}/\rho_2 + k_{y_1}/\rho_1} \qquad \Longrightarrow \qquad \boxed{ \left| \hat{\mathscr{R}_p} \right| = 1 } \qquad \begin{array}{c} \text{réflexion totale} \\ \text{dans le milieu 1} \end{array}$$

MAIS présence d'énergie acoustique dans le milieu 2 de transmission

Onde évanescente = Onde d'accompagnement dans le milieu 2, qui accompagne le phénomène de réflexion totale dans le milieu 1, et qui a son énergie propre.

Problème *monochromatique* ≡ problème en *régime établi* : pendant la période du régime transitoire, l'énergie ayant pénétré dans le milieu 2 s'y trouve de manière permanente pendant un temps infini.

Le problème monochromatique est donc en réalité une situation asymptotique, pour un temps t très grand, qui modélise de manière trop forte la réalité physique, ce qui implique l'existence d'une onde évanescente d'extension infinie dans le sens de l'interface.

Réflexion et transmission à l'interface entre deux milieux fluides différents - régime harmonique (8/12)

Flux d'énergie incident

$$\hat{p}_{a}(x,y;t) = \hat{A}_{1} e^{-ik_{y_{1}}y} e^{-i\left(k_{x}x-\omega t\right)} \qquad \qquad \hat{v}_{y_{a}}(x,y;t) = \frac{i}{\rho_{1}\omega} \frac{\partial \hat{p}_{a}(x,y;t)}{\partial y} = \frac{k_{y_{1}}}{\rho_{1}\omega} \hat{A}_{1} e^{-ik_{y_{1}}y} e^{-i\left(k_{x}x-\omega t\right)} \\ \boxed{I_{y_{a}} = \frac{1}{4} \left(\hat{p}_{a}^{*} \hat{v}_{y_{a}} + \hat{p}_{a} \hat{v}_{y_{a}}^{*}\right) = \frac{1}{2} \left|\hat{A}_{1}\right|^{2} \frac{k_{y_{1}}}{\rho_{1}\omega}}$$

Flux d'énergie réfléchi

Flux d'énergie réfléchi
$$\hat{p}_b(x,y;t) = \hat{A}_1 \, \hat{\mathcal{R}}_p \, e^{ik_{y_1}y} \, e^{-i(k_x x - \omega t)} \qquad \hat{v}_{y_b}(x,y;t) = \frac{i}{\rho_1 \omega} \frac{\partial \hat{p}_b(x,y;t)}{\partial y} = \frac{-k_{y_1}}{\rho_1 \omega} \hat{A}_1 \, \hat{\mathcal{R}}_p \, e^{ik_{y_1}y} \, e^{-i(k_x x - \omega t)}$$

$$I_{y_b} = \frac{1}{4} \left(\hat{p}_b^* \, \hat{v}_{y_b} + \hat{p}_b \, \hat{v}_{y_b}^* \right) = -\frac{1}{2} \left| \hat{A}_1 \right|^2 \left| \hat{\mathcal{R}}_p \right|^2 \frac{k_{y_1}}{\rho_1 \omega} \qquad \mathcal{R}^E = \left(-I_{y_b} \right) / I_{y_a} = \left| \hat{\mathcal{R}}_p \right|^2$$

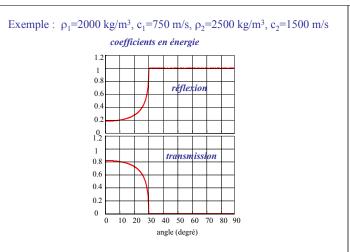
$$coefficient de réflexion en énergie$$

Flux d'énergie transmis

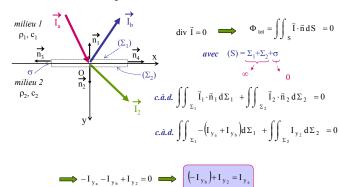
Find a energic transmis
$$\hat{p}_{2}(x,y;t) = \hat{A}_{1} \hat{\mathcal{D}}_{p} e^{-i\hat{k}_{y2}y} e^{-i(k_{x}x-\omega t)} \qquad \qquad \hat{v}_{y_{2}}(x,y;t) = \frac{i}{\rho_{2}\omega} \frac{\partial \hat{p}_{2}(x,y;t)}{\partial y} = \frac{\hat{k}_{y_{2}}}{\rho_{2}\omega} \hat{A}_{1} \hat{\mathcal{D}}_{p} e^{-i\hat{k}_{y2}y} e^{-i(k_{x}x-\omega t)}$$

