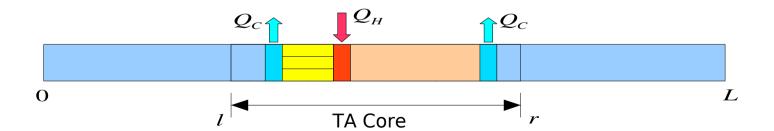


Methods for transfer matrix evaluation applied to thermoacoustics

<u>F. Bannwart</u>^{(a)(b)}, G. Penelet^(a), P. Lotton^(a), J.-P. Dalmont^(a)

 ^(a) Laboratoire d'Acoustique de l'Université du Maine, UMR CNRS 6613, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
 ^(b) Faculdade de Engenharia Mecânica, UNICAMP Caixa Postal 6122, CEP 13083-970 Campinas SP Brasil flavio.bannwart@univ-lemans.fr

Table of contents


- 1) Thermoacoustic (TA) context
 - 1.1) Stack and Regenerator definition
 - 1.2) Definition of the Transfer Matrix (T)
- 2) Methods for the **T** evaluation
 - 2.1) The Two-Loads Method
 - 2.2) The Impedance Method
- 3) Additional Investigation
- 4) Conclusions and Perspectives

1) Thermoacoustic (TA) context

- Onset conditions required to be known for a prime-mover design:
 - Frequency of resonance (**f**onset),
 - Minimum needed heat power supply (\mathbf{Q}_{onset}).
- They can be calculated from the **Tranfer Matrix** (**T**) <u>coefficients</u> of the **TA Core**.
- **T** must be obtained at **different heating** conditions.
- **TA Core** definition: interval with **non-homogeneous temperature** comprising:
 - <u>Stack</u> or <u>Regenerator</u>,
 - Q_H and Q_C Heat Exchangers.

1) Thermoacoustic context 1.1) Stack and Regenerator definitions

• STACK

- <u>Pore diameter</u> a few times **bigger** than thermal <u>boundary layer</u> thickness
- Essentially **irreversible** heat tranfer
- Standing-wave TA system

REGENERATOR

- <u>Pore diameter</u> much **smaller** than thermal <u>boundary layer</u> thickness
- Quest for **reversible** heat transfer
- **Traveling-wave** TA system

1) Thermoacoustic context 1.2) Definition of the Transfer Matrix (T)

Harmonic wave:
$$p(x,t) = \Re[\widetilde{p}(x)e^{-j\varpi t}]$$

Definition of ${f T}$:

$$\begin{bmatrix} \tilde{p}(x_r) \\ \tilde{U}(x_r) \end{bmatrix} = \mathbf{T} \begin{cases} \tilde{p}(x_l) \\ \tilde{U}(x_l) \end{cases} = \begin{pmatrix} T_{pp} & T_{pu} \\ T_{up} & T_{uu} \end{pmatrix} \begin{cases} \tilde{p}(x_l) \\ \tilde{U}(x_l) \end{cases}$$

•
$$\widetilde{p}(x)$$
 and $\widetilde{U}(x)$ are the **complex amplitudes** of

the acoustic **pressure** and volume **velocity** .

• p(x,t) is **measured** (or **simulated**) in an arbitrary frequency range,

regarding the applied method specific limitations.

• The system is **reciprocal** if **det(T) = 1** (hypothesis verified without heating input)

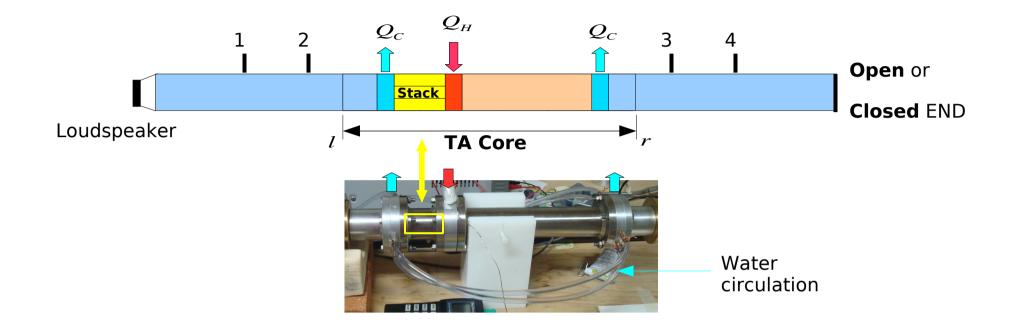
2) Methods for the T evaluation

Analytical alternative:

- Requires <u>accurate</u> geometrical and thermophysical <u>considerations</u>.
- Works mostly for the stack case.
- Hence, it has important limitations.

