
ACTA ACUSTICA UNITED WITH ACUSTICA
Vol. 98 (2012) 232 – 241

DOI 10.3813/AAA.918508

On the Use of a Complex Frequency for the
Description of Thermoacoustic Engines

M. Guedra, G. Penelet
Laboratoire d’Acoustique de l’Université du Maine, UMR CNRS 6613, Avenue Olivier Messiaen,
72085 Le Mans Cedex 9, France. matthieu.guedra.etu@univ-lemans.fr

Summary
In this paper, a formulation is proposed to describe the process of thermoacoustic amplification in thermoacoustic
engines. This formulation is based on the introduction of a complex frequency which is calculated from the
transfer matrices of the thermoacoustic core and its surrounding components. The real part of this complex
frequency represents the frequency of self-sustained acoustic oscillations, while its imaginary part characterizes
the amplification/attenuation of the wave due to the thermoacoustic process. This formalism can be applied to
any type of thermoacoustic engine including stack-based or regenerator-based systems as well as straight, closed
loop or coaxial duct geometries. It can be applied to the calculation of the threshold of thermoacoustic instability,
but it is also well-suited for the description of the transient regime of wave amplitude growth and saturation due
to non linear processes. All of the above mentioned aspects are described in this paper.

PACS no. 43.35.Ud

1. Introduction

Thermoacoustic engines belong to a type of heat engines
in which acoustic work is produced by exploiting the tem-
perature gradient between a hot source and a cold sink
[1, 2]. Typical arrangements of thermoacoustic engines
are shown in Figure 1. It consists basically of an acous-
tic resonator partially filled with a piece of an open-cell
porous material, often referred to as a stack or a regener-
ator. An important temperature gradient is imposed along
this stack/regenerator, so that above a critical temperature
gradient, acoustic modes of the resonator can become un-
stable and the thermoacoustic process results in the on-
set of self-sustained, large amplitude acoustic oscillations.
Such kind of engines have been extensively studied in the
past decades [3], leading to a deeper understanding of their
operation and to the building of a few devices such as
thermoacoustically driven thermoacoustic refrigerators or
thermoelectric generators. These engines have interesting
features inherent to the absence of moving parts (pistons
and crankshafts) which can be advantageously used for
industrial applications at moderate power densities (typ-
ically up to a few kilowatts). It is however worth noting
that the design of thermoacoustic engines is a tedious task
which comprises an important part of uncertainties, be-
cause the operation of these engines is by nature nonlinear,
and because the existing efficient prototypes include vari-
ous elements like flow straighteners, tapered tubes, mem-
branes or jet pumps which are difficult to model accurately.
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Many researchers use the freely available software
package called DeltaEC developed at Los Alamos Na-
tional Laboratory [4] for the design of thermoacoustic sys-
tems. This computer code is a very powerful tool which is
mainly based on the linear (and weakly nonlinear) ther-
moacoustic theory in the frequency domain. Besides the
limitations of this computer code for large acoustic am-
plitudes requiring proper account of nonlinear effects, an-
other of its characteristics is that it is expressed in the
Fourier domain, so that it describes steady state condi-
tions: the steady-state acoustic pressure amplitude is ob-
tained from a temperature field which itself is controlled
by the acoustic field due to acoustically induced heat trans-
port. The multi-parameter shooting method which is em-
ployed in this computer code is well suited for the predic-
tion of an equilibrium state above the threshold of ther-
moacoustic instability. However, it is not primarily de-
voted to the determination of the threshold condition it-
self (i.e. the required external thermal action above which
thermoacoustic oscillations begin to grow up with time).
Moreover, under some circumstances, the transient pro-
cess leading to the steady state sound should be consid-
ered, and the approach used in DeltaEC then becomes un-
suitable. This is notably the case when the engine is oper-
ated slightly above the threshold of thermoacoustic insta-
bility, where complicated effects may be observed. For ex-
ample, the existence of a hysteretic loop [5, 6] in the onset
and damping of the engine, or the periodic switch on/off
of thermoacoustic instability [7, 8] have been reported for
both standing and travelling wave engines. In such situa-
tions, the fixed external thermal action on the system does
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Figure 1. Simplified drawings of a standing wave engine (a) and
a travelling wave loop engine (b), possibly coupled with a sec-
ondary acoustic load.

not correspond to a unique steady state solution for the
acoustic pressure amplitude.

