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a b s t r a c t

This paper focuses on the transient regime of wave amplitude growth and stabilization occuring in a
standing wave thermoacoustic engine. Experiments are performed on a simple apparatus consisting of
an open ended thermoacoustic oscillator with atmospheric air as working fluid. The results show that,
even in that simple device, the transient regime leading to steady state sound exhibits complicated
dynamics, like the systematic overshoot of wave amplitude before its final stabilization, and the sponta-
neous and periodic switch on/off of the thermoacoustic instability at constant heat power supply. A sim-
plified model is then presented which describes wave amplitude growth from the coupled equations
describing thermoacoustic amplification and unsteady heat transfer. In this model, the assumption of a
one-dimensional and exponential temperature profile is retained and the equations describing heat
transfer through the thermoacoustic core are substantially simplified into a set of ordinary differential
equations. These equations include the description of two processes saturating wave amplitude growth,
i.e. thermoacoustic heat pumping and heat convection by acoustic streaming. It is notably shown that
accounting for the effect of acoustic streaming allows to reproduce qualitatively the overshoot process.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Thermoacoustic engines belong to a type of heat engines in
which the application of a temperature gradient along an open-cell
porous medium placed inside an acoustic resonator results in the
onset of large amplitude self-sustained acoustic waves. These kind
of engines have been studied for about three decades, but some
effort is still devoted to the description of their operation. The
well-established linear (or weakly nonlinear) theory of thermo-
acoustics [1,2] is largely used for the design of high power (typi-
cally up to a few kilowatts) thermoacoustic engines, and for the
prediction of their performances with reasonable accuracy [3].
However, one can find in the literature some experimental evi-
dences of complicated effects during the transient regime of wave
amplitude growth, which cannot be predicted by a steady-state
theory. For example, the existence of a hysteretic loop in the onset
and damping of the engine has been reported in both standing
wave [4] or traveling wave devices [5]; complicated dynamics of
the acoustic oscillations have also been reported in various devices,
like the periodic switch on/off of thermoacoustic instability [6–9],
the ‘‘double-threshold effect’’ [10] or the ‘‘fish-bone like instabil-
ity’’ [11]. All of these effects indicate that thermoacoustic engines

can operate as multistable systems, and also that such complicated
dynamical behaviors are due to the existence of different time
scales in the process of wave amplitude saturation. That is the rea-
son why the development of adequate simulation tools is still
needed to describe the evolution of acoustic wave amplitude after
the onset of thermoacoustic instability. On the one hand, direct
numerical simulation [12–15] seems to be the only way to repro-
duce quantitatively the effects mentioned above, but it is still lim-
ited by large computation times inherent to the complicated
physics and the multiple time and space scales involved in the
description of thermoacoustic engines. On the other hand, analyt-
ical models are often based on substantial approximations, but one
can be motivated by the development of some phenomenological
approach aiming at reproducing qualitatively the experiments in
order to get deeper understanding of the operation of thermoacou-
stic engines.

Different approaches have been presented concerning the ana-
lytical description of the transient regime. Karpov and Prosperetti
[16] proposed a time-domain description of the evolution of ther-
moacoustic instability combined with a multiple time scales meth-
od to calculate the initial wave amplitude growth and its saturation
due to higher harmonics generation in the case of a standing wave
engine with a fixed temperature gradient. De Waele [17] presented
a simplified model based on the lumped element description of
thermoacoustic engines, and he performed calculations of the
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transient regime in a so-called traveling wave thermoacoustic Stir-
ling engine [18], in which the effect saturating the wave amplitude
growth is the cooling effect due to acoustic oscillations in the ther-
moacoustic core. Penelet et al. [9,19] developed a theoretical model
of an annular thermoacoustic engine, in which the equation charac-
terizing the variation of acoustic pressure amplitude is combined
with the equations describing unsteady heat transfer through the
thermoacoustic core. They took into account the influence of various
nonlinear effects such as minor losses at the edges of the stack, high-
er harmonics generation, heat pumping by acoustic waves, and heat
convection by the so-called Gedeon streaming [20]. It is worth not-
ing that only a few papers [9,13,14,19] provide direct comparisons of
calculated transient regimes with experimental data, and to our
knowledge, most of the complicated effects mentioned above can-
not be reproduced by the models, even for the simplest thermoacou-
stic oscillators which can be built, like the Sondhaus tube or the so-
called thermoacoustic laser [21].

In this paper, our objective is to provide a simplified model of a
standing wave thermoacoustic oscillator, keeping in mind our
objective to capture some of the complicated dynamical behaviors
observed in experiments. The main approximations retained in the
model concern the description of heat transfer through the ther-
moacoustic core, but some important effects involving the mutual
influence of acoustic and temperature fields are taken into account.
In particular, the heat convected by Rayleigh streaming can be in-
cluded (with great simplification) in the model. In Section 2 the
experimental apparatus is described, and typical transient regimes
of wave amplitude growth are presented. In Section 3, the theoret-
ical model is presented, while Section 4 provides comparisons be-
tween experiments and theory.

2. Experiments

The system under study is a basic thermoacoustic standing
wave engine, which is quite easy to build [21] and often used as

a demonstration apparatus for graduate students. A photograph
of this thermoacoustic oscillator is presented in Fig. 1. It consists
of a glass tube (length L = 49 cm, inner radius Rf = 26 mm) open
to free space at one end, and closed by a rigid piston at the other
end. The core of the engine, i.e. the stack, is an open cell porous cyl-
inder (radius Rf, length ds = 48 mm) which is inserted into the
waveguide. This stack is made up of a 600 CPSI (Cells Per Square
Inch) ceramic catalyst with multiple square channels of section
a � a = 0.9 mm � 0.9 mm [see Fig. 1(b)]. In this device, imposing
a large temperature gradient along the stack leads to the onset of
self-sustained acoustic waves oscillating at the frequency f of the
most unstable acoustic mode (generally, f � c0/(4L) where c0 stands
for the adiabatic sound speed at room temperature T1). Heat is
supplied to one side of the stack using an electrical heat resistance
wire (Nichrome wire, 36 cm in length, 0.25 mm in diameter) regu-
larly coiled through the stack end [see Fig. 1(b)], and connected to a
DC electrical power supply (MCP Lab Electronics, model M10-TP-
305-C). The only instrumentation of the thermoacoustic oscillator
is a 1/4 in. condenser microphone (model GRAS type 40BP) flush
mounted through the rigid piston. Data acquisition is realized with
the standard soundcard of a portable computer.