Experimental alternatives :

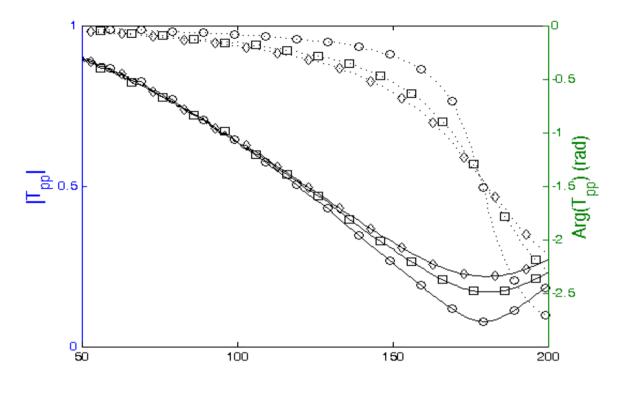
<u>Two-Loads Method</u>

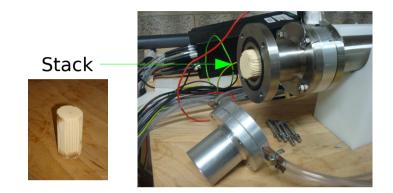

Impedance Method

- They rely on acoustic pressure measurements.
- Advantages:
 - The **TA Core** is treated as a « **black box** » (measurements outside it).
 - No geometrical nor thermophysical considerations.
- <u>Disadvantage</u>:
 - Highly indirect.

2) Methods for the T evaluation 2.1) The Two-Loads Method

- Classical « two-loads » and 4 microphones method.
- $\tilde{p}(x_{l,r})$ and $\tilde{U}(x_{l,r})$ calculated from the measurements $\tilde{p}(x_i)$ [i=1,2,3,4].
- 2 set of $\tilde{p}(x_i)$ measurements with respective 2 different acoustic loads: **Open** or **Closed** End.
- Calculation of the <u>**T** coefficients</u> T_{pp} , T_{pu} , T_{up} and T_{uu} from its definition.

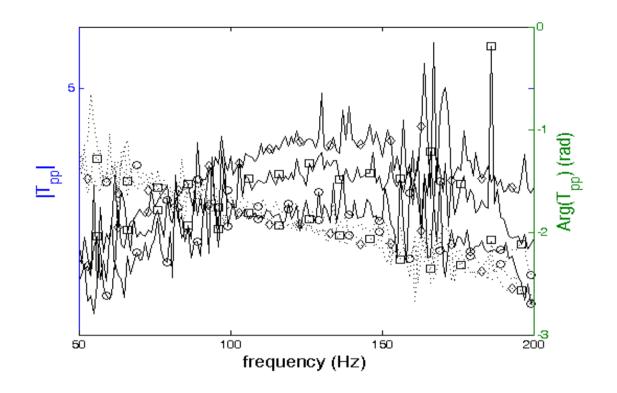

2) Methods for the T evaluation 2.1) The Two-Loads Method - Experimental Procedure


- Frequency range from **50Hz** to **200Hz**.
- **Different heating conditions** Q_H are imposed into the system, each one to whose corresponding **T** is measured.
- Q_H from 0W to 81W at a **constant increment** of 3W.
- A **time delay of 13 minutes** is required for <u>each heat increment</u>, aiming at the steady state regime accoplishment.
- The cooling condition Q_C is imposed by water circulation at <u>room temperature</u>.