Though useful design tools are nowadays available,
an accurate description of thermoacoustic engines is still
needed, and an important research effort has been devoted
to the description of the onset of thermoacoustic instabil-
ity and to its saturation by nonlinear effects. Various ana-
lytical [9, 10, 11, 12] and numerical models [13, 14] have
been proposed in the literature, which are yet limited to
the description of simple thermoacoustic devices of par-
ticular geometry. In this context, the aim of this paper is
to propose a general modelling approach which is mainly
based on the transfer matrices formalism. As in previous
analytical works [9, 12] the model presented in this pa-
per takes advantage of the significant difference between
the instability time scale and the period of acoustic oscil-
lations, which is exploited here by the introduction of a
complex frequency, sometimes used for the treatment of
transient oscillatory motions (note that the introduction of
complex frequency has already been proposed in a con-
ference by J. E. Parker et al. [15] to treat thermoacous-
tic oscillations, and also in a similar network approach by
Q. Tu et al. [16]). Depending on its sign, the imaginary
part of this complex frequency represents an amplification
or an attenuation coefficient, which is calculated from the
linear thermoacoustic theory applied to the thermoacous-
tic system under consideration. The analytical treatment
presented here is necessarily based on substantial approx-
imations but, as will be discussed in this paper, it is well
suited to carry out extensive parametric studies of both the
transient and steady states. Moreover, this model has some
interesting similarities with the computer code DeltaEC in
the sense that it consists of a multiport network approach
which is well-suited for the description of complicated
acoustic networks including thermoacoustic cores, ducts
with constant or varying cross-sections, grids, membranes,

T-junctions etc . . . The works presented in this paper basi-
cally consist of a generalization of previous works [10, 17]
and its main originality is thus primarily to propose to the
reader a rather simple modelling of any kind of thermoa-
coustic engine in order to determine its onset conditions
or to describe the transient regime leading to steady state
sound in the frame of weakly nonlinear theory.

In section 2 the multiport network modelling of ther-
moacoustic engines is presented, which leads to the analyt-
ical expression of the complex frequency from the transfer
matrices of the thermoacoustic core and its surrounding
components. In section 3, this formalism is applied to the
determination of the conditions corresponding to the on-
set of thermoacoustic instability in the cases of a standing
wave engine and of a closed-loop travelling wave engine.
Section 4 is devoted to the description of basic concepts
concerning the use of this approach to study the transient
regime leading to steady state sound (or to more compli-
cated dynamic behaviors of the thermoacoustic oscillator)
in thermoacoustic systems.

2. Theory

Thermoacoustic engines are generally made up of a duct
network inside which the thermoacoustic core is inserted.
The term “thermoacoustic core” refers here to the hetero-
geneously heated part of the device in which the ampli-
fication of acoustic waves operates: it is basically com-
posed of an open cell porous material - referred to as the
stack (δκ ∼ r) or the regenerator (δκ r) depending on
the value of the average radius r of its pores relative to
the thickness δκ of the acoustic thermal boundary layer -
along which a temperature gradient is imposed using heat
exchangers. As illustrated in Figure 1, the great variety
of thermoacoustic engines can be schematically separated
into two different classes. The first class of engines (Fig-
ure 1a) refers to some conventional waveguide arrange-
ment ensuring the resonance of a gas column. Among this
class of engines are the stack-based standing wave engines
which were extensively studied during the past decades,
but also the cryogenic devices where Taconis oscillations
may occur [1]. The second class of engines (Figure 1b)
refers to some waveguide arrangements where a closed-
loop path exists, allowing the development of travelling
acoustic waves running along the loop. Among this class
of engines are the stack-based travelling wave engine first
studied by Yazaki et al. [18], the thermoacoustic-Stirling
heat engine [19] first successfully designed by Backhaus et
al. [20], the regenerator-based co-axial engines [21] where
the feedback loop is formed by locating a small diameter
thermoacoustic core into a larger diameter waveguide, and
also as a matter of interest some kinds of free-piston Stir-
ling engines.

Whatever the specific geometry of the engine under
consideration, all of these devices use the fact that when a
strong temperature gradient is imposed along the stack/re-
generator, part of the heat supplied is converted into acous-
tic work inside the stack/regenerator. This thermoacoustic
amplification process results in the onset of self-sustained,
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large amplitude acoustic waves oscillating at the frequency
of the most unstable acoustic mode of the complete device.
In the following, the onset of this thermoacoustic insta-
bility will be described by the introduction of a complex
frequency, the real part of which describes the frequency
of acoustic oscillations and the imaginary part of which
describes the wave amplitude growth or attenuation. The
analytical treatment presented here can be applied to any
kind of thermoacoustic engine (and also to free piston Stir-
ling engines), but it is convenient here for clarity to sepa-
rate the cases where there exists or not a closed loop path
for the acoustic waves. For the sake of simplicity, the first
class of engine will be referred to as “standing wave” en-
gine, while the second one will be referred to as “travelling
wave” engine. The description of the acoustic field will be
operated in the frequency domain in the frame of the linear
approximation. Assuming that harmonic plane waves are
propagating along the centerline of the ducts, the acoustic
pressure p(x, t) and acoustic volume velocity u(x, t) are
written as

ζ(x, t) = ζ(x)e−jωt , (1)

where ζ may be either p or u, ζ̃ denotes the complex ampli-
tude of ζ , () denotes the real part of a complex number,
and x denotes the position along the duct axis (see Fig-
ure 1).