$$I_{y_{2}} = \frac{1}{4} \left| \hat{p}_{2}^{*} \hat{v}_{y_{2}} + \hat{p}_{2} \hat{v}_{y_{2}}^{*} \right| = \frac{1}{4} \left| \hat{A}_{1} \right|^{2} \left| \hat{\mathcal{D}}_{p} \right|^{2} \frac{1}{\rho_{2}\omega} \left(\hat{k}_{y_{2}} + \hat{k}_{y_{2}}^{*} \right) e^{-i(\hat{k}_{y_{2}} - \hat{k}_{y_{2}}^{*})y}$$

$$\mathcal{F}^{E} = I_{y_{2}}/I_{y_{a}} = \frac{Z_{1}/\cos\theta_{1}}{Z_{2}/\cos\theta_{2}} \left| \hat{\mathcal{F}}_{p} \right|^{2} \quad \theta < \theta_{c} \qquad \qquad \mathcal{F}^{E} = I_{y_{2}}/I_{y_{a}} = 0 \quad \theta > \theta_{c}$$

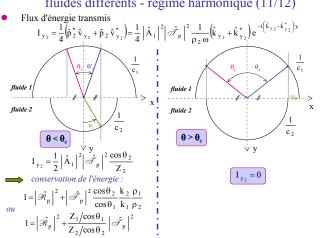


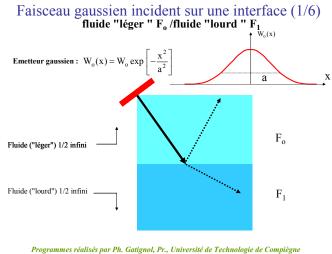
Réflexion et transmission à l'interface entre deux milieux fluides différents - régime harmonique (9/12) Conservation de l'énergie



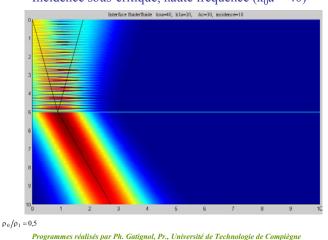
Réflexion et transmission à l'interface entre deux milieux fluides différents - régime harmonique (11/12)