2) Methods for the T evaluation 2.1) The Two-Loads Method - Results - Ceramic Stack

- T_{pp} Amplitude (solid lines) Phase (dotted lines)
 - (frequency domain in Hz).
- Three heating conditions are shown:
 - $Q_{H} = 0W$ (0),

-
$$Q_{H} = 36W$$
 (square),

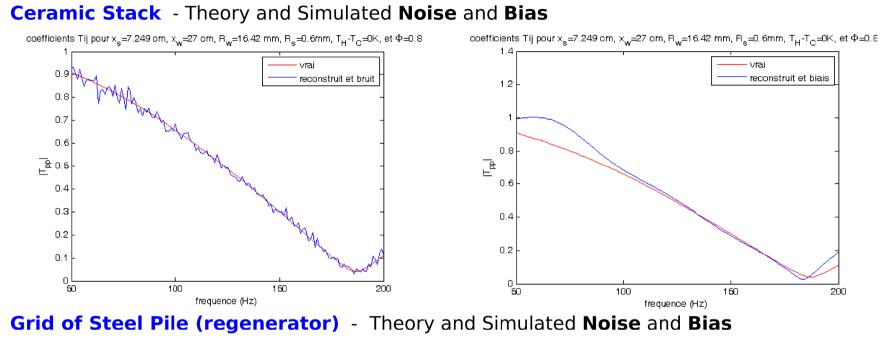

- $Q_H = 72W$ (diamond).

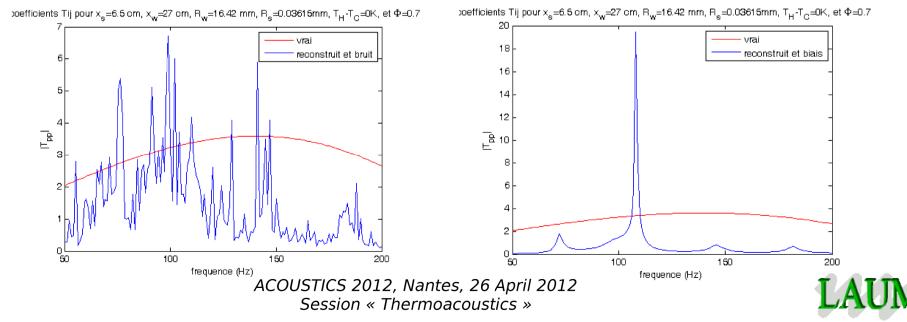
- **Reciprocity** (det(**T**)) values for no heat input ($Q_H = OW$):
 - Amp. Average: 1.010 (low bias level), with a std deviation of 3.3e-3 (low noise level); Theoretical value: 1.
 - Phase Av. (rad): 1.9e-3 (low bias level), with a std deviation of 2.4e-3 (low noise level); Theoretical value: 0.

2) Methods for the T evaluation 2.1) The Two-Loads Method - Results - Grid of Steel Pile

Grid of Steel-(REGENERATOR)

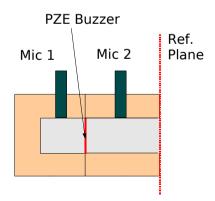
- T_{pp} Amplitude (solid lines) Phase (dotted lines)
 - (frequency domain in Hz).
- Three heating conditions are shown:
 - $Q_{H} = 0W$ (0),
 - $Q_H = 36W$ (square),
 - $Q_H = 72W$ (diamond).


- **Reciprocity** (det(**T**)) values for no heat input ($Q_H = 0W$):
 - Amp. Average: 0.9958 (low bias level), with a std deviation of 0.1818 (high noise level);
 Theoretical value: 1.
 - Phase Av. (rad): 1.9e-3 (low bias level), with a std deviation of 0.1265 (high noise level); Theoretical value: 0.



2) Methods for the T evaluation 2.1) The Two-Loads Method - Sensitivity Analysis

ACOUSTICS 2012

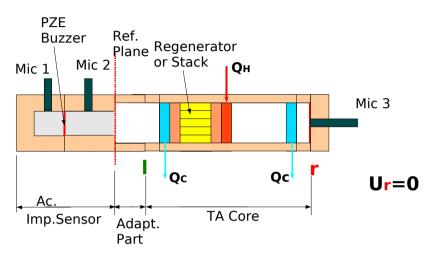

2) Methods for the T evaluation 2.2) The IMPEDANCE Method - Acoustic Impedance Sensor

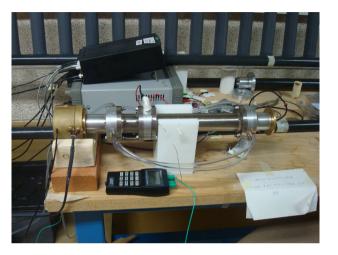
- The <u>T coefficients</u> are calculated from the Impedance Matrix (Z).
- The <u>Z coefficients</u> are measured by the Acoustic Impedance Sensor.