As shown in Figure 1, the apparatus consists of a ther-
moacoustic core connected at both sides to straight (or
curved) ducts. The propagation of acoustic waves through
the thermoacoustic core is described as an acoustical two-
port relating the complex amplitudes of acoustic pressure
and volume velocity at both sides,

p(xr)
u(xr)

=
Tpp Tpu
Tup Tuu

× p(xl)
u(xl)

,

= TTC × p(xl)
u(xl)

. (2)

The transfer matrix of the thermoacoustic core, TTC, de-
pends on the geometrical and thermophysical properties
of its components. It also depends on the temperature dis-
tribution Tm(x) along the stack (x ∈ [xl, xh]) and the
thermal buffer tube (x ∈ [xh, xr]), and on the angular
frequency ω. If the imposed temperature distribution is
known, the transfer matrix TTC can be obtained theoret-
ically [1, 2, 17], but it can also be obtained from experi-
ments under various heating conditions [22].

2.1. Derivation of the characteristic equation

2.1.1. Standing wave engines

The case of a standing wave engine is first considered
here. If the matrix TTC is known, the theoretical mod-
elling of the complete device requires knowledge of the
acoustic propagation through the components surround-
ing the thermoacoustic core. This can be realized by de-
riving the expressions of the reflected impedances Zl,r =
p̃(xl,r)/ũ(xl,r) at both sides of the thermoacoustic core. For

instance, if a standing-wave device as the one depicted in
Figure 1a is considered, writing the lossy propagation of
harmonic plane waves at angular frequency ω in the ducts
of respective lengths xl and L−xr leads to the expressions
of the reflected impedances

Zl =
p(xl)
u(xl)

=
Z0 + jZc tan kxl

1 + jZ0Z
−1
c tan kxl

, (3)

Zr =
p(xr)
u(xr)

=
ZL − jZc tan k(L − xr)

1 − jZLZ
−1
c tan k(L − xr)

(4)

where

k =
ω

c0

1 + (γ − 1)fκ

1 − fν
(5)

and

Zc =
ρ0c0
S

1

(1 − fν)(1 + (γ − 1)fκ)
(6)

are the complex wave number and the characteristic impe-
dance of the duct, respectively. In equations (5) and (6),
ρ0 is the fluid density at room temperature, c0 is the adia-
batic sound speed, γ is the specific heat ratio of the fluid,
S is the duct cross-section, and the functions fκ and fν

characterize the thermal and viscous coupling between the
oscillating fluid and the duct walls [2, 23]. In equations
(3) and (4), Z0 and ZL stand for the acoustic impedances
at positions x = 0 and x = L, respectively. They can be,
for instance, the radiation impedance of an open pipe [24],
the infinite impedance of a rigid wall, or the acoustic im-
pedance of an electrodynamic alternator, depending on the
configuration of the standing-wave engine. Finally, com-
bining equations (3) and (4) with equation (2) and solving
the associated system of two equations leads to the equa-
tion

ZlTpp + Tpu −ZlZrTup −ZrTuu = 0. (7)

Equation (7) is the characteristic equation which accounts
for both the processes operating through the thermoacous-
tic core and the dissipative/reactive processes operating in
its surrounding components. This equation must be satis-
fied to describe the complete device properly.

2.1.2. Travelling wave engines
If the case of a travelling wave engine is now considered,
and if the matrix TTC is known, it is also possible to derive
a characteristic equation similar to equation (7). This im-
plies to describe acoustic propagation at both sides of the
thermoacoustic core. The basic idea is to make one loop
in the device - each of the individual components being
characterized by its transfer matrix - so that after one loop,
the characteristic equation will ensure that one arrives at
the same starting point. More precisely, there exists on
the first hand the equation characterizing the propagation
through the thermoacoustic core, equation (2), and on the
other hand, it is possible to obtain an additional relation
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between the acoustic pressure and acoustic volume veloc-
ity at both sides of the thermoacoustic core by means of
the total transfer matrix Tsur of the components surround-
ing the thermoacoustic core,

p(xl)
u(xl)

= Tsur × p(xr)
u(xr)

. (8)

