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Abstract: This study aims at investigating a
possibilit y to use surface acoustic waves (SAWs) in order
to drive acoustic streaming and other nonlinear effects
leading to heat transport through a microchannel. As a
beginning in this exploratory study, a solid-fluid interface
submitted to a temperature gradient is considered, and
three distinct mechanisms of heat transfer are estimated
analytically. The type of SAW that could be used for an
eff icient transfer of heat is also discussed.
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A. Introduction
The recent development of thermoacoustic engines

has brought to light the interest in studying acoustic
streaming, i.e. the time averaged motion of fluid induced
by high amplitude acoustic field. At the same time, rapid
advances in micromechanical systems have produced a
variety of devices, among which some experimental
demonstration of fluid motion induced in a microchannel
by the propagation of guided acoustic waves [1].

Viscosity effects are indeed very important in
microchannels, so that nonlinear effects driven by
viscosity such as acoustic streaming may be successfully
used in microdevices as a micropump or a micromixer
[2].

Attention is focused in this paper on the possibilit y to
use acoustic streaming in microdevices in order to extract
heat from electronic components. In this recently initiated
study, a very simple geometry is first considered for
conveniency, i.e. a solid-fluid interface submitted to a
longitudinal temperature gradient (see Fig. 1(a)), where
the oscill ations (at order 1) of fluid/solid parcels give rise
(at order 2) to a non-oscill ating heat flux along the
interface. Different mechanisms which could drive this
effect are considered : steady streaming due to spatial
variations of viscosity, thermoacoustic heat transport
along the interface, and steady streaming due to
transverse vibrations of the solid wall (in z-direction).
Simpli fied analytical models are provided and the type of
SAW which may be used for an eff icient micro-heat-
exchanger is also discussed.
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Fig.1. (a) Schematic representation of the problem under consideration : a solid-fluid interface, where the mean temperature field
T0(x) may vary linearly with coordinate x. (b) Vibration of the solid along x-axis will drive in the fluid a second order mean flow
(with subsequent heat flow) due to dependence of viscosity on temperature. (c) The propagation of a plane acoustic wave in the fluid
gives rise to thermoacoustic heat transport in the vicinity of the solid wall . (d) Transverse oscill ations propagating along x-axis on
the interface lead to a second order steady streaming in the fluid.

B. Different mechanisms which may induce
heat transport along the interface

B.1. Steady streaming due to dependence of
viscosity on temperature

A first mechanism of heat transfer is ill ustrated in
Fig. 1(b), where the excitation of vibrations along x-axis

in the solid induce oscill ation of fluid in the viscous
boundary layer. Here, variations of viscosity along x-axis
(due for instance to mean temperature variations) lead to
a second order mean flow in the fluid, which can be easily
estimated in case of small variations of viscosity.

Assuming constant fluid density ρ0, the two-
dimensional mass and momentum conservations
equations are
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0=∂+∂ wu zx (1.a)

( ) uuPuwuu xtxxzxt ∂η∂+∆η+−∂=∂+∂+∂ρ 22
0  (1.b)

( ) ( )wuwPwuww xzxzzxt ∂+∂η∂+∆η+−∂=∂+∂+∂ρ 2
0  (1.c)

where u and w are x and z components of velocity,
respectively, P is the pressure in the fluid, η is the shear
viscosity of fluid, and ∆ denotes Laplacian operator. The
boundary layer approximation (u>>w, ∂z>>∂x) can be
applied to (1), leading in the absence of temperature
gradient to the classical result

),kztcos(eV)t,z(u kz −ω= −
0 (2)

where k=(ω/2ν)½ , and ν=η/ρ0 is cinematic viscosity.

However, assuming weak dependence of viscosity
with x-coordinate in the form η(x)=η0+εη1(εx) with
ε<<1, the longitudinal velocity u oscill ating at angular
frequency ω can be decomposed into its order ε0

component

),zktcos(eV)t,z(u zk
000

0 −ω= − (3)

with k0=(ω/2ν0)
½, and its order ε1 component (due to

variations of viscosity)