A schematic drawing of the apparatus, comprising the defini-
tion of an appropriate system of coordinates, is presented in
Fig. 2. The first step in studying this device consists in determining
the heat power supply Qonset which is necessary to initiate self-sus-
tained acoustic waves. This critical value Qonset of heat supply de-
pends on the position xs of the stack along the waveguide, and
the corresponding stability curve is presented in Fig. 3. The exper-
imental protocol used to obtain Qonset – or more precisely the range
of heat power Q comprising Qonset – in function of xs is as follows:
(1) fix a position xs of the stack, without heating; (2) apply an elec-
trical current increment DI = 0.1 A; (3) wait for 10 min (stabiliza-
tion of the thermal field); (4) repeat steps (2) and (3) until the
onset of thermoacoustic instability. As shown in Fig. 3, there exists
an optimum position of the stack, xs � 35 cm, corresponding to the

Nomenclature

c0 adiabatic sound speed, m s�1

C heat capacity, J kg�1 K�1

ds length of the stack, m
e thickness of the stack walls, m
f frequency, Hz
h heat exchange coefficient, W m�2 K�1

k wavenumber, m�1

ls, lf characteristic lengths, m (Eqs. (11))
L length of the resonator, m
_m mass flow rate, kg m�2 s�1

p acoustic pressure, Pa
Pr Prandtl number
u acoustic volume velocity, m3 s�1

Q heat supplied to the stack, W
r radial coordinate (Section 3.4.1)
Rf radius of the resonator, m
Rs effective radius of one stack pore, m
T temperature, K
T transfer matrix coefficient (Eq. (2))
x axial coordinate
xs position of the stack, m
y auxiliary axial coordinate (Fig. 7)
z auxiliary axial coordinate (Eqs. (11))
Z acoustic impedance, Pa m�3 s

Greek letters
c specific heat ratio of fluid

dm, dj viscous and thermal boundary layer thicknesses, m
�ampl thermoacoustic amplification coefficient, s�1

g normalized radial coordinate (Section 3.4.1)
h characteristic time of streaming establishment, s
j thermal diffusivity, m2 s�1

k thermal conductivity, W m�1 K�1

l dynamic viscosity, Pa s
m kinematic viscosity, m2 s�1

q density, kg m�3

s heat exchange coefficient, s (Eq. (9))
u heat flux, W m�2

U stack porosity
vm, vj thermal and viscous functions (Eq. (6))
x, X angular frequencies, rad s�1

Subscript
0 reference
s stack medium
f fluid medium
c cordierite

Superscript
(i) inner
(o) outer
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lower Qonset. Note that a theoretical stability curve is also presented
in Fig. 3, which will be discussed in Section 4.

Once the stability curve is determined, it is then possible to mea-
sure the evolution of wave amplitude growth. For each of the mea-
surements presented in the following, the heat power supply is
preliminarily set to a value Q0 slightly below Qonset. A small DQ
increment on heat power supply is then sufficient for the acoustic
wave to be generated in the device at frequency f � c0/(4L) (i.e.
the frequency of the first mode of the empty resonator). Typical
transient regimes of wave amplitude growth are presented in Figs.
4 and 5, for various increments of heat supply DQ, and for two posi-
tions of the stack along the waveguide. Fig. 4 shows the transient
and steady state waveform of acoustic pressure p(L, t), for different
values of DQ, and when the stack is placed at position xs = 36.5 cm
(i.e. next to the closed end of the resonator). The results show that
there exists a systematic overshoot of wave amplitude growth be-
fore its final stabilization, and that the higher the increment DQ
is, the faster will be reached stabilization. Fig. 5 shows the mea-
sured transient regimes when the stack is placed at position
xs = 26.5 cm. In that case, the evolution with time of acoustic pres-
sure amplitude exhibits more complicated dynamics: at moderate
increments DQ of heat power above its initial value Q0, the system
turns on and off spontaneously and almost periodically. Also, the
switch on/off period decreases when DQ increases, so that after
some critical value DQcr of the heat increment, the acoustic wave

finally stabilizes to a finite value (0.16Q0 < DQcr 6 0.24Q0 if
xs = 26.5 cm, as depicted in Fig. 5). As mentioned before, similar
switch on/off processes have already been reported in the literature
concerning both standing wave [6,7] or traveling wave engines
[8,9]. Moreover, some of these papers [7–9] also report that the evo-
lution of acoustic pressure amplitude is accompanied by significant
variations of the temperature field in the stack and in the thermal
buffer tube (i.e. the region of the waveguide where the temperature
field is heterogeneous). So, it seems to be clearly admitted that such
an effect is mostly due to the reverse influence of the acoustic field
on the temperature field (heat pumping by acoustic waves, acoustic
streaming). We performed several measurements of the transient
regimes for different positions of the stack, and we found that the
closer is the stack from the open end of the resonator, the higher
is the critical heat power increment DQcr. Moreover, we did not ob-
serve any switch on/off process when the stack position xs is higher
than xs = 31.5 cm (note however that this process might have

Fig. 1. (a) Photograph of the experimental apparatus. (b) Photograph of the hot side of the stack.
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Fig. 2. Schematic drawing of the standing wave thermoacoustic engine.
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Fig. 3. Experimental (}) and theoretical (dashed line, see Section 3) onset threshold
heat supply Qonset in function of stack position xs. Lower errorbars correspond to the
increment of heat supply used in experiments.
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happened if we had used lower DQ increments). The observation of
the switch on/off process thus depends on the stack position along
the waveguide.

3. Theory

3.1. Thermoacoustic amplification

In the device under consideration, the frequency and amplifica-
tion rate of self-sustained acoustic waves depend on the geometry

of the device and on the spatial distribution of the temperature
field. If the instantaneous temperature field T(x, t) is known, one
can compute both the instantaneous thermoacoustic amplification
rate �ampl[T(x, t)] and the corresponding onset angular frequency
X[T(x, t)], provided that the assumption of a quasi-steady state,
�ampl�X, can be retained. In this paper, we derive the essential
steps of the calculations without details: this problem has been
treated recently [22] in a more general situation. Assuming that
harmonic plane waves are propagating along the duct, the acoustic
pressure p(x, t) and acoustic volume velocity u(x, t) are written in
the following form:

0 50 100 150 200 250 300

−1000

0

1000

p(
L,

t) 
(P

a)

0 50 100 150 200 250 300

−1000

0

1000

p(
L,

t) 
(P

a)

0 50 100 150 200 250 300

−1000

0

1000

time (s)

p(
L,

t) 
(P

a)

(a)

(b)

(c)

Fig. 4. Gradual evolution of the measured acoustic pressure pðL; tÞ, for different values of the heat increment DQ (supplied at time t = 0) above the initial heat supply
Q0 = 16 W (slightly below Qonset = 16.9 W). The stack position is xs = 36.5 cm. (a) DQ/Q0 = 16%, (b) DQ/Q0 = 34%, (c) DQ/ Q0 = 53%.
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Fig. 5. Gradual evolution of the measured acoustic pressure pðL; tÞ, for different values of the heat increment DQ (supplied at time t = 0) above the initial heat supply
Q0 = 18 W (slightly below Qonset = 19.6 W). The stack position is xs = 26.5 cm. (a) DQ/Q0 = 16%, (b) DQ/Q0 = 24%, (c) DQ/ Q0 = 30%.
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nðx; tÞ ¼ Rð~nðxÞe�jxtÞ; ð1Þ

where j2 = �1, n may be either p or u, ~n denotes the complex
amplitude of n, RðÞ denotes the real part of a complex number,
and x stands for the angular frequency of acoustic oscillations.
The thermoacoustic device is then separated into two parts, i.e.
the thermoacoustic core comprising both the stack and the wave-
guide region where temperature is inhomogeneous (x 2 [xs � ds,L],
see Fig. 2), and the cold part of the waveguide (x 2 [0,xs � ds]) where
the fluid is assumed to be at room temperature T1. The propagation
of acoustic waves through the thermoacoustic core can be described
on the whole by an acoustical two-port relating the complex
amplitudes of acoustic pressure and volume velocity at both sides:

~pðLÞ
~uðLÞ

� �
¼
T pp T pu

T up T uu

� �
�

~pðxs � dsÞ
~uðxs � dsÞ

� �
; ð2Þ

where the coefficients T ij depend on the geometrical and thermo-
physical properties of the components, on the temperature distribu-
tion T(x) and on the angular frequency x. The determination of the
coefficients T ij requires to describe acoustic propagation in both the
thermal buffer tube (x 2 [xs,L]) and the stack (x 2 [xs � ds,xs]), in the
presence of an inhomogeneous temperature field. This problem has
been addressed by Rott [1] who established the wave equation
associated to this problem (e.g. Eq. (54) in Ref. [2]). This wave equa-
tion is here transformed into an integral Volterra equation of the
second kind [23], which allows to compute the coefficients T ijðxÞ
for a fixed temperature distribution T(x). The details of derivation
are not provided in this paper due to a need of conciseness, but
the reader can report to Ref. [24], where both the solving process
and the explicit expression of the transfer matrix (Eq. (19) in Ref.
[24]) are provided. Note also that in the remaining of the paper,
the stack which actually consists of multiple square-channels of
geometrical radius a/2 is assumed equivalent to a stack of multiple
cylindrical channels with the same radius Rs = a/2 (the cylindrical
channel is formally more easy to treat than the square channel).
Then, neglecting sound radiation at the open end of the resonator
ð~pðx ¼ 0Þ ¼ 0Þ, the lossy propagation of acoustic waves in the
remaining of the waveguide (x 2 [0,xs � ds]) is taken into account
by the reflected impedance

Zs ¼
~pðxs � dsÞ
~uðxs � dsÞ

¼ jZc tanðkðxs � dsÞÞ; ð3Þ

where k is the complex wavenumber defined as

k ¼ x
c0

1þ ðc� 1Þvj
1� vm

� �1=2

; ð4Þ

and where Zc is the characteristic impedance of the lossy duct,
defined as

Zc ¼
qf c0

pR2
f

½ð1þ ðc� 1ÞvjÞð1� vmÞ�
�1=2

: ð5Þ

In Eqs. (4) and (5), qf and c stand for the density and the specific
heat ratio of fluid, respectively, and the functions vm and vj, defined
as

vm;j ¼
2Rf

ð1þ iÞdm;j

J1 ð1þ iÞ dm;j
Rf

� �
J0 ð1þ iÞ dm;j

Rf

� � ð6Þ

are the well-known functions [2,25] which characterize the viscous
and thermal coupling between the oscillating fluid and the wave-
guide walls (Jn is the nth order Bessel function of the first kind;

dm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lf =ðqf xÞ

q
and dj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jf =x

p
are the viscous and thermal

boundary layer thicknesses, respectively; lf and jf stand for
dynamic viscosity and thermal diffusivity of fluid at room temper-

ature T1, respectively). Combining Eqs. (2) and (3) with the bound-
ary condition ~uðLÞ ¼ 0 (rigid termination) leads to the characteristic
equation

G½x; TðxÞ� ¼ ZsT up þ T uu ¼ 0; ð7Þ

which must be satisfied. Because Eqs. (2) and (3) are derived in the
frequency domain, Eq. (7) should only be satisfied at threshold of
thermoacoustic instability (i.e. the only situation for which a stea-
dy-state solution is possible for the acoustic field, in the absence of
nonlinear saturating processes), but as it is discussed in detail in
Ref. [22], one may use Eq. (7) to solve the unsteady problem of wave
amplitude growth. This is realized by allowing the angular fre-
quency x to have an imaginary part �ampl, i.e. x = X + jeampl, which
means that acoustic pressure is being amplified (�ampl > 0) or atten-
uated (�ampl < 0). This assumption enables to satisfy Eq. (7) even if
the instantaneous temperature field T(x, t) does not allow to satisfy
the marginal stability condition. Therefore, if the instantaneous tem-
perature field T(x, t) is known at time t, Eq. (7) can be solved using
conventional numerical methods in order to obtain both the instan-
taneous thermoacoustic amplification rate �ampl[T(x, t)] and the cor-
responding angular frequency X[T(x, t)] of acoustic oscillations [22].
Note however that the solving approach described above requires to
assume that the system is under quasi-steady state, which means
that at the time scale of an acoustic period, the variations of the tem-
perature field are negligible while those of the wave amplitude are
not significant (�ampl�X). Finally, once the instantaneous thermoa-
coustic amplification rate �ampl is known, it is quite direct from Eq.
(1) that the time variations of the peak amplitude of acoustic pres-
sure, and in particular the peak pressure P(t) at position x = L where
the microphone is flush-mounted, are described with the following
ordinary differential equation:

dP
dt
¼ �amplP: ð8Þ

3.2. Unsteady heat transfer

The main simplification of the model presented in this paper
concerns the description of unsteady heat transfer through the
thermoacoustic core. Actually, this description of heat transfer is
so much simplified in the following that one cannot expect, at best,
anything else than qualitative agreement between experiments
and theory. It is first considered here that the glass tube is a perfect
thermal reservoir: its temperature is assumed to be constant at
room temperature T1 (even if heat is absorbed from the inside of
the tube). It is also considered that the thermophysical properties
(density, heat capacity, thermal conductivity) of the stack walls
and of the fluid do not depend on temperature (except in Sec-
tion 3.4.1 where the velocity of acoustic streaming is estimated).
Moreover, the stack, which consists of both solid walls and air, is
treated as a homogeneous medium of density qs, thermal conduc-
tivity ks and heat capacity Cs (these average thermophysical prop-
erties are calculated from those of both ceramic and air, see
Table 1). Finally, the temperature field inside the tube is assumed
to be axisymetric, and the equations describing heat transfer in
the thermoacoustic core are written as follows:

x 6 xs;
@Tðx; tÞ
@t

¼ js
@2Tðx; tÞ
@x2 � Tðx; tÞ � T1

ss
; ð9aÞ

x P xs;
@Tðx; tÞ
@t

¼ jf
@2Tðx; tÞ
@x2 � Tðx; tÞ � T1

sf
: ð9bÞ

In Eqs. (9), T(x, t) refers to the unsteady cross-sectional average
temperature inside the tube at position x, and js,f stand for the ther-
mal diffusivities of the stack (subscript ‘‘s’’) and of the fluid in the
waveguide (subscript ‘‘f’’). The last terms on the right-hand-side
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of Eqs. (9) describe heat transfer between the inside of the duct and
its surrounding walls. The phenomenological coefficients sf,s are
obtained from empirical correlations which can be found in heat
transfer textbooks [26]. While obtaining the analytical expression
of the parameter sf is quite direct, the derivation of ss is less direct,
but the details are given in the appendix of Ref. [19]. The numerical
values of the thermophysical parameters mentioned above are
summarized in Table 1. Then, the external thermal action due to
the heat power Q(t) dissipated in the Nichrome wire is taken into
account through the following boundary condition:

ks
@Tðx�s ; tÞ

@x
� kf

@Tðxþs ; tÞ
@x

¼ QðtÞ
pR2

f

; ð10Þ

describing the continuity of heat flux at the hot side of the stack,
where ks and kf stand for the thermal conductivities of the stack
and the fluid, respectively. In addition to the simplifications
mentioned above, it is also assumed that the spatial distribution
of the thermal field is exponential. More precisely, introducing
the space variable z = x � xs, we seek a solution in the form:

z 6 0; Tðz; tÞ � T1 þ DTðtÞez=lsðtÞ; ð11aÞ
z P 0; Tðz; tÞ � T1 þ DTðtÞe�z=lf ðtÞ; ð11bÞ

where DT(t) = T(z = 0, t) � T1, and where the variables ls(t) and lf(t)
are typical lengths which are representative of the actual tempera-
ture distribution and its variations with time. Then, introducing
these solutions in Eqs. (9) leads to the following equations:

dDT
dt
� z

l2s
DT

dls

dt
¼ js

DT

l2s
� DT

ss
; ð12aÞ

dDT
dt
þ z

l2f
DT

dlf

dt
¼ jf

DT

l2f
� DT

sf
: ð12bÞ

Therefore, the assumption of a time varying exponential tempera-
ture profile in Eqs. (11) implies that the parameters characterizing
the spatial distribution of temperature (ls, lf,DT) do not depend on
the space variable z, but the the problem still depends on z in
Eqs. (12). Carrying on in our will to give priority to simplicity at
the expense of rigour, the space variable z is thus replaced in Eqs.
(12a) and (12b) by its characteristic values �ls(t) and lf(t), respec-
tively. This means that it is considered that the temperature varia-
tions at positions z = � ls and z = lf are representative of the global
temperature field. Finally, accounting for this new assumption,

and reporting also Eqs. (11a) and (11b) in Eq. (10), the description
of unsteady heat transfer reduces to the following set of equations:

ls
DT

dDT
dt
þ dls

dt
¼ js

ls
� ls

ss
ð13aÞ

lf
DT

dDT
dt
þ dlf

dt
¼ jf

lf
� lf

sf
ð13bÞ

ks

ls
þ kf

lf

� �
DT ¼ Q

pR2
f

: ð13cÞ

The combination of Eqs. (13a)–(13c) with Eq. (8) allows to de-
scribe the initial start-up of self-sustained acoustic waves when
the device is submitted to the external heat input Q(t). However,
the equations mentioned above would describe the indefinite
growth of wave amplitude (as soon as Q > Qonset) if the nonlinear ef-
fects saturating the amplification process are not taken into ac-
count. In the following, two processes are considered to describe
the stabilization of acoustic amplitude, i.e. the thermoacoustic heat
flux due to acoustic oscillations along the stack, and the heat con-
vection by acoustic streaming. Note that there exists additional
mechanisms which may play a role in the saturation of wave
amplitude growth, like the dissipation of acoustic energy due to
geometrical singularities at the edges of the stack and at the open
end of the resonator [27], or like nonlinear propagation in the
open-ended tube [28]. Those processes are voluntarily ignored in
this study, because attention is focused on the effects involving
heat transport induced by high amplitude acoustic waves.

3.3. Thermoacoustic heat flux

In any kind of thermodynamic heat engine, the production of
work induces heat transfer from a hot source to a cold sink. This
is also the case in thermoacoustic engines, in which the production
of acoustic work is accompanied by acoustically induced heat
transport [2], with subsequent reduction of the externally imposed
temperature gradient. Under the circumstance where a steep tem-
perature gradient is applied along the stack, it is worth noting that
this thermoacoustic heat flux is approximately proportional to the
temperature gradient dxT, so that, in the frame of the short stack
approximation (ds� 4L), the heat pumping by acoustic waves
can be described by an effective thermal conductivity [Ref. [29],
Eq. (9)] as follows:

Table 1
Geometrical and thermophysical properties of the elements constituting the apparatus. Note that the thermophysical properties of the fluid and the stack material are given at
300 K. These parameters are assumed constant in the model, except in Section 3.4.1 for qf,kf and lf when estimating the velocity of acoustic streaming (qf / T�1, while kf / Tb and
lf / Tb, with b = 0.77 [32]).

Geometrical properties
Length of the resonator L = 0.49 m
Internal radius of the resonator Rf = 2.6 cm
Length of the stack ds = 4.8 cm
Effective radius of one stack pore Rs = 0.45 mm
Thickness of stack walls e = 0.17 mm

Stack porosity U ¼ ð2RsÞ2

ð2RsþeÞ2

� �
U = 0.7075

Volumetric heat capacity Thermal conductivity Dynamic viscosity

Thermophysical properties
Fluid qfCf = 1.2 � 1003 J m�3 K�1 kf = 2.26 � 10�2 W m�1 K�1 lf = 1.84 � 10�5 Pa s
Cordierite qcCc = 2600 � 1465 J m�3 K�1 kc = 3 W m�1 K�1 –
Stack qsCs = UqfCf + (1 �U)qcCc ks = Ukf + (1 �U)kc –

Heat exchange with resonator walls

Fluid/resonatora: sf ¼
R2

f qf Cf

3:66kf

sf = 8.29 s

Stack/resonatorb: ss ¼
qsCs R2

f lnð2Þ
2

e
kc ð2RsþeÞ þ

2Rs
29:28kf Rsþkc e

� � ss = 288.2 s

a See Eq. (A.3) in Ref. [19].
b See Eq. (A.12) in Ref. [19].
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kac ¼
qf Cf

x
I

PrvðsÞm � vðsÞj

Pr2 � 1

 !
< u2ðxs; tÞ >

pR2
f

; ð14Þ

where Cf and Pr stand for the isobaric heat capacity and the Prandtl
number of fluid, < . . . > denotes time averaging over an acoustic per-
iod, and where Ið. . .Þ stands for the imaginary part of a complex
number. The functions vðsÞm and vðsÞj are the functions characterizing
viscous and thermal coupling between the oscillating fluid and the
stack walls and they are obtained from Eq. (6) in which Rf is re-
placed by the pore radius Rs. The expression of the acoustically en-
hanced thermal conductivity kac can be further simplified by
assuming that the acoustic field roughly corresponds to a pure
standing wave oscillating at frequency f0 = c0/(4L), so that the spa-
tial distribution u(x, t) of acoustic volume velocity can be written