For instance, if the particular geometry of Figure 1b is
considered, and if the effects of the loop curvature are ne-
glected, the matrix Tsur can be written as

Tsur = Tl × Tload × Tr, (9)

where the matrices

Tl,r =
cos(kdl,r) jZc sin(kdl,r)

jZ−1
c sin(kdl,r) cos(kdl,r)

(10)

characterize lossy propagation through the ducts of respec-
tive lengths dl = xl and dr = L − xr (L is the unwrapped
length of the closed-loop), and where the matrix

Tload =
1 0

−Yload 1
(11)

accounts for the effect of the secondary acoustic load,
by means of its reflected acoustic admittance Yload (this
acoustic load can be a secondary acoustic resonator [20],
an electrodynamic alternator [25] or any other component
characterized by its reflected admittance Yload).

Finally, combining equation (8) with equation (2) leads
to the characteristic equation

det TTC × Tsur − I2 = 0, (12)

where I2 stands for the identity matrix 2 × 2, and det()
denotes the determinant of a matrix.

2.2. Determination of the complex frequency

The proper description of the thermoacoustic device re-
quires to satisfy the corresponding characteristic equation

f (ω, Tm) = 0, (13)

where the function f corresponds to the left-hand-side of
equation (7) or equation (12), depending on the system un-
der consideration. It is important to point out that all of the
above equations are derived in the frequency domain, and
due to this, it is implicitly assumed from equation (1) that
the thermoacoustic system operates on steady state: this
means that the angular frequency ω is purely real. In fact,
the only condition for which equation (13) can be satisfied
is that the temperature distribution Tm(x) is fixed in such
a way that there exists a value of the angular frequency
ω which cancels the function f . Under such a condition
the acoustic waves are neither amplified nor attenuated,
and since nonlinear effects saturating the wave amplitude
growth are not considered here, the solutions ω and Tm

correspond to the threshold of thermoacoustic instability.
However, as it will be proposed in the following, one may

describe from equation (13) the wave amplitude growth
occuring after the onset of thermoacoustic instability un-
der the quasi-steady state assumption. To do this, let the
angular frequency be allowed to have an imaginary part
g ,

ω = Ω + j g, (14)

so that the acoustic pressure

p(x, t) = p(x)e−jωt = e g t p(x)e−jΩt . (15)

is assumed to oscillate at frequency Ω = (ω), while the
attenuation/growth of the sound wave is characterized by
the thermoacoustic amplification coefficient g . However,
g is assumed to be small compared to the real part Ω of
angular frequency, which means that the amplitude of the
wave varies slowly at the time scale of few acoustic pe-
riods, diminishing or growing depending on the sign of
g , in as much as the temperature distribution Tm(x) stays
constant at the scale of a few acoustic periods.

Under this quasi-steady state assumption, g Ω, and
for a constant temperature distribution Tm (at the time-
scale of a few acoustic periods) it is possible to solve
equation (13) using conventional numerical methods, and
to find a couple Ω, g which characterizes both the fre-
quency of acoustic oscillations and the wave amplitude
growth/attenuation. The advantages of this formulation are
that it is well-suited for the prediction of the onset of ther-
moacoustic instability (as will be shown in the next sec-
tion) but also more generally, as will be discussed in sec-
tion 4, for the prediction of the engine’s efficiency, pro-
vided that the nonlinear effects operating after the onset
are properly described.

3. Determination of the threshold of ther-
moacoustic instability

The theoretical modelling presented in section 2 can be
used at first to determine the marginal stability conditions
of thermoacoustic devices, i.e. to find the purely real an-
gular frequency ω = Ω and the temperature distribution
Tm for which equation (13) is satisfied. However, before
illustrating this with two particular examples, two remarks
need to be formulated.

Firstly, the model of section 2 is actually incomplete
since the heat transport within the thermoacoustic core
needs to be described. Though it is well-established that
thermoacoustic amplification depends significantly on the
details of the temperature distribution, we will assume
here for simplicity that a linear temperature distribution
is imposed along the thermoacoustic core. In the absence
of an appropriate description of heat transfer through the
thermoacoustic core, the effect of heating will thus be rep-
resented by the temperature ratio Th/Tc, where Th refers
to the hot temperature at position xh and Tc = 300K
is the room temperature. In this paper, the transfer ma-
trix TTC (ω, Th/Tc) of the thermoacoustic core is obtained
from the transformation of the well-known differential
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wave equation of thermoacoustics [1, 2] into an equiva-
lent Volterra integral equation of the second kind (see refs.
[10, 17] for more details).