angle critique : 30°

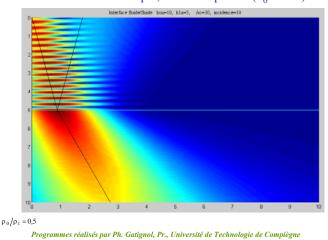


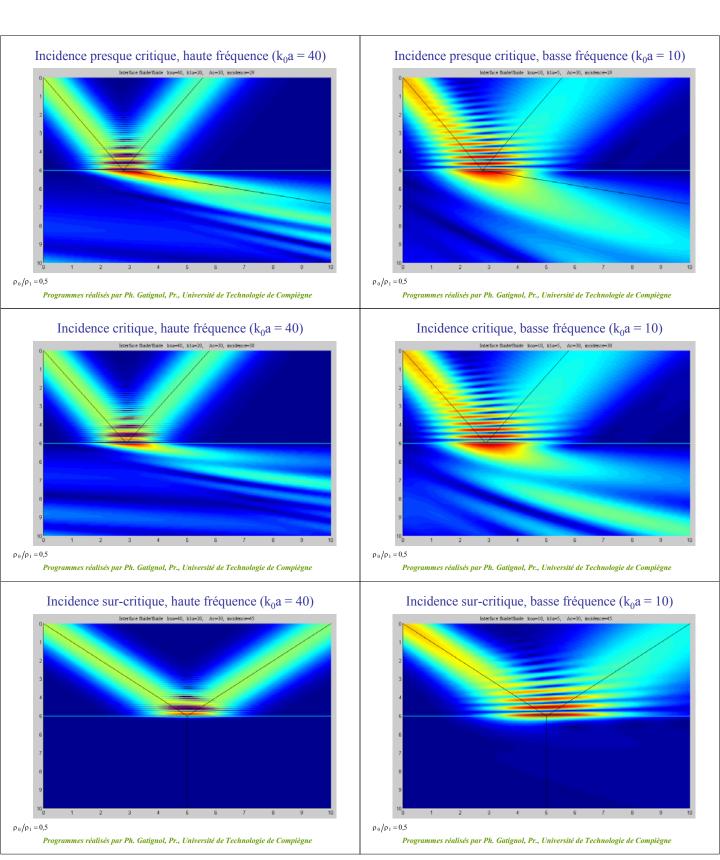


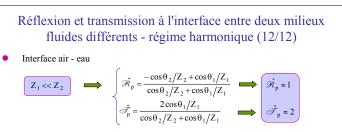
Incidence sous-critique, haute fréquence ($k_0 a = 40$)



Incidence sous-critique, basse fréquence ($k_0 a = 10$)



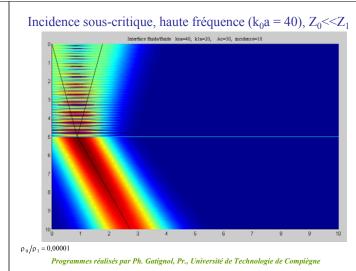


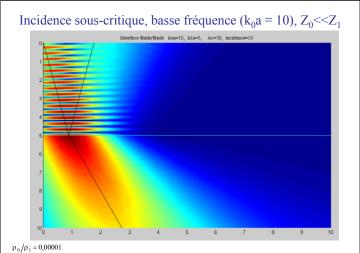


 $\mbox{Mais} \quad \ensuremath{\mathscr{T}} \mbox{\ensuremath{E}} = \mbox{\ensuremath{I}}_2 \slash \mbox{\ensuremath{I}}_{y_a} \approx \mbox{Interface eau - air}$

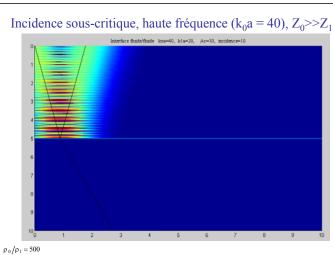
interface eau - air
$$\begin{bmatrix}
\mathbf{Z}_1 >> \mathbf{Z}_2
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
\hat{\mathcal{R}}_p = \frac{Z_2/\cos\theta_2 - Z_1/\cos\theta_1}{Z_1/\cos\theta_1 + Z_2/\cos\theta_2}
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
\hat{\mathcal{R}}_p \approx -1
\end{bmatrix}$$

$$\hat{\mathcal{F}}_p = \frac{2Z_2/\cos\theta_2}{Z_1/\cos\theta_1 + Z_2/\cos\theta_2}$$





Programmes réalisés par Ph. Gatignol, Pr., Université de Technologie de Compiègne

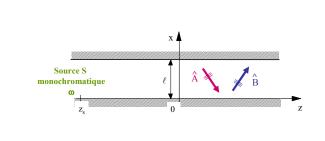


Programmes réalisés par Ph. Gatignol, Pr., Université de Technologie de Compiègne

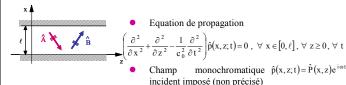
Guide bidimensionnel (1/8)

Incidence sous-critique, basse fréquence ($k_0a=10$), $Z_0>>>Z_1$ Interface fluido/fluide kou=10, k1s=5, Ac=30, incidence=10 $p_0/p_1=500$

Programmes réalisés par Ph. Gatignol, Pr., Université de Technologie de Compiègne

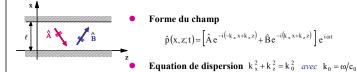


Guide bidimensionnel (2/8)



- Equation de Helmholtz $\left[\left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial z^2} + \left(\frac{\omega}{c_0} \right)^2 \right] \hat{P}(x, z) = 0, \ \forall \ x \in [0, \ell], \ \forall \ z \ge 0 \right]$
- Conditions aux frontières $\frac{\partial \, \hat{p}(x,z;t)}{\partial \, n} = 0, \ \, \forall \, \, z \geq 0, \, \forall \, \, t \qquad \textit{en} \quad x = 0 \quad \textit{et} \quad x = \ell$ $\Longrightarrow \boxed{\frac{\partial \, \hat{p}(x,z)}{\partial \, x} = 0, \ \, \forall \, \, z \geq 0, \, \forall \, \, t, \, \, \text{en} \, \, \, x = 0 \, \, \text{et} \, \, \, x = \ell}$
- Champ propagatif dans le sens des z croissants (pas d'onde retour)