uðx; tÞ �
pR2

f PðtÞ
qf c0

cosðk0xÞ sinðX0tÞ; ð15Þ

where k0 = p/(2L), X0 = pc0/(2L), and where P(t) refers to the (slowly
varying) peak amplitude of acoustic pressure at the closed end of
the resonator (note that the actual spatial distribution of the acous-
tic field is not that of a perfect standing wave, because of thermo-
viscous losses and sound scattering by the thermoacoustic core).
This leads to the following expression

kac �
1
2

Cf

qf X0c2
0

I
PrvðsÞm � vðsÞj

Pr2 � 1

 !
cos2ðk0xsÞP2 ¼ CkP2 ð16Þ

of the acoustically enhanced thermal conductivity, which can be in-
cluded in Eqs. (13c) and (13a) in the form of an additional term. Fi-
nally, the equations describing unsteady heat transfer,
thermoacoustic amplification and heat pumping by acoustic waves
are written as follows:

ls

DT
dDT
dt
þ dls

dt
¼ js þ CjP2

ls
� ls

ss
; ð17aÞ

lf

DT
dDT
dt
þ dlf

dt
¼ jf

lf
� lf

sf
; ð17bÞ

ks þ CkP2

ls
þ kf

lf

 !
DT ¼ Q

pR2
f

; ð17cÞ

dP
dt
¼ �amplP; ð17dÞ

where Cj = Ck/(qsCs), and where qsCs stand for the average volu-
metric heat capacity of the stack (see. Table 1).

This set of equations can be transformed into a system of
ordinary differential equations describing the evolutions of the
parameters DT, ls, lf and P for appropriate initial conditions and
for some external action Q(t) on the system. It is however possible
to include the additional process of heat convection by acoustic
streaming, as will be discussed in the following.

3.4. Acoustic streaming

Acoustic streaming refers to the steady mass flow induced by
large amplitude acoustic oscillations [30]. This unavoidable nonlin-
ear effect may be due for instance to Reynolds stresses inside vis-
cous boundary layers, or to the difference in minor loss
phenomenon in a differentially heated stack [31]. Acoustic stream-
ing is discarded in many applications involving acoustics, but it is
now well-established that it must be considered in thermoacous-
tics, because it convects heat and tends to reduce the temperature
gradient imposed along the stack. When considering acoustic
streaming excitation in thermoacoustic engines, it is quite usual
to dissociate two classes of streaming (though the two classes
may owe their origin from the same nonlinear effects). The first

class of streaming, i.e. the so-called Gedeon streaming [20], is dri-
ven in thermoacoustic Stirling engines containing a closed loop
path for the acoustic wave propagation: this is a directional
streaming accompanying wave propagation and carrying a non-
zero mass flow through each cross-section of the loop. In most of
the one dimensional models describing thermoacoustic engines,
it is possible to account for the heat convection due to Gedeon
streaming (e.g. in the freely available software Delta-EC [3] or in
Ref. [9]) and, in practical engines, this directional mass flow can
be canceled using a membrane or a jet pump. The second class of
streaming, i.e. the Rayleigh streaming, is the classical boundary
layer driven streaming excited at large acoustic amplitudes in res-
onant gas columns: unlike Gedeon streaming, it is characterized by
large vortex cells which do not carry any mass flow across the res-
onator’s cross-section (i.e. the mean mass flow rate is zero). The
spatial distribution of Rayleigh streaming can be obtained from
classical theories using perturbation expansions (e.g. in Ref. [32])
but because it is by nature three-dimensional, it is difficult to
quantify the heat it convects when the basic modeling of the ther-
moacoustic device is one-dimensional. Moreover, it is difficult to
cancel this streaming, though one can diminish its amplitude by
tapering the waveguide [33]. In the following, a simplified ap-
proach is presented which attempts to estimate the influence of
Rayleigh streaming in the operation of a standing wave thermoa-
coustic engine.

3.4.1. Spatial distribution of acoustic streaming at threshold
Before trying to consider acoustic streaming in the equations

governing heat transfer in the thermoacoustic core, it is useful to
evaluate its magnitude and its spatial distribution in the present
device. This can be done from the analytical model developed by
Bailliet et al. [32], which allows to calculate both the velocity of
acoustic streaming and the second order mass flux in closed (as op-
posed to closed-loop) thermoacoustic devices, in the frame of a
weakly nonlinear theory where successive approximations meth-
ods can be used. To do this, we use the protocol described in the
following. At first, the geometrical and thermophysical parameters
of the thermoacoustic device are fixed according to Table 1. Then,
the steady state temperature field T(x) is computed for a fixed heat
power supply Q0 in the absence of sound: this is quite direct by set-
ting P = 0 and d

dt ¼ 0 in Eqs. (17), which leads to ls ¼ ls0 ¼
ffiffiffiffiffiffiffiffiffi
jsss
p

,
lf ¼ lf0 ¼

ffiffiffiffiffiffiffiffiffiffijf sf
p

and DT ¼ DT0 ¼ ðQ 0lf0 ls0 Þ=½ðpR2
f Þðkslf0 þ kf ls0 Þ�. Then,

assuming that the peak pressure amplitude P at the closed end of
the resonator equals 1 Pa, the equations describing linear acoustic
propagation through the device are solved to obtain the spatial dis-
tribution of the first order acoustic variables (pressure, density,
temperature, axial and transverse particle velocities), which them-
selves are used as input parameters to compute the second order
time-averaged streaming mass flow _m. More precisely, the spatial
distribution of the axial streaming velocity in a cylindrical tube
(the resonator or one stack channel) is computed from Eq. (16) in
Ref. [32], and the resulting spatial distribution _mðx; rÞ of the rate
at which mass flows along the axial direction is obtained using
Eq. (11) in the same reference. Note that in the following evalua-
tions of _m, the heat power supply Q0 is fixed to the xs-dependent
value Qonset(xs) in order that the calculated thermoacoustic ampli-
fication coefficient �ampl(DT, ls, lf) equals zero (this corresponds to
the threshold of thermoacoustic instability for the considered posi-
tion xs of the stack). The calculated streaming mass flow _mðx; rÞ is
presented in Fig. 6, when xs is fixed to xs = 26.5 cm and Q0 to
Q0 = Qonset(xs) = 20.17 W: it is presented in function of both axial
and transverse coordinates, in the stack region [Fig. 6(a)] and in
the waveguide region [Fig. 6(b)]. The results show that the average
magnitude of _m is of the same order of magnitude in both the stack
and the waveguide, i.e. around 10�8 kg m�2 s�1 when P = 1 Pa. The
results also show that the mass flux along the centerline of one
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stack pore goes rightwards while that along the centerline of the
waveguide goes leftwards. Note also that in both cases the direc-
tion of mass flow reverses around r � Rf ;s=

ffiffiffi
2
p

. It is however worth
noting that the calculated second order axial mass flow is not real-
istic near the stack/waveguide interface, because the stack pore or
the waveguide are both treated as isolated systems. In other words,
there exists complicated hydrodynamical edges effects due to the
geometrical singularity at position x = xs which impact both the
oscillating and the steady flows, but which are not taken into ac-
count here. Recent LDV measurements performed by Moreau
et al. [34] indicate that the presence of a stack in the waveguide in-
duces new streaming vortices in the vicinity of the stack ends. This
means that heat transport by acoustic streaming in the vicinity of
the stack should be very complex. In that context, the authors eas-
ily admit that the derivation presented in the following, which at-
tempts to account for heat transport by acoustic streaming in the
standing wave engine, should be considered cautiously.

