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Matthieu Guédra et al. Thermoacoustic instability in a standing-wave engine



Experiments
Theory

Simulations of transient regimes
Conclusion

description of the thermoacoustic device
transient regimes measurements

1 Experiments
description of the thermoacoustic device
transient regimes measurements

2 Theory
description of acoustic propagation using transfer matrices
amplification/attenuation of the acoustic wave
determination of the onset threshold
transient regime

3 Simulations of transient regimes

4 Conclusion

3
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Experiments
description of the thermoacoustic device

Figure: (a) Photograph of the experimental
apparatus. (b) Photograph of the hot end of the
stack.
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Figure: Schematic drawing of the standing-wave
prime mover.
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Figure: Stability curve as function of the
location xs of the stack.
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Experiments
transient regimes measurements

Figure: Q(t = 0) = 16W (slightly below
Qonset = 16.9W ). (a) ∆Q/Q = 16%, (b)
∆Q/Q = 34% ,(c) ∆Q/Q = 53%.
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Figure: Q(t = 0) = 18W (slightly below
Qonset = 19.6W ). (a) ∆Q/Q = 16%, (b)
∆Q/Q = 24% ,(c) ∆Q/Q = 30%.
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description of acoustic propagation using transfer matrices

Harmonic plane wave assumption

p1(x, t) = ℜ
{

p̃1(x)e
−iωt

}

and ξ1(x, y, t) = ℜ
{

ξ̃1(x, y)e
−iωt

}

, (1)

where ξ1 = v1,x, ρ1, τ1, s1.
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0 xs xh L x

Tc

Th

(

p̃1(L)
ũ1,x(L)

)

= Mw × Ms × M1 ×

(

p̃1(0)
ũ1,x(0)

)

M1 =

(

cos(kxs) iZc sin(kxs)

iZ−1
c sin(kxs) cos(kxs)

)

Ms and Mw derived from the linear thermoacoustic propagation equation transformed into a Volterra integral equation of the
second kind [Penelet et al., Acust. Acta Acust. (2005)].
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Harmonic plane wave assumption

p1(x, t) = ℜ
{

p̃1(x)e
−iωt

}

and ξ1(x, y, t) = ℜ
{

ξ̃1(x, y)e
−iωt

}

, (1)

where ξ1 = v1,x, ρ1, τ1, s1.
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0 xs xh L x

Tc

Th

(

p̃1(L)
ũ1,x(L)

)

=

(

Mpp (ω, T (x)) Mpu (ω, T (x))
Mup (ω, T (x)) Muu (ω, T (x))

)

×

(

p̃1(0)
ũ1,x(0)

)

Appropriate boundary conditions

rigid wall : ũ1,x(L) = 0

no radiation : p̃1(0) = 0
=⇒ Muu (ω, T (x)) = 0.
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amplification/attenuation of the acoustic wave

Muu (ω, T (x)) = 0. (2)

A solution (ω, T ) of Eq. (2) represents an operating point of the system.
In the Fourier domain (ω ∈ R), it describes an equilibrium point :

either unstable (onset threshold),

or stable (steady state),

corresponding to an acoustic wave which is neither amplified, nor attenuated in
both cases.
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Theory
amplification/attenuation of the acoustic wave

Muu (ω, T (x)) = 0. (2)

A solution (ω, T ) of Eq. (2) represents an operating point of the system.
In the Fourier domain (ω ∈ R), it describes an equilibrium point :

either unstable (onset threshold),

or stable (steady state),

corresponding to an acoustic wave which is neither amplified, nor attenuated in
both cases.

“quasi-steady” state assumption

ω = Ω+ iǫg ⇒ p1(x, t) = eǫgtℜ
{

p̃1(x)e−iΩt
}

,

ǫg << Ω on the time scale of few acoustic periods.

For a fixed temperature distribution T (x), the solution of

Muu (Ω, ǫg) = 0

gives the angular frequency of the oscillations and the amplification rate.
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Theory
determination of the onset threshold

ǫg (T (x)) = 0. (3)
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Figure: Stability curve as function of the location xs of the stack.
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transient regime

Ordinary differential equation for the acoustic pressure amplitude

dP1

dt
− ǫg (T (x, t))P1(t) = 0, with P1(t) = |p1(L, t)|. (4)
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transient regime

Ordinary differential equation for the acoustic pressure amplitude

dP1

dt
− ǫg (T (x, t))P1(t) = 0, with P1(t) = |p1(L, t)|. (4)

one-dimensional heat diffusion in the prime mover
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Theory
transient regime

