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Figure: Schematic drawing of the standing-wave
prime mover.
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description of the thermoacoustic device

Figure: (a) Photograph of the experimental

apparatus. (b) Photograph of the hot end of the 10
stack.
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Figure: Schematic drawing of the standing-wave
prime mover.
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n of acoustic propagation using transfer matrices

Harmonic plane wave assumption

pi(@t) =R {F1(@)e ™'} and &(r,y,0) =R {& (@ y)e ], (1)

where £1 = v1 o, 1, T1, S1-

I
Te
: = []
0 s Tn T
p1(L) _ p1(0)
( 1.0(L) = Mw X Mg X M1 X 1 .2(0)
cos(kxg) iZe sin(kxg)
@ My = ( iz L sin(kag) ccos(kxs)s )

@ Mg and My, derived from the linear thermoacoustic propagation equation transformed into a Volterra integral equation of the
second kind [Penelet et al., Acust. Acta Acust. (2005)].

Matthieu Guédra et a



description of acoustic propagation using transfer matrices
Theory amplification/attenuation of the acoustic wave

determination of the onset threshold

transient regime

Theory

description of acoustic propagation using transfer matrices

Harmonic plane wave assumption

pi(@t) =R {F1(@)e ™'} and &(r,y,0) =R {& (@ y)e ], (1)

where £1 = v1 o, 1, T1, S1-

In
Te

—— [
0 s Tn T

(20 )= (Mot Mot Y (20

Appropriate boundary conditions

9 rigid wall : @1 (L) =0

9 no radiation : p1(0) =0
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Theory

amplification /attenuation of the acoustic wave

Muu (w, T(z)) = 0. (2)J

A solution (w,T') of Eq. (2) represents an operating point of the system.
In the Fourier domain (w € R), it describes an equilibrium point :

@ either unstable (onset threshold),
@ or stable (steady state),

@ corresponding to an acoustic wave which is neither amplified, nor attenuated in
both cases.
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Theory

amplification /attenuation of the acoustic wave

Muu (w, T(z)) = 0. (2)J

A solution (w,T') of Eq. (2) represents an operating point of the system.
In the Fourier domain (w € R), it describes an equilibrium point :

@ either unstable (onset threshold),

@ or stable (steady state),
@ corresponding to an acoustic wave which is neither amplified, nor attenuated in

both cases.

“quasi-steady” state assumption
dw=0+1i = pi(z,t)= eegt%{;ﬁl(x)e_mt} ,
9 €5 << 2 on the time scale of few acoustic periods.

For a fixed temperature distribution T'(z), the solution of
Muu (©2,€4) =0

gives the angular frequency of the oscillations and the amplification rate.

n a standing-wave engine
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Figure: Stability curve as function of the location = of the stack.
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Ordinary differential equation for the acoustic pressure amplitude

dP;

— — &g (T(z,1)) P1(t) =0,

dt

with Py (t) = |p1(L,t)|.

one-dimensional heat diffusion in the prime mover
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Ordinary differential equation for the acoustic pressure amplitude

B @@ )P0 =0,

with Py (t) = |p1(L,t)|.

(4)

one-dimensional heat diffusion in the prime mover

T
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transient regime

Ordinary differential equation for the acoustic pressure amplitude

B @@ P =0, with Pi(0) = Ipi(L, D).

(4)

one-dimensional heat diffusion in the prime mover

Te
[
L
3 3 —
Ts Tp L
. Y o Te
T R2
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transient regime

hermoacoustic heat flux along the stack
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Figure: Acoustic fields in the thermoacoustic X (1 = %)
prime mover at onset threshold, for 77
xs = 30 ¢m and for an arbitrary acoustic
pressure amplitude |py(L)| = 1 Pa.
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acoustic stream
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Axial component of the streaming velocity : L
_ 4
o P1V1,z
V2,m =V2,x + —, o 2
Po '
where T3  is the second-order time-averaged Eu- £ @
o
lerian velocity [Bailliet et al., J. Acoust. Soc. =2
Am. (2001)]. 4
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acoustic strean
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acous streaming
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acoustic streaming

inner zone (i) outer zone (o) [ .
r/R ‘ —
L ——————— | T (SR
% \‘\_A;\\ _’:"(’f)('r\‘ \ Th’ 3 Pconv ' T.
=] @ S
0+ : \
heat convection at x = xp, /H\
N
Estimation of the convection flux taken T
away from the hot end stack by the mass h
flow : i
|
fconv(@n) = poCpv{(@n) (T@n) —Te) T, —p > —p
1Pconv
[
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Theory

transient regime

acoustic streaming

Computation of the temporal evolution of acoustic streaming in the resonator :

Q First estimation of averaged streaming velocity

(@) = v (P = 1 Pa, Toneer(z)),

str

Q First order differential equation for the acoustic streaming :

WL ) _ i p2
str
Ty T Vs =T P
where 7(f) = % is a characteristic time for stabilization of acoustic streaming [Amari et

al., Acust. Acta Acust. (2003)].

Yeonv and 7(f) are estimated in a very simplified way and can constitute adjusting
parameters for the model.
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mensional heat
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Conclusion

@ A quarter-wavelength thermoacoustic prime mover has been studied and
measurements of transient regimes show an “overshoot” before stabilization and
periodic “on-off” of the acoustic wave for particular exciting conditions.

@ A model describing amplification and saturation of the acoustic wave has been
developped and applied to this prime mover, including two non-linear effects :
thermoacoustic heat flux in the stack, and acoustic streaming in the heated part
of the resonator.

9@ The “overshoot” is reproduced by both effects.
@ Saturation seems to be mainly due to thermoacoustic heat pumping in the stack

9@ Complete switch-off of the wave would be linked to different time scales
(stabilization time of acoustic streaming seems to play an important role).
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other experimental results
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Figure: x5 = 34.1 cm, Qonset = 17T W Figure: x, = 26.6 cm, Qonset = 16.9 W
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amplification rate and onset threshold
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Figure: Stability curve as function of the location x5 of the stack.
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amplification rate and onset threshold
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Figure: Amplification rate €, and normalised frequency
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Appendix

thermoacoustic flux in the stack
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spatial distributions of acoustic streaming
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taking into account heat convection at interface
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other simulations of transient regimes
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other simulations of transient regimes
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—— : both non-linear effects are taken into account.
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