Secondly, in most of thermoacoustic devices the self-
sustained oscillations are generated at a frequency which
corresponds to the lower order acoustic mode of the sys-
tem, but since some of the components of the device con-
sist of a duct of finite length, equation (13) has actually
an infinite number of solutions under the plane wave as-
sumption (under some circumstances, higher order acous-
tic modes may even become more unstable than the first
one, e.g. in refs [18, 26]). Since conventional numerical
methods for the solving of equation (13) should converge
to a single solution, it is required to define an appropriate
initial condition in the numerical scheme in order that the
algorithm converges to the desired solution.

In practice, the temperature ratio Th/Tc is fixed, act-
ing as a parameter, and the characteristic equation (13) is
solved using an iterative Newton-Raphson method, which
is suitable for finding the roots of a complex function of a
complex variable [27]. The solution of (13) is found using
the recurrence relation

ωk+1 = ωk −
f (ωk)
f (ωk)

, (16)

where the first derivative f (ωk) is calculated using a sim-
ple first order finite difference

f (ωk) =
df
dω ω=ωk

=
f (ωk + Δωk) − f (ωk)

Δωk
. (17)

For our calculations, the step of finite difference is fixed
to Δωk = 1.10−3ωk. In order to avoid the divergence of
the method, the initial value ω0 is fixed to the angular
frequency of a resonant mode of the complete device. In
the case of resonant modes resulting from a complicated
coupling between different elements (see for instance the
loop engine presented in Sect. 3.2), this initial angular fre-
quency is determined graphically by plotting the modulus
|f (Ω)| and by pointing at a local minimum of the func-
tion. The initial value for g is fixed to g = 0. The itera-
tive computation is stopped when a sufficient accuracy e is
obtained on the solution, i.e. when

ωk+1 − ωk =
f (ωk)
f (ωk)

≤ e

10
, (18)

with e = 10−8 in our case. With this computation process,
it is then possible to calculate ω = Ω+ j g as a function of
the temperature Th. The threshold of thermoacoustic insta-
bility then corresponds to the hot temperature Th for which
g = 0: it is determined by means of a zero-finding method
acting on the function g (Th).

3.1. Standing wave engine

As a basic illustration of the applicability of the model pre-
sented in Sect. 2, the case of a standing-wave engine closed
at both ends is studied. A schematic drawing of this engine
is shown in Figure 1a: two straight cylindrical waveguides

Ω
Ωr

g

Ω

Tn

Figure 2. Normalized frequency Ω/Ωr (a) and amplification co-
efficient g (b) as functions of the temperature ratio Tn = Th/Tc

for three different locations of the stack in the resonator: xh =
L/4 (. . .), xh = L/2 (−−) and xh = 3L/4 (—). For xh = 3L/4,
the onset threshold corresponds to Tn 1.5.

of respective lengths dl = xl and dr = L−xr are connected
to the thermoacoustic core. Assuming that the thermoa-
coustic engine is closed at both ends, i.e. Z0 = ZL = ∞,
the expressions of the reflected impedances

Zl = −jZc cot(kdl), (19)

Zr = jZc cot(kdr), (20)

are introduced into equation (7) to compute the angular
frequency of acoustic oscillations Ω and the thermoacous-
tic amplification coefficient g in functions of the hot tem-
perature Th. In this example, the total length of the engine
is fixed to L = 1m, while the lengths of the stack and the
thermal buffer tube are fixed to ls = lw = 5 cm. Air at
atmospheric pressure is used as a working fluid, and the
stack is modelized as an assembly of 0.5 mm-spaced par-
allel plates (50µm in thickness).

Figure 2 presents the angular frequency Ω and the cor-
responding amplification coefficient g as functions of the
temperature ratio Tn = Th/Tc for three different locations
of the stack in the resonator: xh = L/4 (. . .), xh = L/2
(−−) and xh = 3L/4 (—). In Figure 2, we focus only on
the first eigen mode of the half-wavelength resonator and
Ω remains close to the angular frequencyΩr = πc0/L. For
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g

Ω

Ω
Ωr

Figure 3. Normalized frequency Ω/Ωr (a) and amplification co-
efficient g (b) as functions of the position of the stack xh in the
resonator for the three first modes of the half-wavelength res-
onator: Ωr = πc0/L (—), 2Ωr (−−) and 3Ωr (. . .). Here, the
temperature ratio is fixed to Th/Tc = 4.

the two positions xh = L/4 and xh = L/2, when Tn > 1,
the amplification coefficient g is negative and is contin-
uously decreasing, meaning that the stack has a damping
effect for these positions. By contrast, for xh = 3L

4 , the
onset condition g = 0 is found for a temperature ratio
T0 1.5. It can also be noticed that g < 0 for Tn < T0

(damping) and g > 0 for Tn > T0 (amplification). These
conclusions are well-known for this configuration of en-
gine [2], in which the thermoacoustic amplification only
operates when the temperature gradient has the same sign
as the acoustic pressure gradient.