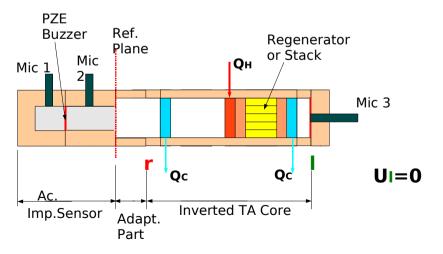
• Definition of **Z** :

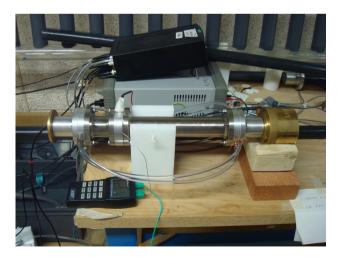
$$\begin{cases} \tilde{p}_{s} \\ \tilde{p}_{w} \end{cases} = \mathbf{Z} \begin{cases} \tilde{U}_{s} \\ \tilde{U}_{w} \end{cases} = \begin{pmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{pmatrix} \begin{cases} \tilde{U}_{s} \\ \tilde{U}_{w} \end{cases}$$

Attachement to the **TA Core**.






2) Methods for the T evaluation 2.2) The IMPEDANCE Method - Configuration and Setup


- First measurement: $Z_{11}\ \mbox{ans}\ \ Z_{21}$ DIRECT SENSE

- Second mesurement: $Z_{12}\,$ and $\,Z_{22}\,$ INVERSE SENSE

2) Methods for the T evaluation 2.2) The IMPEDANCE Method - Calculation Procedure

First Measurement :

$$Z_{11} = \frac{(H_{21}/K) - \beta}{1 - (\delta H_{21}/K)}$$

$$Z_{21} = \frac{H_{31}(1 + \delta Z_{11})}{\delta K_T}$$

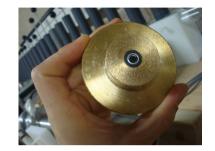
$$= \frac{p_2}{p_1} \frac{s_2}{s_1} \qquad \qquad H_{31} = \frac{p_3}{p_1} \frac{s_3}{s_1}$$

The **sensitivities** are implicit when proceeding with the <u>calibration</u>.

K and K_{T} are obtained from the <u>calibration</u> as well.

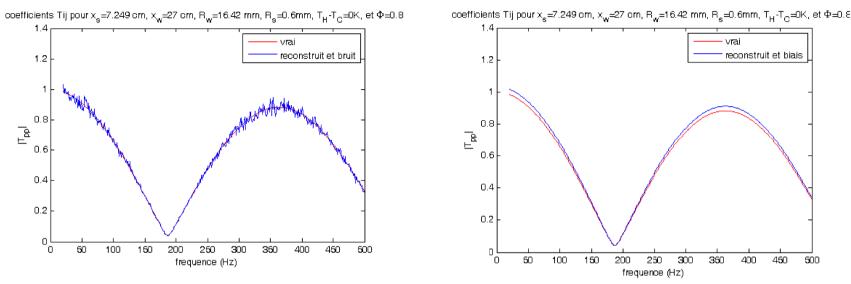
 H_{21}

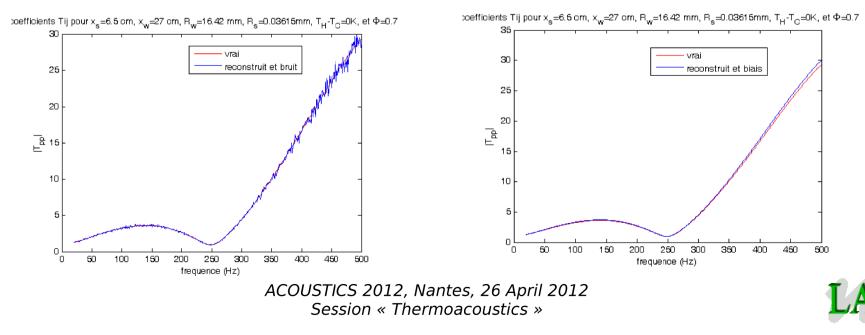
Second Measurement :


- Same equations
- New H_{21} and H_{31}
- Z_{12} and Z_{22} are accomplished

2) Methods for the T evaluation 2.2) The IMPEDANCE Method - Calibration

- Ac. Imp. Sensor is enclosed by a <u>rigid plate</u> (with mic. 3).
- H_{21} and H_{31} are measured.
- p_2 and p_3 are the same reference.
- The **calibration** is established (label « cal »).
- $K = \delta H_{21cal}$ $K_T = H_{31cal}$
- Substitutions into Z equations leads to simple calculations.

