







Amplification and saturation of the thermoacoustic instability in a standing-wave prime mover.

Avenue Olivier Messiaen

72085 Le Mans Cedex 9, FRANCE

(a) matthieu.guedra.etu@univ-lemans.fr

#### Framework

#### Experiments

- description of the thermoacoustic device
- transient regimes measurements

### 2 Theory

- description of acoustic propagation using transfer matrices
- amplification/attenuation of the acoustic wave
- determination of the onset threshold
- transient regime

Simulations of transient regimes



▲□▶ ▲□▶ ▲目▶ ▲目▶ 目目 ののの

Theory Simulations of transient regimes Conclusion description of the thermoacoustic device transient regimes measurements

#### Experiments

- description of the thermoacoustic device
- transient regimes measurements

#### 2 Theory

- description of acoustic propagation using transfer matrices
- amplification/attenuation of the acoustic wave
- determination of the onset threshold
- transient regime

Simulations of transient regimes

### Conclusion

(ロ) (同) (ヨ) (ヨ) (ヨ) (0)

Theory Simulations of transient regimes Conclusion description of the thermoacoustic device transient regimes measurements

#### Experiments description of the thermoacoustic device



**Figure:** (a) Photograph of the experimental apparatus. (b) Photograph of the hot end of the stack.



Figure: Schematic drawing of the standing-wave prime mover.

|            |           | 600           | CPSI       |
|------------|-----------|---------------|------------|
| glass tube |           | ceramic stack |            |
| L          | $59\ cm$  | $l_s$         | $4.8\ cm$  |
| R          | $2.6\ cm$ | $r_s$         | $0.45\ mm$ |

Microphone Bruel & Kjaer – 1/4 inch

Acquisition PC SoundCard

Theory Simulations of transient regimes Conclusion description of the thermoacoustic device transient regimes measurements

#### Experiments description of the thermoacoustic device

**Figure:** (a) Photograph of the experimental apparatus. (b) Photograph of the hot end of the stack.



(ロ) (同) (ヨ) (ヨ) (ヨ) (0)



**Figure:** Stability curve as function of the location  $x_s$  of the stack.

Figure: Schematic drawing of the standing-wave prime mover.

Theory Simulations of transient regimes Conclusion

description of the thermoacoustic device transient regimes measurements

#### Experiments transient regimes measurements









 $\begin{array}{l} \mbox{Figure:} Q(t=0) = 18W \mbox{ (slightly below} \\ Q_{onset} = 19.6W \mbox{ ). (a) } \Delta Q/Q = 16\%, \mbox{ (b) } \\ \Delta Q/Q = 24\%, \mbox{ (c) } \Delta Q/Q = 30\%. \end{array}$ 



#### Experiments

- description of the thermoacoustic device
- transient regimes measurements

#### 2 Theory

- description of acoustic propagation using transfer matrices
- amplification/attenuation of the acoustic wave
- determination of the onset threshold
- transient regime

Simulations of transient regimes

#### Conclusion

(ロ) (同) (ヨ) (ヨ) (ヨ) (0)

Experiments Theory Simulations of transient regimes Conclusion Conclusion

#### Theory description of acoustic propagation using transfer matrices

#### Harmonic plane wave assumption

$$p_1(x,t) = \Re\left\{\tilde{p}_1(x)e^{-i\omega t}\right\} \quad \text{and} \quad \xi_1(x,y,t) = \Re\left\{\tilde{\xi}_1(x,y)e^{-i\omega t}\right\},\tag{1}$$

where 
$$\xi_1 = v_{1,x}, \rho_1, \tau_1, s_1$$
.



M<sub>S</sub> and M<sub>W</sub> derived from the linear thermoacoustic propagation equation transformed into a Volterra integral equation of the second kind [Penelet et al., Acust. Acta Acust. (2005)].