It is worth noting that the angular frequency Ω is
searched close to a resonant frequency of the device. It
is thus possible to calculate Ω and g for different modes.
Figure 3 shows the results for Ω and g as functions of
the position xh of the stack in the resonator, for the three
first resonant modes of the half-wavelength tube. The tem-
perature is fixed to Tn = 4, which is potentially sufficient
for the onset of any of the three modes. It appears that g

can be positive for some values of xh, depending on the
mode under consideration, meaning that there exists par-
ticular positions for the stack, favourable to the onset of
one or several modes. The comparison between Figure 3

Tn

g

Ω

Ω
Ωr

onset mode 3

onset mode 2

onset mode 1

Figure 4. Normalized frequency Ω
Ωr

(a) and amplification coeffi-
cient g (b) as functions of the temperature ratio Tn =

Th
Tc

for the
three first modes of the half-wavelength resonator. The location
of the stack xh = 0.9L is chosen so that the onset of the three
modes is achievable.

and the spatial distribution of the acoustic pressure fields
in a half-wavelength resonator is quite direct and confirms
that these favourable positions are those for which the tem-
perature gradient has the same sign as the acoustic pres-
sure gradient.

If the stack is near enough to the rigid wall on the right,
then the three first modes can potentially become unsta-
ble. Figure 4 shows the angular frequency Ω and the am-
plification coefficient g as functions of the temperature
ratio Tn for xh/L = 0.9 and for the three first modes. The
higher the mode is, the higher the onset threshold temper-
ature T0 is. It is also interesting to observe that if Tn was
sufficiently large and led to the onset of the three modes,
the frequencies of the three instabilities would be incom-
mensurate, which could lead to complex quasiperiodic and
chaotic behaviours of the system [28].

3.2. Travelling wave engine

In this section, the model is applied to a travelling wave
loop engine, as schematically drawn in Figure 1b. A dou-
ble electrodynamic alternator is acting as the secondary
acoustic load. Table I lists all the parameters introduced in
the model.

237



ACTA ACUSTICA UNITED WITH ACUSTICA Guedra, Penelet: Description of thermoacoustic engines
Vol. 98 (2012)

log Ω
2π

10− 2

10− 1

100

log f

101

102

Figure 5. Modulus of the function f (Ω, Tn = 1) computed for
a closed-loop engine (−−) and for the closed-loop engine cou-
pled with the double alternator (—). The frequencies 80Hz and
1020Hz correspond to the mechanical resonance of the alterna-
tor and the first mode of the loop, respectively.

In the previous section, it has been demonstrated that
the choice of the frequency in the vicinity of which the on-
set frequency is computed is important. As it is illustrated
in Figure 5, when the resonant modes result from a com-
plicated coupling between different elements, this partic-
ular frequency can be determined graphically by plotting
the modulus |f (Ω)| and by pointing at a local minimum
of the function. It is then possible to study the onset con-
ditions of the thermoacoustic instability close to the first
resonance of the loop, but also for a lower frequency, near
the mechanical resonance of the alternator.

In Figure 6, the amplification coefficient g is plotted as
a function of the temperature ratio Tn for these two differ-
ent modes.When the loop engine is not coupled with a sec-
ondary acoustic load (see dotted lines in Figure 6), the on-
set of the thermoacoustic instability is found for a temper-
ature ratio T0 2.4 and the corresponding acoustic wave-
length is close to the unwrapped length of the loop. Intro-
ducing the alternator as a secondary acoustic load does not
impact significantly the onset conditions (see dashed lines
in Figure 6): a small increase of the onset temperature is
observed, due to additionnal losses in the alternator. How-
ever, it appears that the onset temperature for the coupled
mode (continuous lines in Figure 6) is lower than the one
corresponding to the first mode of the loop. This behaviour
is usually verified in practice, as this type of engine has
generally an operating point close to the resonance of the
alternator [25].

3.3. Comparison with experimental results

In 1998, Yazaki et al. studied a closed-loop thermoacous-
tic device and measured the stability curves as functions
of the ratio (r/δκ)

2, together with the acoustic work flow
using LDV [18]. They notably observed that the frequency
of the sound wave amplified by thermoacoustic effect was,

Tn

g

Ω

Ω
2π

Figure 6. Frequency (a) and amplification coefficient (b) as func-
tions of the temperature ratio Tn = Th

Tc
for the first mode of the

loop without alternator (. . .) and for the two modes resulting
from the coupling of the two elements: the mode close to the
resonance of the alternator (—) and the mode close to the first
resonance of the loop (−−).

surprisingly, close to the one of the second mode of the
loop (λ = L/2) but not the first mode (λ = L). In ad-
dition, they also investigated the same thermoacoustic de-
vice acting as a “standing-wave” engine by blocking the
loop with a rigid partition: they observed the threshold of
the fourth standing-wave mode (for which λ = L/2).