{ )zktsin(eVk)t,z,x(u zk
0011

0 −ω=ε −

})zktcos( 0−ω− (4)

with k1=-k0ν1(εx)/2ν0. Each unknown f can be expanded
as f=f0+εf1+ε2f2+…, so that at order ε1 , we get w1=0 and
P1=0. At order ε2, the mass conservation law equation is
∂xu1+∂xu2+∂xw2=0 where w2 is the tranverse velocity
oscill ating at angular frequency ω, so that the time-
average of this equation leads to ∂x<u2>, where <..>
denotes time averaging and <u2> is the longitudinal
component of steady streaming velocity. Moreover, the
time average of the momentum conservation equations
leads to

22002
2

0 Pwuu xzzz ∂+∂ρ=∂η , (5)

and ∂z<P2>=0, so that <P2> does not depend on z, and is
consequently equal to zero because the oscill ating
perturbation has no influence for z>>1. Finally,
integrating twice equation (5), and accounting for
boundary conditions ∂z<u2>|z→∞=0 and <u2>|z=0=0  the
second order in ε longitudinal velocity of steady
streaming is obtained :
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This streaming velocity reaches maximum at approximate
distance of 2δν0 where δν0=k0

-1 denotes the viscous
boundary layer thickness, and rapidly decreases far from
the solid wall . It is quadratic in V0 and proportional to the
viscosity gradient dxη1 (note that in case of gases, η
grows with temperature T0, while in case of liquids η
generally decreases with increasing temperature).

B.2. Thermoacoustic heat pumping in the
vicinity of the solid wall

A second mechanism of heat transfer is the classical
thermoacoustic heat pumping effect which employs the
interaction between acoustic and thermal waves in the
vicinity of the solid-fluid interface. This mechanism is
ill ustrated in Fig. 1(c), where the propagation of a
traveling plane acoustic wave in the fluid in the presence
of a temperature field T0(x) is considered. The acoustic

pressure is written )e)x(p~(Re)t,x(p tjω= 11  where
jkxeP

~
)x(p~ −= 11 , k=ω/c0 is the acoustic wave number (c0 is

the sound speed in the fluid), and where subscript 1 refers
to order 1 quantities, i.e. acoustic quantities oscill ating at
angular frequency ω. Far from the solid, as the fluid
oscill ates along the solid at acoustic frequency, it
experiences temperature fluctuations, which are due both
to adiabatic compression and expansion accompanying
acoustic pressure fluctuation and to the local temperature
T0(x) itself . However, at a distance of about one thermal
boundary layer thickness δκ=(2κ/ω)½ (where κ denotes
thermal diffusivity of fluid), the thermal contact between
the oscill ating fluid and the solid results in a time delay
between pressure and temperature fluctuations, which
leads to a nonzero, second order time-averaged heat flux.
This well -known effect can be described through the
linear thermoacoustic theory [3] : using both the
momentum conservation and heat transfer equations with
appropriate boundary conditions, the amplitude

)z,x(u~1 of the acoustic wave velocity and the amplitude

)z,x(T
~

1 of temperature oscill ations in the fluid are

obtained, and substituted in the expression of the second
order time averaged thermoacoustic heat flux along x per
unit area driven by the thermoacoustic effect
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where * denotes complex conjugate and β is the thermal
expansion coeff icient of fluid. After calculations, the
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where σ and Cp are the Prandtl number and isobaric heat
capacity per unit mass of fluid, respectively. From (8) it
appears that if the temperature gradient is positive, the
thermoacoustic heat flux is negative (i.e. from hot to
cold). However, if dxT0 is negative (or equivalently if
temperature growth is opposite to the direction of wave
propagation), there is a critical temperature gradient

p
crx C

cT
Td 00

0
1

1 βω

σ+σ+
σ−−= (9)

below which the direction of heat flux is reversed.
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B.3. Steady streaming due to oscillating
boundaries

The third mechanism of heat transfer which is
considered here is ill ustrated in Fig. 1(d) where the
propagation of a traveling surface wave in the solid leads
via nonlinear effects to a mean fluid flow, with
subsequent heat transport in the presence of a mean
temperature gradient. A simpli fied analytical description
of the resulting steady streaming velocity is proposed here
in case of small vibration amplitudes, no temperature
gradient, incompressible fluid, and purely transverse
oscill ations of boundaries. The fluid flow ( )w,uv =

&
is

described by Eqs. (1) (where spatial variations of
viscosity are neglected) taking into account the boundary
conditions due to vibrating wall  :

))kxtsin(k,()t),kxtcos(kz,x(v −ωεω−=−ωε= −− 11 0
&  (10)