Guide bidimensionnel (3/8)



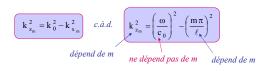
- Conditions aux frontières $\frac{\partial \hat{P}(x,z)}{\partial x} = 0$, $\forall z \ge 0, \forall t$, en x = 0 et $x = \ell$ avec $\frac{\partial \hat{\mathbf{p}}(\mathbf{x}, \mathbf{z}; \mathbf{t})}{\partial \mathbf{x}} = i \mathbf{k}_{x} \left[\hat{\mathbf{A}} e^{-i(-\mathbf{k}_{x} \mathbf{x} + \mathbf{k}_{z} \mathbf{z})} - \hat{\mathbf{B}} e^{-i(\mathbf{k}_{x} \mathbf{x} + \mathbf{k}_{z} \mathbf{z})} \right] e^{i\omega t}$ $\left(ik_{x}\left(\hat{A}-\hat{B}\right)e^{-ik_{z}z}e^{i\omega t}, \text{ en } x=0, \ \forall \ z\geq 0, \ \forall \ t\right)$ $i k_x (\hat{A} e^{i k_x \ell} - \hat{B} e^{-i k_x \ell}) e^{-i k_z z} e^{i \omega t}$, en $x = \ell$, $\forall z \ge 0$, $\forall t$
- $\begin{array}{c}
 \hat{A} \hat{B} = 0 \\
 \hat{A} e^{ik_x \ell} \hat{B} e^{-ik_x \ell} = 0
 \end{array}$ $\begin{cases}
 \hat{A} = \hat{B} \\
 \hat{A} \left(e^{ik_x \ell} e^{-ik_x \ell} \right) = 0
 \end{cases}$ $\begin{array}{c}
 \hat{k}_x \ell = m \pi, m \in \mathbb{N} \\
 \end{array}$

Guide bidimensionnel (4/8)

Solutions du problème

 $\hat{A}_{m} = 0, \ \forall \ m$ <u>SAUF SI</u> k_{x} prend une suite de valeurs propres $k_{x_{m}} = \frac{m\pi}{a}$, $m \in \mathbb{N}$

à laquelle est associée (équation de dispersion) une suite de nombres d'onde k_{z_m} tels que



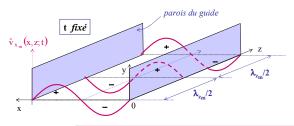
▶ 2 cas: $k_{z_m}^2 > 0$ ou $k_{z_m}^2 < 0$

Guide bidimensionnel (5/8)

Pression portée par chaque mode m

$$\hat{p}_{m}(x,z;t) = \hat{A}_{m} \left(e^{ik_{x_{m}}x} + e^{-ik_{x_{m}}x} \right) e^{-ik_{z_{m}}z} e^{i\omega t} \Longrightarrow \left[\hat{p}_{m}(x,z;t) = 2\hat{A}_{m} \cos(k_{x_{m}}x) e^{-ik_{z_{m}}z} e^{i\omega t} \right]$$

champ d'ondes stationnaires à caractère modal suivant Ox, et qui se translate suivant Oz,



 $\hat{p}(x, z; t) = \sum_{m=0}^{\infty} \hat{p}_{m}(x, z; t) = 2 \left(\sum_{m=0}^{\infty} \hat{A}_{m} \cos(k_{x_{m}} x) e^{-ik_{z_{m}} z} \right) e^{i\omega t}$ Champ total

Guide bidimensionnel (6/8)

Vitesse portée par chaque mode m

$$\hat{\bar{v}}_{m}(x,z;t) = \frac{i}{\rho_{0}\omega} \overline{grad} \hat{p}_{m}(x,z;t) \implies \hat{v}_{x_{m}}(x,z;t) = -\frac{2i k_{x_{m}}}{\rho_{0}\omega} \hat{A}_{m} \sin(k_{x_{m}} x) e^{-ik_{z_{m}} z} e^{i\omega t}$$

$$\hat{v}_{z_{m}}(x,z;t) = \frac{2k_{z_{m}}}{\rho_{0}\omega} \hat{A}_{m} \cos(k_{x_{m}} x) e^{-ik_{z_{m}} z} e^{i\omega t}$$