In order to evaluate the consistency of our model, the
thermoacoustic engine built by Yazaki et al. in 1998 has
been considered and the stability curves have been calcu-
lated by varying the static pressure P0 inside the engine.
The onset temperature ratio T0 is presented in Figure 7
as a function of the square of the ratio r/δκ . The results
obtained by Yazaki et al. [18] for both configurations (◦:
annular device, •: straight device) are compared with the
theoretical ones (straight lines), when the oscillating fre-
quency is searched close to the frequency of the mode
λ = L/2. This frequency corresponds to the 2nd mode of
the annular device (called “TW” in Figure 7) and to the
4th mode of the straight device (called “SW” in Figure 7).
The model reproduces quite well the left branches of the
stability curves, and it predicts an optimal ratio r/δκ close
to the experimental one. For larger r/δκ , the onset tem-
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Table I. General characteristics of the travelling wave engine
computed with the model.

Loop
Total length L 1 m
Inner radius Rw 1 cm
Location of the hot exchanger xh 0.9 m
Length of the regenerator ls 4 cm
Length of the thermal buffer tube lw 8 cm

Regenerator
Semi-width Rs 40 µm
Porosity Φ 0.75

Fluid (Helium)
Room temperature Tc 300 K
Static pressure P0 3 MPa

Electrodynamic Alternators
Radius of the piston Ralt 2 cm
Moving mass Mm 0.2 kg
Mechanical losses Rm 2 N s/m
Stiffness of the suspensions Km 5 · 104 N/m
Bl product 20 N/A
Coil electrical resistance Re 6Ω
Coil inductance Le 50 mH

Back Cavity (cylinder)
Inner radius Rcav 4 cm
Length lcav 6 cm

perature ratio is less important when computed with the
model. The differences between the model and the mea-
surements realized by Yazaki et al. may be explained with
the following statements. Firstly, the temperature distribu-
tions are supposed to be linear along the stack and the ther-
mal buffer tube. Secondly, some parameters in our model,
such as those of the heat exchangers, the length of the ther-
mal buffer tube or the length of the glass pipe used for
LDV, were fixed arbitrarily because they were unknown
(all the parameters used for the design are reported in Ta-
ble II).

The model may also be used to investigate the typical
mode selection observed by Yazaki et al. In his experi-
ments [18], Yazaki replaced one part of the loop with a
glass pipe of smaller inner radius used for velocity mea-
surements by LDV. The resulting cross-sectional area con-
striction is not large (see Table II), but we stated the fact
that this constriction would be responsible for the mode
selection, by “killing” the first mode of the loop. Indeed,
when no constriction is introduced in the model, the first
mode (λ = L, dashed line in Figure 7) naturally be-
comes unstable for lower temperature ratios than the sec-
ond mode (dotted line). But when the cross-sectionnal area
constriction is added, the first mode of the loop may the-
oretically become unstable for much larger, physically in-
consistent, temperature ratios (e.g. T0 20 for (r/δκ)

2

2.6), and one can reasonably say that the onset is im-
possible. To conclude, the thermoacoustic engine built by

Table II. Characteristics of the thermoacoustic engine designed
by Yazaki et al. [18].

[18] Model

Total length 2.58 m 2.58 m
Inner radius R1 20.1 mm 20.1 mm
Length of the glass pipe unknown 0.94 m
Inner radius of the glass pipe R2 18.5 mm 18.5 mm
Location of the center of the stack 0.5 m 0.5 m
Length of the stack 4 cm 4 cm
Length of the thermal buffer tube unknown 20 cm
Length of the ambient heat
exchanger

unknown 2 cm

Length of the hot heat
exchanger

unknown 2 cm

Semi-width of one stack pore 0.44mm 0.44 mm
Porosity of the stack 0.72 0.72
Semi-width of one exchanger
pore

unknown 2 × 0.4 mm

Porosity of exchangers unknown 0.88
Room temperature Tc unknown 293 K

T
0

r
δκ

2

Figure 7. Stability curves for the second mode of the loop (◦)
and the fourth mode of the straight device (•) obtained by Yazaki
et al. [18], compared with the theoretical ones (straight lines). In
addition are plotted the stability curves for the first mode (dashed
line) and the second mode (dotted line) of the loop when no
cross-sectionnal area constriction is introduced in the model.