Scaling for conveniency lengths by k-1, time by ω-1,
velocities by εωk-1, pressure by εηω, and defining the
non-dimensional parameter α by α²=ρ0ωη-1k-2, Eqs (1)
and (10) are rewritten in dimensionless form as

,v. 0=∇
& ( ) ,vPv.vvt

&&&&&&
∆+∇−=∇ε+∂α 2 (11)

and ( )( ) ( )( )xtsin,t,xtcosz,xv −−=−ε= 0
& . (12)

Considering small displacements (ε<<1), each unknown
is expanded in the form f=f0+εf1+…while the velocity at
the moving wall i s also expanded around position z=0 :

( )( ) ( ) ( ) ( ) ...t,,xvxtcost,,xvt,xtcosz,xv z +∂−ε+=−ε= 00
&&&

(13)
At order ε0, introducing the stream function ϕ0 so that
u0=-∂zϕ0 and w0=∂xϕ0  which satisfies ∆∆ϕ0–α2∂t∆ϕ0=0,
we seek a solution in the form

( ) ( )( )xtje)z(~Re)t,z,x(~Re)t,z,x( −ψ=ϕ=ϕ 00 . (14)

Accounting for continuity of velocities at z=0 and
requiring that velocities should be finite when z→∞, the
following solution for ψ~  is obtained :
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with m=1+jα². At order ε1, the time averaged mass and
momentum conservations equations are
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with boundary conditions
( ) ( ) ( )t,,xvxtcost,,xv z 00 01

&&
∂−−= (17)

The geometry of the problem allows us to seek a solution
)z(v1

&
 independent of x. Requiring that

01 =∂
∞→z
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&

] , Eqs (16) are solved, leading to
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Note that, due to the choice in the scaling of variables, the
longitudinal steady streaming is actually of order ε2 in
magnitude. Note also that this solution (18) is not realistic
far from the wall (<u2>|z→∞=C2≠0), due to the absence of
boundaries in the half-space z>0. In the expression (18)
of the dimensionless steady streaming velocity, there are
two sources which drive the mean flow. The first one,
present in constant C2, is the peristaltic pumping induced
by nonlinearity of boundaries, which drive the fluid in the
direction of wave propagation ; the second source, due to
classical Reynolds stresses in the viscous boundary layers
do not depend on the direction of wave propagation.

C. Discussion.
When exciting SAW in a microchannel subject to a

longitudinal temperature gradient, each of the above
mentioned processes of heat transport may be involved.
As a preliminary estimate, the heat fluxes associated to
each mechanism should be evaluated. However,
ameliorations should be included in the model before
reasonable estimates of the global heat transport may be
provided. First of all , a fluid-solid interface could be
replaced in calculations by a fluid film bounded by two
solid half space ; the fluid film thickness would be of
about a few boundary layer thicknesses, for which at least
the first and second heat transport mechanisms are the
most eff icient. Also, the analytical models presented
above should be ameliorated. In particular,
compressibilit y of fluid should be taken into account in
the first and third mechanisms, and the possibilit y of a
nonzero longitudinal component in the oscill ating
interface for the third mechanism should be considered. In
the presence of a SAW, the actual motion of a solid
particle at the fluid-solid interface is indeed elli ptical
more than purely transverse, so that the associated steady
streaming may be substantially different from that
estimated here.

Another important question arises when trying to
transport heat via SAW, i.e. what type of SAW may be
the more interesting for the given purpose ? Consider an
interface (z=0) of an isotropic solid and an inviscid fluid.
Introducing the velocity potential functions ϕs, ψs, and ϕf

so that us=∂xϕs-∂zψs, ws=∂zϕs+∂xψs, uf=∂xϕf , and wf=∂zϕf

where subscripts s and f refer to solid and fluid,
respectively, we seek the harmonic travelli ng wave
solution as

( )kxtjqz
s eAe −ω=ϕ , (21)

( )kxtjsz
s eBe −ω=ψ , (22)

( )kxtjzk
f eCe z −ω−=ϕ , (23)

where k is the wave number of the traveling wave, q2=k2-
(ω/cL)

2, s2=k2-(ω/ct)
2, kz

2=k2-(ω/c0)
2, cL and ct are the

speeds of longitudinal and transverse waves in the solid,
respectively. The wave number is determined by ensuring
boundary conditions at z=0, i.e. continuity of transverse
velocities, and continuity of the tranverse and longitudinal



