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Thermoacoustic engines

Thermoacoustic engines : autonomous  oscillators, heat input Qh       acoustic power Wac 
Onset of a self sustained acoustic wave (at the frequency of the most unstable mode)  
controlled by linear effects 
Saturation controlled by nonlinear effects: acoustic power dissipation or temperature/acoustic 
field modification



3

Thermoacoustic engines

Gedeon streaming

nonlinear propagation

Rayleigh streaming

minor losses

Problem :  nonlinear effects = complicated 
processes, not fully described

Thermoacoustic engines : autonomous  oscillators, heat input Qh       acoustic power Wac 
Onset of a self sustained acoustic wave (at the frequency of the most unstable mode)  
controlled by linear effects 
Saturation controlled by nonlinear effects: acoustic power dissipation or temperature/acoustic 
field modification

Thermoacoustic heat pump
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Thermoacoustic engines : autonomous  oscillators, heat input Qh       acoustic power Wac 
Onset of a self sustained acoustic wave (at the frequency of the most unstable mode)  
controlled by linear effects 
Above threshold, saturation controlled by nonlinear effects: acoustic power dissipation or 
temperature/acoustic field modification

Thermoacoustic engines

Common solution :  use of passive elements 
(semi-empirically designed) 

tapered tube

membrane 
jet pump

Problem :  nonlinear effects = complicated 
processes, not fully described

Gedeon streaming

nonlinear propagation

Rayleigh streaming

minor losses

shaped resonator
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Thermoacoustic engines : autonomous  oscillators, heat input Qh       acoustic power Wac 
Onset of a self sustained acoustic wave (at the frequency of the most unstable mode)  
controlled by linear effects 
Saturation controlled by nonlinear effects: acoustic power dissipation or temperature/acoustic 
field modification

Thermoacoustic engines

Problem :  nonlinear effects = complicated 
processes, not fully described

Auxiliary source

Gedeon streaming

nonlinear propagation

Rayleigh streaming

minor losses

New approach : active control method to 
control the acoustic field 
→ external forcing of the self sustained wave 
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Thermoacoustic engines : autonomous  oscillators, heat input Qh       acoustic power Wac 
Onset of a self sustained acoustic wave (at the frequency of the most unstable mode)  
controlled by linear effects 
Saturation controlled by nonlinear effects: acoustic power dissipation or temperature/acoustic 
field modification

Thermoacoustic engines

Problem :  nonlinear effects = complicated 
processes, not fully described

Auxiliaire source

G

φ

Microphone

Auxiliary source

Gedeon streaming

nonlinear propagation

Rayleigh streaming

minor losses

New approach : active control method 
→ external forcing of the self sustained wave 
to control the acoustic field 
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1. Experimental setup

Active tuning of acoustic oscillations in a thermo-
acoustic power generator

2. Experimental results 
2.1 External auxiliary source1 2.2 Internal auxiliary source

Microphone

Auxiliary source

G

φ
Auxiliary source

Microphone G φ

[1] C. Olivier, G. Penelet, G. Poignand  and P. Lotton .  « Active 
control of thermoacoustic amplification in a thermo-acousto-
electric engine », Journal of Applied Physics, vol. 115 [17], 2014.
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Fluid : air
Static pressure : 5 Bars
Ambient temperature : 295 K

designed with Delta-Ec [W.C. Ward, G.W. Swift & J.P. Clark, J. Acoust. Soc. Am., 123(5) (2008)]

Thermoacoustic power generator

1.73 m

1.12 m

0.25 m

Frequency:  40 Hz
Onset condition: Qh =  60 W, ΔT = 401 K

 ηmax = 1 %, Pelmax = 1W
Low efficiency: engine = study model (modular, limited budget, 
 low efficiency alternator) but designed to work closed to its 
maximum value.

electrodynamic loudspeaker
Monacor SPH 170C

Thermoacoustic core:
Ambiant heat exchanger
Regenerator
Hot heat exchanger
Thermal buffer tube
Ambiant heat exchanger
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Cold heat exchanger

Copper block with 2 mm 
diameter drilled holes.
Water circulates around the 
block.
Porosity: 69 %
Length: 1.5 cm

Stainless steel wire mesh
Porosity: 69 %
Hydraulic radius: 20 μm 
Length: 2.3 cm

 

Regenerator

Ceramic stack with two ribbon 
heaters 
Length: 1.5 cm 
Qh max = 235 W 
(Rribbon =  4.7 Ω) 

 

Hot heat exchanger   
 

       

Travelling wave thermoacoustic engine part
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Active control method

Input parameters: heat input Qh, gain G and the phase φ   
Measured parameters:

Efficiency without auxiliary source ηØ=            and with active control: η =

Temperature difference without auxiliary source ΔTØ and with active control ΔT
   

                          

Wel

Qh
Wel (G=0)+∆Wel

Qh+Wls

G

microphone

electric power 
supplied, Wls

electrical power generated, Wel 
dissipated in a resistor heat  input, Qh φ

audio amplifier

phase-shifter

Electro-acoustic 
feedback loop

Objective : play on input parameters (Qh, G, φ)     
   

η < ηØ ?
ΔWel > Wls ?