3.4.2. Simplistic account of acoustic streaming
a. Separation of inner and outer zones. As depicted in Fig. 6, the

velocity of acoustic streaming is multidimensional. Therefore, it
seems arduous to account for the heat convected by acoustic
streaming in the one-dimensional model described in Section 3.2,
unless putting up with a simplistic approach. In our attempt to in-
clude the effect of acoustic streaming, the actual spatial distribu-
tion of the streaming velocity in the waveguide needs to be
significantly simplified, and a schematic drawing of the retained
assumptions is presented in Fig. 7. In order to reproduce the vortex
cell structure of acoustic streaming without considering the details
of its spatial distribution, we separate the waveguide cross-section
between an inner zone ðr 2 ½0;Rf =

ffiffiffi
2
p
�Þ where the streaming mass

flow is directed leftwards, and an outer zone ðr 2 ½Rf =
ffiffiffi
2
p

;Rf �Þ
where it is directed rightwards (Fig. 7(b)). The variations with axial
coordinate of the streaming velocity are also discarded: only the
‘‘characteristic’’ values at positions z ¼ �ls0 and z ¼ lw0 are consid-
ered (this assumption is consistent with the one used in the tran-
sition from Eqs. (12) and (13)). Moreover, the transverse variations
of _m are ignored: the assumption of an uniform flow is retained in
both inner and outer zones and the corresponding mass flow rates
are calculated from their cross-sectional averaged values

_mðiÞf ¼ 2�2p
pR2

f

R Rf =
ffiffi
2
p

0 _mðlw0 ; rÞrdr and _mðoÞf ¼ 2�2p
pR2

f

R Rf

Rf =
ffiffi
2
p _mðlw0 ; rÞrdr. The

same assumptions are also retained inside the stack pores of radius
Rs: each pore is separated into an inner zone where the streaming
mass flow rate _mðiÞs is directed rightwards and an outer zone where
the streaming mass flow rate _mðoÞs is directed leftwards. Therefore,
since the total mass flux across the section of the waveguide equals
zero, and since the surface area of the inner zone equals that of the
corresponding outer zone, the counterflowing mass flow rates have
the same magnitude: _mðoÞf ¼ � _mðiÞf ¼ _mf and _mðiÞs ¼ � _mðoÞs ¼ _ms, with

_mf ¼
2p
pR2

f

Z Rf

0
j _mðxs þ lw0 ; rÞjrdr ¼ Cðf ÞstrP2; ð18aÞ

_ms ¼
2p
pR2

s

Z Rs

0
j _mðxs � ls0 ; rÞjrdr ¼ CðsÞstrP

2; ð18bÞ

where _mðxs þ lw0 ; rÞ and _mðxs � ls0 ; rÞ are the transverse distribution
of the mass flow rate at positions xs þ lw0 and xs � ls0 calculated from
the theoretical model of Bailliet et al. [32]. In Eqs. (18) the quadratic
dependance of _mf ;s with P is obvious because it is calculated from
the time average of the products of first order (acoustic) quantities,
and the parameters CðsÞstr and Cðf Þstr , which depend on the stack position
xs and on the temperature distribution, simply correspond to the re-
sults of calculation for _mf and _ms when a peak amplitude of acoustic
pressure P = 1 Pa is assigned at position x = L. In the following, these
parameters are computed for various stack positions with their cor-
responding temperature distribution at threshold. In particular, at
position xs = 26.5 cm, we get CðsÞstr � 1:2 � 10�8 kg3 m�4 s�5 and
Cðf Þstr � 4:4 � 10�9 kg3 m�4 s�5, and at position xs = 36.5 cm (with
the corresponding Qonset � 14.47 W) we get CðsÞstr � 5:6 �
10�9 kg3 m�4 s�5 and Cðf Þstr � 2:5 � 10�9 kg3 m�4 s�5.

Another important point concerns the time delay for streaming
establishment, which may be important when investigating the
dynamics of wave amplitude saturation. It is worth noting that
the estimate of streaming velocity mentioned above is valid in
steady state, while the stabilization of acoustic streaming after
switching on the acoustic field is not instantaneous. The rough
estimate h = qfD

2/(lfp2) of the characteristic time of streaming
establishment was given by Amari et al. [35], where lf is the dy-
namic viscosity of fluid and D is the diameter of the channel. Then
one can evaluate the characteristic times hs,f of streaming

Fig. 6. Spatial distribution of acoustic streaming at threshold in the stack (xs � ds 6 x 6 xs) and in the waveguide (xs 6 x 6 L), for xs = 26.5 cm. The corresponding heat power
supply at threshold (�ampl � �3 � 10�3 s�1) is Qonset = 20.17 W, and the acoustic pressure amplitude at position x = L is fixed to 1 Pa. (a): spatial distribution of the second order
mass flow _m in the stack (the transverse coordinate gs is defined as gs = r/Rs); (b): spatial distribution of _m in the waveguide (the transverse coordinate gf is defined as gf = r/
Rf).
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establishment in one stack pore and in the waveguide, respec-
tively, which leads to hs � 5 � 10�3 s and hf � 17.9 s. Clearly, the
time delay for streaming establishment can be neglected in the
stack, but should be taken into account in the waveguide.

From the assumptions described above, it is finally possible to
include acoustic streaming in the equations describing unsteady
heat transfer in the thermoacoustic core, Eqs. (9), which leads to:

x P xs;
@TðiÞ

@t
�

_mf

qf

@TðiÞ

@x
¼ jf

@2TðiÞ

@x2 �
T ðiÞ

sf
ð19aÞ

x P xs;
@TðoÞ

@t
þ

_mf

qf

@TðoÞ

@x
¼ jf

@2TðoÞ

@x2 �
TðoÞ

sf
ð19bÞ

x 6 xs;
@TðiÞ

@t
þ

Uqf Cf

qsCs

_ms

qf

@TðiÞ

@x
¼ ðjs þ CjP2Þ @

2TðiÞ

@x2 �
TðiÞ

ss
ð19cÞ

x 6 xs;
@TðoÞ

@t
�

Uqf Cf

qsCs

_ms

qf

@TðoÞ

@x
¼ ðjs þ CjP2Þ @

2TðoÞ

@x2 �
TðoÞ

ss
ð19dÞ

_ms ¼ CðsÞstrP
2; ð19eÞ

d _mf

dt
þ

_mf

hf
¼ Cðf Þstr P2

hf
ð19fÞ

where T(i)(x, t) and T(o)(x, t) refer to the temperature in the inner
zone and the outer zone, respectively, and where the parameter
UqfCf/(qsCs) in Eqs. (19c) and (19d) accounts for the fact that the
mass flow velocity in the stack is an effective velocity which results
from the only motion of the fluid in the honeycombed ceramic of
porosity U and volumetric heat capacity qsCs. It should be empha-
sized, however, that besides their intrinsic limitations associated
to the one dimensional approximation in the description of heat
transfer, Eqs. (19) are also rigorously uncorrect for two reasons:
firstly, the thermal coupling between the inner and outer zones is
ignored, and secondly the description of heat transfer in the inner
zones should not include the term T(i)/ss,f because there is no

physical contact between the fluid and solid walls. So, Eqs. (19)
are imperfect but at least one can check that setting Cðs;f Þstr ¼ 0 yields
Eqs. (9) which are valid in the absence of streaming.