Champ de vitesse total

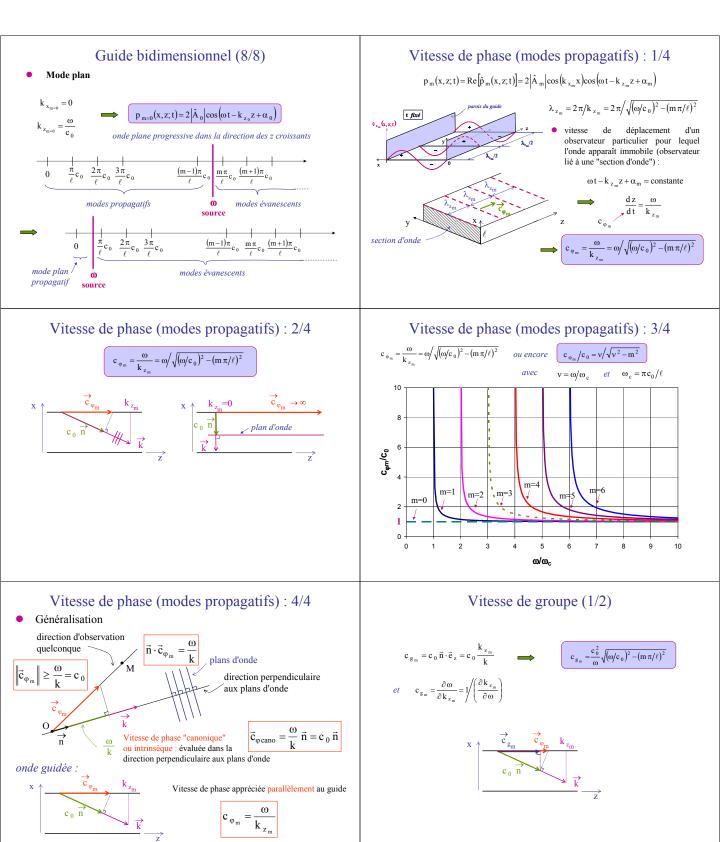
$$\begin{split} \hat{v}_{x}\left(x,z;t\right) &= \sum_{m=0}^{\infty} \hat{v}_{x_{m}}\left(x,z;t\right) = -\frac{2\,\mathrm{i}}{\rho_{\,0}\,\omega} \left(\sum_{m=0}^{\infty} \,\hat{A}_{\,m}\,k_{\,x_{\,m}}\sin\left(k_{\,x_{\,m}}\,x\right)\!e^{\,\mathrm{i}\,k_{\,z_{\,m}}\,z}\right)\!e^{\,\mathrm{i}\,\omega\,t} \\ \hat{v}_{\,z}\left(x,z;t\right) &= \sum_{m=0}^{\infty} \hat{v}_{\,z_{\,m}}\left(x,z;t\right) = \frac{2}{\rho_{\,0}\,\omega} \left(\sum_{m=0}^{\infty} \hat{A}_{\,m}\,k_{\,z_{\,m}}\cos\left(k_{\,x_{\,m}}\,x\right)\!e^{\,\mathrm{i}\,k_{\,z_{\,m}}\,z}\right)\!e^{\,\mathrm{i}\,\omega\,t} \end{split}$$