(ロ) (同) (ヨ) (ヨ) (ヨ) (0)

Experiments Theory Simulations of transient regimes Conclusion Conclusion

#### Theory description of acoustic propagation using transfer matrices

#### Harmonic plane wave assumption

$$p_1(x,t) = \Re\left\{\tilde{p}_1(x)e^{-i\omega t}\right\} \quad \text{and} \quad \xi_1(x,y,t) = \Re\left\{\tilde{\xi}_1(x,y)e^{-i\omega t}\right\},\tag{1}$$

where 
$$\xi_1 = v_{1,x}, \rho_1, \tau_1, s_1$$
.



#### Appropriate boundary conditions

- rigid wall :  $\tilde{u}_{1,x}(L) = 0$
- no radiation :  $\tilde{p}_1(0) = 0$

 $\qquad \mathbf{M}_{\mathbf{u}\mathbf{u}}\left(\omega,T(x)\right)=0.$ 

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃|目 のQ@

| Experiments                      | description of acoustic propagation using transfer matrices |
|----------------------------------|-------------------------------------------------------------|
| Theory                           | amplification/attenuation of the acoustic wave              |
| Simulations of transient regimes | determination of the onset threshold                        |
| Conclusion                       | transient regime                                            |

#### Theory amplification/attenuation of the acoustic wave

$$\mathbf{M_{uu}}\left(\omega, T(x)\right) = 0.$$

(2)

A solution  $(\omega, T)$  of Eq. (2) represents an operating point of the system. In the Fourier domain  $(\omega \in \mathbb{R})$ , it describes an equilibrium point :

- either unstable (onset threshold),
- or stable (steady state),
- corresponding to an acoustic wave which is neither amplified, nor attenuated in both cases.

#### Theory amplification/attenuation of the acoustic wave

$$\mathbf{M}_{\mathbf{u}\mathbf{u}}\left(\omega, T(x)\right) = 0.$$

A solution  $(\omega, T)$  of Eq. (2) represents an operating point of the system. In the Fourier domain  $(\omega \in \mathbb{R})$ , it describes an equilibrium point :

- either unstable (onset threshold),
- or stable (steady state),
- corresponding to an acoustic wave which is neither amplified, nor attenuated in both cases.

#### "quasi-steady" state assumption

• 
$$\omega = \Omega + i\epsilon_g \quad \Rightarrow \quad p_1(x,t) = e^{\epsilon_g t} \Re \left\{ \tilde{p}_1(x) e^{-i\Omega t} \right\}$$
,

•  $\epsilon_g << \Omega$  on the time scale of few acoustic periods.

For a fixed temperature distribution T(x), the solution of

$$\mathbf{M}_{\mathbf{u}\mathbf{u}}\left(\Omega,\epsilon_{g}\right)=0$$

gives the angular frequency of the oscillations and the amplification rate.

ELE DOG

(2)

#### Theory determination of the onset threshold



| Experiments                      | description of acoustic propagation using transfer matrices |
|----------------------------------|-------------------------------------------------------------|
| Theory                           | amplification/attenuation of the acoustic wave              |
| Simulations of transient regimes | determination of the onset threshold                        |
| Conclusion                       | transient regime                                            |

Ordinary differential equation for the acoustic pressure amplitude

$$\frac{dP_1}{dt} - \epsilon_g \left( T(x,t) \right) P_1(t) = 0, \quad \text{with} \quad P_1(t) = |p_1(L,t)|. \tag{4}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

| Experiments                      | description of acoustic propagation using transfer matrices |
|----------------------------------|-------------------------------------------------------------|
| Theory                           | amplification/attenuation of the acoustic wave              |
| Simulations of transient regimes | determination of the onset threshold                        |
| Conclusion                       | transient regime                                            |

#### Ordinary differential equation for the acoustic pressure amplitude

$$\frac{dP_1}{dt} - \epsilon_g \left( T(x,t) \right) P_1(t) = 0, \quad \text{with} \quad P_1(t) = |p_1(L,t)|. \tag{4}$$