Yazaki is not favourable to the onset of the first mode of
the loop, due to this cross-sectionnal area constriction.

4. About the applicability of the model for
transient regimes

As shown in section 3, the model presented in section 2
can be used for the determination of the onset conditions
of the thermoacoustic instability, but another advantage of
this model is that it can also be used for the theoretical
study of the transient regime leading to steady-state sound.

If the accurate account of various nonlinear effects and
the proper description of heat transfer through the ther-
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moacoustic core are discarded in the context of this study,
it is actually quite direct to propose the basic formula-
tion which is necessary to compute the transient process of
wave amplitude growth and saturation. On the first hand,
let’s assume that it is possible to describe heat transfer
through the thermoacoustic core by means of the follow-
ing differential equation:

∂tT (x, t) = g T (x, t), . . . , (21)

where ∂t stands for partial time derivative, and where
T (x, t) refers to the time-dependent, cross-sectional av-
erage temperature distribution along the thermoacoustic
core. In this equation the function g is supposed to account
for the heat transfer processes (diffusion, convection, radi-
ation) controlling the temperature distribution, while the
dots in the argument of the function g refer to the geo-
metrical and thermophysical parameters of the device un-
der consideration. On the other hand, the thermoacoustic
amplification operating in the thermoacoustic core is de-
scribed with the ordinary differential equation

dtprms(x0, t) = g T (x, t) prms(x0, t), (22)

where dt denotes time derivative, where prms(x0, t) =
p2(x0, t) is the root mean square amplitude of acoustic

pressure oscillations at some position x0 along the device
(< · · · > denotes time averaging over an acoustic period),
and where g is the imaginary part of the complex fre-
quency introduced in Sect. 2. Note that this equation is di-
rectly derived from equation (1) because prms(x0, t+Δt) =
e gΔtprms(x0, t), and because it is assumed that g Ω and
that during the time scale Δt of a few acoustic periods, the
variations of the temperature distribution are negligible, so
that g stays constant.

In order to compute the initial start-up of thermoacous-
tic oscillations up to the final stabilization of acoustic pres-
sure amplitude, one must solve the set of coupled equa-
tions (21) and (22) with appropriate boundary and ini-
tial conditions, provided that the nonlinear effects satu-
rating the wave amplitude growth are included in these
equations. For instance, the effect of thermoacoustic heat
pumping by the acoustic wave, which tends to reduce the
temperature gradient externally imposed along the stack,
can be included in equation (21) in the form of an acousti-
cally (proportional to p2rms) enhanced thermal conductivity
[12, 29] of the stack . More generally, as in the case of
the DeltaEC computer code, it is possible to account (in a
necessary simplified way) for some of the nonlinear effects
involved in the saturation process, such as minor losses at
the edges of the stack [30], higher harmonics generation
[9, 10, 12], or heat convection due to acoustic streaming
[31, 32, 33].

As mentioned above, no further derivations are pre-
sented in this paper concerning the modeling of unsteady
processes in thermoacoustic engines. This would indeed
require to define the precise geometry of the device un-
der consideration and the thermophysical properties of its
components, to quantify properly each of the saturating

processes, and also to perform comparisons with experi-
mental data. We will defer such studies to a future publi-
cation. Our main goal here is to point out the advantages of
the formulation proposed in this paper, which can be used
to study unsteady processes occuring in thermoacoustic
systems of complicated geometries. The transient regime
which precedes the stabilization of acoustic pressure am-
plitude can exhibit complicated behaviours [7, 8, 34, 35],
and it provides much more information than the only value
of a steady state acoustic pressure. If one is able to re-
produce such complicated dynamics using an appropriate
simplified model, then one is able to get a better physical
insight on the nonlinear processes which control the satu-
ration of the thermoacoustic instability.

5. Conclusion

We presented a formulation for the description of the wave
amplification in different kinds of thermoacoustic engines.
The model is suitable for the determination of the thresh-
old of thermoacoustic instability, and it can be coupled
to the equations describing heat transfer through the ther-
moacoustic core in order to describe unsteady processes
leading to steady-state sound in the frame of the weakly
nonlinear theory. In the frame of the linear theory, this
model captures some interesting properties of thermoa-
coustic engines, as the stack-location influence on the on-
set of the thermoacoustic instability or the selection of the
unstable resonant mode of the device which can be am-
plified. As a complementary tool to the computer code
DeltaEC or to direct numerical simulations, the proposed
analytical model should prove useful for designing ther-
moacoustic engines and for investigating the nonlinear
processes involved in these devices.
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