   

 additional power produced 
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1. Experimental setup

Active tuning of acoustic oscillations in a thermo-
acoustic power generator

2. Experimental results 
2.1 External auxiliary source1 2.2 Internal auxiliary source

Microphone

Auxiliary source

G

φ
Auxiliary source

Microphone G φ

[1] C. Olivier, G. Penelet, G. Poignand  and P. Lotton .  « Active 
control of thermoacoustic amplification in a thermo-acousto-
electric engine », Journal of Applied Physics, vol. 115 [17], 2014.
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Qh = 70 W, G = 0 (-),20 (+), 30 (*), 32 (o) or 100(◊),
                     without active control (--) 

with the phase φ  : -  η varies   optimal phase φopt 
                                       - acoustic wave death   
   when the gain G ↗ : - η ↗ and  ΔT ↘
      nonlinear interaction ?

  
   

Efficiency η versus φ for different G
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For low Qh: - η increases with the gain G 
                    - configurations for which  ∆Wel > WLS

 NB: η =                            

  
   

Qh = 70 W (o), without active control (--)  

Wls and Wel versus G for φ = φ
opt

 

∆Wel (o) additional power produced 

Wls (•) power supllied to AC source

Wel (G=0)+∆Wel
Qh+Wls
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For higher Qh: - efficiency improvement saturates

                           - configurations for which  ∆Wel > WLS   

∆Wel (  ) additional power produced 

Wls (  ) power supllied to AC source

Qh = 140 W (  ), without active control (--)  

Wls and Wel versus G for φ = φ
opt

 

 NB: η =

 NB: η =
Wel (G=0)+∆Wel

Qh+Wls
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1. Experimental setup

Active tuning of acoustic oscillations in a thermo-
acoustic power generator

2. Experimental results 
2.1 External auxiliary source1 2.2 Internal auxiliary source

Microphone

Auxiliary source

G

φ
Auxiliary source

Microphone G φ

[1] C. Olivier, G. Penelet, G. Poignand  and P. Lotton .  « Active 
control of thermoacoustic amplification in a thermo-acousto-
electric engine », Journal of Applied Physics, vol. 115 [17], 2014.
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Same results than for the first configuration : 
                                       -  optimal phase φopt (varies with the gain)  
                                       - acoustic wave death   
   for high G : - η > ηØ , ΔT > ΔTØ  
                               

  
   

Efficiency η versus φ for different G

Qh = 70 W, G = 0 (-), 10 (-), 40 (◊◊), 70 (+) , 135 () or 190(o),
                     without active control (--) 
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Qh = 70 W (o), 100W (   ), without active control (..)  

∆Wel (  ,o) additional power produced 

Wls (  ,•) power supllied to AC source

efficiency improvement saturates
configurations for which  ∆Wel > WLS                           

  
   

Wls and Wel versus G for φ = φ
opt

 

Wel (G=0)+∆Wel
Qh+Wls NB: η =
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Hysteresis behaviour

φ = φ
opt

, G = 0 (-)
                    without active control (..) 

Method : 1. Search onset condition, Qh ↗ 
                 2. Above onset : Efficiency measurement when Qh ↗ and then  Qh 
                 3. Search offset condition
Steady-state measurements 

For G = 0,   ΔTonset > ΔTØ onset    and η < ηØ                        
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Hysteresis behaviour
φ = φ

opt
, G = 0 (-), 40 (◊◊)

                     without active control (..) 

For G = 0,   ΔTonset > ΔTØ onset    and η < ηØ                        

For G ≠ 0, hysteresis behaviour:   ΔToffset < ΔTonset, system works for Qh < Qhonset    
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Hysteresis behaviour
Qh = 70 W, G = 0 (-), 40 (◊◊), 70 (+) , 135 () 
                     without active control (..) 
φ = φ

opt
, G = 0 (-), 40 (◊◊), 70 (+) , 135 () or 190(o),

                     without active control (..) 

For G = 0,   ΔTonset > ΔTØ onset    and η < ηØ                        

For G ≠ 0, hysteresis behaviour:   ΔToffset < ΔTonset, system works for Qh < Qhonset    

With the gain G,  ΔToffset↘, ΔTonset < ΔTØ onset,   η > ηØ   
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Active control

Conclusions

Active control works : 

Efficiency improvement:  efficiency η higher than the one without active control ηØ

Lower onset temperature: onset temperature ΔTonset lower than the one without active 
control ΔTØ onset

hysteresis behaviour: offset temperature ΔToffset lower than onset temperature  ΔTonset 

But why ? 
  simplified model to get better comprehension
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Perspectives

Active control with two phase-tuned sources: already 
performed on an annular thermoacoustic engine [1]

            [1] C. Desjouy, G. Penelet, and P. Lotton «Active control of thermoacoustic 
amplification in an annular engine», Journal of Applied Physics, vol. 108, n° 11, 2010.

Active control applied on a high power thermoacoustic 
engine (currently being built)
 

Heat input :  1000 W 
Efficiency (theoretical):  20 % 
Electric power:  200 W

Fluid : helium
Static pressure : 22 Bars

alternator: 
Qdrive 1S 132D 0.34 m

0.90 m
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Fluid : air
Static pressure : 5 Bars
Ambient temperature : 295 K
Frequency:  40 Hz

designed with Delta-Ec [W.C. Ward, G.W. Swift & J.P. Clark, J. Acoust. Soc. Am., 123(5) (2008)]

Thermoacoustic power generator

1.73 m

1.12 m

0.25 m

Thermoacoustic core : L = 0.093m, d= 5.6 cm 
Alternator : 
Resonator : L = 1.55 m, d = 4.4 cm
Back cavity : L = 0.26 cm, d = 17 cm 
Inertance feedback : L = 0.97 m, d = 4.4 cm
Compliance : L = 0.04 m, d = 5.6 cm 

electrodynamic loudspeaker
Monacor SPH 170C
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