#### one-dimensional heat diffusion in the prime mover



| Experiments                      | description of acoustic propagation using transfer matrices |
|----------------------------------|-------------------------------------------------------------|
| Theory                           | amplification/attenuation of the acoustic wave              |
| Simulations of transient regimes | determination of the onset threshold                        |
| Conclusion                       | transient regime                                            |

#### Theory transient regime

#### Ordinary differential equation for the acoustic pressure amplitude

$$\frac{dP_1}{dt} - \epsilon_g \left( T(x,t) \right) P_1(t) = 0, \quad \text{with} \quad P_1(t) = |p_1(L,t)|. \tag{4}$$

#### one-dimensional heat diffusion in the prime mover



| Experiments                      | description of acoustic propagation using transfer matrices |
|----------------------------------|-------------------------------------------------------------|
| Theory                           | amplification/attenuation of the acoustic wave              |
| Simulations of transient regimes | determination of the onset threshold                        |
| Conclusion                       | transient regime                                            |

#### Theory transient regime

#### Ordinary differential equation for the acoustic pressure amplitude

$$\frac{dP_1}{dt} - \epsilon_g \left( T(x,t) \right) P_1(t) = 0, \quad \text{with} \quad P_1(t) = |p_1(L,t)|. \tag{4}$$

#### one-dimensional heat diffusion in the prime mover



◆□▶ ◆□▶ ◆目▶ ◆日▶ 目目 のへで

#### Theory transient regime



11

#### Theory transient regime

#### acoustic streaming



#### Theory transient regime

#### acoustic streaming



<□> <同> <同> <目> <目> <同> <日> <同> <日> <日> <同> <日> <日 < ○<

#### Theory transient regime

#### acoustic streaming



Experiments Theory amplification/attenuation of the acoustic wave Simulations of transient regimes determination of the onset threshold Conclusion transient regime

#### Theory transient regime

#### acoustic streaming



Axial component of the streaming velocity :

$$\overline{V_{2,x}} = \overline{v_{2,x}} + \frac{\overline{\rho_1 v_{1,x}}}{\rho_0},$$

where  $\overline{v_{2,x}}$  is the second-order time-averaged Eulerian velocity [Bailliet et al., J. Acoust. Soc. Am. (2001)].



< 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > > < 0 > > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > > < 0 > > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

#### Theory transient regime

#### acoustic streaming



Averaged streaming velocity :

$$\begin{split} v_{str}^{(f)}(x) &= \frac{2\pi}{\pi R^2} \int_0^R \left| \overline{V_{2,x}} \right| r dr, \\ v_{str}^{(s)}(x) &= \frac{2\pi}{\pi r_s^2} \int_0^{r_s} \left| \overline{V_{2,x}} \right| r dr. \end{split}$$



#### Theory transient regime

#### acoustic streaming



#### Theory transient regime

#### acoustic streaming



#### Theory transient regime

#### acoustic streaming



Estimation of the convection flux taken away from the hot end stack by the mass flow :

$$\varphi_{conv}(x_h) \simeq \rho_0 C_p v_{str}^{(f)}(x_h) \left( T(x_h) - T_c \right)$$



#### Theory transient regime

#### acoustic streaming

Computation of the temporal evolution of acoustic streaming in the resonator :

First estimation of averaged streaming velocity

$$\Gamma_v^{(f)}(x) = v_{str}^{(f)}(P_1 = 1 \ Pa, T_{onset}(x)),$$

Pirst order differential equation for the acoustic streaming :

$$\tau^{(f)} \frac{dv_{str}^{(f)}}{dt} + v_{str}^{(f)} = \Gamma_v^{(f)} P_1^2,$$

where  $\tau^{(f)} = \frac{4R^2}{\pi^2 \nu}$  is a characteristic time for stabilization of acoustic streaming [Amari et al., Acust. Acta Acust. (2003)].

 $\varphi_{conv}$  and  $\tau^{(f)}$  are estimated in a very simplified way and can constitute adjusting parameters for the model.