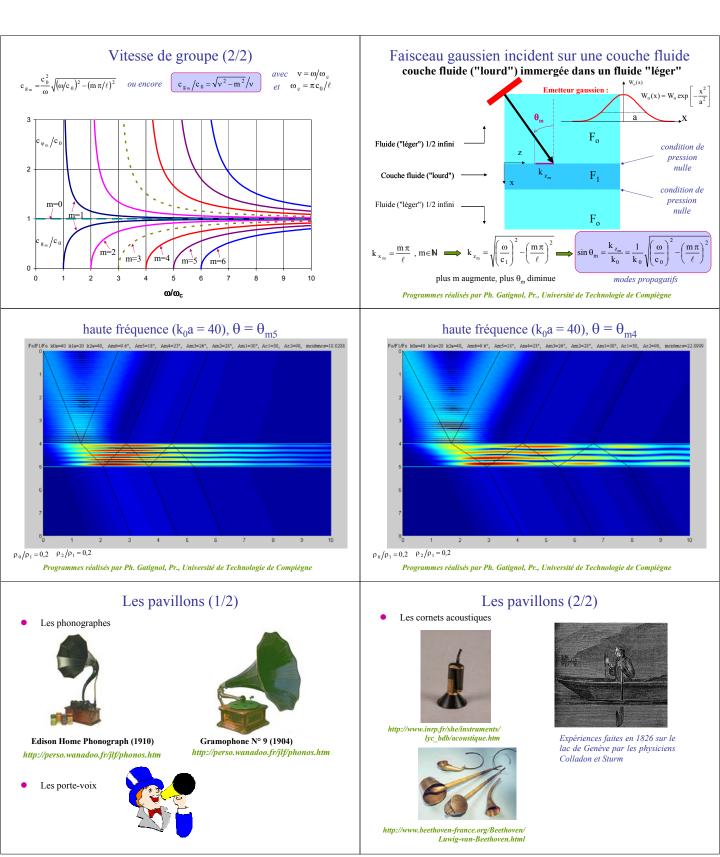
Guide bidimensionnel (7/8)

Modes propagatifs et évanescents

$$\mathbf{k}_{x_m} = \frac{\mathbf{m}\pi}{\ell}$$
, $\mathbf{m} \in \mathbf{N}$ avec $\mathbf{k}_{z_m}^2 = \left(\frac{\omega}{\mathbf{c}_0}\right)^2 - \left(\frac{\mathbf{m}\pi}{\ell}\right)^2$

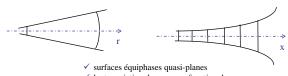
- modes m tels que $k_{z_m}^2 > 0$ $c.\dot{a}.d.$ $\omega > \frac{m\pi}{\ell} c_0$ modes m propagatifs
- $et \ p_{m}(x,z;t) = Re\left[\hat{p}_{m}(x,z;t)\right] = 2\left|\hat{A}_{m}\right| \cos\left(k_{x_{m}}x\right)\cos\left(\omega t k_{z_{m}}z + \alpha_{m}\right) \ avec \ \hat{A}_{m} = \left|\hat{A}_{m}\right|e^{i\alpha_{m}}$
- modes m tels que $k_{z_m}^2 < 0$ $c.\dot{a}.d.$ $\omega < \frac{m\pi}{\ell} c_0$ modes m évanescents et $p_m(x,z;t) = \text{Re}[\hat{p}_m(x,z;t)] = 2|\hat{A}_m|e^{k_{x_m}^2}z\cos(k_{x_m}x)\cos(\omega t + \alpha_m)$ avec $k_z = i k_z'' = -i \sqrt{(m \pi / \ell)^2 - (\omega / c_0)^2}$



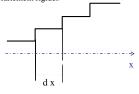


Propagation dans les pavillons, théorie à 1 paramètre (1/6)

Hypothèses

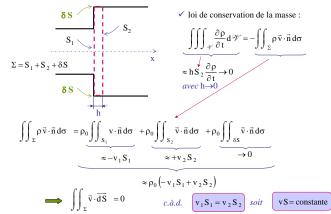


- ✓ lente variation du rayon en fonction de x
- √ vitesse particulaire orientée suivant x
- Discrétisation sous la forme d'une succession de guides cylindriques élémentaires à parois parfaitement rigides



Propagation dans les pavillons, théorie à 1 paramètre (2/6)

Conservation du débit à la discontinuité



Propagation dans les pavillons, théorie à 1 paramètre (3/6)

Equation de propagation

En posant $\varphi'_1 = \frac{\partial \varphi}{\partial x}$ et $S' = \frac{dS}{dx}$ \Longrightarrow $d\varphi'_1 = -\frac{S'}{S}\varphi' dx$

"responsabilité" du changement de section dans la variation élémentaire de la dérivée do', du potentiel des vitesses

✓ Entre deux changements de section

$$\frac{\partial^2 \phi}{\partial x^2} = \frac{1}{c_0^2} \frac{\partial^2 \phi}{\partial t^2} \quad \textit{soit} \quad \boxed{ d\phi'_2 = \frac{1}{c_0^2} \frac{\partial^2 \phi}{\partial t^2} dx } \quad \textit{en posant} \quad \phi'_2 = \frac{\partial \phi}{\partial t^2}$$

