

Active tuning of acoustic oscillations in a thermoacoustic power generator

G. Poignand, C. Olivier, G. Penelet, P. Lotton

Laboratoire d'Acoustique de l'Université du Maine, UMR CNRS 6613 Avenue Olivier Messiaen, 72085 LE MANS Cedex 9, France

- Thermoacoustic engines : autonomous oscillators, heat input Qh => acoustic power Wac
- Onset of a self sustained acoustic wave (at the frequency of the most unstable mode) controlled by linear effects
- Saturation controlled by nonlinear effects: acoustic power dissipation or temperature/acoustic field modification

- Thermoacoustic engines : autonomous oscillators, heat input Qh => acoustic power Wac
- Onset of a self sustained acoustic wave (at the frequency of the most unstable mode) controlled by linear effects
- Saturation controlled by nonlinear effects: acoustic power dissipation or temperature/acoustic field modification

Problem : nonlinear effects = complicated
processes, not fully described

- Thermoacoustic engines : autonomous oscillators, heat input Qth> acoustic power Wac
- Onset of a self sustained acoustic wave (at the frequency of the most unstable mode) controlled by linear effects
- Above threshold, saturation controlled by nonlinear effects: acoustic power dissipation or temperature/acoustic field modification

Problem : nonlinear effects = complicated
processes, not fully described

Common solution : use of passive elements (semi-empirically designed)

- Thermoacoustic engines : autonomous oscillators, heat input Qh => acoustic power Wac
- Onset of a self sustained acoustic wave (at the frequency of the most unstable mode) controlled by linear effects
- Saturation controlled by nonlinear effects: acoustic power dissipation or temperature/acoustic field modification

Problem : nonlinear effects = complicated
processes, not fully described

New approach : active control method to control the acoustic field

 \rightarrow external forcing of the self sustained wave

- Thermoacoustic engines : autonomous oscillators, heat input Qh => acoustic power Wac
- Onset of a self sustained acoustic wave (at the frequency of the most unstable mode) controlled by linear effects
- Saturation controlled by nonlinear effects: acoustic power dissipation or temperature/acoustic field modification

Problem : nonlinear effects = complicated
processes, not fully described

New approach : active control method

→ external forcing of the self sustained wave to control the acoustic field

Active tuning of acoustic oscillations in a thermoacoustic power generator

1. Experimental setup

2. Experimental results

2.1 External auxiliary source¹

[1] C. Olivier, G. Penelet, G. Poignand and P. Lotton . « Active control of thermoacoustic amplification in a thermo-acousto-electric engine », Journal of Applied Physics, vol. 115 [17], 2014.

2.2 Internal auxiliary source

Thermoacoustic power generator

designed with Delta-Ec [W.C. Ward, G.W. Swift & J.P. Clark, J. Acoust. Soc. Am., 123(5) (2008)]

- Fluid : air
- Static pressure : 5 Bars
- Ambient temperature : 295 K

- Frequency: 40 Hz
- Onset condition: $Q_h = 60 \text{ W}, \Delta T = 401 \text{ K}$
- ηmax = 1 %, Pelmax = 1W
- Low efficiency: engine = study model (modular, limited budget, low efficiency alternator) but designed to work closed to its maximum value.

Travelling wave thermoacoustic engine part

Cold heat exchanger

Copper block with 2 mm diameter drilled holes. Water circulates around the block. Porosity: 69 % Length: 1.5 cm

Regenerator

Stainless steel wire mesh Porosity: 69 % Hydraulic radius: 20 μm Length: 2.3 cm

Hot heat exchanger

Ceramic stack with two ribbon heaters Length: 1.5 cm Qh max = 235 W (Rribbon = 4.7 Ω)

Active control method

Input parameters: heat input Q_h , gain G and the phase ϕ Measured parameters: Efficiency without auxiliary source $\eta_{\emptyset} = \frac{W_{\text{el}}}{Q_h}$ and with active control: $\eta = \frac{W_{\text{el}}(G=0) + \Delta W_{\text{el}}}{Q_{h+}W_{ls}}$ Temperature difference without auxiliary source ΔT_{\emptyset} and with active control ΔT

Objective: play on input parameters (Qh, G, ϕ) $\Longrightarrow \begin{cases} \bullet & \eta < \eta_{\phi} \\ \bullet & \Delta W_{el} > W_{ls} \end{cases}$?

Active tuning of acoustic oscillations in a thermoacoustic power generator

1. Experimental setup

2. Experimental results

2.1 External auxiliary source¹

[1] C. Olivier, G. Penelet, G. Poignand and P. Lotton . « Active control of thermoacoustic amplification in a thermo-acousto-electric engine », Journal of Applied Physics, vol. 115 [17], 2014.

2.2 Internal auxiliary source

Efficiency η versus ϕ for different G

with the phase φ :- η varies ⇒ optimal phase φ_{opt} - acoustic wave death
 when the gain G ↗ :- η ↗ and ΔT ↘

 \Rightarrow nonlinear interaction ?