#### Theory transient regime

#### one-dimensional heat diffusion in the prime mover



#### Theory transient regime

#### one-dimensional heat diffusion in the prime mover



#### Theory transient regime

# one-dimensional heat diffusion in the prime mover $\bullet \quad (\rho_s C_s)^{(i,o)} \frac{DT^{(i,o)}}{Dt} = \frac{\partial}{\partial x} \left( \lambda_s^{(i,o)} \frac{\partial T^{(i,o)}}{\partial x} \right)$ $-h_s^{(i,o)}\left(T^{(i,o)}-T_c\right)$ $\frac{\partial \varphi_{ac}}{\partial r}$ , $\bullet \quad (\rho_0 C_p)^{(i,o)} \frac{DT^{(i,o)}}{Dt} = \frac{\partial}{\partial x} \left( \lambda_0^{(i,o)} \frac{\partial T^{(i,o)}}{\partial x} \right) \quad \text{with } \frac{DT^{(i,o)}}{Dt} = \frac{\partial T^{(i,o)}}{\partial t} \pm v_{str}^{(s)} \frac{\partial T^{(i,o)}}{\partial x}$ $-h^{(i,o)}\left(T^{(i,o)}-T_c\right),$ with $\frac{DT(i,o)}{Dt} = \frac{\partial T(i,o)}{\partial t} \mp v_{str}^{(f)} \frac{\partial T(i,o)}{\partial x}$ , Matthieu Guédra et al Thermoacoustic instability in a standing-wave engine

#### Theory transient regime

# one-dimensional heat diffusion in the prime mover $\bullet \quad (\rho_s C_s)^{(i,o)} \frac{DT^{(i,o)}}{Dt} = \frac{\partial}{\partial x} \left( \lambda_s^{(i,o)} \frac{\partial T^{(i,o)}}{\partial x} \right)$ $-h_s^{(i,o)}\left(T^{(i,o)}-T_c\right)$ $\frac{\partial \varphi_{ac}}{\partial r}$ , $\bullet \quad (\rho_0 C_p)^{(i,o)} \frac{DT^{(i,o)}}{Dt} = \frac{\partial}{\partial x} \left( \lambda_0^{(i,o)} \frac{\partial T^{(i,o)}}{\partial x} \right) \quad \text{with } \frac{DT^{(i,o)}}{Dt} = \frac{\partial T^{(i,o)}}{\partial t} \pm v_{str}^{(s)} \frac{\partial T^{(i,o)}}{\partial x} \\ - h^{(i,o)} \left( T^{(i,o)} - T_c \right), \quad \bullet \quad T(x_s) = T^{(i)}(L) = T^{(o)}(L) = T_c,$ with $\frac{DT(i,o)}{Dt} = \frac{\partial T(i,o)}{\partial t} \mp v_{str}^{(f)} \frac{\partial T(i,o)}{\partial x}$ , Matthieu Guédra et al Thermoacoustic instability in a standing-wave engine

#### Theory transient regime

# one-dimensional heat diffusion in the prime mover $\bullet \quad (\rho_s C_s)^{(i,o)} \frac{DT^{(i,o)}}{Dt} = \frac{\partial}{\partial x} \left( \lambda_s^{(i,o)} \frac{\partial T^{(i,o)}}{\partial x} \right)$ $-h_s^{(i,o)}\left(T^{(i,o)}-T_c\right)$ $\frac{\partial \varphi_{ac}}{\partial \pi}$ , $\blacklozenge \quad (\rho_0 C_p)^{(i,o)} \frac{DT^{(i,o)}}{Dt} = \frac{\partial}{\partial x} \left( \lambda_0^{(i,o)} \frac{\partial T^{(i,o)}}{\partial x} \right) \quad \text{with } \frac{DT^{(i,o)}}{Dt} = \frac{\partial T^{(i,o)}}{\partial t} \pm v_{str}^{(s)} \frac{\partial T^{(i,o)}}{\partial x}$ $-h^{(i,o)}\left(T^{(i,o)} - T_c\right), \qquad \blacklozenge \ T(x_s) = T^{(i)}(L) = T^{(o)}(L) = T_c.$ • $T^{(i)}(x_h) - T^{(o)}(x_h) = 0$ , with $\frac{DT(i,o)}{Dt} = \frac{\partial T(i,o)}{\partial t} \mp v_{str}^{(f)} \frac{\partial T(i,o)}{\partial r}$ $+\varphi_{conv}(x_h) - \varphi_{ac}(x_h) = \frac{Q}{R^2},$