Propagation dans les pavillons, théorie à 1 paramètre (4/6)

Equation de propagation - suite

√ Variation totale dφ' sur la longueur dx

$$d\phi' = d\phi'_1 + d\phi'_2 = \left[-\frac{S'}{S}\phi' + \frac{1}{c_0^2} \frac{\partial^2 \phi}{\partial t^2} \right] dx$$

$$\phi'' + \frac{S'}{S}\phi' - \frac{1}{c_0^2} \frac{\partial^2 \phi}{\partial t^2} = 0 \qquad \frac{\partial/\partial t}{\partial t} \qquad \frac{\partial}{\partial t} \frac{\partial^2 \phi}{\partial x^2} + \frac{S'}{S} \frac{\partial}{\partial t} \frac{\partial \phi}{\partial x} - \frac{1}{c_0^2} \frac{\partial^3 \phi}{\partial t^3} = 0$$

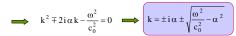
$$or \quad p = -\rho_0 \frac{\partial \phi}{\partial t} \qquad \frac{\partial^2 \phi}{\partial x^2} - \frac{1}{c_0^2} \frac{\partial^2 \phi}{\partial t^2} + \frac{\partial \ln S}{\partial x} \frac{\partial \phi}{\partial x} = 0$$

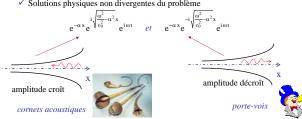
Equation dite de Webster (proposée en premier lieu par Lagrange et Bernoulli)

Propagation dans les pavillons, théorie à 1 paramètre (5/6)

- $S(x) = S_0 e^{2\alpha x}$ Solutions de l'équation des pavillons exponentiels infinis

 - ✓ Forme des solutions : $e^{\pm ikx} e^{i\omega t}$
 - ✓ Report dans l'équation de propagation $\phi'' + \frac{S'}{S} \phi' \frac{1}{c^{\frac{3}{2}}} \frac{\partial^2 \phi}{\partial \tau^2} = 0$





Propagation dans les pavillons, théorie à 1 paramètre (6/6)

Solutions de l'équation des pavillons exponentiels infinis

 $\frac{\omega^2}{\sqrt{\frac{\omega^2}{c_c^2} - \alpha^2}} = \frac{c_0}{\sqrt{1 - \left(\frac{f_c}{f}\right)^2}}$ fréquence de coupure : ✓ Vitesse de groupe : $c_g = \frac{\partial \omega}{\partial k} = c_0 \sqrt{1 - \left(\frac{f_c}{f}\right)^2}$

✓ Intensité acoustique : $I = \frac{\hat{p}\,\hat{p}^*}{4\rho_0\,c_0} \left\{ \left(\sqrt{1 - \left(\frac{f_c}{f}\right)^2} \right) + \sqrt{1 - \left(\frac{f_c}{f}\right)^2} \right\}$ Si $f > f_c$: $I = \frac{e^{-2\alpha x}}{2\rho_0 c_0} \sqrt{1 - \left(\frac{f_c}{f}\right)^2}$ $\implies \text{ densit\'e d'\'energie}: \quad E = \frac{\rho_0}{4} \, \hat{v} \, \hat{v}^* + \frac{\hat{p} \, \hat{p}^*}{4 \rho_0 \, c_0^2} = \frac{e^{-2\alpha x}}{2 \rho_0 \, c_0^2}$ $\frac{I}{E} = c_0 \sqrt{1 - (f_c/f)^2} = c_g$

Exemple d'un pavillon replié (1/2)

Exemple d'un pavillon replié (2/2)

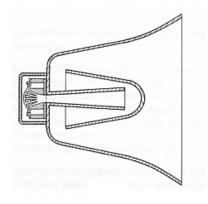


Figure extraite de Mario Rossi, Traité d'électricité, Volume XXI, Electroacoustique, Presses Polytechniques Romandees, 1986

Exemple du tuba

Exemple du cor des Alpes

Transparents basés sur

C. POTEL, M. BRUNEAU, Acoustique Générale - équations différentielles et intégrales, solutions en milieux fluide et solide, applications, Ed. Ellipse collection Technosup, 352 pages, ISBN 2-7298-2805-2, 2006