Ordinary differential equation for the acoustic pressure amplitude

dP1

dt
− ǫg (T (x, t))P1(t) = 0, with P1(t) = |p1(L, t)|. (4)

one-dimensional heat diffusion in the prime mover

��
��
��
��
��
��

��
��
��
��
��
��

xs xh L
x

Tc

TcTc Q

πR2

ϕac

10
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Theory
transient regime

thermoacoustic heat flux along the stack
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Figure: Acoustic fields in the thermoacoustic
prime mover at onset threshold, for
xs = 30 cm and for an arbitrary acoustic
pressure amplitude |p̃1(L)| = 1 Pa.

ϕac =
1

2
ρ0c0ℜ

{

〈s̃1ṽ
∗
1,x〉

}

,

oscillating part of entropy :

s̃1 =
−p̃1

ρ0T
Fκ(y)

− i
Cp

ω

∂xT

T

〈ṽ1,x〉

1 − fν

×

(

1 −
σFν (y) − Fκ(y)

σ − 1

)
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transient regime

acoustic streaming

0 Lxs xh
x

Axial component of the streaming velocity :

V2,x = v2,x +
ρ1v1,x

ρ0

,

where v2,x is the second-order time-averaged Eu-

lerian velocity [Bailliet et al., J. Acoust. Soc.

Am. (2001)].
0

0

V
2
x
(m

.s
−
1
)

×1.10−9

r/R
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Matthieu Guédra et al. Thermoacoustic instability in a standing-wave engine



Experiments
Theory

Simulations of transient regimes
Conclusion

description of acoustic propagation using transfer matrices
amplification/attenuation of the acoustic wave
determination of the onset threshold
transient regime

Theory
transient regime

acoustic streaming
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acoustic streaming
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1√
2

heat convection at x = xh

Estimation of the convection flux taken
away from the hot end stack by the mass
flow :

ϕconv(xh) ≃ ρ0Cpv
(f)
str(xh) (T (xh)− Tc)

Tc

Tc

Th

Th

ϕconv

ϕconv
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acoustic streaming

Computation of the temporal evolution of acoustic streaming in the resonator :

1 First estimation of averaged streaming velocity

Γ
(f)
v (x) = v

(f)
str(P1 = 1 Pa, Tonset(x)),

2 First order differential equation for the acoustic streaming :

τ (f) dv
(f)
str

dt
+ v

(f)
str = Γ(f)

v P 2
1 ,

where τ (f) = 4R2

π2ν
is a characteristic time for stabilization of acoustic streaming [Amari et

al., Acust. Acta Acust. (2003)].

ϕconv and τ (f) are estimated in a very simplified way and can constitute adjusting
parameters for the model.
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one-dimensional heat diffusion in the prime mover
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one-dimensional heat diffusion in the prime mover
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transient regimes measurements
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description of acoustic propagation using transfer matrices
amplification/attenuation of the acoustic wave
determination of the onset threshold
transient regime

3 Simulations of transient regimes
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19
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Experiments
Theory

Simulations of transient regimes
Conclusion

Conclusion

A quarter-wavelength thermoacoustic prime mover has been studied and
measurements of transient regimes show an “overshoot” before stabilization and
periodic “on-off” of the acoustic wave for particular exciting conditions.

A model describing amplification and saturation of the acoustic wave has been
developped and applied to this prime mover, including two non-linear effects :
thermoacoustic heat flux in the stack, and acoustic streaming in the heated part
of the resonator.

The “overshoot” is reproduced by both effects.

Saturation seems to be mainly due to thermoacoustic heat pumping in the stack

Complete switch-off of the wave would be linked to different time scales
(stabilization time of acoustic streaming seems to play an important role).
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Appendix
other experimental results

Figure: xs = 34.1 cm, Qonset = 17 W Figure: xs = 26.6 cm, Qonset = 16.9 W
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Appendix
amplification rate and onset threshold

0

50

100

150

200

0.1 0.15 0.2 0.25 0.3 0.35 0.4

Q
o
n
s
e
t
(W

)

xs (m)

onset mode 1

onset mode 2

Figure: Stability curve as function of the location xs of the stack.
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Appendix
amplification rate and onset threshold
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Appendix
thermoacoustic flux in the stack
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Appendix
spatial distributions of acoustic streaming
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Appendix
taking into account heat convection at interface
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Appendix
other simulations of transient regimes
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Appendix
other simulations of transient regimes
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