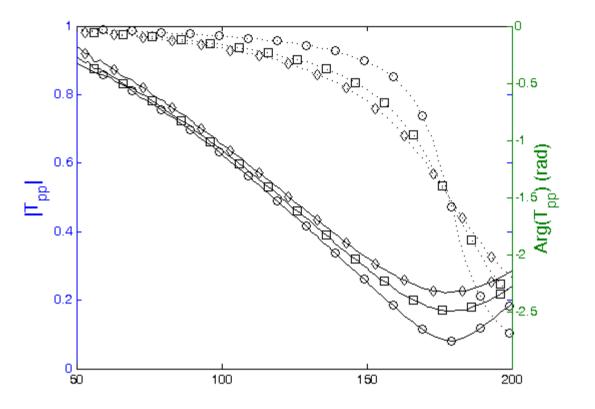



2) Methods for the T evaluation 2.2) The IMPEDANCE Method - Sensitivity Analysis

Ceramic Stack - Theory and Simulated Noise and Bias

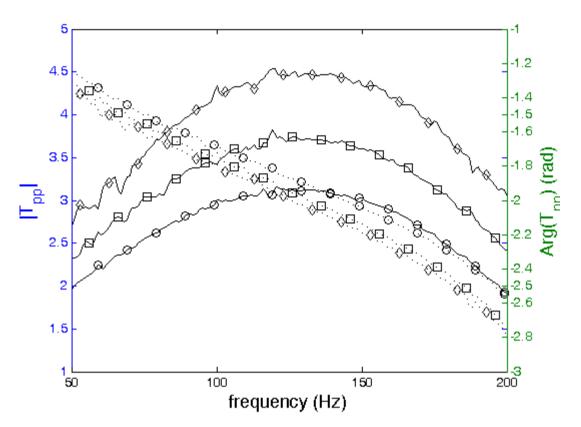
ACOUSTICS 2012

Grid of Steel Pile (regenerator) - Theory and Simulated Noise and Bias


2) Methods for the T evaluation 2.2) The IMPEDANCE Method - Experimental Procedure

- Frequency range from **20Hz** to **500Hz**.
- Different heating conditions Q_H are imposed into the system, each one to whose corresponding T is measured.
- Q_H from 0W to 81W with a **constant increment** of **9W**.
- A **time delay of 13 minutes** is required for <u>each heat increment</u>, aiming at the steady state regime accoplishment.
- The cooling condition Q_c is imposed by water circulation at <u>room temperature</u>.

2) Methods for the T evaluation 2.2) The IMPEDANCE Method - Results - Ceramic Stack


- T_{pp} Amplitude (solid lines) Phase (dotted lines) - (frequency domain in Hz).
- Three heating conditions are shown:
 - $Q_{H} = 0W$ (0),
 - $Q_{H} = 36W$ (square),
 - $Q_H = 72W$ (diamond).

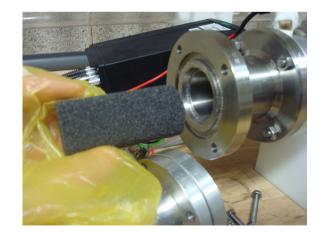
- **Reciprocity** (det(**T**)) values for no heat input ($Q_H = 0W$):
 - Amp. Average: 0.9815 (low bias level), with a std deviation of 4.5e-3 (low noise level);
 Ideal value: 1.
 - Phase Av.(rad): -1.4e-3 (low bias level), with a std deviation of 3.6e-3 (low noise level);
 Ideal value: 0.

2) Methods for the T evaluation 2.2) The IMPEDANCE Method - Results - Grid of Steel Pile

- T_{pp} Amplitude (solid lines) Phase (dotted lines) - (frequency domain in Hz).
- Three heating conditions are shown:
 - $Q_{H} = 0W$ (0),
 - $Q_{H} = 36W$ (square),
 - $Q_H = 72W$ (diamond).