W_{IS} and W_{eI} versus G for $\phi = \phi_{opt}$

 $Q_h = 70 \text{ W}$ (o), without active control (--)

 ΔW_{el} (0) additional power produced W_{ls} (•) power supllied to AC source

• For low Q_h : - η increases with the gain G

- configurations for which $\Delta W_{el} > W_{LS}$

NB: $\eta = \frac{Wel (G=0) + \Delta Wel}{Q_{h+}W_{ls}}$

W_{IS} and W_{eI} versus G for $\phi = \phi_{opt}$

 $Q_h = 140 \text{ W}$ (\diamond), without active control (--)

• For higher Q_h : - efficiency improvement saturates

- configurations for which $\Delta W_{el} > W_{LS}$

NB: $\eta = \frac{Wel (G=0) + \Delta Wel}{Q_{h+}W_{ls}}$

Active tuning of acoustic oscillations in a thermoacoustic power generator

1. Experimental setup

2. Experimental results

2.1 External auxiliary source¹

[1] C. Olivier, G. Penelet, G. Poignand and P. Lotton . « Active control of thermoacoustic amplification in a thermo-acousto-electric engine », Journal of Applied Physics, vol. 115 [17], 2014.

2.2 Internal auxiliary source

Efficiency η versus ϕ for different G

Same results than for the first configuration :

- optimal phase ϕ_{opt} (varies with the gain)

- acoustic wave death

• for high $G : -\eta > \eta_{\phi}, \Delta T > \Delta T_{\phi}$

W_{IS} and W_{eI} versus G for $\phi = \phi_{opt}$

 $Q_h = 70 \text{ W}$ (o), 100W (\diamond), without active control (..)

- efficiency improvement saturates
- configurations for which $\Delta W_{el} > W_{LS}$ NB: $\eta = \frac{W_{el} (G=0) + \Delta W_{el}}{Q_{h+}W_{ls}}$

Hysteresis behaviour

Method : 1. Search onset condition, Qh ↗

2. Above onset : Efficiency measurement when Qh ↗ and then Qh ↘

3. Search offset condition

Steady-state measurements

• For G = 0, $\Delta T_{onset} > \Delta T_{\emptyset onset}$ and $\eta < \eta_{\emptyset}$

Hysteresis behaviour

 $\varphi = \varphi_{opt}, G = 0 (-), 40 (\diamondsuit)$ without active control (..)

• For G = 0, $\Delta T_{onset} > \Delta T_{\emptyset onset}$ and $\eta < \eta_{\emptyset}$ • For $G \neq 0$, hysteresis behaviour: $\Delta T_{offset} < \Delta T_{onset}$, system works for $Qh < Qh_{onset}$

Hysteresis behaviour

 $\phi = \phi_{opt}, G = 0$ (-), 40 (\diamond), 70 (+), 135 (\Box) or 190(\mathbf{o}), without active control (..)

- For G = 0, $\Delta T_{\text{onset}} > \Delta T_{\emptyset \text{ onset}}$ and $\eta < \eta_{\emptyset}$
- For $G \neq 0$, hysteresis behaviour: $\Delta T_{offset} < \Delta T_{onset}$, system works for $Qh < Qh_{onset}$
- With the gain G, $\Delta T_{\text{offset}} \supseteq$, $\Delta T_{\text{onset}} < \Delta T_{\emptyset \text{ onset}}$, $\eta > \eta_{\emptyset}$

Conclusions

Active control works :

- *Efficiency improvement:* efficiency η higher than the one without active control η_{ϕ}
- Lower onset temperature: onset temperature ΔT_{onset} lower than the one without active control $\Delta T_{ø onset}$
- hysteresis behaviour: offset temperature ΔT_{offset} lower than onset temperature ΔT_{onset}

But why ?

simplified model to get better comprehension

Perspectives

 Active control with two phase-tuned sources: already performed on an annular thermoacoustic engine [1]

[1] C. Desjouy, G. Penelet, and P. Lotton «Active control of thermoacoustic amplification in an annular engine», Journal of Applied Physics, vol. 108, n° 11, 2010.

 Active control applied on a high power thermoacoustic engine (currently being built)

- Fluid : helium
- Static pressure : 22 Bars
- Heat input : 1000 W
- Efficiency (theoretical): 20 %
- Electric power: 200 W

Active tuning of acoustic oscillations in a thermoacoustic power generator

G. Poignand, C. Olivier, G. Penelet, P. Lotton

Laboratoire d'Acoustique de l'Université du Maine, UMR CNRS 6613 Avenue Olivier Messiaen, 72085 LE MANS Cedex 9, France

Thermoacoustic power generator

designed with Delta-Ec [W.C. Ward, G.W. Swift & J.P. Clark, J. Acoust. Soc. Am., 123(5) (2008)]

Fluid : **air** Static pressure : **5 Bars** Ambient temperature : **295 K** Frequency: **40 Hz** Thermoacoustic core : L = 0.093m, d= 5.6 cm Alternator : Resonator : L = 1.55 m, d = 4.4 cm Back cavity : L = 0.26 cm, d = 17 cm Inertance feedback : L = 0.97 m, d = 4.4 cm Compliance : L = 0.04 m, d = 5.6 cm