- description of the thermoacoustic device
- transient regimes measurements

#### 2 Theory

- description of acoustic propagation using transfer matrices
- amplification/attenuation of the acoustic wave
- determination of the onset threshold
- transient regime

#### Simulations of transient regimes

### Conclusion

<□> <同> <同> <目> <目> <同> <日> <同> <日> <日> <同> <日> <日 < ○<

# Simulations of transient regimes



17

<□> <同> <同> <目> <目> <同> <日> <同> <日> <日> <同> <日> <日 < ○<

# Simulations of transient regimes



#### **Experiment**

- description of the thermoacoustic device
- transient regimes measurements

#### 2 Theory

- description of acoustic propagation using transfer matrices
- amplification/attenuation of the acoustic wave
- determination of the onset threshold
- transient regime

Simulations of transient regimes



<□> <同> <同> <目> <目> <同> <日> <同> <日> <日> <同> <日> <日 < ○<

## Conclusion

- A quarter-wavelength thermoacoustic prime mover has been studied and measurements of transient regimes show an "overshoot" before stabilization and periodic "on-off" of the acoustic wave for particular exciting conditions.
- A model describing amplification and saturation of the acoustic wave has been developped and applied to this prime mover, including **two non-linear effects** : **thermoacoustic heat flux** in the stack, and **acoustic streaming** in the heated part of the resonator.
- The "overshoot" is reproduced by both effects.
- Saturation seems to be mainly due to thermoacoustic heat pumping in the stack
- Complete switch-off of the wave would be linked to **different time scales** (stabilization time of acoustic streaming seems to play an important role).

#### Appendix other experimental results



Figure:  $x_s = 34.1 \ cm$ ,  $Q_{onset} = 17 \ W$ 



Figure: 
$$x_s = 26.6 \ cm$$
,  $Q_{onset} = 16.9 \ W$ 

<ロ> <四> <豆> <豆> <豆> <豆> <豆> <豆> <豆> <豆> <豆</p>

#### Appendix amplification rate and onset threshold



**Figure:** Stability curve as function of the location  $x_s$  of the stack.

#### Appendix amplification rate and onset threshold



Figure: Amplification rate  $\epsilon_g$  and normalised frequency  $\frac{\Omega}{\Omega_{res}}$  in function of temperature for 4 locations of the stack.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目目 ののの



$$\begin{split} \varphi_{ac} &= \Im\{g\}\mathcal{J} - \Re\{g\}\mathcal{I} - \lambda_{ac}\frac{\partial T}{\partial x}, \\ \text{th} \\ \mathcal{I} &= \frac{1}{2}\Re\{\tilde{p}_1 \langle \tilde{v}_{1,x}^* \rangle\} \\ \mathcal{J} &= \frac{1}{2}\Im\{\tilde{p}_1 \langle \tilde{v}_{1,x}^* \rangle\} \end{split}$$

#### Appendix spatial distributions of acoustic streaming

![](_page_40_Figure_1.jpeg)

![](_page_40_Figure_2.jpeg)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目目 のへで

#### Appendix other simulations of transient regimes

![](_page_42_Figure_1.jpeg)

<□> <同> <同> <目> <目> <同> <日> <同> <日> <日> <同> <日> <日 < ○<

#### Appendix other simulations of transient regimes

![](_page_43_Figure_1.jpeg)

**Figure:** At t = 0,  $Q = Q_{onset}$ ,  $\frac{\Delta Q}{Q} = 1\%$ .  $-: v_{str}^{(f)} = 0$ . --: both non-linear effects are taken into account.