b.Estimate of the heat taken by acoustic streaming at the stack/
waveguide interface. The equations of unsteady heat transfer, Eqs.
(19), must be completed by some boundary condition at the
stack/waveguide interface. To do this, Eq. (10) is modified as
follows:

ðks þ CkP2Þ@xTjx�s � kf@xTjxþs þ hðf ÞconvðTH � T1Þ þ hðsÞconvðTH � T1Þ

¼ QðtÞ
pR2

f

; ð20Þ

where TH = T(o)(xs, t) = T(i)(xs, t) and @xTjx�s ¼
1
2 ð@xTðiÞjx�s þ @xT ðiÞjx�s Þ. In

this equation, the heat exchange coefficients hðsÞconv and hðf Þconv are
representative of some heat taken away from the electrical heat
resistance, by acoustic streaming, towards the stack and the wave-
guide, respectively. Calculating hðs;f Þconv is actually a difficult task
which implies knowing the details of both temperature and stream-
ing velocity fields in the vicinity of the stack/waveguide interface,
so that one have to estimate them very roughly. To do this, we con-
sider that the actual problem, i.e. the presence of vortex streaming
cells in both stack and waveguide, is equivalent to two independant
problems where each cell is unwrapped. This is illustrated by the
two schematic drawings of Fig. 7(c) and (d) in which one focuses
on the streaming cell in the waveguide region (x P xs): it is assumed
that the fluid going leftwards at velocity _mf =qf , upwards and down-
wards along the stack interface, and rightwards away from the stack
at velocity _mf =qf , carries the same amount of heat than the fluid
which would go rightwards in a single tube of infinite length and
which would cross an isothermal grid with fixed temperature TH.
In other words, the heat flux uconv taken by convection from the
electrical heat resistance at temperature TH, Fig. 7(c), is assumed
to be equal to the heat flux taken by the fluid in the more tractable

xs

,ρ λCc c c,

C ρ λs s s, ,

,f f λfC ρ ,

conv
ϕ mf

(o)

TH T8

TH

mf
(i)

T8conv
ϕ mf

(i)

mf
(o)

(c)

0

(d)

y

Rf

2

fR

x

unknown edge and entrance effects

x

e

(a)

(b)

xs x

2Rs

Fig. 7. Schematic representation of the simplistic approach used to account for heat convection by acoustic streaming. (a) Schematic representation of the streamlines
associated to acoustic streaming; (b) schematic representation of the streaming velocity field inside both stack and waveguide; (c) and (d) the heat convected from the stack/
waveguide interface is estimated by unwrapping the vortex cells and by considering that the interface is equivalent to an isothermal grid at constant temperature TH crossed
by a steady flow.
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situation of Fig. 7(d). The problem of heat transport in that last
situation is indeed quite easy to solve: assuming first adiabatic
condition along the tube walls, and introducing the new space coor-
dinate y defined in Fig. 7 (d), one can write the following steady-
state heat transfer equation

_mf

qf

@T
@y
¼ jf

@2T
@y2 : ð21Þ

Then, assuming that the temperature of the ingoing flow T(y = �1)
equals T1, one gets

y 6 0; TðyÞ ¼ ðTH � T1Þeð _mf yÞ=ðqf jf Þ þ T1; ð22aÞ
y P 0; TðyÞ ¼ TH: ð22bÞ

Therefore, one can report Eqs. (22a) and (22b) in the following
boundary condition

kf
@Tð0þÞ
@y

� kf
@Tð0�Þ
@y

þuðf Þconv ¼ 0; ð23Þ

where uðf Þconv is the heat power provided by the grid to sustain the
steady-state temperature field of Eqs. (22). This leads to

uðf Þconv ¼ Cf _mf ðTH � T1Þ ¼ hðf ÞconvðTH � T1Þ: ð24Þ

The same approach is used to estimate the heat flux hðsÞconv convected
away from the electrical heat resistance to the stack, which gives:

uðsÞconv ¼ /Cf _msðTH � T1Þ ¼ hðsÞconvðTH � T1Þ: ð25Þ

These estimates of hðsÞconv and hðf Þconv are finally reported in the bound-
ary condition at the stack/waveguide interface, Eq. (20).

c. Summary. The complete problem of heat transfer in the pres-
ence of acoustic streaming is now described by Eqs. (19) and (20).
Therefore, following the approach of Section 3.2, one can transform
these equations into ordinary differential equations: introducing
once again the space variable z = x � xs, we seek a solution to Eqs.
(19) and (20) in the form

z 6 0; Tði;oÞðz; tÞ � T1 þ DTðtÞez=lði;oÞs ðtÞ; ð26aÞ

z P 0; T ði;oÞðz; tÞ � T1 þ DTðtÞe�z=lði;oÞ
f
ðtÞ
: ð26bÞ

where lði;oÞs;f ðtÞ are the four characteristic lengths associated to both
inner and outer zones in the stack and in the waveguide. Finally,
using the same approximations than those formulated in Section
3.2, and including the equation describing thermoacoustic amplifi-
cation, Eq. (8), leads to the following set of equations:

lðiÞs

DT
dDT
dt
þ dlðiÞs

dt
¼ js þ CjP2

lðiÞs

� lðiÞs

ss
�

Uqf Cf

qsCs
CðsÞstrP

2; ð27aÞ

lðoÞs

DT
dDT
dt
þ dlðoÞs

dt
¼ js þ CjP2

lðoÞs

� lðoÞs

ss
þ

Uqf Cf

qsCs
CðsÞstrP

2; ð27bÞ

lðiÞf

DT
dDT
dt
þ

dlðiÞf

dt
¼ jf

lðiÞf

�
lðiÞf

sf
� _mf ; ð27cÞ

lðoÞf

DT
dDT
dt
þ

dlðoÞf

dt
¼ jf

lðoÞf

�
lðoÞf

sf
þ _mf ; ð27dÞ

d _mf

dt
þ

_mf

hf
¼ Cðf Þstr P2

hf
; ð27eÞ

1
2
ðks þ CkP2Þ 1

lðiÞs

þ 1

lðoÞs

 !
þ kf

2
1

lðiÞf

þ 1

lðoÞf

 !
þ Cf _mf þUCf C

ðsÞ
strP

2

" #
DT

¼ Q

pR2
f

; ð27fÞ

dP
dt
¼ �amplP: ð27gÞ

The last point concerns the calculation of the thermacoustic ampli-
fication rate �ampl (together with the frequency X of self-sustained
oscillations) which must be estimated from a monodimensional
temperature field. In the following, this amplification rate
�ampl(t) = �ampl[T(z, t)] is calculated from the average temperature
field T ¼ 1

2 ðT
ðiÞ þ TðoÞÞ. The above set of Eqs. (27), which reduces to

Eqs. (17) in the absence of streaming ðCðs;f Þstr ¼ 0Þ, can be transformed
into a set of ordinary differential equations and solved numerically.