Paper #1677 Presented at the International Congress on Ultrasonics, Vienna, April 9 - 13, 2007, Session R24: Thermoacoustics

- 4 -

components of the stress tensor. This leads to the
following equation (the Scholte determinant) :

( ) 04
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which always has a real root kS and, in most cases, also
has a complex root kLRW. The real root kS corresponds to
the Scholte wave, i.e. an acoustic wave which is trapped
near the solid-fluid interface and which propagates along
x. The complex root corresponds to the leaky Rayleigh
wave, which is similar to the Rayleigh wave for a solid-
vacuum interface, except that it is leaky due to continuous
sound radiation in the fluid.

Table 1 presents different characteristics relative to
Leaky Rayleigh Wave and Scholte wave propagation at 1
MHz, in case of a sili con-water interface (ρs=2329 kg.m-3,
cL=8432 m.s-1,ct=4673 m.s-1, ρf=1000 kg.m-3,c0=1481
m.s-1), for a total energy density of 1 J.m-3 (for which
particle displacements at the interface are of about a few
nanometers). The two types of SAW present fairly
different characteristics. In case of LRW propagation,
approximately 25% of the acoustic energy is located into
the fluid, and the wave is attenuated after a few
centimeters (Im(kLRW)≈2.9 cm). However, the Scholte
wave is unattenuated (if viscosity is neglected) and all it s
the energy is located into the fluid : the Scholte wave is
similar to a bulk wave traveling along the surface at a
velocity very close to sound speed in the fluid
(csw=1480.2), but localized in depth (kz

-1≈7mm).

Table 1. Various characteristics of Leaky Rayleigh Wave
(LRW) and Scholte wave (SW) propagation in case of a sili con-
water interface, at 1MHz, and for a total energy density
Etot=1J.m-3. Note that viscosity is not taken into account here.

LRW SW
k (1455.3+33.8×j) m-1 4244.9 m-1

Ef/Etot 25.6 % 99.7 %
|ws,f|z=0 43 10-2 m.s-1 2.5 10-2 m.s-1

|us|z=0 28.5 10-2 m.s-1 8.3 10-3 m.s-1

|uf|z=0 15.7 10-2 m.s-1 75.4 10-2 m.s-1

Both the LRW and the SW can be easily generated on
a fluid-solid interface using interdigitated transducers.
Each type of SAW seem to have advantages and
disadvantages for the given purpose of heat transport
(LRW may be however more interesting due to larger
amplitudes of wall vibration) but before drawing any
conclusion, viscosity should actually be considered in the
calculations [4] because continuity of longitudinal
velocities is not ensured here (in case of SW, the
longitudinal velocity in the fluid at the interface is
approximately 102 times bigger than in the solid).

Works are now in progress in order account for the
weaknesses of the model that may impact significantly the
estimate of the global heat transport associated to SAW
propagation in a microchannel.

D.  Conclusion
In this paper, three mechanisms of nonlinear heat

transport in the vicinity of an oscill ating fluid-solid
interface submitted to a longitudinal temperature gradient
have been considered and estimated with simpli fied
analytical models. Each of these nonlinear effects may be
involved in the heat transfer associated to LRW or SW
propagation in a microchannel. The analytical models
presented here must now be improved (account of
compressibilit y and of the actual wall motion) in order to
provide indications on the feasibilit y and the heat flux that
can reach a SAW-driven heat exchanger.

E. Aknowledgements
Work supported by the National Research Agency

under contract n° ANR-05- BLAN-0016-01.

F. Litterature
[1] R.M. Moroney, R.M. White, « Microtransport induced by

ultrasonic Lamb waves », Appl. Phys. Lett., vol. 59(7),
pp.774-776 1991.

[2] K. P. Selverov, H.A. Stone, « Peristaltically driven
channel flows with applications toward micromixing »,
Phys. Fluids, vol. 13(7), pp. 1837-1859, 2001.

[3] G.W. Swift, « Thermoacoustic engines », J. Acoust. Soc.
Am., vol. 84(4), pp. 1145-1180, 1988.

[4] Q. Qi, « Attenuated leaky Rayleigh waves » J. Acoust.
Soc. Am., vol. 95(6), pp. 3222-3231, 1994.