- **Reciprocity** (det(**T**)) values for no heat input ($Q_H = 0W$):
 - Amp. Average: 1.0037 (low bias level), with a std deviation of 0.0107 (low noise level); Ideal value: 1.
 - Phase Av. (rad): 9.0e-3 (low bias level), with a std deviation of 7.2e-3 (low noise level);
 Ideal value: 0.

2) Methods for the T evaluation 2.2) The IMPEDANCE Method - Ni-Cr alloy and RVC Foams


Ni-Cr alloy Foam

- **Reciprocity** (det(**T**)) values for no heat input ($Q_H = 0W$):
 - <u>Amp</u>. Average: 0.9288 (high bias level), with a std deviation of 0.0154 (med. noise level);
 Ideal value: 1.
 - <u>Phase</u> Av. (rad): **-0.0102** (med. bias level), with a std deviation of **0.0101** (med. noise level); Ideal value: **0**.

RVC Foam

- **Reciprocity** (det(**T**)) values for no heat input ($Q_H = 0W$):
 - <u>Amp</u>. Average: **0.9893** (med. bias level), with a std deviation of **0.0317** (med. noise level);
 Ideal value: **1**.
 - <u>Phase</u> Av. (rad): -0.0016 (low bias level), with a std deviation of 0.0233 (med. noise level);
 Ideal value: 0.

3) Additional Investigation (Impedance Method)

- New measurements: more accurate

Ni-Cr alloy Foam

- **Reciprocity** (det(**T**)) values for no heat input ($Q_H = OW$):
 - Amp. Average: <u>1.0014</u> (low bias level), with a std deviation of <u>1.9e-3</u> (low noise level);
 Ideal value: 1.

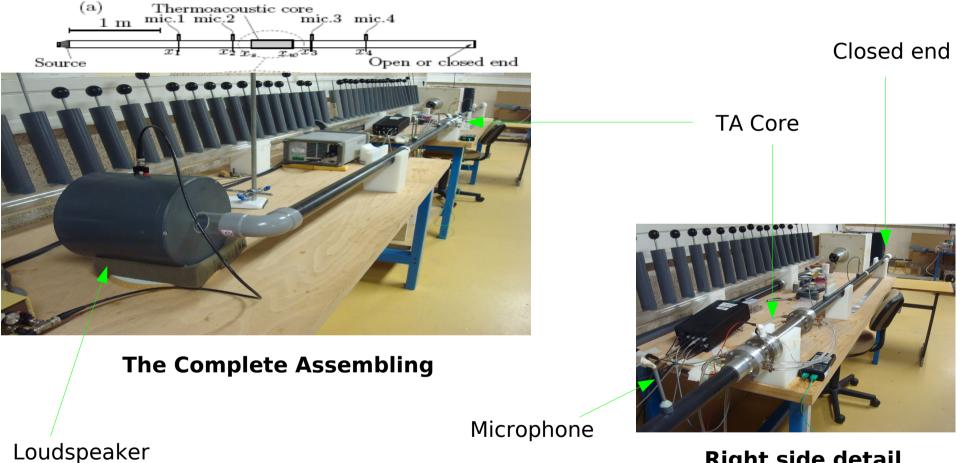
RVC Foam

- **Reciprocity** (det(**T**)) values for no heat input ($Q_H = 0W$):
 - Amp. Average: 1.0002 (low bias level), with a std deviation of 2.3e-3 (low noise level);
 Ideal value: 1.

Ceramic Stack

- **Reciprocity** (det(**T**)) values for no heat input ($Q_H = 0W$):
 - Amp. Average: 1.0017 (low bias level), with a std deviation of 2.1e-3 (low noise level);
 Ideal value: 1.

٠


4) Conclusions and Perspectives

- A new method for the measurement of the **T** of the **TA Core** has been shown.
- The Impedance Method, contrarily to the Two-Loads Method, is accomplishing either for the stack or regenerator.
- The **Impedance Method** performance was confirmed also for the Ni-Cr alloy foam.
- Thermoacoustic investigations are under work to evaluated these materials performence.
- Futures works will be devoted to the design of TA machines.

2) Methods for the T matrix evaluation 2.1) The Two-Loads Method - Experimental Setup

Right side detail