4. Theoretical results

Before calculating the transient regime, the theoretical model-
ing of Section 3 is first used to compute the onset heat power sup-
ply Qonset in function of the stack position xs. This is done by setting
P = 0 in Eqs. (17), and by adjusting the initial heat supply Q0 to Qon-

set in order that �ampl = 0. The resulting theoretical stability curve
Qonset(xs) is presented in Fig. 3 (dashed line). The results show rea-
sonable agreement between experiments and theory, with
unavoidable differences due to the approximations of the model.

Once the theoretical stability curve is determined, the protocol
used to compute the transient regime is chosen in accordance with
the experimental protocol. The initial heat supply Q(t 6 0) = Q0 is
chosen slightly below Qonset, while the initial peak pressure ampli-
tude P is fixed arbitrarily to the small value P(t = 0) = 10�8 Pa. Then,
at time t = 0, a power increment DQ is applied and the governing
set of ordinary differential equations, Eqs. (27), is solved numeri-
cally using a variable time-step, fourth-order Runge–Kutta
method.

In Fig. 8(a), we present the results obtained for the stack posi-
tion xs = 26.5 cm, where the initial heat power supply Q0 is fixed
to 18.6 W. The same results are presented in Fig. 8(b) for the stack
position xs = 36.5 cm, where the initial heat power supply Q0 is
fixed to 13.7 W. The results depicted in Fig. 8 show that the time
of occurrence of the onset of thermoacoustic instability is con-
trolled by the power increment DQ, and that the amplitudes of
acoustic pressure in steady state are roughly of the same order of
magnitude than those observed in experiments. The model also
predicts larger steady state acoustic pressures for xs = 36.5 cm than
for xs = 26.5 cm, which is consistent with the experimental results
of Figs. 4 and 5. However, when comparing in details the theoret-
ical results with the experimental results of Figs. 4 and 5, it appears
clearly that the model is unable to reproduce the actual dynamics
of wave amplitude evolution: there exists very small overshoots of
wave amplitude growth which are however much lower than
those observed in experiments, and the switch on/off process is
not predicted by theory.

In order to get a deeper physical insight about the engine’s
operation, it is useful to calculate the transient regime when each
of the saturating processes is considered independantly. This is
realized in Fig. 9(a) where xs is fixed to 36.5 cm and DQ/Q0 = 16%
(Q0 = 13.7 W). For an adequate readability, the computed data are
only presented from time t = 25 s to t = 100 s. The gradual evolu-
tion of the characteristic temperatures THðtÞ ¼ Tðz ¼ 0; tÞ,
TSðtÞ ¼ Tð�ls0 ; tÞ, and TFðtÞ ¼ Tðlf0 ; tÞ are also presented in Fig. 9,
with ls0 � 1:52 cm and lf0 � 1:36 cm. The transient regime is com-
puted in different configurations depending on whether both ther-
moacoustic streaming and acoustic streaming are considered (solid
lines) or not (� and }). The impact of canceling the time delay hf of
streaming establishment is also examined (h). From the analysis of
the evolution of acoustic pressure P(t), it firstly appears that the
major contribution to wave saturation is due to the thermoacoustic
heat pumping (dashed lines, �) which, however, cannot be consid-
ered as the only contributor to wave saturation (otherwise dashed
lines would coincide with solid lines). The only contribution of
acoustic streaming (dash-dotted lines, }) leads to a steady state
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acoustic pressure which is not significantly larger than the one due
to the only thermoacoustic pumping: this means that, from our
simplified model, acoustic streaming contributes to wave satura-
tion. Another interesting point concerning the only contribution
of acoustic streaming to wave saturation is that there exists a sig-
nificant overshoot of wave amplitude growth, clearly visible
around t � 35 s. Moreover, the results show that if the characteris-
tic time hf of streaming establishment is discarded (hf = 0, h), the
overshoot disappears. From the analysis of the evolution of the
temperatures TH, TS and TF, it appears that the wave amplitude
growth is accompanied by a diminution of TH leading to a diminu-
tion of the thermoacoustic amplification rate. However, it is diffi-
cult to distinguish the different curves from the only analysis of

TH while significant differences clearly appear from the gradual
evolutions of both TS and TF. This clearly means that thermoacou-
stic amplification is not only controlled by the temperature differ-
ence across the stack but also by the shape of the temperature field
in the entire thermoacoustic core.

5. Conclusion

We presented an experimental and theoretical study dealing
with the onset of self-sustained acoustic waves in a standing wave
thermoacoustic engine. The results clearly show that even in the
simple thermoacoustic device considered in this study, a rather
simple modeling is unable to reproduce the complicated dynamics
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Fig. 8. Theoretical transient regimes of wave amplitude growth obtained for various heat power increments DQ: (a) the position of the stack is fixed to xs = 26.5 cm while the
initial heat power supply Q0 equals 18.6 W (slightly below Qonset = 20.17 W); (b) the position of the stack is fixed to xs = 36.5 cm while the initial heat power supply Q0 equals
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of wave amplitude evolution observed in experiments. The model
indicates that the major contribution to wave saturation is due
to thermoacoustic heat pumping by acoustic waves, but also that
forced convection due to acoustic streaming should be worth con-
sidering. Though the complicated dynamics of wave amplitude
evolution are not completely reproduced by the model, it seems
reasonable to suggest that the effects observed in experiments
could be due to the gradual evolution of the temperature field
along the thermoacoustic core. The results also indicate that acous-
tic streaming impacts the temperature field within a time scale
which is significantly larger than the time scale ��1

ampl of thermoa-
coustic amplification: this could explain the overshoot process
and, perhaps, the switch on/off process. It is thus challenging to
improve the theoretical description of the device in order to get a
better agreement with experiments. In our opinion there are two
major drawbacks in the simplified model presented in this paper.
The first one concerns our rough estimate of the heat exchange
coefficients hðs;f Þconv associated to the heat taken by the fluid near
the stack/waveguide interface. The second drawback concerns
the rough simplification of the equations describing unsteady heat
transfer: by transforming these partial differential equations into
ordinary differential equations, one may lose important informa-
tion linked to the details of the temperature distribution and its
evolution with time. It seems interesting for future works to give
up the simplification mentioned above, and to solve the unsteady
heat transfer equations using a finite difference numerical scheme.
Finally, it would be interesting to include in the analysis the addi-
tional processes of wave saturation (nonlinear propagation in the
open-ended tube and minor losses at the edges of the stack).
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